
Appendix A: Experiment Details

A.1 Task Setup

Here, we describe the inputs and outputs of our environment. Actions are exe-
cuted at 20Hz and consist of a 10-dimensional command [abase, aarm], where abase =
[vlin, vang] 2 (�1, 1)2 is the differential drive velocity commands for the base; and aarm =
[dx, dy, dz, dax, day, daz, grasp, reset] 2 (�1, 1)8, where [dx, dy, dz, dax, day, daz] is the 6DOF
normalized delta commands in Cartesian space passed to an IK controller, grasp > 0 commands the
gripper to close, and reset > 0 overrides the 6DOF delta command and instead moves the arm to-
wards a pre-defined default pose. Observations consist of the head camera and wrist camera RGB-D
frames (90 x 120), and the base laser scanner’s point cloud (1 x 100).

A.2 Error Detection Architecture

Algorithm 1: Error Detection
Result: Success Rate S
Input: �, , K, H , ⇡, T , O, ⇢0, ⇠0
Initialize t, k, S � 0, s ⇠ ⇢0, o ⇠ ⇠0,
� � ;

while True do
if success then

S � 1;
terminate();

end
append(�, o);
if t > H then

✏ = �(�[t�H],�[t]);
if ✏ > then

k+ = 1;
if k == K then

terminate();
else

✏ = recover();
if ✏ > then

terminate();
end

end
end

end
a ⇠ ⇡(o);
s ⇠ T (·|s, a);
o ⇠ O(s, a);

end

Our error detector �(s, sg) consists of a conditional vari-
ational auto-encoder (cVAE): E�(sg, s), D�(z, s), where
encoder E� maps the current state s, and the goal
state sg that is H steps into the future, into a gaus-
sian mixture model (GMM) latent space distribution
z GMM(µ1, ..., µn,�1, ...,�n). The decoder D� then
tries to reconstruct goal state sg from the sampled latent
embedding z conditioned on current state st.

There are two reasons why we choose this specific archi-
tecture. Reconstructing future goals conditioned on the
current state enables our error detector to leverage tem-
poral information to better inform its error prediction by
implicitly coupling the likelihood of the future to the ob-
servations in the present. Secondly, using a GMM as
the encoder’s prior can be useful in MM and other long-
horizon settings where demonstrations can be diverse and
result in more complex state distributions that need to be
modeled.

The cVAE is trained using a weighted combination of
KL Divergence loss to regularize the learned GMM dis-
tribution and reconstruction error ✏ to encourage salient
encoded distributions. With sufficient training data and
capacity, the cVAE � should learn to reconstruct simi-
lar states to those observed from the demonstrations with
low ✏. We leverage ✏ for distinguishing between in- and
out-of-distribution states: abnormally high ✏ likely corre-
spond to unseen states and can be interpreted as failure
modes during rollouts.

While we have immediate access to all states at train time,
we cannot directly apply this method during rollouts be-
cause we do not know a priori the future goal states sg . Instead, we apply our error detector in the
backwards direction: at timestep t > H , having recorded the prior H states in replay buffer �, we
run the forward pass through our cVAE’s encoder E� and decoder D� with s = st�H and sg = st.
In this way, the model peers retroactively into the past and considers the plausibility of the current
state as a future goal from the perspective of the past.

A.3 Hyperparameters

In Table A.1, we present the hyperparameters used for training our policy and error detector, selected
from a small-scale hyperparameter sweep on a single task. Note that these values were then used
uniformly across all tasks.

13

Table A.1: Algorithm Hyperparameters: We show selected hyperparameters used for our models during
experiments. BC-TieredRNN and BC-RNN parameters were chosen such that the total parameter count was
roughly the same. ReLMoGen parameters were chosen to match those presented in [45].

