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Abstract: In mobile manipulation (MM), robots can both navigate within and
interact with their environment and are thus able to complete many more tasks
than robots only capable of navigation or manipulation. In this work, we ex-
plore how to apply imitation learning (IL) to learn continuous visuo-motor poli-
cies for MM tasks. Much prior work has shown that IL can train visuo-motor
policies for either manipulation or navigation domains, but few works have ap-
plied IL to the MM domain. Doing this is challenging for two reasons: on the
data side, current interfaces make collecting high-quality human demonstrations
difficult, and on the learning side, policies trained on limited data can suffer
from covariate shift when deployed. To address these problems, we first pro-
pose MOBILE MANIPULATION ROBOTURK (MOMART), a novel teleoperation
framework allowing simultaneous navigation and manipulation of mobile ma-
nipulators, and collect a first-of-its-kind large scale dataset in a realistic simu-
lated kitchen setting. We then propose a learned error detection system to ad-
dress covariate shift by detecting when an agent is in a potential failure state.
We train performant IL policies and error detectors from this data, and achieve
over 45% task success rate and 85% error detection success rate across multiple
multi-stage tasks when trained on expert data. Additional results and video at
https://sites.google.com/view/il-for-mm/home.
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1 Introduction

In mobile manipulation (MM), robots combine interaction and locomotion capabilities to sub-
stantially extend the depth and breadth of tasks they can perform compared to static manipula-
tion [1, 2, 3, 4]. For example, in household environments MM agents can perform tasks such as
cleaning up the dining table and bringing the dishes to the dishwasher. Data-driven paradigms such
as reinforcement learning are attractive for MM since they enable such agents to learn directly from
raw sensory observations, so that they can function in a wide variety of households. However, due
to the many possible interactions that are possible for the agent (looking, navigating, and manipu-
lating various parts of the household) the state space for MM tasks is vast, which imposes a difficult
exploration burden for agents that learn autonomously. Learning from human demonstrations has
been extremely effective in addressing the burden of exploration in static manipulation settings. Can
we apply the same paradigm for mobile manipulation?

Unfortunately, the vast state space in MM has inhibited data collection from humans due to the
difficulty of annotating substantial portions of the state space with good actions. Prior work has
avoided this issue by instrumenting the environment to ease the state coverage burden [5, 6, 7, 8].
However, even if there were a way to collect full human demonstrations without instrumentation,
learning from such datasets would also pose a challenge due to covariate shift [9], where trained
policies visit states not covered by the demonstrations – an outcome that is more likely in MM. In
this paper, we address the problem of collecting and learning from human demonstrations in mobile
manipulation settings via two key solutions: a novel system to collect MM demonstrations, and an
algorithmic framework that can detect when an agent is suffering from covariate shift.
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Figure 1: Leveraging Human Demonstrations for Mobile Manipulation. Humans have strong intuitions
about how to move and interact based on visual data. We leverage their knowledge by first collecting human
demonstrations teleoperating a mobile manipulator using MOMART (left), and proceed to train imitation learn-
ing policies and error detectors from the resulting dataset (middle). During rollouts, the policy executes actions
continuously while the error detector simultaneously checks if the current visual state can be reconstructed.
A sufficiently irregular state provokes the error detector to intervene, either resetting the agent to well-known
configuration or immediately terminating to prevent erratic policy behavior (right).

First, we present MOBILE MANIPULATION ROBOTURK (MOMART), a novel teleoperation system
that allows humans to remotely control mobile manipulators in a natural and easy manner. Operators
control the robot’s motion using their smartphone to provide real-time navigation and manipulation
commands simultaneously. Unlike prior works on IL for MM which leverage privileged information
during demonstration collection, our system constrains the user to observing what the robot sees
from its onboard cameras, resulting in more realistic trajectories and demonstrations that require
minimal assumptions about the task at hand.

Second, recognizing that human data will be insufficient to cover all relevant states, we propose
a new IL method that augments a trained policy with a learned error detector that can distinguish
between in- and out-of-distribution states. When an agent encounters states previously unseen during
training, our error detector can detect fatal errors and immediately stop the execution. In this way,
our error detector can constrain the policy to execute only during states similar to what it has seen
before, and prevent potentially unstable behavior from occurring during previously unseen states.

