
A Error Function

We used three different measures for learning performance: alignment, relative reward and log-
likelihood. We offer a brief discussion about the advantages and limitations of these measures.
First, we note that alignment and relative reward require knowing the ground truth w∗. Hence, they
are only applicable in simulations where w∗ is synthetically generated, but not applicable in user
studies. Nevertheless, they allow for in-depth analysis of the learning progress in simulations.

The alignment directly describes how well the reward function of a user is learned. An advantage
is that it is global, i.e., there are no different test and training alignments. However, unless a perfect
alignment of 1 is obtained for some w, it does not give a direct indication how good the behavior of
a robot is (that is how much reward is collected) when optimizing for w.

The relative reward directly addresses this issue. It expresses how much reward is collected when
optimizing for learned weights w, compared to optimizing for w∗. This exploits the fact that the
underlying problem of finding robot trajectories that maximize reward is sensitive towards the ob-
jective, i.e,. the weights. Thus, even for some weight w ̸= w∗ the motion planner ρ might return
the optimal trajectory: ρ(w) = ρ(w∗). In that case, the w has an alignment of less than 1, i.e., not
accurately describe the users reward function, but still leads to the optimal solution, which is cap-
tured with the relative reward measure. However, the main limitation of relative reward is that it is
not global. Instead the measure is grounded in specific scenarios for which roll-outs are computed.
Considering test scenarios in addition to the training can mitigate this limitation.

The log-likelihood measure has a key advantage over alignment and relative reward: It does not
require w∗. The log-likelihood measures how well the learned probability density function over
w predicts a user’s answer to a randomly generated set of validation queries. Unfortunately, this
measure is indirect: the log-likelihood does not have a direct interpretation similar to the relative
reward, and thus it is more suitable when comparing different methods. Furthermore, noise has a
large impact on the log-likelihood: When the noise in the user responses is high, the user has a
high-enough probability for moving the slider to anywhere on the bar. Thus, inaccurate predictions
are not penalized heavily, leading to higher log-likelihood values.

B Proof of Proposition 1

We provide a proof for Proposition 1 in the paper.

Proposition 1 (Upper error bound). Let DS denote the observation made from scale feedback and
DC be the observation from choice feedback for the same set of queries. For any user weights w∗,
it holds in the noiseless setting that Errmax(w∗, DS) ≤ Errmax(w∗, DC).
Proof. To prove the statement, we show the feasible set obtained from scale feedback is a subset
of the feasible set from choice feedback. We note δ∗ > 0 for any non-trivial problem instance, as
otherwise every path would be equally optimal for any w∗. For one of the queries that form DS

and DC , say query k, we assume the user prefers P over Q without loss of generality, implying
ψ ≥ 0. For this query, choice feedback defines a feasible set FChoice

k = {w | (ϕP −ϕQ) ·w ≥ 0}.
First, we consider ψ = 1. This yields FScale

k = {w | (ϕP − ϕQ) · w ≥ αδ(w)}. Since both
α > 0 and δ(w) ≥ 0, we obtain FScale

k ⊆ FChoice
k . For the case ψ ∈ [0, 1), we have FScale

k =

{w | (ϕP −ϕQ) ·w = ψαδ(w)}; the right hand side is non-negative and thus any w satisfying the
equality must satisfy (ϕP −ϕQ) ·w ≥ 0. This also implies FScale

k ⊆ FChoice
k . As Errmax(w∗, DS)

maximizes over FScale, which is the intersection of FScale
k ’s over queries, while Errmax(w∗, DC)

maximizes over FChoice, Errmax(w∗, DS) cannot attain a larger value than Errmax(w∗, DC).

C Environment Features

Before we present additional simulation results, we now describe the features of the simulation and
user study environments we used. These environments are: Extended Driver, which we used for the
simulations in the main paper, Original Driver, which was used in [4] and we present the results in
Appendix C.2, and finally Fetch Robot, which we used for the user studies again in the main paper.