Algorithm Hyperparameter Value

BC-TieredRNN

LR 1e � 4
Sequence Length 50

GMM Prior True
N GMM Modes 5
RNN Horizons [50, 5]
RNN Strides [1, 10]

RNN Tier Hidden Dims [1000, 400]
RNN Tier zi Dim 32
Actor MLP Dims [300, 400]

BC-RNN

LR 1e � 4
Sequence Length 50

GMM Prior True
GMM Num Modes 5

RNN Horizons 50
RNN Tier Hidden Dims 1200

Actor MLP Dims [300, 400]

Algorithm Hyperparameter Value

ReLMoGen

Actor LR 1e � 4
Sequence Length 50

GMM Prior True
N GMM Modes 5
RNN Horizons [50, 5]
RNN Strides [1, 10]

RNN Tier Hidden Dims [1000, 400]
RNN Tier zi Dim 32
Actor MLP Dims [300, 400]

Error Detector

LR 1e � 3
Sequence Length 10

KL Weight 1e � 5
VAE GMM Prior True

VAE GMM Latent Dim 16
VAE GMM Num Modes 10
VAE Encoder MLP Dims [300, 400]
VAE Decoder MLP Dims [300, 400]

VAE Prior MLP Dims [128, 128]
 0.05

A.4 MoMaRT Interface

Figure A.1: MOMART interface showcasing the user interface.
Users by default are presented with the manipulation view (left),
allowing them to reset the arm or toggle grasping. By holding
down the virtual joystick, the navigation view (right) immediately
appears, allowing the user to drag the virtual joystick to navigate
the robot base accordingly. The hourglass section allows for a com-
bination of linear and rotational velocity, and the horizontal section
allows for pure rotation.

In this section, we describe the spe-
cific details of our MOMART inter-
face. A visual overview of our inter-
face is shown in Fig. A.1. By de-
fault, To allow flexibility while min-
imizing operator overload, we lever-
agea multi-view interface. By de-
fault, operators are presented with the
manipulation view (Fig. A.1 left), al-
lowing them to toggle grasping or re-
set the arm configuration by press-
ing the large, easy-to-tap buttons. To
navigate, the user can hold down the
virtual joystick, which will transform
the view into navigation mode (Fig.
A.1 right), allowing them to control
the robot’s base. As with the orig-
inal RoboTurk interface, the robot’s
end-effector is controlled by simply
moving the smartphone; this motion
is tracked and converted into corre-
sponding 6DOF commands for the
end-effector.

By using this multi-view interface,
users have the ability to navigate and
control the arm at the same time with-
out being overloading by the amount
of content on the screen at a given
time. Furthermore, an hourglass joy-
stick interface was chosen instead of
a full 360 degree joystick so that the
mobile manipulator can also be allowed to turn in place at variable speed, enabling flexibility for
the user to either slowly turn in tight corners or quickly rotate. Because our virtual joystick lacks
haptic feedback, we create a dead-zone, shown in white (Fig. A.1 right), that prevents any acciden-

14

Statement Disagree (1)
to Agree (5)

The interface was easy to understand and control 3.5± 1.1
Except for the occasional stutters, movement between the robot and my arm felt natural 3.3± 1.1

I felt in control of the robot as I was teleoperating 3.4± 1.2
By the end of the session, I felt confident in my ability to solve the task 3.3± 1.5

The automatic reset arm functionality was helpful to use during demonstrations 4.8± 0.4

Table A.2: MOMART Study: After 30 minutes of playtesting, new users found that the interface was com-
fortable to use, and marginally agreed about the system’s ease of usage and controlling the robot. Common
feedback cited multiple limitations of teleoperating mobile manipulators, including limited field of view and
lack of perceptual feedback for detecting collisions. However, users unanimously agreed that the ability to reset
the arm to a stable configuration was helpful, validating our crucial design decision to include this functionality.

tal presses or transitions from triggering the base movement and significantly reduces the noise in
navigation.

