
Supplement Contents

A Additional Details and Results for FabricFlowNet 12
A.1 FabricFlowNet Implementation Details . 12

A.2 Additional Simulation Results for FabricFlowNet 13

A.3 Additional Real World Details and Results for FabricFlowNet 13

B Additional Details and Results for Fabric-VSF [2] 16
B.1 Fabric-VSF [2] Implementation Details . 16

B.2 Additional Fabric-VSF [2] Results . 17

C Additional Details and Results for Lee et al. [5] 17
C.1 Lee et al. [5] Implementation Details . 17

C.2 Additional Lee et al. [5] Results . 18

D Additional Details and Results for Ablations 19
D.1 Ablation Implementation Details . 19

D.2 Additional Ablation Results . 19

E Additional Results on Unseen Cloth Shapes 19

F End-to-End Variants of FFN 19

G FFN Performance with Crumpled Starting Configurations 21

H FFN Performance with Iterative Refinement 22

I FlowNet Performance 22

A Additional Details and Results for FabricFlowNet

A.1 FabricFlowNet Implementation Details

Data Collection. We collect data in SoftGym by taking random pick and place actions on the
cloth. The random actions are biased to pick corners of the cloth mask (detected using Harris corner
detection [1]) 45% of the time, and “true” corners of the square cloth 45% of the time. If the true
corners are occluded then Harris corners are used instead. For the remaining 10%, the pick actions
are uniformly sampled over the visible cloth mask. After the pickers grasp the cloth, they lift to a
fixed height of 7.5 cm.

We constrain the place points of the action so that both place points are offset in the same direction
and distance from their respective pick points. The direction is orthogonal to the segment connecting
the two pick points, and points towards the center of the image, so the cloth does not move out of
the frame (similar to Lee et al. [5]). The distance between the pick point and the place point along
this direction is uniformly sampled between [25, 150] px. The distance is truncated if it exceeds a
margin of 20 px from the image edge, again to prevent moving the cloth out of the frame. While
these heuristics may seem to overly constrain the data we collect, we observe that our data still
contains highly diverse cloth configurations, as shown in Fig. S1.

For each sample, we save the initial depth observation image, the dual-arm pick and place pixel
locations of the action, the next depth observation resulting from the executed action, and the cloth

12

particle positions of both observations (See Fig. S1). The camera for capturing depth observations is
fixed at 65 cm above the support surface. We mask the depth observations to only include the cloth
by setting all background pixels to zero. The dataset for training both the flow and pick networks
consists of 20k samples from 4k episodes, where each episode consists of five dual-arm pick and
place actions.

Flow Network Training. We use FlowNet [3] as our flow network architecture. The input to
FlowNet is the initial and next depth image from a sample in our dataset, stacked channel-wise.
The ground truth flow for supervising FlowNet comes from the cloth particles used by the simulator
to model the cloth’s dynamics: we collect the cloth particle positions for each observation in our
dataset and correspond them across observations to get flow vectors (See Fig. S1). The ground truth
flow is sparse because the cloth particles are sparse, so we train FlowNet using a masked loss that
only includes pixels with corresponding ground truth flow. Similar to Lee et al. [5], we apply spatial
augmentation of uniform random translation (up to 5 px) and rotation (up to 5 degrees) to augment
the training data. We train the network using the dataset of 20k random actions described above. We
use the Adam [4] optimizer, learning rate 1e-4, weight decay 1e-4, and batch size 8.

PickNet Network Training. PickNet1 and PickNet2 are fully-convolutional network architectures
based on Lee et al. [5], with 4 convolutional layers in the encoder, each with 32 filters of size 5. The
first three layers of the encoder have stride 2 and the last one has stride 1. The decoder consists of 2
interleaved convolutional layers and bilinear upsampling layers.