C.1 Extended Driver

In Table 1 we detail the features of the extended driver scenarios. Notation: d1, d2, d3 are the squared
distances of the robot car to the center of the left, middle and right lane; v is the speed profile of the
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Table 1: Features of the Extended Driver Environment

Description Definition

ϕ1 Lane keeping: mean distance to closest lane center mean[exp(−30·min{d1,d2,d3})]/0.15343634
ϕ2 Keep speed: mean difference to speed 1 mean[(1−v)2]/0.42202643
ϕ3 Driving straight: mean heading θ mean[θ]/0.06112367
ϕ4 Collision avoidance 1: mean distance to other car mean[exp(−7·∆x2)+3·∆y2]/0.15258019
ϕ5 Collision avoidance 2: min distance to other car min[exp(−7·∆x2)+3·∆y2]/0.10977646
ϕ6 Smoothness: mean jerk mean[∆v̇]/0.00317041
ϕ7 Distance travelled: progress along the road x(tfinal)−x(0)/1.01818467
ϕ8 Final lane L: robot end in the left lane int(y(||tfinal)− c1|| < 0.08)
ϕ9 Final lane M: robot end in the center lane int(y(||tfinal)− c2|| < 0.08)
ϕ10 Final lane R: robot end in the right lane int(y(||tfinal)− c3|| < 0.08)

robot trajectory; v̇ the acceleration profile; θ is the heading of the car, x(t) and y(t) are the robots
x and y position at a given time t ∈ [0, tfinal] (x is orthogonal to the road, y is along the road);
∆x and ∆y are the ordinal distance between the robot car and the other car; and c1, c2, c3 are the
y-coordinates of the lane centers.

C.2 Original Driver

We refer to the Section 9.4 of [4] for the features of the original driver environment.

C.3 Fetch Robot

In the user studies presented in the main paper and the simulations presented in Appendix D.3, we
used the following eight features for the Fetch robot experiment:

• Speed of the end-effector ∈ {0, 0.33, 0.67, 1}
• Maximum height of the end-effector ∈ {0, 0.33, 0.67, 1}
• Selected drink being the orange juice ∈ {0, 1}
• Selected drink being the water ∈ {0, 1}
• Selected drink being the milk ∈ {0, 1}
• Orientation of the pan ∈ {0, 1}
• Moving the drink behind or over the pan ∈ {0, 1}
• Robot hitting the pan while moving the drink ∈ {0, 1}

D Simulation results

We present additional simulation results to compare the proposed scale feedback with soft choice.
For the extended driver model from the main paper, we additionally show data with higher noise,
and show results with the log-likelihood measure used in the user study. Further, we show the
same analysis for the original driver experiment, and for the simulated version of the fetch robot
experiment from the user study.

For all the simulation results in this Appendix, we simulated 40 different wuser vectors, each with
four different αuser ∈ {.25, .5, .75, 1}, making 160 runs in total.

D.1 Extended Driver

High Noise. In the main paper we showed results for user noise σ = 0.1 in Fig. 4. In addition,
we repeat the same experiment but with σ = 0.3; shown in Fig. 7. Overall, we observe a poorer
performance for all approaches compared to σ = 0.1 – higher noise in the user feedback makes
learning more difficult. Nevertheless, scale feedback still leads to an improvement on both measures,
alignment and relative reward.

Log-Likelihood. Fig. 8 shows the log-likelihood for the extended driver simulations. When the
noise is small, scale feedback significantly outperforms soft choice under all three active querying
methods. Further, information gain performs best overall, followed by random. It might be surpris-
ing that max regret achieves a lower log-likelihood than random. Max regret greedily tries to find
solutions that are close to optimal. Thus, this approach does not gather information about compa-
rably good or bad trajectories (with respect to collected reward). Since the set of validation queries
is generated randomly, it might contain numerous queries about which the max regret approach is
still uncertain since it only focused on finding close to optimal solutions. Information gain on the
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Figure 7: Alignment (left) and Relative Reward (right) for the Extended Driver with σ = 0.3.
other hand minimizes the uncertainty about weights, regardless of how different the resulting trajec-
tories are. Similarly, random querying is completely unbiased and thus does not focus on a subset
of queries as the max regret approach does.

In Fig. 8 (b) we show the log-likelihood for high noise. Here all three active querying methods
perform nearly identical, and the difference between scale and soft choice feedback is very small.
This is because, when the noise is high, i.e., when the Gaussian over the feedback value has high
variance, the log-likelihood measure does not heavily penalize bad predictions, which causes all
methods to acquire high log-likelihood values.

