
A Proof of Proposition 4.1

We need the following Lemma regarding the visual state space S and spatial action space A de-
scribed in Section 3. We use the following notation: gS = {gs|s 2 S} and gA = {ga|a 2 A}.
Lemma A.1. Let S be a visual state space and let A by a spatial action space. Then, 8g 2 SE(2),
we have that S = gS and A = gA.

Proof. First, consider the claim that S = gS. We will show 1) S ✓ gS and 2) gS ✓ S. 1)
S ✓ gS: This follows from the closure of state under g 2 SE(2). 2) gS ✓ S: Let s0 2 gS. By the
definition of gS, 9s 2 S such that gs = s

0 and gs 2 gS. Multiplying both sides by g
�1, we have

g
�1(gs) 2 g

�1(gS). Using Assumption 3.3, we have s 2 S. Using the closure of state under g, we
have gs 2 S or s0 2 S. A parallel argument can be used to show A = gA.

Proposition 4.1. Given an MDP M = (S,A, T,R, �) for which Assumptions 3.1, 3.2, and 3.3 are
satisfied, the optimal Q function is invariant to translation and rotation, i.e. Q⇤(s, a) = Q

⇤(gs, ga),
for all g 2 SE(2).

Proof of Proposition 4.1. The Bellman optimality equations for Q
⇤(s, a) and Q

⇤(gs, ga) are, re-
spectively:

Q
⇤(s, a) = R(s, a) + � sup

a02A

Z

s02S
T (s, a, s0)Q⇤(s0, a0), (4)

and
Q

⇤(gs, ga) = R(gs, ga) + � sup
a02A

Z

s02S
T (gs, ga, s0)Q⇤(s0, a0). (5)

Using Lemma A.1, we can rewrite Eq. 5 as:

Q
⇤(gs, ga) = R(gs, ga) + � sup

ā02gA

Z

s̄02gS
T (gs, ga, s̄0)Q⇤(s̄0, ā0) (6)

= R(gs, ga) + � sup
a02A

Z

s02S
T (gs, ga, gs0)Q⇤(gs0, ga0). (7)

Using Assumptions 3.1 and 3.2, this can be written:

Q
⇤(gs, ga) = R(s, a) + � sup

a02A

Z

s02S
T (s, a, s0)Q⇤(gs0, ga0). (8)

Now, define a new function Q̄ such that 8s, a 2 S ⇥ A, Q̄(s, a) = Q(gs, ga) and substitute into
Eq. 8, resulting in:

Q̄
⇤(s, a) = R(s, a) + � sup

a02A

Z

s02S
T (s, a, s0)Q̄⇤(s0, a0). (9)

Notice that Eq. 9 and Eq. 4 are the same Bellman equation. Since solutions to the Bellman equation
are unique, we have that 8s, a 2 S ⇥A, Q⇤(s, a) = Q̄

⇤(s, a) = Q
⇤(gs, ga).

B Equivariant Kernel Constraint

Consider a standard convolutional layer that takes an n⇥ h⇥ w feature map as input and produces
an m ⇥ h ⇥ w map as output. It computes hi(x) =

P
y,j Kij(y)Ij(x + y), where j 2 {1 . . . n},

i 2 {1 . . .m}, Ij(x) is the value of the input at the x pixel and the j channel, hi(x) is the output at
pixel x and channel i, and Kij(y) is the kernel value at y for the j input and i output channels. For
a standard convolutional layer, Ij(x), hi(x), and Kij(y) are all scalars. However, for an equivariant
network over Cu, hi(x) becomes a u-element vector and Kij(y) becomes a u ⇥ u matrix. The u

elements of hi(x) encode the feature values of pixel x at channel i at each orientation in Cu. The
kernel constraint is [33]:

Kij(g✓y) = ⇢out(g✓)Kij(y)⇢in(g✓)
�1

, (10)
where ⇢in(g✓) and ⇢out(g✓) are the permutation matrix of the group element g✓ (note that for the
first layer, Kij(y) will be a 1⇥ u matrix, and ⇢in(g✓) will be 1).