A.5 MOMART User Study

To better understand the qualitative performance of our system, we conducted a small-scale user
study conducted over the course of 1 week with the goal of evaluating our platform’s efficacy. 10
users who had never used the MOMART platform before were given 30 minutes to try the system.
Users were placed in a ”warmup” kitchen environment to become familiarized with the controls
for a minimum of 5 minutes. Once the users felt comfortable with teleoperating, the users were
placed into the Table Setup from Dishwasher task and asked to solve the task for the remainder of
the session. Like all of the 5 core kitchen tasks, this task requires leveraging the full capabilities
of the MOMART system to manipulate objects and interact with large articulated furniture. Both
during and after the session, users were asked to provide both qualitative and quantitative feedback
on specific aspects of their experience. The summary of the quantitative results can be seen in Table
A.5.

We find that generally, users find the interface easy to learn, but difficult to master. When asked
”How long did it take to feel comfortable with the controls?”, 70% of users responded with 5 - 15
minutes, 10% with 15 - 30 minutes, and 20% with less than 5 minutes. Users also had generally
favorable reviews of the overall usage of the system, and marginally agreed about the system’s ease
of usage. This suggests that our platform can be quick to learn and easily adapted to by different
users.

However, users often had issues controlling the robot. Common feedback cited multiple limita-
tions of teleoperating mobile manipulators, including limited field of view and lack of perceptual
feedback for detecting collisions. These comments reflect the difficulty of the MM domain, which
inherit these challenges and require additional design decisions that may be unnecessary in SM or
navigation. Crucially, nearly all users unanimously agreed that the automatic arm reset functionality
included was beneficial to them during task demonstration, validating this key design decision and
highlighting the benefits of being able to recover from poor arm configurations during long-horizon
execution.

Interestingly, while users generally shared the same feedback, their task performance varied widely.
50% of users were unable to generate a task success within the 30-minute session, while the other
50% were able to generate an average of 3.2 successes, with a corresponding 56% average success
rate. We note that most users only used about 15 minutes of their 30-minute session to try to solve
the task, and those who were unable to solve the full task were still able to partially solve it. Indeed,
many of these users were close to solving the full task by the end, and we would expect them to
reach their first success soon if given additional playtest time. This highlights the complex nature of
our tasks, which are both long-horizon and require multiple successful interactions that can require
careful precision and rotation-heavy movement not often explored in other data-driven works.

While the learning curve can be more steep compared to tabletop manipulation [35], it is promising
that 50% of new users with no prior experience with MOMART can immediately start generating
task successes after less than 30 minutes of task interaction. As a first-of-its kind interface, we hope
that future work can build upon this platform to increase its intuitiveness for people. Moreover,
despite the challenges faced with this platform, the merits are clear in the ultimate scale of data

15

Figure A.2: Training progress for ReLMoGen. For all tasks, the agent is able to learn to get nearer the bowl but
not the subsequent manipulation actions needed to complete the task.

and learning results we have been able to produce, and motivate additional research in the area of
large-scale datasets for mobile manipulation.

A.6 ReLMoGen Results

We trained the SAC variant of ReLMoGen [45] baseline with a slightly modified version of the
original implementation. Since the original action space of ReLMoGen would make it impossible
to finish our tasks, given that they require the ability to grasp and to move the end effector in free
space, our only modification was to expand the action space. Instead of only choosing between
using motion planning for navigation or manipulation, and third scalar output was added to the
action space that would allow the agent to use the pose and gripper control space that is used by the
imitation learning agents. This makes it possible for the trained agents to accomplish the tasks, while
still using the motion-planning based actions from the original model. The need to use this expanded
action space is why we used the SAC variant of ReLMoGen instead of the DQN variant, since the
latter outputs Q value maps instead of an action vector that is incompatible with the expanded action
space.

All tasks were kept the same as they were for imitation learning, except that a reward function was
added to enable RL. All tasks have a mix of shaped and sparse reward: there is a negative l2 reward
based on the distance of the end effector to the bowl, since all tasks involve grasping the bowl as
their initial sub-task, and each further sub-task (grasping the bowl, possibly removing trash from the
bowl, and placing the bowl in an appropriate location) results in an addition of 1 per step for the rest
of the episode. This reward was chosen since there is no easy way to provide a shaped reward for
the subtasks of grasping the bowl, emptying it, or placing it anywhere on a piece of furniture. In all
cases, the agent never got beyond the first phase of getting nearer the bowl, indicating the difficulty
of learning to grasp or manipulate objects with a sparse reward.

