
Rough Terrain Navigation Using Divergence
Constrained Model-Based Reinforcement Learning

Sean J. Wang1, Samuel Triest2, Wenshan Wang2, Sebastian Scherer2, and Aaron M. Johnson1

1Department of Mechanical Engineering, 2 Robotics Institute
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract: Autonomous navigation of wheeled robots in rough terrain environ-
ments has been a long standing challenge. In these environments, predicting the
robot’s trajectory is challenging due to the complexity of terrain interactions and
the divergent dynamics that cause model uncertainty to compound. This inhibits
the robot’s long horizon decision making capabilities and often lead to short-
sighted navigation strategies. We propose a model-based reinforcement learning
algorithm for rough terrain traversal that trains a probabilistic dynamics model to
consider the propagating effects of uncertainty. Our method increases prediction
accuracy and precision by using a tracking controller and by using constrained
optimization to find trajectories with low divergence. Using this method, wheeled
robots can find non-myopic control strategies to reach destinations with higher
probability of success. We show results on simulated and real world robots navi-
gating through rough terrain environments.

Keywords: Rough Terrain Navigation, Model-Based Reinforcement Learning,
Model Uncertainty

1 Introduction

Autonomous wheeled robots are useful for a variety of applications such as environmental monitor-
ing, package delivery, and warehouse operation. Although these robots are capable of autonomously
navigating through flat environments, rough terrain still poses a challenge as it requires non-myopic
decision making to avoid getting trapped. This is challenging as the interactions between the robot
and the unstructured terrain are complex and difficult to model [1]. Furthermore, the highly diver-
gent dynamics can cause modeling errors to compound and propagate poorly along trajectories.

Methods that rely on accurate handcrafted dynamics models for decision making, e.g. [2, 3, 4],
often perform poorly when predictions contradict reality. Some methods aim to combat this issue
by formulating control policies that are robust against model uncertainty [5, 6, 7, 8]. Others abstract
the robot’s dynamics by using traversability maps to provide heuristics for how difficult different
regions are to traverse [9, 10, 11, 12, 13, 14]. However, these approaches are limited to coarse
approximations of traversability and don’t consider dynamic interactions.

Alternatively, reinforcement learning can be used for rough terrain traversal. Some methods use
model-free reinforcement learning (MFRL) [15, 16, 17], where control policies are directly opti-
mized. Others use model-based reinforcement learning (MBRL) [18], where predictive dynamics
models are learned and then used for decision making. Due to their higher sample efficiency, MBRL
methods are generally more practical for real world systems where training data is limited and expen-
sive to collect. However, MBRL methods often have poorer performance as their decision making
processes may exploit model inaccuracies. Previous MBRL algorithms have addressed this issue
by considering prediction uncertainty during decision making [19, 20], though characterizing pre-
diction uncertainty for rough terrain navigation is challenging since the divergent dynamics cause
model uncertainty to propagate poorly over long prediction horizons.

We propose a MBRL algorithm for rough terrain navigation, summarized in Sec. 3 and Fig. 1. Our
algorithm’s unique method of handling uncertainty allows the robot to more accurately optimize

5th Conference on Robot Learning (CoRL 2021), London, UK.

Figure 1: Left: An overview of the method. The probabilistic dynamics model is trained using a
multistep loss that considers how uncertainty propagates. The trajectory tracking controller is used
to predict a distribution of closed-loop trajectories. The divergence constrained optimizer is used
to find a closed-loop trajectory with low divergence. Center: Example trajectory distribution found
using our method (green) and a trajectory distribution found without using closed-loop predictions or
constrained optimization (red). Right: The actual results of running the two optimized trajectories.