(a) σ = 0.1 (b) σ = 0.3

Figure 8: Log-Likelihood for the Extended Driver.
D.2 Original Driver

Alignment and Relative Reward. Next, we show results for the original driver experiment. Fig. 9
shows the alignment and relative reward for low noise (σ = 0.1), Fig.10 shows the same measures
for high noise (σ = 0.3). While scale feedback still improves alignment and relative reward for all
querying methods, the gap to soft choice feedback is smaller than for the extended driver. However,
we observe that all querying methods achieve a substantially stronger performance than in the ex-
tended driver model with 10 features, indicating that the original driver model poses a less difficult
learning problem with only 4 features. We notice that the result for soft choice using information
gain achieves a higher alignment after 20 iterations than reported in [4]. There are two reasons for
this: First, we use a Gaussian noise instead of the Boltzmann model. Second, by emulating soft
choice using a slider with step size 1, we change the model for when users give a neutral (“About
Equal”) feedback. Nonetheless, the stronger performance compared to [4] suggests that these differ-
ences do not negatively impact the performance of soft choice with information gain, and thus that
the shown comparisons of scale feedback and soft choice feedback are fair.

Log-Likelihood. We also report the results in the log-likelihood measure Fig. 11. The results
are very similar to the results of the extended driver environment, except the log-likelihood values
increase faster. This is again because the reward is easier to learn in the original driver environment
with the fewer number of features.

D.3 Fetch Robot

Finally, we also show simulation results for the experimental setup from the user study, using the
fetch robot. Fig. 12 shows the alignment and relative reward for low noise (σ = 0.1), Fig. 13 shows
the same measures for high noise (σ = 0.3), and Fig. 14 shows the log-likelihood. In terms of
the comparisons between different feedback types and different active querying methods, the results
have the same trend as the extended driver and the original driver environments.

E Choice of σ in the User Studies

In the paper, we stated we took σ = 0.35 in the user studies based on pilot trials with different users.
We now describe the procedure that yielded this selection of σ.
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Figure 9: Alignment and Relative Reward for the Original Driver with σ = 0.1.

Figure 10: Alignment and Relative Reward for the Original Driver with σ = 0.3.

(a) σ = 0.1 (b) σ = 0.3

Figure 11: Log-Likelihood for the Original Driver.

Before all the actual experiments, we recruited 3 participants (3 male, ages 27–40) for a pilot study.
In this study, the participants followed the same procedure as in our actual experiments, but re-
sponded to only 30 randomly generated queries. These 30 queries were formed by three sets: 10
scale queries, 10 soft-choice queries and another 10 scale queries. We randomized the order of these
three sets to avoid any bias.

After we collected these data, we repeated the following procedure for σ = 0.05, 0.10, . . . , 1.00.
We learned a single posterior for each user by using 10 scale and 10 soft choice query responses
under σ noise, i.e., the posteriors included both scale and soft choice feedback. We then checked the
validation loglikelihood (with the remaining 10 queries) under the learned posterior and the same σ.

The σ value that yielded the highest validation loglikelihood, σ = 0.35, was then used for all of the
actual experiments with real users.

F Validation Set with Mixture Data
In both of our user studies, we used a validation set that consists of randomly generated scale ques-
tions. Given the fact that the subjective user ratings did not point out a significant difference between
learning from scale and soft choice feedback, one might argue that the superiority of learning from
scale feedback in terms of the log-likelihood metric is simply because the validation set also con-
sists of scale feedback. Mathematically, this should not happen, because a good posterior should be
able to correctly predict any form of user feedback. However, humans have cognitive biases, which
makes it possible that the posterior learned with the scale questions captures the bias caused by the
scale questions, whereas the posterior learned with the soft choice questions cannot do this.

To show this is not the case, we present an additional analysis on the same human data as in our first
user study. For this analysis, we take the reward posteriors that have been learned with the first 7
queries (of “Scale - Information Gain”, “Scale - Random”, and “Soft Choice - Random”). Next, we
alter the validation set as follows. We take (i) the first 3 scale queries from the original validation
set, and (ii) the last 3 soft choice queries from the original training set of randomly generated soft
choice queries (and this is why we only take the first 7 posteriors – we do not mix the training and
validation data). Finally, we perform the log-likelihood analysis on this modified validation set.
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Figure 12: Fetch Experiment with σ = 0.1.

Figure 13: Fetch with σ = 0.3.

(a) σ = 0.1 (b) σ = 0.3

Figure 14: Log-Likelihood of the Fetch experiment.

Figure 15: Additional analysis results
are shown (mean±s.e. over 18 sub-
jects).

Results are shown in Fig. 15. It can be seen that even with
a validation set that consists of mixture data, the results have
the same trend as in the original study results. While having
smaller validation set (6 instead of the 10 in the original study)
causes larger standard errors, “Scale - Information” and “Scale
- Random” both outperform “Soft Choice - Random” with sta-
tistical significance (p < 0.05 in both comparisons). On the
other hand, the comparison between “Scale - Information” and
“Scale - Random” gives p = 0.098.