We demonstrate the potential of MOMART for mobile manipulation by generating the most general
and largest dataset of mobile manipulation demonstrations publicly available: over 1200 demonstra-
tions on five long-horizon tasks spanning expert, suboptimal, and few-shot generalization trajecto-
ries, totalling over 11 hours of simulation data. We use the dataset to train imitation learning policies
that can achieve success rates greater than 45% and out-of-distribution detectors that achieve over
85% error detection success rate across all tasks.

In summary, our core contributions are as follows:

• We present MOMART, a novel teleoperation system that enables intuitive and expressive tele-
operation of mobile manipulation robots,
• We collect a first-of-its kind continuous control dataset in a realistic simulated kitchen domain

consisting of over 1200 successful demonstrations across five long-horizon tasks with multi-sensor
modalities and ablation subsets with domain randomization,
• We train performant IL task policies that reach over 45% success across all tasks, and augment

these policies with a learned error detector model that can accurately detect when the agent is in a
failure state and immediately terminate, achieving over 85% precision and recall.

2 Related Work

Robotic Teleoperation for Mobile Manipulation: IL leverages human demonstrations to learn
tasks such as stationary manipulation [10, 11, 12, 13] and navigation [14, 15, 16, 17]. Having
human operators remotely control an agent, or teleoperation, is a common approach for collect-
ing demonstrations. Teleoperation for MM is not easy to implement, as it requires enabling the
user to control both navigation and manipulation, possibly simultaneously. Previous work on this
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problem has explored using online click-through interfaces [18, 19, 20], muscle signals [21, 22],
joysticks [23, 24, 25], tablets [26], and virtual reality interfaces [27, 28, 29, 30, 31, 32, 33, 34].
These approaches are either scalable or easy to use: web-based tools are widely available but are not
well suited to demonstrate dexterous continuous control, while VR and other interfaces are intuitive
to use but are not widely available. The new system we propose (Sec. 3) is both easy to use and
scalable: the interface only requires a web browser for viewing and a phone that combines joystick
and motion tracking capabilities for remote control of the agent [35].

Autonomous Mobile Manipulation: Algorithms for autonomous MM have been studied for
decades [36, 37], and have primarily been addressed with either control [38, 39, 40, 41] or Task
and motion planning (TaMP) [3, 42, 43, 44] approaches. Both are are able to generalize across
different robots, environments, and robots, but control approaches are generally limited to short
horizon tasks, and TaMP approaches depend on human specification of the symbolic actions and
full information about the 3D structure of the environment. To address these limitations, learning-
based approaches have recently been applied to MM to learn a direct mapping from raw sensory
observations to actions [45, 46, 47]. Due to the lack of explicit planning, these works suffer in long
horizon tasks involving heterogeneous types of actions such as grasping and moving objects.

Most related to our work, several works have leveraged IL for MM tasks [5, 6, 7, 8]. [5] presented
a web-based tool for crowdsourcing a large scale dataset of MM tasks, and used it in combina-
tion with motion planning for execution on the robot. [6] and [7] collected RGBD observations of
humans performing tasks such as door opening and tabletop object manipulation, and used hyper-
graph optimization and a search procedure respectively to adapt these trajectories to be executable
by a robot. Lastly, [8] collected VR demonstrations of pick and place actions and extracted a se-
quence of symbolic actions and action parametrizations to adopt them for use on a robot. While
these works demonstrate using IL for complex MM tasks, their approaches are limited to using the
demonstrations to parametrize execution of action primitives, and so do not apply to the problem of
learning a general visuo-motor policy of arbitrary manipulation actions as we do in this paper.

Error Detection: A common approach to prevent robotic agents from reaching states that harm
the environment or themselves is to detect out-of-distribution (OOD) inputs to the agent [48]. Most
relevant to our work, various approaches have been proposed for detecting OOD states using deep
neural network-based architectures, such as direct training of an error prediction mode [49], un-
certainty estimation for the policy [50, 50, 51, 52], or computing a reconstruction error for the in-
put [53, 54, 55, 56]. In this work we follow the latter approach by training a conditional autoencoder
to predict a future goal state given a current state and using its reconstruction error to determine if the
robot is in a bad state. While prior works have similarly utilized such errors for collision avoidance,
we go beyond them with a multi-modal prior that captures better the multiple solutions that humans
demonstrated to the same goal, and apply the concept for the first time in a MM setup.

3 Mobile Manipulation RoboTurk (MOMART)

In this section, we present our approach for collecting demonstrations for MM. We first discuss
RoboTurk [35], the precursor to our system, and then present our novel MOMART teleoperation
system enabling remote and intuitive control of mobile manipulators.