longer trajectories. Like previous methods [19, 20], our method performs trajectory optimization
using learned probabilistic dynamics models to predict trajectories and characterize prediction un-
certainty. However, we train the probabilistic dynamics model using a multistep loss that considers
how model uncertainty propagates along trajectories (Sec. 4). We perform closed-loop trajectory
prediction, where the capability of the robot’s trajectory tracking controller is considered during
trajectory prediction (Sec. 5). The use of a multi-step loss and closed-loop trajectory prediction
decreases long horizon trajectory prediction uncertainty and allows the robot to be more selective
during optimization. Our algorithm uses constrained optimization to avoid trajectories that result
in high divergence (Sec. 6), similar to Convergent Planning [8]. Through simulation and hardware
experiments, we show that these improvements allow the robot to find non-myopic trajectories with
high prediction accuracy and precision, increasing the likelihood of successful navigation (Sec. 7).

2 Related Works

Probabilistic Ensembles with Trajectory Sampling (PETS) [19] aims to make MBRL more robust to
modeling errors by characterizing uncertainty with probabilistic ensemble models and propogating
uncertainty with trajectory sampling. PETS optimizes trajectories based on expected rewards and
performs well on benchmark tasks [21]. However, using PETS on rough terrain is challenging due to
the high variance in predictions, which makes it difficult to estimate expected reward. Furthermore,
high reward expectation with high variance does not mean the robot will actually perform well.

Kahn et al. [20] use uncertainty in a model-based fashion for collision avoidance in navigation.
They train an ensemble of models (via variational dropout [22]) to predict the probability of a col-
lision. They then use this uncertainty to augment their task-specific cost function via a risk-averse
prediction of the collision probability, which factors in the uncertainty of the collision predictor en-
semble. This collision probability is used in their reward function, which is solved using MPC. This
approach is shown to be effective with real-world experiments.

Recent work by Yu et al. [23] takes a more general approach to uncertainty-aware MBRL by learning
an ensemble of dynamics models and augmenting arbitrary cost functions with a scaled penalty
based on the uncertainty of the ensemble. The authors show that such an approach allows them to
perform offline reinforcement learning, or reinforcement learning without access to the environment.

3 Method Overview

We formulate the rough terrain navigation problem as a Markov decision process (MDP). Our prob-
lem is defined as (S,A,P, C, γ), where S is the state space, A is the action space, P(s′|s, a) is
the non-deterministic discrete time transition dynamics, C(s, a) is the cost function, and γ is the
discount factor. We assume that the state includes terrain features (e.g. terrain height map).

2

Our approach, Fig. 1, falls under the MBRL paradigm. We train a probabilistic neural network
to model the unknown transition dynamics P using previously collected data D = {d0, ..., dM},
where di = (s0, .., sT , a0, ..., aT−1) is a state-action trajectory. We train the model to capture both
aleatoric and epistemic uncertainty using a multistep training loss that considers how model uncer-
tainty propagates along trajectories (Sec. 4). The trained probabilistic model is used to predict a
distribution of the robot’s trajectory under the influence of a tracking controller (Sec. 5). Finally,
a low cost trajectory to the goal is generated using constrained optimization. The solution is con-
strained based on the probabilistic model to avoid steps where the dynamics significantly diverges
to ensure that the tracking controller can actually achieve the trajectory (Sec. 6).

4 Probabilistic Dynamics Models

We propose a method for training a probabilistic dynamics model to predict long horizon trajectories.
Similar to [19], we train the model to capture both epistemic and aleatoric uncertainty, however here
we propose a multistep loss that considers how prediction uncertainty propagates along a trajectory.

4.1 Aleatoric Uncertainty

In the learned model we aim to capture aleatoric uncertainty by modeling the true transition dynam-
ics P with a probabilistic neural network [24] parameterized by θ. Given a state st and action at
at time t, the model predicts a probability distribution of possible next states. For our implementa-
tion, the network predicts the mean and log-variance of an uncorrelated gaussian distribution. The
estimated likelihood of a next state st+1 conditioned on st and at is denoted as pθ(st+1|st, at). The
training method in [19] uses a single step likelihood loss. However, this loss fails to consider how
prediction uncertainty propagates when multiple single step predictions are chained for trajectory
prediction. Furthermore, [25, 26] describe how states generated from earlier predictions may fall
out of the distribution of training data, leading to poor predictions for later steps in a trajectory. We
adapt [25, 26] to non-deterministic environments by proposing a probabilistic multistep loss that
considers the propagation of model uncertainty instead of model error.