This analysis shows the fact that scale feedback outperforms
soft choice feedback in terms of log-likelihood is not because
of the data in the validation set. Even with a validation set that
consists of both scale and soft choice questions, we see the benefits of learning from scale queries.

However, this analysis does not answer the question why user ratings did not have a significant
difference between the two feedback types. While the answer to this question requires more analysis
and possibly more data collection, we speculate the following reason: the mean user ratings are
always around 4, and even higher than 4 when queries are actively generated with information gain.
This means the users are happy with the optimized trajectories, so we can say that 10 queries are
enough in this task to find the optimal trajectory. However, while user ratings measure how close
the optimal trajectory with respect to the robot’s posterior is to the optimal trajectory the user has in
mind; log-likelihood measures the predictive performance of the posterior. Therefore, having a high
user rating does not necessarily mean the robot can accurately compare two suboptimal trajectories.
On the other hand, a high log-likelihood value indicates good predictive performance, which is
crucial in many robotics applications, such as behavior modeling. Hence, we claim: (i) learning
from scale feedback improves the predictive performance over learning from soft choice feedback,
and (ii) a more complex task might be needed to show scale feedback leads to more efficient learning
than soft choice feedback, which is also suggested by our simulation studies.
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G Numerical Results

Finally, we present Table 2 where we report the numerical results of the simulations in the main paper
at iterations 0, 5, 10, 20; and Table 3 where we report the final numerical results of the user studies.
Consistent with the paper, the numbers are presented as mean ± standard deviation (simulations)
and standard error (user study).

Table 2: Numerical results of the simulations at selected iterations k

Mean±Standard Deviation

Plot k = 0 k = 5 k = 10 k = 20

Fig. 4 Scale - Information (Alignment) −.01± .33 .62± .19 .81± .16 .9± .08
Fig. 4 Choice - Information (Alignment) −.02± .31 .52± .18 .67± .16 .79± .15
Fig. 4 Scale - MaxRegret (Alignment) .01± .31 .57± .19 .71± .16 .75± .16
Fig. 4 Choice - MaxRegret (Alignment) −.03± .3 .47± .23 .59± .17 .67± .18
Fig. 4 Scale - Random (Alignment) .01± .33 .52± .2 .67± .17 .77± .17
Fig. 4 Choice - Random (Alignment) .02± .32 .4± .21 .52± .2 .63± .21

Fig. 4 Scale - Information (Rel. Reward) .51± .32 .92± .12 .98± .04 1.0± .01
Fig. 4 Choice - Information (Rel. Reward) .5± .3 .89± .12 .95± .07 .98± .04
Fig. 4 Scale - MaxRegret (Rel. Reward) .52± .31 .96± .07 .99± .02 1.0± .01
Fig. 4 Choice - MaxRegret (Rel. Reward) .51± .3 .91± .12 .95± .06 .96± .06
Fig. 4 Scale - Random (Rel. Reward) .52± .32 .89± .14 .96± .07 .99± .03
Fig. 4 Choice - Random (Rel. Reward) .52± .32 .85± .15 .89± .12 .93± .12

Table 3: Final numerical results of the user study

Plot Mean±Standard Error

Fig. 5(a) Scale - Information −29.7± 1.2
Fig. 5(a) Scale - Random −36.2± 2.2
Fig. 5(a) Soft Choice - Random −51.2± 3.5
Fig. 5(b) Scale - Information 4.2± 0.2
Fig. 5(b) Scale - Random 3.6± 0.3
Fig. 5(b) Soft Choice - Random 3.9± 0.2
Fig. 5(c) Scale (Easiness) 3.8± 0.2
Fig. 5(c) Soft Choice (Easiness) 4.5± 0.2
Fig. 5(c) Scale (Expressiveness) 3.8± 0.3
Fig. 5(c) Soft Choice (Expressiveness) 4.1± 0.2
Fig. 6(a) Scale - Information −28.8± 1.3
Fig. 6(a) Soft Choice - Information −46.0± 3.1
Fig. 6(b) Scale - Information 4.5± 0.2
Fig. 6(b) Soft Choice - Information 4.2± 0.3
Fig. 6(c) Scale (Easiness) 3.6± 0.3
Fig. 6(c) Soft Choice (Easiness) 4.6± 0.2
Fig. 6(c) Scale (Expressiveness) 4.3± 0.2
Fig. 6(c) Soft Choice (Expressiveness) 4.3± 0.2
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