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A Background1

Off-policy RL with Soft Actor-Critic. The Soft Actor-Critic (SAC) [1] is a leading off-policy2

RL algorithm. Like other off-policy RL methods, such as DQN [2] or DDPG [3], SAC optimizes3

a Q function but does so based on the maximum entropy framework for RL [4]. In addition to4

maximizing the reward function, SAC also maximizes the policy entropy which leads to improved5

exploration and helps prevent overfitting. As an actor-critic method, SAC optimizes both the actor’s6

policy by maximizing a value function as well as a critic with a Bellman loss. The actor’s parameters7

are updated to maximize the Q function and policy entropy which is encapsulated by the following8

equation:9

LSACactor = Est∼B,at∼πθ1
[
α log πθ1(at|st)−Qθ2(st, at)

]
. (1)

Here, (st, at) are state-action pairs, B is a replay buffer, θ1 is the actor’s parameters, θ2 are the critic’s10

parameters, and α is a scalar value that control the entropy strength. The policy πθ1 is parametrized11

by a multi-variate Gaussian with a diagonal covariance matrix and outputs the means and standard12

deviations that are then used to sample actions from the Gaussian distribution. To update the critic’s13

parameters, SAC optimizes a soft Q function by minimizing the soft Bellman loss:14

LSACcritic = Eτt
[ (
Qθ2(st, at)−Rt − γ

[
Qθ̄2(st, at)− α log πθ1(at|st)

])2 ]
, (2)

where τt = (st, at, st+1, Rt) is a single timestep transition, θ̄ denotes the Polyak averaging of the15

critic’s parameters, and α is a temperature parameter.16

B Implementation Details17

B.1 Regularize SAC by Prior18

LSACactor = Ezt∼B,at∼πθ1
[
αDKL(πθ1(at|zt), pa(zt|st))−Qθ2(ztt, at)

]
. (3)

LSACcritic = Eτt
[ (
Qθ2(st, at)−Rt − γ

[
Qθ̄2(zt, at)− αDKL(πθ1(at|zt), pa(zt|st))

])2 ]
, (4)

where pa(zt|st) is the prior distribution learned from offline dataset19

B.2 Hyperparamters20

Because we built off of SPiRL [5], we used the same set of hyperparamters for skill extraction and21

online RL training. The reward model learning from human preference has the same hyperparamters22

as in PEBBLE. [6].23

Hyperparameters for Skill Extraction Value
Skill Horizon 10
Ensemble Size 3
Hidden Units 200
Non-linearity ReLU
Optimizer Adam
Learning Rate 0.001
Weight Decay 0.0001
(β1, β2) (.9, .999)

24

Hyperparameters for Skill Execution Value
Query Batch Size 128
Query Frequency 100, 000
Segment Size 5
Sampling Scheme Entropy Exploit

25
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C Effect of Segment Size26

Figure 1: The plot compares SkiP with different segment size over the Kettle-Burner-Cab environ-
ment. Lines and shaded area represent mean and standard error over three seeds, respectively.

As shown in Fig 1, unlike PEBBLE [6], we did not find segment size to affect our method’s perfor-27

mance.28

D Robustness Ablation29

What if the offline dataset is of mixed-quality demonstrations? To test our method on more30

realistic mixed-quality demonstration, we added an ablation that simulated imperfect demonstrations31

by adding Gaussian noise to some of the action sequences in the offline dataset. The scale of the32

Gaussian noise is 10% of maximum action magnitude. We ablate the downstream performance33

on the three-task Kettle-Burner-Cabinet environment against the percentage of noise present in the34

offline dataset. We found that the weighting during skill extraction is still mostly effective even with35

noisy dataset, as shown in 136

Table 1: Percentage of noise in offline dataset versus downstream performance

PERCENTAGE OF NOISY DATA RETURN AT 1.5M STEPS RETURN AT 800K STEPS
0% 2.8± 0.2 2.5± 0.2
5% 2.7± 0.4 2.3± 0.6

10% 2.3± 0.6 1.7± 0.7
20% 2.4± 0.6 1.8± 1.0

What if the human makes mistakes? We ablate the downstream performance on the three-task37

Kettle-Burner-Cabinet environment against the percentage of random human preference labels, as38

shown in 2.39

Table 2: Percentage of random human preference vs downstream performance

PERCENTAGE OF RANDOM PREFERENCE RETURN AT 1.5M STEPS RETURN AT 800K STEPS
0% 2.8± 0.2 2.5± 0.2
4% 1.9± 0.6 1.6± 0.4

10% 1.5± 0.4 1.3± 0.8
20% 1.2± 0.7 1.0± 0.5
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Table 3: Skill horizon vs downstream performance. We found that while too small of a skill horizon length
did hurt performance, a longer skill horizon does not affect the performance by much

SKILL HORIZON LENGTH RETURN AT 1.5M STEPS RETURN AT 800K STEPS
5 1.0± 0.1 1.0± 0

10 2.8± 0.2 2.5± 0.2
20 2.6± 0.2 2.5± 0.5
40 2.8± 0.1 1.8± 1.6
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