The multistep loss we use aims to minimize the negative log likelihood of states conditioned on all
prior actions and the starting state of the trajectory, i.e. Lms(st, A, θ) := − log pθ(st|A), where
A = {s0, a0, ..., at−1}. The likelihood of states s1, ..., st conditioned on A can be found as follows:

pθ(s1|A) = pθ(s1|s0, a0)

pθ(s2|A) = Eŝ1∼pθ(s1|A)

[
pθ(s2|ŝ1, a0)

]
...

pθ(st|A) = Eŝt−1∼pθ(st−1|A)

[
pθ(st|ŝt−1, at−1)

] (1)

Calculating Lms exactly is intractable due to the expectations required. Instead we define upper
bounds that can be used during training instead, denoted as LNms where N ∈ N,

LNms(st, A, θ) := − log
1

N

N∑
i=1

pθ(st|ŝit−1, at−1) (2)

where ŝij is sampled recursively from pθ(sj |ŝij−1, aj−1) for j < t. As N approaches infinity, LNms
approaches the true multistep loss, Lms. Furthermore, due to Jensen’s inequality:

E
[
L1
ms(st, A, θ)

]
≥ E

[
L2
ms(st, A, θ)

]
≥ ... ≥ Lms(st, A, θ) (3)

As such, minimizing LNms using any stochastic optimization methods such as Stochastic Gradient
Descent (SGD) [27] will effectively also minimize the true loss. Any value could be used for N ,
however larger values give more realistic estimates at the expense of increased computation.

4.2 Epistemic Uncertainty

Epistemic uncertainty is defined as model uncertainty due to a poorly distributed or lack of training
data. In the context of deep learning, it is typically quantified using a prediction disagreement

3

metric via an ensemble of neural network models. Some popular methods use explicit ensembles of
models [19], while other methods such as Bayesian neural networks [28] or hypernetworks [29, 30]
parameterize models via uncertainty in the weights of the neural network.

In our work, we use variational dropout to characterize epistemic uncertainty [31, 22]. With this
approach, inputs to the neural network’s fully connected layers are randomly dropped (set to zero)
with some probability. We define Θ as the parameters of the neural network dynamics model with
no dropout applied. Using dropout on this model will effectively result in a distribution of models.
We denote the probability of sampling a model, parameterized by θ, as qΘ(θ).

During training, we randomly sample parameters θ from qΘ(θ) and calculate the multistep training
loss described in Sec. 4.1. We then update Θ to minimize training loss. The complete model training
procedure is summarized in Algorithm 1.

5 Closed-Loop Trajectory Prediction

Imprecise trajectory predictions are problematic for two reasons. First, predicted trajectory distribu-
tions with high variance provides little insight into the robot’s true outcome. Second, the standard
error of Monte Carlo predictions scales linearly with prediction variance and inversely with the
square root of number of samples. This means that using Trajectory Sampling [19] may require an
intractable number of samples when prediction variance is high. We observe that it is common to
use a low-level trajectory tracking controllers to correct for deviations of the true trajectory from the
desired (predicted) trajectory. Our method aims to predict robot trajectories under the influence of a
low-level trajectory tracker controllers. Doing so allows prediction of less divergent robot trajectory
distributions and better captures the capabilities of the closed-loop robot control system.

We assume that the controllers take the form:

at = āt + ftrack(s0, ..., st, d̄), (4)

where s0, ..., st are the robot’s actual states, and d̄ = (s̄0, ..., s̄T , ā0, ..., āT−1) is a reference tra-
jectory containing reference states and feed forward actions. at is the combination of the planned,
feed-forward action āt and the corrective action applied to the robot to track the reference trajectory.