The input to the PickNet1 is a 200 ⇥ 200 flow image. PickNet2 receives the first pick point location
(the argmax of the Picknet1 output, as described in the main text) as an additional input, represented
as a 2D Gaussian N (p1,�) (where � = 5). Similar to Nair et al. [6], the output of both networks is
a 20 x 20 spatial grid. If the pick points predicted by PickNet are not on the cloth mask, we project
them to the closest pixel on the mask using an inverse distance transform. In practice, we find that
the predictions are usually either on the cloth mask or very close to the mask. To train PickNet1 and
PickNet2, we use the same dataset of 20k random actions described above. We use the Adam [4]
optimizer, learning rate 1e-4, and batch size 10.

Figure S1: Training data for FFN.

A.2 Additional Simulation Results for FabricFlowNet

Fig. S2b and Fig. S2f show the cloth configurations achieved by FabricFlowNet for each of the one-
step goals (Fig. S2a) and multi-step goals (Fig. S2e). Fig. S1 provides examples of the data used to
train FFN. Our policy is deterministic and the simulation is near-deterministic, so we only need 1
trial for our simulation experiments (unlike our real world experiments which use 3 trials).

A.3 Additional Real World Details and Results for FabricFlowNet

Cloth Masking. In simulation, we can obtain a perfect cloth mask. In the real world, we first obtain
a background mask of the table using color-based HSV thresholding, which we can determine before
the cloth is placed on the table. We then use the inverse of this background mask to obtain a mask of

13

(a) One-step goals (b) One-step FFN performance

(c) One-step Fabric-VSF performance (d) One-step Lee et al. performance

(e) Multi-step goals (f) Multi-step FFN perfor-
mance

(g) Multi-step Fabric-VSF
performance

(h) Multi-step Lee et al.
performance

Figure S2: Goal configurations, achieved configurations, and training data in simulation. Arrows
indicate the executed action. Fabric-VSF uses a lower camera height than FFN (45 cm vs. 65 cm),
thus the cloth looks slightly larger.

the cloth. Note that while we use background color of the table for cloth masking, the network itself
only takes depth input, allowing the network to be robust to colors and patterns on the cloth itself.

Results on Real Cloth Folding. Table S1 provides mean IOU (mIOU) performance for NoFlow and
FFN on real cloth goals. The NoFlow ablation performs considerably worse compared to FFN on
real cloth folding. Qualitative results and the complete set of real square cloth goals are in Fig. S3;
the complete set of real rectangle and T-shirt goals are in the main text. We found that for FFN,
using FlowNet weights from epochs at the start of convergence transferred better to the real world
than using weights from epochs long after convergence.

Failure Cases. This work focused on high level actions with fixed primitives for picking and placing
that may not be ideal for all cloth types, sizes, or folds. Causes of failures include the grasped
portion of the cloth “flopping back” against the folding direction, undoing small folding actions

14

Single-step Square Towel

Multi-step Square Towel

Rectangular Cloth T-shirt

Figure S3: Qualitative performance of FFN and NoFlow on real cloth. The trial corresponding to
the best achieved IOU is shown for each example. For multi-step goals, only the final goal is shown.
FFN only takes depth images as input, allowing it to easily transfer to cloths of different colors.
Contrast and brightness have been adjusted to enhance visibility.

or causing unwanted secondary folds (Fig. S4a). Potential future work is to learn better pick and
place primitives. Another source of failure was over- or under-estimating the fold distance due
to slight inaccuracies in the flow prediction (Fig. S4b). We also see some failures during multi-
step folding; since we provide sub-goals in sequence and allow only one action per sub-goal, the

15

Table S1: mIOU for Folding Square Towel, Rectangular Cloth, and T-shirt

Method 1-Step Sq. " Multi-Step Sq. " All Sq. " Rect. " T-shirt "
(n = 6) (n = 5) (n = 11) (n = 3) (n = 3)

NoFlow 0.59± 0.04 0.45± 0.01 0.53± 0.02 0.65± 0.07 0.61± 0.06
FFN (Ours) 0.89± 0.01 0.69± 0.04 0.80± 0.03 0.81± 0.04 0.82± 0.02

Average of 3 rollouts. Higher mIOU scores are better; the max achievable score is 1.0.

discrepancy between the starting image of the demonstration and the observed image can result in
poor predictions (Fig. S4c). Allowing the policy to take multiple actions to achieve a sub-goal before
proceeding may improve performance. For example, the flow can be recalculated after each action
to determine if the observation is sufficiently close to the desired sub-goal configuration before
proceeding to the next sub-goal.