12

(a) (b)

Figure 11: (a) All eight bottle models in the Bottle Arrangement task. (b) All seven object models
in the Bin Packing task.

C Experimental Domains

C.1 Block Stacking

In the Block Stacking task (Fig 1a), there are four cubic blocks with a fixed size of 3cm⇥3cm⇥3cm
randomly placed in the workspace. The goal is stacking all four blocks in a stack. An optimal policy
requires six steps to finish this task, and the maximal number of steps per episode is 10.

C.2 Bottle Arrangement

In the Bottle Arrangement task (Fig 1b), six bottles with random shapes (sampled from 8 different
shapes shown in Fig 11a. The bottle shapes are generated from the 3DNet dataset [35]. The sizes
of each bottle are around 5cm ⇥ 5cm ⇥ 14cm) and a tray with a size of 24cm ⇥ 16cm ⇥ 5cm are
randomly placed in the workspace. The agent needs to arrange all six bottles in the tray. An optimal
policy requires 12 steps to finish this task, and the maximal number of steps per episode is 20.

C.3 House Building

In the House Building task (Fig 1c), there are four cubes with a size of 3cm ⇥ 3cm ⇥ 3cm, a
brick with a size of 12cm ⇥ 3cm ⇥ 3cm, and a triangle block with a bounding box size of around
12cm ⇥ 3cm ⇥ 3cm. The agent needs to stack those blocks in a specific way to build a house-like
block structure as shown in Fig 1c. An optimal policy requires 10 steps to finish this task, and the
maximal number of steps per episode is 20.

C.4 Covid Test

In the Covid Test task (Fig 1d), there is a new tube box (purple), a test area (gray), and a used tube
box (yellow) placed arbitrarily in the workspace but adjacent to one another. Three swabs with a
size of 7cm ⇥ 1cm ⇥ 1cm and three tubes with a size of 8cm ⇥ 1.7cm ⇥ 1.7cm are initialized in
the new tube box. To supervise a COVID test, the robot needs to present a pair of a new swab and
a new tube from the new tube box to the test area (see the middle figure in Fig 1d). The simulator
simulates the user testing COVID by putting the swab into the tube and randomly place the used
tube in the test area. Then the robot needs to re-collect the used tube into the used tube box. Each
episode includes three rounds of COVID test. An optimal policy requires 18 steps to finish this task,
and the maximal number of steps per episode is 30.

C.5 Box Palletizing

In the Box Palletizing task (Fig 1e) (some object models are derived from Zeng et al. [1]), a pallet
with a size of 23.2cm ⇥ 19.2cm ⇥ 3cm is randomly placed in the workspace. The agent needs to
stack 18 boxes with a size of 7.2cm⇥ 4.5cm⇥ 4.5cm as shown in Fig 1e. At the beginning of each
episode and after the agent correctly places a box on the pallet, a new box will be randomly placed
in the empty workspace. An optimal policy requires 36 steps to finish this task, and the maximal
number of steps per episode is 40.

13

C.6 Bin Packing

In the Bin Packing task (Fig 1f), eight objects (the shape of each is randomly sampled from seven
different object in Fig 11b. Object models are derived from Zeng et al. [21]) with a maximum
size of 8cm ⇥ 4cm ⇥ 4cm and a minimum size of 4cm ⇥ 4cm ⇥ 2cm and a bin with a size of
17.6cm⇥ 14.4cm⇥ 8cm are randomly placed in the workspace. The agent needs to pack all eight
objects in the bin while minimizing the highest point (hmax cm) of all objects in the bin. The Bin
Packing task has real value sparse rewards: a reward of 8�hmax is given when all objects are placed
in the bin. An optimal policy requires 16 steps to finish this task, and the maximal number of steps
per episode is 20.