RoboTurk Overview: RoboTurk [35, 57] is a platform that enables remote teleoperation of real or
simulated robot arms. An operator connects to a server, receives live video stream with observa-
tions from the robot camera on their web-browser, and controls the robot’s end-effector by moving a
smartphone. The motion of the phone in Cartesian space (6 DoF, position and orientation) is tracked
and mapped directly to the robot’s end-effector motion, and leverages Web Real-Time Communi-
cation (WebRTC) to enable real-time control. RoboTurk has been used to collect large datasets on
simulated [35] and real arms [57], accelerating IL for robot manipulation research [58, 59]. How-
ever, the platform has been limited to stationary arm manipulation.

3.1 MOMART

Due to the limitations of the original RoboTurk platform, we design MOMART, an extension ofthe
original RoboTurk platform that enables intuitive control all the degrees of freedom of a mobile
manipulator. In MOMART, we assume that the mobile manipulator consists of a single arm, a non-
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Figure 2: Simulated Kitchen Tasks. We present 5 challenging long-horizon mobile manipulation tasks re-
quiring varied interactions with multiple household objects. Top: Tasks from left to right: Set Table from
Dishwasher, Set Table from Dresser, Table Cleanup to Dishwasher, Table Cleanup to Sink, Unload Dishwasher
to Dresser. Bottom: Our tasks evaluate an agent’s ability to execute diverse sets of manipulation and navi-
gation skills, including accurate arm positioning and contact-rich, arm-base coordinated interaction of large
constrained mechanisms. Teleoperators are limited to this ego-centric view, highlighting partial observability.

holonomic base, and a controllable head, such as the Fetch or PAL Tiago robots. We model our sys-
tem close to real-robot hardware and plan to extend it to the real-world post-pandemic (Sec. A.10).

As evidenced by prior MM teleoperation platforms, designing a well-balanced interface can be
challenging for multiple reasons: fully exploring MM requires simultaneous control of base and
arm motion, but allowing control of all possible degrees of freedom can overload the operator and
degrade the quality of the resulting demonstrations. Moreover, unlike static manipulation with a
global fixed frame of reference, mobile manipulators often only have access to a local frame of
reference, modified only by controlling the head. Finally, the long-horizon nature of MM increases
the likelihood of demonstrations diverging over time, resulting in sparsely distributed end states.

We showcase our smartphone interface design in Fig. A.1 with all of these challenges in mind. Our
platform is easy to use, enabling simultaneous 6DOF arm end-effector control through smartphone
motion and base locomotion control through the on-screen joystick. To address the head control
problem, we fix the head pan (horizontal) joint and allow the tilt (vertical) joint to automatically
maintain the end-effector in the central area of the head camera frame. Lastly, recognizing that
teleoperated robots can fall into bad configurations, we include a button-triggered arm-reset that
generates a trajectory to move the arm to a pre-defined stable initial joint configuration. The reset
helps regularize the arm state distribution observed during teleoperation and increases the consis-
tency between demonstrations, and is leveraged in our final IL learning system with error detection
to try and recover from mistakes (Sec. 4.3). Altogether, MOMART enables collecting of teleoper-
ated demonstrations from remote locations with an intuitive interface that allows to simultaneous
navigation and manipulation in complex environments. Further details can be found in Appendix
A.4, and we also conduct a user study to qualitatively evaluate our system in Appendix A.5.

3.2 Simulated Kitchen Dataset

To evaluate the teleoperation capabilities of MOMART for MM and generate data for our novel
IL with error detection algorithm (Sec. 4), we create five realistic multi-stage simulated household
kitchen tasks and collect a large-scale multi-user demonstration dataset. We design the simulated
tasks in a realistic kitchen environment using PyBullet [60] and the iGibson [61, 62] framework with
a Fetch [63] robot that must manipulate a bowl. Across all tasks, the robot’s initial pose and bowl
location is randomized between episodes. An overview of our tasks can be seen in Fig. 2 and are
summarized in the following:

Table Cleanup to Dishwasher / Sink: The robot must navigate to the table, pick up the bowl with
trash in it, navigate to the trashcan, and empty the trash. Then, it must either (a) take the bowl to the
dishwasher, open the dishwasher and pull out the tray, and place the bowl into the tray, or (b) take
the bowl to the sink and drop it in the basin. In addition to the robot and bowl, the trash can’s pose
is also randomized between episodes. These tasks evaluate an agent’s ability to execute a diverse
range of manipulation and navigation skills, including accurate arm positioning and contact-rich,
arm-base coordinated interaction of large constrained mechanisms.
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Table Setup from Dresser / Dishwasher: The robot must first either (a) navigate to the dresser,
and search for the bowl by opening each drawer, or (b) navigate to and open the dishwasher, and
then pull out the tray. Afterwards, in both cases, it must grab the bowl, and navigate to the table and
drop off the bowl. In addition to local randomization, the bowl’s location is also randomized across
the drawers between episodes. Searching the dresser evaluates an agent’s ability to contextualize its
observations on prior actions.