(a) Flopping back (b) Undershooting (c) Poor prediction

Figure S4: Examples of failure cases

B Additional Details and Results for Fabric-VSF [2]

B.1 Fabric-VSF [2] Implementation Details

The original Fabric-VSF [2] paper uses single arm actions and a top-down close camera view such
that the cloth covers the whole image. To match the camera view, we set the camera height to be
45 cm above the table in our case. The training dataset consists of 7115 trajectories, each with 15
random pick-and-place actions, totaling 106725 data points. Note that this dataset is 5x larger than
the 20k samples we train FFN on. During training, Fabric-VSF takes as input 3 context frames and
predicts the next 7 target frames.

We trained 8 variants of Fabric-VSF. Each variant differs in the following aspects: 1) whether it uses
single arm or dual arms; 2) during data collection, whether the pick-and-place actions are randomly
sampled, or use the corner biasing sampling strategy as described in Sec. A.1, and 3) whether it
uses the original small action size (“Small Action”, bounded to half of the cloth width) or a larger
action size (“Large Action”, bounded to the diagonal length of the cloth). Other than these three
changes, we set all other parameters to be the same as in the original paper. Therefore, the variant
with single arm actions, no corner biasing during data collection, and small action size is exactly
how Fabric-VSF is trained in the original paper.

After the training, we plan with cross-entropy method (CEM) to find actions for achieving a given
goal image. We use the exact same CEM parameters as in the original paper, i.e., we run CEM for
10 iterations, each with a population size of 2000 and elite size of 400.

16

B.2 Additional Fabric-VSF [2] Results

The results for the Fabric-VSF variants are summarized in Table S2. We note that the variant using
single arm actions, corner biasing for data collection, and large action size performs the best out of
all variants. This variant outperforms FFN on overall error and one-step error, but performs slightly
worse than FFN on multi-step error (See Fig. S2c and Fig. S2g for qualitative results). However,
we note that Fabric-VSF was trained on 5x more data than FFN. Additionally, Fabric-VSF takes
much longer to run at inference time, requiring ⇠7 minutes of CEM iterations to compute a single
action compared to ⇠0.007 seconds for a forward pass through FFN. 7 minutes of CEM planning
time is impractical for real-world folding. We also demonstrate in the following section that FFN
generalizes to other cloth shapes better than Fabric-VSF.

Analyzing the performance between different Fabric-VSF variants, for single-arm actions, using
large actions instead of small actions always leads to better performance. However, this is not
true for the dual arm variants. Interestingly, we find that using dual arms tends to result in worse
performance compared with using a single arm. The reason for this could be that during CEM
planning, dual-arm variants double the action dimension, which increases complexity for CEM and
makes it difficult to find optimal actions.

Table S2: Mean Particle Distance Error (mm) and Inference Time (sec) for Fabric-VSF Variants

Baseline 1-Step (n=40) Multi-Step (n=6) All (n=46) Inf. Time

1-Arm, No CB, Sm. Action 12.92± 13.00 46.05± 48.07 17.24± 23.93 ⇠420s
1-Arm, No CB, Lg. Action 10.13± 07.33 33.06± 12.46 13.12± 11.25 ⇠420s
1-Arm, CB, Sm. Action 14.09± 11.36 38.68± 27.72 17.30± 16.76 ⇠420s
1-Arm, CB, Lg. Action 6.30± 06.55 21.33±11.20 8.27± 08.90 ⇠420s
2-Arm, No CB, Sm. Action 24.60± 14.69 50.26± 27.54 27.94± 19.00 ⇠420s
2-Arm, No CB, Lg. Action 10.98± 05.80 40.92± 18.06 14.89± 13.17 ⇠420s
2-Arm, CB, Sm. Action 16.21± 13.81 36.42± 26.51 18.84± 17.43 ⇠420s
2-Arm, CB, Lg. Action 15.58± 10.88 54.06± 26.68 20.60± 19.07 ⇠420s