C.7 SE(3) House Building and Box Palletizing

In the SE(3) House Building (Fig 9a) and the Box Palletizing (Fig 9b) tasks, a bumpy surface
is generated by nine pyramid shapes with a random angle sampled from 0 to 15 degrees. The
orientation of the bumpy surface along the z axis is randomly sampled at the beginning of each
episode. In the Bumpy House Building task, a flat platform with a size of 13cm ⇥ 13cm and a
height same as the highest bump is randomly placed in the workspace. The agent needs to build the
house on top of the platform. In the Bumpy Box Palletizing task, the pallet is raised by the same
height as the highest bump (so that it will be horizontal to the ground). All other parameters mirror
the original House Building task and the original Box Palletizing task.

D Network Architecture

All of our network architectures are implemented using PyTorch [36]. We use the e2cnn [14] library
to implement the steerable convolutional layers. Appendix D.1 and Appendix D.2 respectively show
the network architectures of the equivariant FCN and equivariant ASR using the dynamic filter for
partial equivariance. Appendix D.3 shows the architecture of lift expansion partial equivariance.
Appendix D.4 shows the architecture of the deictic encoding.

D.1 Equivariant FCN Architecture

In the Equivariant FCN architecture (Fig 12a), we use we use a 16-stride UNet [37] backbone where
all layers are steerable layers. The input is viewed as a trivial representation and is turned into a
16-channel regular representation feature map after the first layer. Every layer afterward in the UNet
uses the regular representation, and the output of the UNet is a 16-channel regular representation
feature map. This feature map is sent to a quotient representation layer to generate the pick Q value
maps for each ✓. For the place Q values, the non-equivariant information from H must be Incor-
porated. H is sent to 4 conventional convolutional layers followed by 2 FC layers. The output is
a vector with the same size as the number of the free weights in a 16-channel regular representa-
tion steerable layer with a kernel size of 3 ⇥ 3. This output vector is expanded into a steerable
convolutional kernel and is convolved with the output of the UNet. The result is sent to a quotient
representation layer to generate the place Q value maps for each ✓.

D.2 Equivariant ASR Architecture

Fig 12b shows the Equivariant ASR network architecture. The q1 architecture is very similar to the
Equivariant FCN network. Its output is a trivial representation instead of a regular representation to
generate only one Q map for the x, y positions. The bottleneck feature map is passed through a group
pooling layer (a max pooling over the group’s dimension) to form e(s), a state encoding that is used
by q2. q2 uses e(s) and the feature vector from H to generate the weights for a steerable dynamic
filter. q2 processes P using a set of steerable convolution layers in the regular representation, then
convolves the feature map with the dynamic filter. The result of the dynamic filter layer is sent to
two separate quotient representation layers to generate pick and place values for each ✓.

D.3 Lift Expansion Architecture

Fig 13 shows the equivariant FCN using lift expansion for encoding the partial equivariance property.
The 128-vector (the output of FC 128 in the top row) is tiled to the same size as the 128-channel

14

(a) Equivariant FCN Network Architecture

(b) Equivariant ASR Network Architecture

Figure 12: The architecture of the Equivariant FCN Network (a) and the equivariant ASR Network
(b). ReLU nonlinearity is omitted in the figure. A convolutional layer with a suffix of R indicates
a regular representation layer (e.g., 16R is a 16-channel regular representation layer); a convolution
layer with a suffix of Q indicates a quotient representation layer (e.g., 1Q is a 1-channel quotient
representation layer); a convolution layer with a suffix of T indicates a trivial representation layer
(e.g., 1T is a 1-channel trivial representation layer); a convolutional layer with a suffix of a number
indicates a conventional convolutional layer. The convolutional layer colored in cyan is the dynamic
filter layer whose weights are from the FC layer pointing to it.

regular representation feature map (the output of the rightmost convolutional layer in the middle
row) and concatenated. In ASR, the same Lift Expansion network can be used in q1.