Training a dynamics model to directly predict the robot’s closed loop behavior is difficult as the
controller’s inputs are high dimensional and unbounded. Instead, our method first predicts a nominal
reference trajectory given a starting state and feed forward actions,

s̄t+1 = E
[
st+1 ∼ pΘ(st+1|s̄t, āt)

]
. (5)

Our model outputs the predicted distribution’s mean which is the expected value above.

A distribution of closed-loop trajectories is then predicted by propagating a set of particles for-
ward in time using the probabilistic dynamics model from Section 4. At each time step, corrective
actions for each particle is calculated using ftrack based on the predicted nominal reference trajec-
tory and the feed forward actions. We denote the predicted closed-loop trajectory distribution as
D̂ = {d̂0, ..., d̂I}, where d̂i = (ŝi0, ..., ŝ

i
T , â

i
0, ..., â

i
T−1) is a particle’s state-action trajectory. The

procedure for predicting closed-loop trajectories is summarized in Algorithm 2.

6 Divergence Constrained Optimization

In MBRL, low cost trajectories are found via trajectory optimization through the learned model.
However, naively minimizing cost allows the optimizer to exploit modeling errors, resulting in a tra-
jectory with low predicted cost, but high cost under the true dynamics. Previous work [23] prevented
the optimizer from exploiting modeling errors by penalizing trajectories with high prediction uncer-
tainty. This approach may be problematic as the penalty opposes the cost objective. For example, if
a robot remains stationary, its trajectory has low prediction uncertainty, but high task cost.

Instead of penalizing uncertainty, our method uses constrained optimization to find low cost tra-
jectories with divergence bounded by some U , as trajectory trackers are usually effective as long
as the true trajectory does not diverge too much from the reference. Values for U are dependant
on the trajectory tracker used. In our experiments, we selected U based on the tracker’s observed
capabilities.

4

Algorithm 1: Probabilistic Model Training
for number of epochs do
L ← 0
for training batch size(b) do

θ ∼ pΘ(θ)
sample A = {s0, a0, ..., aT−1}
ŝ1

0, ...ŝ
N
0 ← s0

for t ∈ [1, T] do
for i ∈ [1, N] do

ŝit ∼ pθ(st|ŝit−1, at−1)

p← 1
N

∑N
i=1 pθ(s

i
t|ŝit−1, at−1)

L ← L− 1
T log p

Θ← update using gradient∇Θ
L
b

Algorithm 2: Closed-Loop Prediction
Input: Starting State s0,

Feed-Forward Actions ā0, ..., āT−1

// Predict Nominal Trajectory
s̄0 ← s0

for t ∈ [1, T] do
s̄t ← E[st ∼ pΘ(st|s̄t−1, āt−1)]

// Closed-Loop Prediction
for i ∈ [1, I] do

θi ∼ pΘ(θ)
ŝi0, â

i
0 ← s0, ā0

for t ∈ [1, T] do
ŝit ∼ pθi(st|ŝit−1, â

i
t−1)]

âit ← āt + ftrack(ŝi0, ..., ŝ
i
t, d̄)

Algorithm 3: Divergence Constrained Optimization
Input: Starting State s0

ā0, ..., āT−1 ← random initialization
for number of Augmented Lagrangian iterations do

for number of gradient descent iterations do
d̄, D̂ ← predict nominal and closed-loop trajectories using Algorithm 2
u← maxt

∑
i‖ŝit − s̄t‖22

L ← c(d̄) + λmax(u− U, 0)
a0, ..., aT−1 ← update using gradient∇a0,...,aT−1

L
Increase λ

Given a nominal trajectory d̄ and predicted closed-loop trajectory distribution D̂, we define diver-
gence as follows:

u(d̄, D̂) = max
t

1

I

I∑
i=1

‖ŝit − s̄t‖22. (6)

The constrained optimization problem we aim to solve is defined as follows:

min
ā0,...,āT−1

C(d̄) s.t. u(d̄, D̂) < U (7)

We use an Augmented Lagrangian optimizer to solve (7), as shown in Algorithm 3. During opti-
mization, the estimated divergence is thresholded, max[u− U, 0], scaled by a penalty factor λ, and
added to the nominal trajectory cost. λ starts small, but is progressively increased.