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06 ⇠0.007s
CB: Corner Bias Sm. Action: Small Action Lg. Action: Large Action

C Additional Details and Results for Lee et al. [5]

C.1 Lee et al. [5] Implementation Details

Lee et al. [5] learns a fabric folding policy for a discrete action space using a fully convolutional
state-action value function, or Q-network. Observation and goal images are stacked channel-wise,
then duplicated and transformed to form a batch of m image rotations and n scales to represent
different pick and place directions and action lengths. The whole batch is input to the Q-network to
compute the Q-value of executing an action for each rotation and scale at every point on the image.
The action corresponding to the max Q-value from the outputs is executed. The discrete action space
of m rotations and n action lengths for Lee et al. [5] enables efficient policy learning, but greatly
limits the actions of the learned policy compared to FFN.

We extend Lee et al. [5] from a single-arm approach to a dual-arm one. To represent two pickers
instead of one, we input two pairs of observation and goal images to the Q-network. When rotating
and scaling the images to represent different actions, the images are constrained to have the same ro-
tation, but are allowed to be scaled differently. In other words, the dual-arm actions are constrained
to execute pick and place actions in the same direction, but can have different pick and place lengths.
The Q-network outputs a pair (one for each arm) of Q-value heatmaps for every action in the discrete
action space (i.e., every rotation and scale). The max Q-value in each of the two heatmaps is aver-
aged, and the heatmap pair with the highest averaged Q-value is selected from the set of all discrete
rotations and scales. The picker action corresponding to the argmax of each heatmap is executed.

We train each Lee et al. variant below using hyperparameters similar to the original paper [5],
training for 25k steps with learning rate 1e-4, batch size 10, and evaluating performance on test
goals every 500 steps to find the best performing step.

17

C.2 Additional Lee et al. [5] Results

We trained variants of Lee et al. to compare single-arm vs. dual-arm performance, depth input
vs. RGB input, collecting data with corner bias similar to FFN vs. without bias, and using the
original close-up image of the cloth (“Low Cam”) vs. images from further away (“High Cam”). All
variants were trained with 20k training examples. We also provide results for two variants of FFN
trained on the same amount of data, one where actions are sampled from the discrete action space
(i.e., discretized action angles and lengths) in Lee et al. [5] (“Discrete Actions”), and the other where
actions are sampled using our continuous action space described in Sec. A.1 (“Cont. Actions”).
Lee et al. [5] is an inherently discrete approach and cannot be trained to output continuous actions,
nor can it be trained on data with actions outside of its discrete action space.

Table S3 shows that the performance of all Lee et al. variants is poor compared to FFN, particularly
on 1-step goals (see Appendix Fig. S2d and Appendix Fig. S2h for qualitative results). FFN outper-
forms Lee et al. when trained on either the discrete action dataset or the continuous one. Training
FFN on continuous actions results in better performance for 1-step goals, but the discrete action
dataset also performs fairly well. These results indicate that the improved performance of FFN vs.
Lee et al. cannot be solely explained by training on continuous vs. discrete action data, though other
factors like outputting continuous actions instead of discrete ones may still play significant role in
FFN’s improved performance.

Table S3: Mean Particle Distance Error for Lee et al. on 20k Training Examples

Baseline 1-Step (40) Multi Step (6) All (46)