D.4 Deictic Encoding Architecture

Fig 14 shows the network architecture of the Deictic Encoding network. Its output is a 2-vector,
representing the values for pick and place with respect to the action (e.g., top-down rotation ✓ in q2)
encoded in the input patch P .

15

Figure 13: The Equivariant FCN with Lift Expansion

Figure 14: Deictic Encoding Network Architecture

E Baseline Details

E.1 FCN Baselines

Fig 15 shows the baseline FCN architecture. For the Conventional FCN baseline, the number of
output channels n = 2 ⇥ |⇥| = 12 (i.e., one pick and one place channel for each rotation). The
RAD [7] baseline uses the same baseline architecture, but during the training, each transition in
the minibatch is applied with a rotational augmentation randomly sampled from C12. The DrQ [8]
baseline uses the same baseline architecture, but the Q targets are calculated by averaging over K
augmented versions of the sampled transitions; the Q estimates are calculated by averaging over M
augmented versions of the sampled transitions. Random rotation sampled from C12 is used for the
augmentation, and we use K = M = 2 as in [8]. Note that in RAD and DrQ, since we are learning
an equivariant Q network instead of an invariant Q network, we apply the rotational augmentation
on both the state and action, rather than only augmenting the state as in the prior works. The Rot
FCN baseline uses the same network backbone, but the number of output channels n = 2 (for pick
and place, respectively). Rotations are encoded by rotating the input and output accordingly for
each ✓ in the action space [21]. The Transporter baseline uses three FCNs (one for picking and two
for placing) with the same FCN backbone shown in Fig 15. For placing, there are two networks
with the same architecture for features (with an input of I) and filters (with an input of H), and
the outputs of both are 3-channel feature maps. The correlation between them forms the 1-channel
output. Rotations are encoded by rotating the input H for each ✓ in the action space. The pick
network is the same as the Rot FCN baseline.

E.2 ASR Baselines

Fig 12b shows the network architecture for the Conventional ASR baseline. The RAD [7] baseline
uses the same baseline architecture, but during the training, each transition in the minibatch is ap-
plied with a rotational augmentation randomly sampled from C32. The DrQ [8] baseline uses the
same baseline architecture, but the Q targets are calculated by averaging over K augmented versions
of the sampled transitions; the Q estimates are calculated by averaging over M augmented versions
of the sampled transitions. Random rotation sampled from C32 is used for the augmentation, and
we use K = M = 2 as in [8]. The Transporter network baseline uses the same architecture as in
Appendix E.1.

16

Figure 15: The baseline FCN architecture

Figure 16: The baseline ASR architecture

F Training Details

F.1 SDQfD

SDQfD (Strict Deep Q Learning from Demonstrations [29]) is a variation of DQfD [38] that is
better suited for large action spaces. It penalizes all actions that have a Q value larger than the
expert action’s Q value minus a non-expert margin. Let As,ae

be the set of actions to penalize, As,ae

is defined as:
A

s,ae

=
�
a 2 A

��Q(s, a) > Q(s, ae)� l(ae, a)

(11)
where l(ae, a) = l if ae 6= a and 0 otherwise. The margin loss term is defined as:

LSLM =
1

|As,ae |
X

a2As,ae

h
Q(s, a) + l(ae, a)�Q(s, ae)

i
(12)

LSLM is combined with the TD loss LTD: L = LTD + wLSLM where w is the weight for the
margin loss. Note that LSLM is only applied for expert transitions, while on-policy transitions only
apply the TD loss term.