Unload Dishwasher to Dresser: The robot must first navigate to the dishwasher and grab the bowl.
Then, it must navigate to the dresser, open the top drawer, and place the bowl inside. This task
evaluates an agent’s ability to avoid obstacles based on estimated visual states.

For each task, we use MOMART to collect over 110 successful demonstrations per task from both
an expert and suboptimal operator, as well as additional few-shot generalization subsets consisting
of over 20 demonstrations where key task furniture items have changed significantly their locations,
producing a dataset that includes over 1200 successful demonstrations totalling over 11 hours
of data. This is a first of its kind large-scale human demonstration dataset of continuous control
collected on realistic long-horizon tasks in the MM setting, and we hope this dataset facilitates
future research in IL for MM.

4 Learning Mobile Manipulation from Human Demonstrations

In this section, we present our approach for IL for MM. After some preliminaries, we introduce our
modified temporal network architecture with more efficient temporal abstraction for IL of MM, and
then propose an error detection model that can distinguish between in- and out-of-distribution states
to alleviate the challenges of the unbounded state space in MM.

4.1 Preliminaries

Partial Observability. We formalize the problem of solving a robot MM task as an infinite-horizon
discrete-time Partially Observable Markov Decision Process (POMDP). At every step, an agent in
state st receives an observation ot and uses a policy ⇡ to choose an action, at = ⇡(ot, ot�1, ...),
which moves it to state st+1 according to the state transition distribution.

Imitation Learning: We train a visuo-motor continuous control policy for MM with a variant of
Behavioral Cloning (BC) [64]. The policy maps observations to base and arm actions for the mobile
manipulator. BC trains a policy, ⇡✓(o), from a set of demonstrations, D, by minimizing the objective:
argmin✓ E(o,a)⇠D||⇡✓(o) � a||2. We base our policy on a variant of BC that leverages temporal
abstraction, BC-RNN, in which the policy is parameterized by a recurrent neural network (RNN)
that is trained on T -length temporal observation-action sequences to produce an action sequence,
at, . . . , at+T�1. To account for the possibility of multi-modal possibilities in a given state, actions
are parameterized by a Gaussian Mixture Model (GMM) distribution [65], at ⇠

P
N

i
wiN (µi,�i),

where actions are sampled from amongst N weighted individual Gaussian distributions.

4.2 TieredRNN

Prior work on learning from human demonstrations in robotic manipulation domains has shown sub-
stantial benefits from models leveraging temporal abstraction [58, 66]. Inspired by these works, we
extend the RNN model from BC-RNN into a multi-layered variant (TieredRNN). This new variant
integrates multiple layers operating at varying timesteps to better streamline information flow from
timesteps early on in a given sequence to timesteps much further downstream, which can be useful
for our long-horizon MM tasks.

The TieredRNN consists of N individual RNN layers (”tiers”), with corresponding timestep periods
⌧1, ...⌧N , ⌧1 < ... < ⌧N . For given sequence of length T , t = t, t+1, ..., t+T and corresponding
states st, st+1, ..., st+T , layer i updates its hidden state if ⌧i mod t = 0 and outputs a M -dim
encoding vector zi, which gets passed in addition to st to the immediate proceeding i� 1 layer. The
output of the final layer i = 1 is the overall output of the TieredRNN. In this way, information at
varying levels of temporal abstraction can be preserved across many timesteps and better inform an
agent of past context. We refer to BC agents using this temporal structure as BC-TieredRNN agents.
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Task ReLMoGen 1 BC-RNN
Suboptimal

BC-TieredRNN
Suboptimal

BC-RNN
Expert

BC-TieredRNN
Expert

Table Cleanup to Dishwasher 0.0± 0.0 16.0± 5.5 20.8± 5.0 44.4± 4.0 47.8± 7.3
Table Cleanup to Sink 0.0± 0.0 10.4± 5.2 8.9± 2.9 54.4± 7.1 61.1± 3.1