Lee et al., 1-Arm, D, No CB, LC 18.94± 16.43 24.18± 17.75 19.62± 16.49
Lee et al., 1-Arm, D, No CB, HC 16.18± 08.38 26.20± 16.31 17.49± 10.10
Lee et al., 1-Arm, D, CB, LC 20.99± 18.88 34.61± 31.35 22.77± 20.97
Lee et al., 1-Arm, D, CB, HC 19.70± 09.37 38.91± 24.05 22.20± 13.53
Lee et al., 1-Arm, RGB, No CB, LC 49.29± 18.10 52.03± 33.62 49.65± 20.26
Lee et al., 1-Arm, RGB, No CB, HC 47.12± 21.04 64.48± 29.85 49.38± 22.75
Lee et al., 1-Arm, RGB, CB, LC 33.89± 19.01 58.90± 43.34 37.15± 24.38
Lee et al., 1-Arm, RGB, CB, HC 39.01± 25.36 55.46± 38.38 41.15± 27.43
Lee et al., 2-Arm, D, No CB, LC 36.62± 14.51 47.72± 21.95 38.07± 15.82
Lee et al., 2-Arm, D, No CB, HC 40.75± 13.22 52.88± 19.03 42.33± 14.45
Lee et al., 2-Arm, D, CB, LC 47.18± 18.60 57.29± 28.65 48.50± 20.07
Lee et al., 2-Arm, D, CB, HC 35.98± 24.60 64.75± 51.76 39.73± 30.30
FFN, 2-Arm, D, CB, HC, Discrete Actions 9.57± 06.07 10.15±07.20 10.17± 07.34

FFN, 2-Arm, D, CB, HC, Cont. (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

D: Depth CB: Corner Bias LC: Low Camera HC: High Camera Cont: Continuous Actions

Lee et al. with and without Subgoals. FFN uses subgoals at inference time in order to fully specify
the task; many cloth folding goals have final goal configurations in which large portions of the cloth
are self-occluded. Subgoals are required to ensure the task is completed correctly and that the cloth
is correctly folded. Lee et al. [5] demonstrated cloth folding without subgoals at inference time by
relying on a learned Q-value heatmap to select actions toward a final end goal. We compare the
performance of the best Lee et al. variant with and without subgoals at test-time. The results of this
experiment are in Table S4. While the performance on 1-step goals are similar because those tasks
do not have subgoals, performance on multi-step goals is worse without subgoals.

Table S4: Mean Particle Distance Error for Lee et al. With and Without Subgoals

Method 1-Step (40) Multi Step (6) All (46)

Lee et al. 16.92± 9.28 37.74± 38.99 19.71± 20.27
Lee et al., With Subgoals 16.18±8.38 26.20±16.31 17.49±10.10

18

D Additional Details and Results for Ablations

D.1 Ablation Implementation Details

NoFlowIn The architecture for this ablation is identical to our main method, except that it takes
depth images instead of flow images as input. We use a conditioned architecture with two PickNets;
PickNet1 receives the observation and goal depth images as input both of size 200⇥ 200. The place
point is computed by querying the flow image similar to our main method.

NoFlowPlace We predict the place points similarly to the pick points by using an additional place
network. The place network architecture is identical to PickNet. The input is a flow image and the
output is the place point predictions.

NoFlow This ablation is a combination of NoFlowIn and NoFlowPlace, where PickNet and PlaceNet
both take observation and goal depth images as input.

NoCornerBias This ablation is the same as our main method except for the training dataset. We
use a dataset that does not bias the data to pick corners (See Sec. A.1). Instead, the pick actions are
always uniformly sampled over the visible cloth mask. We still constrain the folding actions for both
arms to be in the same direction and distance from their respective pick points and point towards the
center of the frame.

NoSplitPickNet The architecture of PickNet is modified so that we only have one PickNet for both
arms instead of the conditioned architecture used in our main method. The PickNet takes as input
the flow image and outputs two heatmaps corresponding to the two pick points.

NoMinLoss The loss in Eq. 1 is replaced with the following:

LNoMin = BCE(H1, H
⇤
1) + BCE(H2, H

⇤
2) (2)

D.2 Additional Ablation Results

We provide ablation results in Table S5 grouped by single-step, multi-step, and all goals.

