Appendix

A Implementation Details

This section describes the network architectures of each model used in the main paper.

Co-policy: Our co-policy model 7, consists of an actor and a critic network. Both networks are
multilayer perceptrons with 4 fully-connected layers of size 128 each. The output layer of the critic
is (128, 1). The output feature of the actor network is further processed by a fully-connected layer
into a normal distribution with the mean and standard deviation for each action dimension. The
output action is then branched into the human action a*’ and robot action a’*. These actions will be
sampled from the distribution during training and the one with maximum probability will be selected
during testing.

Strategy recognition network: The strategy recognition network 1 is a multilayer perceptrons
with 2 fully-connected layers with the output size of 2 (The strategy code in our experiments is 2
float numbers in the range (—1.0, 1.0)). To regularize the output strategy prediction, we use a tanh
function to process the output prediction.

Discriminator network: The discriminator networks D is a multilayer perceptrons with 3 fully-
connected layers (64,64, 1), followed by a tanh function to regularize the output within (—1.0, 1.0).

B Training Details

B.1 GAIL

The standard GAIL objective detailed in Equation 5 typically uses a sigmoid cross-entropy loss
function. However, we empirically find this loss will cause the vanishing of gradients because of the
sigmoid function, especially in the high-dimensional manipulation tasks (HR-Handover and HR-
SeqManip). In this work, we use the loss function proposed by least-squares GAN (LSGAN)[50]
for the high-dimensional manipulation tasks. The training objective of the discriminator D is:

Hgn L(D) = EmNp(ﬂ'El JTEq) [(D(JI) - 1)2} + Epr(‘n'co)[(D(y) + 1)2]7 ©)

During the training, the strategy code z is randomly sampled. The original implementation of
infoGAIL[25] uses a uniformly random sampling over code space. However, we empirically found
that random sampling might cause unstable results between different training seeds. Therefore, we
use a grid-based sampling on our strategy code. The code space (—1.0,1.0) x (—1.0,1.0) is first
discretized into 25 grid points. During the training, each grid point will be selected in a cycle order
and a uniformly sampled noise ([—0.2,0.2] for each code dimension in our experiments) will be
added to the selected grid point. This setting could make sure that the replay buffer covers most of
the strategies of the learned policy and improve the stability of the training results across different
training seeds.

In the final learning objective of Co-GAIL (Equation 4), two hyperparameters A; and \q are in-
troduced. For all three experiments, we used A\; = Ay = 0.1. We found that large A; and A
would cause unstable training procedures of the GAIL algorithm, where the objectives that measure
the reconstruction error of the strategy code and human actions in Equation 4 dominate the loss
function and cause the model to neglect the first GAIL learning objective. We empirically found
A1 = A2 = 0.1 achieve the most stable learning performance in all three task environments.

B.2 PPO

The co-policy model is trained by the PPO[46]. For all three experiments, we use the learning rate
3e — 4 with a linear decay based on the percentage of the completed training epochs over the total
number of episodes. The size of the replay buffer is 6000 for the first two experiments (2D-Fetch-
Quest, HR-Handover) and 10000 for the HR-SeqManip. The rest of the hyperparameters are the
same as the default PPO algorithm[46].
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Figure 5: 2D-Fetch-Quest. In the first row, the meaning of each icon in the game is illustrated.
The goal is both human and robot fetch a treasure and reach the closest destination. There are four
strategies to tackle the game. In strategy 1, the human will first help the robot to get the treasure. In
the second strategy, the human will first get its treasure. In strategies 3 and 4, the human and robot
will switch their role and move to the other side of the map to complete the collaboration.

C Experimental Details

C.1 2D-Fetch-Quest

Task details. This environment is adapted from the Fetch-Quest collaborative game in Super Mario
Party. The human and robot agents need to work together to fetch the treasure and reach the desti-
nation. In Figure 5, we illustrate the meaning of each icon in the first row. At the beginning of the
game, two treasures are locked in the rooms located in two corners of the map. For each agent, the
only way to fetch a treasure is to let its collaborator press the button beside the room for it. After
the collaborator press the button, the agent could enter the room and get the treasure. To win the
game, both agents should get a treasure and reach the closest destination. Therefore, the agent who
has already get the treasure will help the other agent to fetch its treasure. There are four types of
strategies to tackle this game. As is shown in Figure 5, strategy 1 and 2 is different in the order of
who gets the treasure first. In strategies 3 and 4, the human and robot will switch their roles and go
to the other side of the map to complete the collaboration.

State and action space. The continuous action space of both human and robot agents is a 2D
translation (Az, Ay) in the map, where Az € [-1.0,1.0], Ay € [-1.0,1.0]. The size of the map is
8.0 x 8.0. The input state of the co-policy model consists of the 2D locations of the human and robot
agent, the positions of the two treasures in the map, and two binary values that indicate whether each
door of the room is opened or not.

Demonstrations. The human-human collaboration demonstrations are collected by two users with
two joysticks on an Xbox gaming controller. During training, 60 human-human demonstrations are
given. The average step size of the given human-human demonstration is 145. No external reward
signals are given during the training.

Training and evaluation details. For each method, the training takes 1000 episodes and each
episode contains 6000 environment steps. The checkpoint is saved every 30 training episodes. Each
method is trained with three different seeds: 300, 400, 500 in our experiments. The maximum of
the mean success rate among all checkpoints across three seeds and its 95% confidence interval are
reported for both replay evaluation and interpolation in Table. 1 and Table. 2 for each method.
During the replay evaluation, 60 testing demonstrations (not included in the training set) are used to
test each method. During the interpolation, 100 uniformly sampled strategies are used to generate
different behaviors for each method.
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Figure 6: HR-Handover. We classified handover regions into three categories for post-hoc analysis.
The classification is based on the relative location of where the handover happens in front of human.
From left to the right, they are strategy 1, 2 and 3.