Table Setup from Dresser 0.0± 0.0 20.0± 0.9 17.8± 4.8 64.8± 5.8 68.1± 3.4
Table Setup from Dishwasher 0.0± 0.0 63.7± 7.7 61.1± 3.1 68.5± 7.6 66.2± 2.3
Unload Dishwasher to Dresser 0.0± 0.0 11.9± 4.5 31.1± 7.4 56.0± 7.0 47.8± 8.1

1We include more extensive results in Appendix A.6

Table 1: Simulated Kitchen Tasks Results: IL can solve all of our multi-stage tasks, whereas RL (ReLMo-
Gen) cannot solve any task and in all tasks is unable to even grasp the bowl as is detailed in Appendix A.6.
When trained on expert data, our BC-TieredRNN model can achieve over 45% success rate over all tasks, and
outperforms all other baselines on a majority of the tasks.

4.3 Error Detection and Intervention Functionality

One of the central challenges of IL for MM is the unbounded state space that the robot can explore,
since states that sufficiently differ from collected human demonstrations can cause an IL policy to
quickly degrade. This common covariate shift problem [9] of IL is thus exacerbated by the MM
setup. While it is difficult to alleviate this problem without collecting additional online samples, we
propose a simple but effective method for detecting errors and improving the overall safety of policy
execution by leveraging our demonstration data as a strong prior for distinguishing between in- and
out-of-distribution states (Fig. 1).

Detecting Errors. Similar to prior work, our error detector � leverages a variational autoencoder
(VAE) [67] and its reconstruction error ✏ as a proxy for distinguishing in- and out-of-distribution
states. In our setting, this means that with sufficient training data and capacity, � should learn to
reconstruct similar states to those observed from the demonstrations with low ✏. We leverage ✏ for
distinguishing between in- and out-of-distribution states: abnormally high ✏ likely correspond to
unseen states and can be interpreted as failure modes during rollouts. Implementation details can be
found in Appendix A.2.

Intervening During Errors. We implement two discrete intervention actions that can be triggered
when an error is detected. recover is triggered the first time an error is encountered, and moves the
agent to a default pose to allow it to re-attempt execution. If the recover action fails to bring the
error level below the threshold, or if K errors have been detected within a given rollout, the error
detector executes terminate, which immediately terminates the episode. In this way, even if an
error is unrecoverabale, the agent can detect and respond to its circumstance (for example, asking
a human for help). Crucially, because our error detector and policy are not provided any additional
online data, we do not expect the recover action to consistently succeed. However, we do expect
our terminate intervention to be consistent and reliable as it relies solely on our error detector’s
ability to consistently detect out-of-distribution states; this is essential for mitigating potentially
harmful policy behavior resulting from covariate shift. Algorithm 1 formalizes our method.

5 Experimental Evaluation

In this section, we first evaluate our IL algorithm for MM, BC-TieredRNN, and compare to baselines
of IL and RL, BC-RNN, and ReLMoGen [45]. ReLMoGen is a state-of-the-art RL-based algorithm
that leverages discrete actions with a motion planner. Then, we train and evaluate our error detector
and recovery for MM, and show that it can accurately detect out-of-distribution states and either help
the agent recover to in-distribution states or know when to terminate due to unrecoverable errors.
Videos and other results can be seen at https://sites.google.com/view/il-for-mm/home.
Specific training and hyperparameter details can be found in Appendix, Sec. A.1 and A.3.

5.1 Simulated Results: Solving Long-Horizon Mobile Manipulation Tasks

For each task, we train each model for 30 epochs and record the average top three best evaluation
success rates from 30 episodes aggregated over 3 seeds. For ReLMoGen, we use a shaped reward
for each task and train the agent for 200K time steps. Our results can be seen in Table 1.
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Imitation Learning Outperforms Reinforcement Learning. We observe that ReLMoGen cannot
solve any task despite its lifted action space and shaped reward. This highlights the exploration
burden exacerbated in the MM setup, which can cause current state-of-the-art RL methods to com-
pletely flatline. In contrast, our IL methods can perform well and achieve success learning end-to-
end visuo-motor policies on these multi-stage MM tasks.