Table S5: Mean Particle Distance Error for Ablations

Ablation One Step (n=40) Multi Step (n=6) All (n=46)

NoFlowIn 5.14± 3.62 24.63± 21.30 9.37± 12.20
NoFlowPlace 7.61± 5.44 30.25± 17.62 10.56± 11.15
NoFlow 8.97± 7.45 28.79± 19.33 18.02± 20.34
NoCornerBias 9.79± 5.57 19.61±17.52 11.07± 8.83
NoSplitPickNet 4.87± 2.61 23.41± 18.87 7.29± 9.56
NoMinLoss 5.10± 4.04 20.81± 17.57 7.15± 9.08

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

E Additional Results on Unseen Cloth Shapes

We also evaluate Fabric-VSF and Lee et al. on generalization to unseen cloth shapes. FFN gen-
eralizes well to new shapes, as shown in the main text (see Fig. 5 and Sec. 4.2.1). Table S6 pro-
vides quantitative results on the rectangle cloth and T-shirt for the best Fabric-VSF method and best
Lee et al. method compared to FFN. FFN outperforms both methods by a large margin. Fabric-
VSF generalizes poorly, likely because it relies on planning with a learned visual dynamics model.
Lee et al. also does not generalize well compared to FFN. Fig. S5 provides a qualitative comparison.

F End-to-End Variants of FFN

We investigate the effect of training our FFN architecture end-to-end. First, we train the FFN archi-
tecture with pick losses as well as the flow loss; all losses are allowed to backpropagate through the

19

Table S6: Mean Particle Distance for Folding Unseen Cloth Shapes in Simulation

Method Rectangle (n=6) T-Shirt (n=3)

Lee et al. , 1-Arm, No Corner Bias, High Cam, 20k Actions 31.63± 18.04 86.65± 34.67
Fabric-VSF, 1-Arm, Corner Bias, Large Action 25.68± 11.21 45.25± 13.83
FFN (Ours) 10.70±08.54 20.91±11.28

(a) Rect. cloth goals (b) FFN achieved (c) Fabric-VSF achieved (d) Lee et al. achieved

Figure S5: Qualitative performance of FFN, Fabric-VSF, and Lee et al. on rectangular cloth.

entire combined network, including through the FlowNet layers. The results on the square towel are
presented in Table S7 (“JointFFN”). This variant performs significantly worse than FFN (9.28 vs.
7.14 on all goals).

Table S7: Mean Particle Distance Error (mm) for End-to-End Variants of FFN

Method 1-Step (n=40) Multi-Step (n=6) All (n=46)

JointFFN 07.60± 05.62 17.53±15.56 09.28± 09.39
JointPredictPlace 12.90± 11.67 35.25± 19.22 22.88± 23.24
JointFFN, No Flow Loss 32.41± 22.61 68.17± 50.35 37.07± 30.34
JointPredictPlace, No Flow Loss 16.31± 22.73 50.27± 31.44 24.39± 29.77

FFN (Ours) 4.46±02.62 25.04± 22.88 7.14±11.06

We also trained another variant which consists of a FlowNet, a PickNet, and a PlaceNet, trained end-
to-end (“JointPredictPlace” in Table S7). This is similar to our ablation “PredictPlace” in Table 2,
which uses the same architecture but is not trained end-to-end. JointPredictPlace performs signifi-
cantly worse than FFN (22.88 vs. 7.14 on all goals) and also underperforms compared to Predict-
Place (10.56 on all goals). Overall, this result, as well as the one in the paragraph above, indicate
that end-to-end training leads to significantly worse performance for this task. Our intuition for this
is that the flow network should be trained only with the flow loss, and that backpropagating the
gradients from the pick loss into the flow network adds noise and reduces its performance.

Lastly, we evaluated variants of the above two architectures with the flow loss removed, to see if
we could train these architectures end-to-end with just a single loss at the end, instead of using an
intermediate flow loss. The results, shown in Table S7, are worse for both variants, showing the
importance of the intermediate flow loss.

20

G FFN Performance with Crumpled Starting Configurations

Our experiments focused on folding tasks, and we assume that a previous method was used to flat-
ten the cloth before our method is executed. To evaluate the robustness of our method to imperfect
smoothing, we evaluate the performance of FFN in simulation on slightly crumpled initial cloth con-
figurations. We generated crumpled configurations by taking the flat cloth and executing a random
pick and place action with a maximum translation of 10 pixels. The three configurations used in our
experiments are shown in Fig. S6.