7 Experiments

We compare our navigation method against others in simulation and in the real world. We used Py-
Bullet [32] for our simulation environment and a MuSHR robot [33] for our real world experiment.
Simulation training data was collected using random actions (Ornstein–Uhlenbeck noise) in random
environments (similar to Figure 3). Real world data was collected using human selected actions
(with Gaussian noise) in one environment (similar to Figure 4a with different arrangement). Actions
corresponded to motor commands (throttle and steering). Training data consisted of terrain height
maps and state-action trajectories. Simulation states included pose (in SE(3)) and body velocity
(R6 twist vector). Real world states included pose (in SE(2)) estimated using motion capture.

We trained the dynamics models to predict state transition probability, given an action and an obser-
vation. Simulation observations included robot tilt (R3 gravity vector) and body velocity (R6 twist
vector). State transitions consisted of change in pose (in SE(3)), and new body velocity. Real world
observations included previous state transition. State transitions included change in pose (in SE(2)).

5

(a) Single Step (b) Single Step Tracked (c) Multistep (d) Multistep Tracked

Figure 2: Predicted robot trajectories using different prediction methods The predicted trajectories
are shown in red, and the true trajectories are shown in green.

All observations also included a robot centric terrain height map cropped from the world map. Tra-
jectories were predicted by iteratively calculating observations given current states, sampling state
transitions from model predictions, and transitioning current states to next states. The models were
trained using our proposed multistep loss, L128

ms , with Algorithm 1 using 5 step prediction horizons.

We compared three different trajectory optimization frameworks: 1) an optimizer that only mini-
mizes the goal cost, C(d̄), 2) an optimizer that adds a scaled divergence penalty, C(d̄) + λu(d̄, D̂),
and 3) the proposed divergence constrained optimizer (Algorithm 3). We used squared distance to
the goal as optimization and evaluation cost. The number of optimization gradient steps were kept
consistent between methods. We tracked optimized trajectories using a simple PD controller (de-
tailed definition of ftrack provided in Sec. B). The effects of the tracker were considering during op-
timization using closed-loop predictions (Algorithm 2). We treated the threshold U for constrained
optimization as a hyperparameter, which we adjusted based on the observed abilities of the tracker.

Trajectory Prediction Accuracy

In simulation, we evaluated the effects of using a multistep loss and making closed-loop predictions
on trajectory prediction accuracy. We trained one model using a single-step log-likelihood loss,
and another model using our proposed multistep loss, L128

ms , with Algorithm 1. We used these two
models to estimate the probability distribution of the robot’s state at the end of a 32 step trajectory
by propagating 512 particles using the trained models and averaging the predicted distribution from
all particles. We simulated the robot’s true trajectory and recorded the log-likelihood of the true
state given the estimated distributions. We repeated this process with the closed-loop trajectory
predictions using Algorithm 2. The average log-likelihoods over 100 trials are listed in Table 1,
which shows an improvement from both the multistep loss and the tracking controller. The true
trajectories and some example particle trajectories are shown in Fig. 2.

Navigating Over Simulated Terrain

We compared the performance of different navigation methods for the task of driving over randomly
generated terrain with large obstacles to a goal 7m away. Besides the three aforementioned opti-
mization frameworks, we also included an A* path planning method with tracking using the terrain
cost from [34], which considered local terrain smoothness, slope, and curvature. We also evaluated
the sensitivity of the optimizers to trajectory prediction accuracy by not performing closed-loop pre-
dictions. For 250 trials, Table 2 shows each method’s success rate, defined as ending within 0.5m
of the goal. Table 3 shows the actual cost and standard deviation for each method with tracking.