F.2 Parameters

We implement our experimental environments using the PyBullet simulator [32]. The workspace
has a size of 0.4m⇥ 0.4m. In Section 4.2, I covers the workspace with a size of 90⇥ 90 pixels, and
is padded with 0 to 128 ⇥ 128 pixels (this padding is required for the Rot FCN baseline because it
needs to rotate the image to encode ✓. To ensure a fair comparison, we apply the same padding to all
methods). In Section 4.3, I covers the workspace with a size of 128⇥128 pixels. The in-hand image
H is a 24 ⇥ 24 image crop centered and aligned with the previous pick in SE(2) experiments. In
SE(3) experiments, H is a three-channel orthographic projection image (with a size of 3⇥ 40⇥ 40)
of a point cloud centered and aligned with the previous pick. The image patch P has a size of
24 ⇥ 24 in SE(2) experiments and a size of 40 ⇥ 40 in SE(3) experiments. In SE(2) experiments,
z is selected by reading the height value of the area around the selected xy position.

We train our models using PyTorch [36] with the Adam optimizer [39] with a learning rate of 10�4

and weight decay of 10�5. We use Huber loss [40] for the TD loss and cross entropy loss for the

17

(a) Block Stacking (b) Bottle Arrangement

(c) House Building (d) Covid Test (e) Box Palletizing (f) Bin Packing

Figure 17: Comparison against RAD and DrQ with more data augmentation operators in equivariant
FCN (a-b) and equivariant ASR (c-f). Results averaged over four runs. Shading denotes standard
error.

Environment Block Stacking Bottle Arrangement
Equivariant FCN 0.881 0.781

Transporter 0.804 0.663
Table 3: Comparison between equivariant FCN and Transporter network. Results averaged over
four runs.

behavior cloning loss. The discount factor � is 0.95. The batch size is 16 for SDQfD agents and
8 for behavior cloning agents. In SDQfD, we use the prioritized replay buffer [41] with prioritized
replay exponent ↵ = 0.6 and prioritized importance sampling exponent �0 = 0.4 as in Schaul et al.
[41]. The expert transitions are given a priority bonus of ✏d = 1 as in Hester et al. [38]. The buffer
has a size of 100,000 transitions. The weight w for the margin loss term is 0.1, and the margin
l = 0.1.

G Ablation Studies

G.1 RAD and DrQ with more data augmentation operators

In Section 4.2 and Section 4.3, we compare the equivariant architectures with RAD [7] and DrQ [8]
with rotational data augmentation. In this experiment, we run the comparison with more data aug-
mentation operators: 1) Rotation: random rotation in C12 and C32, same as in Section 4.2 and
Section 4.3. 2) Translation: random translation. 3) SE(2): the combination of 1) and 2). 4) Shift:
random shift of ± 4 pixels as in [8]. Note that only 1) is a fair comparison because our equivariant
models do not inject extra translational knowledge into the network. Even though, the equivariant
networks outperforms all data augmentation methods in five out of the six environments.

G.2 Dynamic Filter vs Lift Expansion

In this experiment, we compare the Dynamic Filter and Lift Expansion methods for encoding partial
equivariance property. We evaluated both the equivariant FCN architecture and the equivariant ASR
architecture (note that we only test this variation in q1. q2 uses the Dynamic Filter regardless of the
architecture of q1). The results are shown in Fig 18. Both methods generally perform equally well.

18

(a) Block Stacking (b) Bottle Arrangement

(c) House Building (d) Covid Test (e) Box Palletizing (f) Bin Packing

Figure 18: Comparison between Dynamic Filter and Lift Expansion in equivariant FCN (a-b) and
equivariant ASR (c-f). Results averaged over four runs. Shading denotes standard error.

(a) House Building (b) Covid Test (c) Box Palletizing (d) Bin Packing

Figure 19: Comparison of four variations of equivariant/conventional and q1/q2 combinations. Re-
sults averaged over four runs. Shading denotes standard error.

G.3 Equivariant Network in Behavior Cloning

In this experiment, we evaluate the performance of our equivariant network in a behavior cloning
setting compared with the Transporter network [1]. Both methods use the same cross entropy loss
function and the same data augmentation strategy. The experimental parameters mirror Section 4.2.
The results are shown in Table 3. The equivariant network outperforms the Transporter network in
both environments.