A.7 TieredRNN Details

Here, we provide some further context justifying our choice of TieredRNN over RNN as our final
evaluation model that might not be as readily apparent from our core results. We found during
preliminary hyperparameter sweeping that the TieredRNN scales better than the RNN model given
similar total parameter counts; that is, further increasing the RNN model’s parameter count via the
hidden dimension size generally resulted in policy degradation. Moreover, we found the TieredRNN
model to also provide performance gains on previous iterations of tasks that were not included in
this work. These empirical observations led us to deem the TieredRNN valuable enough to include
as our final evaluation model, despite providing marginal benefits in this specific setting. We hope
to continue iterating on this model in future work.

16

Task Metric Reconstruction
Error (ours)

KL Divergence
Error

VAE Encoder
Variance Mean

VAE Encoder
Variance Max

Policy
Log Probability

Table Cleanup
to Dishwasher

Precision 96.4± 2.6 86.7± 9.4 55.6± 19.2 61.1± 20.8 85.1± 8.2
Recall 100.0± 0.0 94.9± 3.6 20.6± 6.0 40.3± 15.0 84.0± 6.4

Table Cleanup
to Sink

Precision 97.2± 3.9 63.2± 5.6 53.3± 5.4 46.7± 11.9 64.5± 2.6
Recall 86.5± 10.3 86.7± 9.6 100.0± 0.0 100.0± 0.0 93.0± 9.9

Table Setup
from Dresser

Precision 100.0± 0.0 88.9± 15.7 26.7± 4.7 26.7± 4.7 47.9± 23.2
Recall 85.9± 10.0 45.6± 21.4 100.0± 0.0 100.0± 0.0 47.2± 12.3

Table Setup
from Dishwasher

Precision 88.2± 10.2 93.5± 4.9 47.8± 11.3 42.2± 5.7 55.4± 3.7
Recall 100.0± 0.0 92.3± 10.9 100.0± 0.0 100.0± 0.0 93.3± 6.6

Unload Dishwasher
to Dresser

Precision 85.8± 5.3 93.9± 8.6 50.9± 6.5 43.5± 10.0 69.2± 9.5
Recall 100.0± 0.0 56.1± 11.9 58.3± 12.0 26.1± 11.6 85.0± 2.2

Table A.3: Error Detector Comparisons: We consider multiple alternatives to error detection metrics, and
evaluate them using our Expert demonstration dataset on all tasks. The best model (bolded) is determined by
averaging the error detector’s precision and recall for a given task. We find that our method clearly outperforms
all other alternatives, and is able to distinguish true errors with high accuracy, while other methods tend to be
much more noisy and overly conservative (low precision).

Task Train via
Finetuning (ours)

Train from
Scratch

Table Cleanup to Dishwasher 14.1± 3.2 4.8± 1.4
Table Cleanup to Sink 11.5± 6.4 7.8± 4.0

Table Setup from Dresser 14.4± 4.7 8.1± 2.9
Table Setup from Dishwasher 26.3± 1.4 15.6± 4.0
Unload Dishwasher to Dresser 13.3± 2.4 8.9± 2.7

Table A.4: Few-Shot Generalization Ablation Study: In the domain shift setting, pretraining our IL models
on our original expert data and then finetuning using few-shot demonstrations shows better policy performance
across all tasks compared to solely training from scratch using the few-shot demonstrations.

A.8 Error Detector Comparison

To better understand the relative performance of our error detection method, we evaluate multiple
error metric alternatives. In addition to our main reconstruction loss metric, we consider another
loss metric (KL Divergence loss for the VAE model), latent metrics (VAE Encoder Variance Mean
/ Max values), and a policy uncertainty metric (policy action log probability). For fair compari-
son, we quickly tune these baselines by viewing rollouts from a single seed on a single task, and
heuristically choose the best threshold error value, and set KL = 35.0, enc mean = 0.0011,
 enc max = 0.0017, and ⇡ lp = 17.0. Note that for the policy log probability metric, we assume
low probabilities correspond to error states; moreover, because we utilize a GMM policy, the log
probabilites can span multiple orders of magnitude. For these reasons, we consider the negative log
of the log probability. We test these methods utilizing the same procedure as our core experiments,
evaluating three seeds for each error detector trained using the expert demonstration dataset on each
task, and recording the error detector precision and recall statistics from 30 rollouts for each seed.
Our results can be seen in Table A.3.