Overall, we found that the constrained optimization has the highest success rate and lowest final
cost. Furthermore, seeding the constrained optimization with the planner resulted in an even higher

Single-Step Single-Step Tracked Multistep Multistep Tracked
Log-Likelihood -692.7 ± 470.0 -242.5 ± 364.6 -110.0 ± 166.6 -31.1 ± 48.5

Table 1: Mean and standard deviation of prediction log-likelihood for 100 trials.

6

A* Planner No Uncertainty Penalty Constraint
Tracking 72 % 66 % 60 % 82 %

No Tracking - 62 % 32 % 64 %
Table 2: Random terrain results. Success percentage over fifty random terrains, using the same
terrain set for all methods. The A* planner does not provide actions, so tracking was required.

A* Planner No Uncertainty Penalty Constraint
Cost (Squared distance to goal) 2.0892 1.8792 0.9561 0.9109

Divergence 0.2039 0.2350 0.1220 0.1529
Table 3: Results of random terrain testing. Despite having higher divergence than the penalty
method, the constrained method has lower final cost.

success rate (88%), suggesting that future work should address issues with local minima. As ex-
pected, the penalty method has the lowest divergence since it directly minimizes it, however this did
not translate to higher success rate. We also found that prediction accuracy was especially important
to uncertainty aware optimization methods. Not including tracking during prediction significantly
decreased the success rate of both the penalty and constrained optimization methods.

Figure 3 shows one example trial. When divergence is not considered, the optimizer exploits predic-
tion error and finds a risky solution with high divergence. When executed, the robot collides with an
obstacle and rolls over. Conversely, the penalty method finds an overly conservative trajectory since
the optimizer minimizes divergence at the expense of task cost. The trajectory has low divergence,
but does not reach the goal. The divergence constrained method strikes a middle ground finding
a safe low-divergence trajectory to the goal. This behavior was exhibited throughout most of our
experiments. Sec E shows more trials and examples.

Real World Navigation

We also compared the three optimization frameworks in the real world, Fig. 4. The robot was tasked
with navigating across an obstacle field to a goal 5m away. The field consisted of a traversable short
obstacle, a non-traversable tall obstacle, and a ramp whose traversability depended on the robot’s
maneuver. Table 4 shows the actual cost and success rate for 10 trials.

When no uncertainty was considered, the optimizer exploited nominal prediction errors and found
impossible trajectories through the tall obstacle. For 9 out of 10 trials, the robot got stuck on the tall
obstacle. For 1 trial, the true trajectory deviated from the nominal enough for the robot to catch the
edge of the ramp and make it to the goal. When penalizing divergence, the optimizer avoided the
ramp 6 times to minimize divergence. When using divergence constrained optimization, the robot
made it over the ramp 8 times, and on average got closer to the goal.

8 Discussion & Conclusion

We propose a novel MBRL algorithm for rough terrain traversal. The main advantage of our method
is its ability to accurately optimize long horizon trajectories and thus perform non-myopic decision
making. Our method uses divergence constrained optimization to find trajectories with low diver-
gence, ensuring that the robot can faithfully execute the trajectory. However, the benefits of using
divergence constrained optimization are less apparent when trajectory predictions are inaccurate.
Therefore, our method trains dynamics models to consider uncertainty propagation and uses those
models to predict closed-loop trajectories.

No Uncertainty Penalty Constraint
Actual Trajectory Cost (Squared distance to goal) 3.57±1.30 5.11±4.45 1.68±1.42

Success Rate 10% 40% 70%
Table 4: Real world navigation results. Actual cost values are mean and standard deviation for 10
trials. Success is defined as getting within 1.5m of the goal.

7

(a) No uncertainty (b) Uncertainty penalty (c) Uncertainty constraint

Figure 3: One trial in random terrain. Predicted nominal trajectories are shown in red, and the true
trajectories are shown in green. The vertical green lines mark the goal.