G.4 Equivariant ASR Ablations

G.4.1 Only Using Equivariant Network in q1 or q2

In this ablation study, we evaluate the effect of the equivariant network by only applying it in q1

or q2. There are four variations: 1) Equivariant q1 + Equivariant q2: both q1 and q2 use the equiv-
ariant network; 2) Equivariant q1 + Conventional q2: q1 uses the equivariant network, q2 uses the
conventional convolutional network; 3) Conventional q1 + Equivariant q2: q1 uses the conventional
convolutional network, q2 uses the equivariant network; 4) Conventional q1 + Conventional q2: both
q1 and q2 use the conventional convolutional network. The results are shown in Fig 19, where Us-
ing the equivariant network in both q1 and q2 (blue) always shows the best performance. Note that
only applying the equivariant network in q2 (red) demonstrates a greater improvement compared
with only applying the equivariant network in q1 (green) in three out of four environments. This
is because q2 is responsible for providing the TD target for both q1 and q2 [29], which raises its
importance in the whole system.

19

(a) House Building (b) Covid Test (c) Box Palletizing (d) Bin Packing

Figure 20: Comparison of two different symmetry groups for q1. Results averaged over four runs.
Shading denotes standard error.

(a) House Building (b) Covid Test (c) Box Palletizing (d) Bin Packing

Figure 21: Comparison of the deictic encoding and baselines. Results averaged over four runs.
Shading denotes standard error.

G.4.2 Symmetry Group in q1

In this experiment, we evaluate two different symmetry groups that q1 can be defined upon: the
Cyclic group C8 that encodes eight rotations every 45 degrees, and the Dihedral group D4 that
encodes four rotations every 90 degrees and reflection. Both groups have an order of 8, i.e., the
network will be equally heavy. As is shown in Fig 20, D4 has a minor advantage over C8.

G.4.3 Deictic Encoding in SE(2)

This experiment compares the deictic encoding equipped with the equivariant ASR and the conven-
tional ASR in SE(2). The comparison is conducted in the following four variations: 1) Equivariant
q1 + Equivariant q2: both q1 and q2 use the equivariant network; 2) Equivariant q1 + Deictic q2: q1
uses the equivariant network, q2 uses the deictic encoding; 3) Conventional q1 + Conventional q2:
both q1 and q2 use the conventional convolutional network; 4) Conventional q1 + Deictic q2: q1 uses
the equivariant network, q2 uses the deictic encoding. The results are shown in Fig 21. When q1 is
using the equivariant network, using the deictic encoding in q2 (green) outperforms using equivari-
ant network in q2 (blue) in Bin Packing, while the equivariant q2 outperforms in House Building. In
Covid Test and Box Palletizing, they tends to have similar performance. When q1 uses conventional
CNN, using deictic encoding in q2 (red) generally provides a significant performance, compared
with using conventional CNN in q2 (purple). In Covid Test, the use of the deictic encoding does
not make a big difference. We suspect that this is because in Covid Test the bottleneck of the whole
system is q1.

G.4.4 Deictic Encoding in SE(3)

This experiment studies the different network choices for q1 (equivariant network, conventional
network), q2 (equivariant network, deictic encoding, conventional network), and q3 � q5 (deictic
encoding, conventional network). We evaluate two proposed approaches: 1) Equi+Equi+Equi uses
the equivariant network in q1 and q2 and deictic encoding in q3 through q5 (the three components in
the name mean the architecture of q1, q2, and q3-q5); 2) Equi+Deic+Deic uses equivariant network
in q1, and deictic encoding in q2 through q5. We compare the proposal with the following baselines:
1) Equi+Conv+Conv uses equivariant network in q1, and conventional convolutional network in q2

through q5; 2) Conv+Equi+Deic uses conventional convolutional network in q1, equivariant network
in q2, and deictic encoding in q3 through q5; 3) Conv+Deic+Deic uses conventional convolutional