We find that across all tasks, our method easily outperforms all baselines, and achieves consistently
high precision and recall rates. This further validates prior work [53, 54, 55, 56] that has found
reconstruction error to be a viable metric for detecting errors, and also highlights the value of our
method’s ability to be easily tuned and robust across multiple tasks, which is a property not apparent
in the other baselines. Indeed, we found that for the latent and log probability methods, the error
signal was very noisy and did not necessarily transfer well between tasks given the same threshold
 value.

The best baseline is the KL Divergence method, which is the only method to achieve near- or even
marginally better precision over our method in certain tasks. This suggests that loss-based metrics
can be a promising method for neural network-driven error detection methods, and motivates future
research in this area.

17

A.9 Few-Shot Generalization Baseline

To better contextualize the challenges of few-shot generalization learning, we evaluate a baseline
model that is trained from scratch exclusively on the few-shot demonstrations in the shifted domain
setting. As in the case with our core results, we train each model for 30 epochs and record the
average top three best evaluation success rates from 30 episodes aggregated over 3 seeds. The
results can be seen in Table A.4.

We find that across all tasks, pretraining using the core dataset and finetuning on the few-shot demon-
strations result in better policy performance compared to solely training on few-shot demonstrations
from scratch. This validates the potential for direct transfer learning methods to provide tangible
benefits in the MM setting, and suggests that information may be potentially shared across diverse
task initializations.

A.10 Sim2real Potential

Due to the pandemic, we were unable to deploy our method on a real Fetch robot. However, we
believe our method can transfer to the real world, because of the minimal assumptions we make.
Both the teleoperator and agent are limited to on-board sensors, and are not provided any privileged
information such as low-level object states or a global camera view: the imitation learning policy
uses as input only RGB-D images and laser scan point clouds. The visual observations provided
by the simulator, iGibson [62] are high-quality, with natural textures and materials rendered with
a physics-based renderer, background and lighting probes obtained from real world. Moreover, the
model used for our simulated robot closely aligns with the real Fetch robot, with identical sensor
specifications, kinematics, and control schemes.

We do recognize there are some key limitations: the well-known gap between real and simulated
physics dynamics, caused by approximated contact models, friction and misalignment in articulated
joints, may be a source of some divergence in the real world. While more demonstration data may
compensate for some of these discrepancies, it is unclear how much of an impact this can cause on
downstream policy performance. We expect to be able to transfer part of the performance obtained
with simulated data to real world, but if this demonstrates to be unfeasible, our immediate next
step after the pandemic is to use MOMART to control a real mobile manipulator and collect real
world data, as it has been done with similar smartphone-based systems for real-world stationary
arms [57]. Because our system (teleoperation, imitation learning, and error detection) is not using
any privileged information, we have high expectations that it will perform similarly as in simulation.

18

	Introduction
	Related Work
	Mobile Manipulation RoboTurk (MoMaRT)
	MoMaRT
	Simulated Kitchen Dataset

	Learning Mobile Manipulation from Human Demonstrations
	Preliminaries
	TieredRNN
	Error Detection and Intervention Functionality

	Experimental Evaluation
	Simulated Results: Solving Long-Horizon Mobile Manipulation Tasks
	Simulated Results: Detecting Errors During Rollout
	Simulated Results: Few-Shot Generalization

	Conclusion
	Task Setup
	Error Detection Architecture
	Hyperparameters
	MoMaRT Interface
	MoMaRT User Study
	ReLMoGen Results
	TieredRNN Details
	Error Detector Comparison
	Few-Shot Generalization Baseline
	Sim2real Potential