(a) Test Environment (b) No Uncertainty (c) Penalty (d) Constraint

Figure 4: One trial of navigating a real world robot across an obstacle field. The goal (red cross),
predicted closed-loop trajectories (red lines with last time step marked with dots), predicted nominal
trajectory (black line), and actual robot trajectory (green line) are shown over a height map.

Additionally, our method is practical to implement and scalable. First, our method lends itself to
offline settings where the agent is unable interact with the environment online. The divergence
constrained optimization naturally avoids actions that result in high epistemic uncertainty. As a
result, the robot’s policy only performs maneuvers that are well supported by the dataset. Second,
our algorithm is computationally feasible. Although multiple trajectory predictions are required to
propagate uncertainty, this process is easily parallelized for GPU computation. Furthermore, our
approach can allow for a much longer horizon when using model predictive control and thus more
time for optimization. In our experiments, the algorithm could accurate optimize trajectories with
horizons long enough (roughly 100 steps) to not necessitate model predictive control. Lastly, our
method is highly modular. Since the dynamics model is agnostic to the tracker used and task’s
rewards, these components can be changed online without the need to retrain the model.

In the future, improvements to the constrained optimization could increase performance further. In
our experiments, the constrained optimization’s solution reached a local minimum and that seeding
the optimization with trajectories from a planner resulted in higher success. Besides seeding, the
optimization could potentially be improved with the use of motion primitives.

In the experiments, robot observations included robot-centric terrain height maps cropped from
world height maps. We believe the assumption of world height map knowledge is reasonable since
it is common to either build maps a priori or online from sensor data. However, these maps are
often imperfect, especially in areas with sparse sensor coverage. Future work will incorporate map
uncertainty into trajectory predictions.

Finally, we believe that this approach could also be useful for other tasks. Sec. A describes how the
algorithm could be extended to any Partially Observable Markov Decision Process. This could be
especially promising for tasks with stochastic dynamics that require non-myopic decision making.

8

References
[1] K. Nagatani, G. Ishigami, and Y. Okada. Modeling and control of robots on rough terrain. In

Springer handbook of robotics, pages 1267–1284. Springer, 2016.

[2] A. Kelly and A. Stentz. Rough terrain autonomous mobility–part 2: An active vision, predictive
control approach. Autonomous Robots, 5(2):163–198, 1998.

[3] T. M. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled mobile
robots. The International Journal of Robotics Research, 26(2):141–166, 2007.

[4] T. Howard, M. Pivtoraiko, R. A. Knepper, and A. Kelly. Model-predictive motion planning:
Several key developments for autonomous mobile robots. IEEE Robotics & Automation Mag-
azine, 21(1):64–73, 2014.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1–2):99–134, 1998.

[6] A. T. Schwarm and M. Nikolaou. Chance-constrained model predictive control. AIChE Jour-
nal, 45(8):1743–1752, 1999.

[7] G. Kewlani, G. Ishigami, and K. Iagnemma. Stochastic mobility-based path planning in uncer-
tain environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1183–1189, 2009.

[8] A. M. Johnson, J. E. King, and S. Srinivasa. Convergent planning. IEEE Robotics and Au-
tomation Letters, 1(2):1044–1051, 2016.

[9] P. Papadakis. Terrain traversability analysis methods for unmanned ground vehicles: A survey.
Engineering Applications of Artificial Intelligence, 26(4):1373–1385, 2013.

[10] M. Agrawal, K. Konolige, and R. C. Bolles. Localization and mapping for autonomous nav-
igation in outdoor terrains: A stereo vision approach. In IEEE Workshop on Applications of
Computer Vision, pages 7–7, 2007.

[11] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer. Real-time semantic mapping for
autonomous off-road navigation. In Field and Service Robotics, pages 335–350. Springer,
2018.

[12] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and S. Savarese. GONet: A semi-supervised
deep learning approach for traversability estimation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3044–3051, 2018.