C.2 HR-Handover

Task details. In this environment, the human agent will first fetch the object in front of it and
handover the object to the robot. A successful completion of the task happens only when the robot
holding the object and the distance between the end effectors of the human and robot is larger than 10
centimeter. The diversity of the collaborative behaviors in this task is the position of the object when
handover happens. As shown in Figure 6, the handover can happen in a wide range of locations. We
post-hoc categorize these handover locations to left, right, or center only for analysis purposes.

State and action space. The continuous action space of both human and robot agents is the 6D pose
changes (Az, Ay, Az, AR, AR,, AR.) of the end-effector relative to the previous time step and a
float value g € [—1.0, 1.0] describing the gripper state (—1 refers to gripper fully closed and 1 refers
to gripper fully opened), where Az, Ay, Az € [—1.0,1.0] centimeters and AR,, AR,,AR. €
[—1.0,1.0] degrees. The environment state of this task includes the 6D pose of the end-effectors of
both human and robot in their base frame, the relative position between the object to the end-effector
of each agent and the orientation of the object.

Demonstrations. The human-human collaboration demonstrations are collected by two users with
the phone teleportation system RoboTurk[47, 48]. Without haptic feedback, it is hard for the human
agent to identify whether the robot has held the object firmly or not. Therefore, we simplify the
control system that after the robot holds the object, the gripper of the human agent will automatically
open. During training, 160 human-human demonstrations with an average step size 211 is used to
train the model.

Training and evaluation details. For each method, the training takes 300 episodes with 6000 envi-
ronment steps each episode. The checkpoints are saved every 10 training episodes. The evaluation
settings are the same as the 2D-Fetch-Quest. To visualize the mapping between the latent space to
different strategies (Figure. 4), we classified the strategies into three categories based on the position
where handover happens from the top-down view (Figure. 6).

Additional results. Here we show an additional interpolation result on the handover positions of
each method in Figure. 8. Our proposed method Co-GAIL successfully covers the data distribution
while the baseline methods focus on a partial region.

C.3 HR-SeqManip

In this environment, the human agent will first fetch the object on the cabinet. The goal is to put the
object into the drawer. As is shown in Figure. 7, there are two strategies to complete the task. In
strategy 1, the human will first handover the object to the robot and then open the drawer. After the
robot putting the object into the drawer, the human will close the drawer to complete the task. In
strategy 2, the robot will open the drawer for the human to put the object into.
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Figure 7: HR-SeqManip. Here we illustrate two types of strategies to tackle the task. In strategy 1,
the human will first handover the object to the robot and then open the drawer. After the robot puts
the object into the drawer, human will close it. In strategy 2, the robot will open the drawer for the

human. After human place the object, the robot will close the drawer.

The action space of both human and robot agents is the same as the HR-Handover task. The envi-
ronment state has an additional relative position between the handle of the drawer to the end-effector
of each agent. During training, 120 human-human demonstrations with an average step size 404 is
used to train the model. For each method, the training takes 1000 episodes with 10000 environment
steps each episode. The checkpoints are saved every 30 training episodes. The evaluation settings

are the same as the 2D-Fetch-Quest and HR-Handover.
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Figure 8: Diversity encoded in latent space. The figure supplements Figure 4(a) by also showing
the X-Z location of the handover positions. Co-GAIL successfully cover the data distribution while
the baseline mathods focus on a partial region.

D Real-human Evaluation Details

Evaluation protocol. To test whether each method can handle diverse human behavior, we invite
four real-human operators to conduct the real-human evaluation. We select three methods that have
the best performance in the replay evaluation (MA-GAIL, MA-InfoGAIL, Co-GAIL) to compare in
this experiment. The BC baseline is also included for reference. The checkpoint with the highest
replay evaluation success rate of each method will be first loaded. Each human operator will perform
20 rounds of evaluation. In each round, the robot will be controlled by the models learned by
each method in random order. The human operator does not know which model is it currently
working with. To further make sure the comparison between the methods is fair, human operators
are suggested to maintain similar motions for different trials in the same round. The final average
success rate over 20 rounds of each method is reported in Table. 3.

Controller. For the 2D-Fetch-Quest, the human operator will use one joystick to control the human
agents in the game. For the HR-Handover and HR-SeqManip, the human operator will use the phone
teleportation system RoboTurk[47, 48] to control the 6D pose of the end-effector of the humanoid.

E Applicability to real robot

Due to COVID-19, we were not able to explore the potential of deploying our system onto a real-
world robot platform. Our plan for simulation-to-real world transfer involves two steps. First, our
models currently operate on low-dimensional state space including (1) robot and human proprio-
ceptive information and (2) object pose information. In the real world, we could easily obtain robot
proprioceptive information through the robot’s internal APIs and match that of the simulator. We
could obtain human’s hand information through an off-the-shelf hand tracker [51], and the object
pose through a category-agnostic 6DoF pose tracking system [52]. This allows us to match the state
space between the simulated environment and the real world. Second, as indicated by prior works,
there are likely mismatches between the simulated and real-world physics. We plan to address such
gap in physical dynamics through domain randomization, i.e., we will expose our agent with wide
ranges of possible physical dynamics settings during training. Past work [49] showed that such
training strategy could largely alleviate the domain shift in dynamics, allowing the agent to adapt to
varying dynamics in the physical world.
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