20

(a) Bumpy House Building (b) Bumpy Box Palletizing

Figure 22: Comparison of different network choices in SE(3). Results averaged over four runs.
Shading denotes standard error.

method Conventional FCN RAD FCN DrQ FCN Rot FCN Equivariant FCN Equivariant ASR

time(s) 0.08 0.09 0.22 0.42 0.72 0.45

Table 4: The average time for each training step in a rotation space of C12/C2

method Conventional ASR RAD ASR DrQ ASR Equivariant ASR

time(s) 0.09 0.14 0.45 0.49
Table 5: The average time for each training step in a rotation space of C32/C2

network in q1, and deictic encoding in q2 through q5; 4) Conv+Conv+Conv uses conventional con-
volutional network in q1 through q5. The results are shown in Fig 22, where our two proposed
approaches outperform the baseline architectures in both environments. Note that swapping the
conventional convolutional network with the equivariant network or the deictic encoding generally
improves the performance, except that Equi+Conv+Conv in Bumpy Box Palletizing underperforms
Conv+Conv+Conv. We suspect that this is because the target of q1 given by the conventional convo-
lutional networks is less stable.

H Runtime Analysis

Table 4 and Table 5 shows the average runtime in the setting of the experiments in Section 4.2 and
Section 4.3, respectively. The runtime is calculated by averaging over 500 training steps on a single
Nvidia RTX 2080 Ti GPU. Both the Equivariant FCN and Equivariant ASR requires a longer time
for each training step. However, Equivariant ASR is faster and similar to the best performing data
augmentation method DrQ.

I Robot Experiment

To ensure better sim to real transfer, we train our model used in the real world with a Perlin noise [42]
(with a maximum magnitude of 7mm) applied to the observations.

Bottle Arrangement: In the Bottle Arrangement task, we use the bottles and tray shown in Fig 23 for
testing.

House Building: In the House Building task, we train the model with object size randomization
within ±8.3%. A Gaussian filter is applied after the Perlin noise during training to make the obser-
vation noisier. The model is trained for 20k episodes instead of 10k as in the simulation experiment.

Box Palletizing: In the Box Palletizing task, we add an object size randomization within ±3.75%
and increase the size of H and P from 24⇥ 24 to 40⇥ 40.

Fig 24 shows an example episode of the robot finishing the Bottle Arrangement task. Fig 25 shows
an example episode of the robot finishing the Box Palletizing task.

21

Figure 23: The bottles used in the Bottle Arrangement robot experiment.

Figure 24: An example episode of the Bottle Arrangement in the real world.

Figure 25: An example episode of the Box Palletizing in the real world.

22

	Introduction
	Related Work
	Problem Statement
	Approach
	Equivariant Convolutions
	Equivariant Fully Convolutional Q Functions in SE(2)
	Equivariant Augmented State Q Functions in SE(2)
	Equivariant Augmented State Q Functions in SE(3)

	Discussion
	Proof of Proposition 4.1
	Equivariant Kernel Constraint
	Experimental Domains
	Block Stacking
	Bottle Arrangement
	House Building
	Covid Test
	Box Palletizing
	Bin Packing
	SE(3) House Building and Box Palletizing

	Network Architecture
	Equivariant FCN Architecture
	Equivariant ASR Architecture
	Lift Expansion Architecture
	Deictic Encoding Architecture

	Baseline Details
	FCN Baselines
	ASR Baselines

	Training Details
	SDQfD
	Parameters

	Ablation Studies
	RAD and DrQ with more data augmentation operators
	Dynamic Filter vs Lift Expansion
	Equivariant Network in Behavior Cloning
	Equivariant ASR Ablations
	Only Using Equivariant Network in q1 or q2
	Symmetry Group in q1
	Deictic Encoding in SE(2)
	Deictic Encoding in SE(3)

	Runtime Analysis
	Robot Experiment