[13] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. Learning ground traversabil-
ity from simulations. IEEE Robotics and Automation letters, 3(3):1695–1702, 2018.

[14] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversability classification us-
ing unsupervised on-line visual learning for outdoor robot navigation. In IEEE International
Conference on Robotics and Automation, pages 518–525, 2006.

[15] K. Zhang, F. Niroui, M. Ficocelli, and G. Nejat. Robot navigation of environments with un-
known rough terrain using deep reinforcement learning. In IEEE International Symposium on
Safety, Security, and Rescue Robotics, pages 1–7, 2018.

[16] S. Josef and A. Degani. Deep reinforcement learning for safe local planning of a ground vehicle
in unknown rough terrain. IEEE Robotics and Automation Letters, 5(4):6748–6755, 2020.

[17] T. Blum and K. Yoshida. PPMC RL training algorithm: Rough terrain intelligent robots
through reinforcement learning. arXiv preprint arXiv:2003.02655, 2020.

[18] G. Kahn, P. Abbeel, and S. Levine. BADGR: An autonomous self-supervised learning-based
navigation system. IEEE Robotics and Automation Letters, 6(2):1312–1319, 2021.

[19] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.

9

[20] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine. Uncertainty-aware reinforcement
learning for collision avoidance. arXiv preprint arXiv:1702.01182, 2017.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

[22] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference on Machine Learning, pages 1050–1059.
PMLR, 2016.

[23] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. MOPO: Model-
based offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[24] D. F. Specht. Probabilistic neural networks. Neural networks, 3(1):109–118, 1990.

[25] E. Talvitie. Self-correcting models for model-based reinforcement learning. In AAAI Confer-
ence on Artificial Intelligence, volume 31(1), 2017.

[26] E. Talvitie. Model regularization for stable sample rollouts. In UAI, pages 780–789, 2014.

[27] S. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4–5):
185–196, 1993.

[28] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pages 1613–1622. PMLR, 2015.

[29] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

[30] D. Krueger, C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A. Courville. Bayesian hyper-
networks. arXiv preprint arXiv:1710.04759, 2017.

[31] D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameteriza-
tion trick. arXiv preprint arXiv:1506.02557, 2015.

[32] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2019.

[33] S. S. Srinivasa, P. Lancaster, J. Michalove, M. Schmittle, C. Summers, M. Rockett, J. R. Smith,
S. Choudhury, C. Mavrogiannis, and F. Sadeghi. MuSHR: A low-cost, open-source robotic
racecar for education and research. arXiv preprint arXiv:1908.08031, 2019.

[34] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter. Robust rough-terrain
locomotion with a quadrupedal robot. In IEEE International Conference on Robotics and
Automation, pages 5761–5768, 2018.

[35] E. V. Kumar and J. Jerome. Robust lqr controller design for stabilizing and trajectory tracking
of inverted pendulum. Procedia Engineering, 64:169–178, 2013.

[36] C. Liu, J. Pan, and Y. Chang. Pid and lqr trajectory tracking control for an unmanned quadrotor
helicopter: Experimental studies. In 2016 35th Chinese Control Conference (CCC), pages
10845–10850. IEEE, 2016.

[37] A. Nagariya and S. Saripalli. An iterative lqr controller for off-road and on-road vehicles using
a neural network dynamics model. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages
1740–1745. IEEE, 2020.

[38] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International Conference on Machine Learning, pages
2555–2565. PMLR, 2019.

[39] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

10

http://pybullet.org

	Introduction
	Related Works
	Method Overview
	Probabilistic Dynamics Models
	Aleatoric Uncertainty
	Epistemic Uncertainty

	Closed-Loop Trajectory Prediction
	Divergence Constrained Optimization
	Experiments
	Discussion & Conclusion
	Extension to Other Tasks
	PD Trajectory Tracker
	Predicted Distribution & Negative Log-Likelihood Estimates
	Neural Network Architecture & Training Considerations
	Additional Simulation Results