(a) Crumpled 0 (b) Crumpled 1 (c) Crumpled 2

Figure S6: Crumpled initial cloth configurations

For each crumpled configuration, we evaluated FFN on the full set of 46 evaluation goals, where the
starting configuration of the cloth was set to the given crumpled configuration. The results of these
evaluations are in Table S8. The particle distance error is slightly higher with the crumpled starting
configurations, but the qualitative results in Fig. S7 show that FFN still produces actions that are
very close to the intended goals.

Table S8: Mean Particle Distance Error (mm) for FFN with Different Start Configurations

Starting Config 1-Step (n=40) Multi-Step (n=6) All (n=46)

FFN, Crumpled 0 12.40± 4.82 24.82± 24.81 14.01± 10.86
FFN, Crumpled 1 10.68± 2.89 23.54± 22.56 12.36± 9.61
FFN, Crumpled 2 10.68± 4.29 21.05±14.70 12.03± 7.51
FFN, Flat 4.46±2.62 25.04± 22.88 7.14±11.06

(a) Crumpled one-step FFN performance (b) Crumpled Multi-step FFN per-
formance

Figure S7: Configurations achieved by FFN when starting from the “Crumpled 1” configuration for
each attempt (compare with Fig. S2)

21

H FFN Performance with Iterative Refinement

Table S9: Mean Particle Distance Error (mm) for FFN with Iterative Refinement

Starting Config 1-Step (n=40) Multi-Step (n=6) All (n=46)

FFN, No Refinement 4.46±2.62 25.04± 22.88 7.14± 11.06
FFN, Iterative Refinement 4.54± 2.58 20.47±19.49 6.62±9.17

In our normal evaluations, each goal or subgoal is attempted only once by each method. With a single
attempted action for each subgoal, FFN is able to achieve a diverse set of goals, as demonstrated in
this work. However, we find that FFN can achieve even better performance when attempting goals
multiple times, using the flow to compare the current observation with the goal and taking actions
that move the observation closer to the goal if it has not yet been reached. We evaluate the benefit
of using this “iterative refinement” procedure in simulation. FFN moves to the next subgoal when a
minimum threshold for the average flow is achieved, so the flow acts as a goal recognizer. The policy
is allowed a maximum of 3 iterative actions per subgoal to limit potential divergence. The results in
Table S9 show that iterative refinement can improve performance, particularly on multi-step goals,
where reaching the current subgoal accurately is important for achieving subsequent goals.

I FlowNet Performance

FlowNet achieves an average endpoint error (EPE) of 1.0268 on the set of simulated test goals. The
test goals are not seen during training. Fig. S8 provides qualitative examples of FlowNet perfor-
mance on simulated test goals.

Figure S8: FlowNet Qualitative Performance. Two types of visualizations are provided: representing
the flow vector as arrows, and representing the flow vector using RGB channels. FlowNet outputs
a dense flow image but is trained on sparse ground truth flow. FlowNet takes only depth images as
input; RGB images are shown as a visual aid only.

22

References
[1] C. G. Harris and M. Stephens. A combined corner and edge detector. In Alvey Vision Conference,

1988.

[2] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Tanwani, Nawid Ja-
mali, Katsu Yamane, Soshi Iba, and Ken Goldberg. VisuoSpatial Foresight for Multi-Step,
Multi-Task Fabric Manipulation. In Proceedings of Robotics: Science and Systems, Corvalis,
Oregon, USA, July 2020.

[3] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas
Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2462–2470, 2017.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[5] Robert Lee, Daniel Ward, Akansel Cosgun, Vibhavari Dasagi, Peter Corke, and Jurgen Leitner.
Learning arbitrary-goal fabric folding with one hour of real robot experience. Conference on

Robot Learning, 2020.

[6] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and
Sergey Levine. Combining self-supervised learning and imitation for vision-based rope ma-
nipulation. In 2017 IEEE international conference on robotics and automation (ICRA), pages
2146–2153. IEEE, 2017.

23