On the expert dataset, we find that our BC-TieredRNN model outperforms the BC-RNN baseline
in the tasks where memory is critical: Table Cleanup to Dishwasher and Table Cleanup to Sink,
both of which have randomized locations of the trash bin, and Table Setup from Dresser, where
the bowl can be located in multiple drawers. In these tasks where the agent must remember where
it has been in the past, we hypothesize that the TieredRNN is better equipped to allow long-term
information flow through its skip-connection architecture. In contrast, in the tasks that do not require
randomization (Table Setup from Dishwasher and Unload Dishwasher to Dresser), the TieredRNN
provides no benefit and is instead outperformed by BC-RNN. We further contextualize our usage of
the TieredRNN model in Appendix A.7.

Demonstration Quality Dictates Success. With the exception of Table Setup from Dishwasher,
we observe on average over 200% increase in success rate when training on the same number of
expert demonstrations compared to suboptimal demonstrations. In the latter case, the operators
were new to using the MOMART system, whereas the expert operator had prior experience. This
both showcases the ability of our platform to produce impressive results on multiple long-horizon
MM tasks given experience, and also highlights the importance of the teleoperation interface for
collecting high-quality demonstrations that better facilitate learning.

5.2 Simulated Results: Detecting Errors During Rollout

For each task, we train our error detector and set a uniform error threshold  = 0.05 based on
analysis from a small number of expert rollouts. Because the BC-TieredRNN model performed the
best on the majority of tasks, we utilize this model for error detection evaluation. We evaluate our
error detector’s performance when paired with the trained policy model, and record the precision
( npost
npost+nposf

) and recall ( npost
npost+nnegf

). Because we are in simulation, we can deterministically
evaluate the counterfactual between the model augmented with the error detector and the same model
without. A true / false positive occurs when the error detector detects an error when the original
model fails / succeeds, respectively. Likewise, a true / false negative occurs when the error detector
does not trigger during a successful /failed rollout, respectively. Metrics are aggregated over the 3
policy seeds each evaluated on 30 rollouts with mean and standard deviations shown in Table 2.

Errors are Reliably and Robustly Detected. We find that our error detectors can consistently
detect errors and achieve over 85% precision and recall rates across all tasks when trained on the
expert dataset. The high precision means that our error detectors can accurately distinguish between
error and non-error states, and the high recall means that it can also reliably detect true errors when
they occur. This is especially important in MM domains where learned agents can easily diverge
into unseen states during rollouts and become erratic if left unchecked.

While the error detectors occasionally misfire, and causes a marginal decrease in success, we observe
that the success rates remains generally consistent. This highlights that our error detector is not
overly conservative and does not prematurely terminate episodes when there is no true error at hand.
Interestingly, in some cases, such as in Table Setup from Dresser, the recover action of our error
detector is able to result in marginal policy improvement. While unexpected, this suggests that
similar methods bringing a robot back into well-known states may provide benefits for MM agents.

Data Diversity Impacts Error Detection When trained on suboptimal data, our error detectors
surprisingly achieve over 90% precision across all tasks. However, the recall rate substantially
suffers. We postulate that this is due to the noisy nature of the suboptimal data encompassing a
wider distribution of states, augmenting the resulting error detectors’ abilities to reject non-error
states while making it more difficult to consistently detect true error states.

Our Error Detector is Interpretable and Easily Tuned. While we deployed all error detectors
with the same uniform error threshold value ✏, each error detector can be individually tuned in an
interpretable way. For example, lowering ✏ increases the error detector’s sensitivity to observation
irregularities, thereby improving the likelihood of detecting true errors (increased recall), at the
potential cost of additional spurious error triggers (decreased precision). This can be useful in
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Dataset Task SR
(no ED)

SR
(ED)

ED
Precision

ED
Recall

Expert

Table Cleanup to Dishwasher 34.4± 10.3 32.2± 8.7 96.4± 2.6 100.0± 0.0
Table Cleanup to Sink 51.1± 4.2 51.1± 4.2 97.2± 3.9 86.5± 10.3

Table Setup from Dresser 63.3± 7.2 65.6± 8.7 100.0± 0.0 85.9± 10.0
Table Setup from Dishwasher 51.1± 6.8 47.8± 11.0 88.2± 10.2 100.0± 0.0
Unload Dishwasher to Dresser 36.7± 10.9 33.3± 9.8 85.8± 5.3 100.0± 0.0

Suboptimal

Table Cleanup to Dishwasher 16.7± 4.7 22.2± 8.3 93.4± 5.3 76.9± 18.8
Table Cleanup to Sink 1.1± 1.5 1.1± 1.5 98.4± 2.2 66.3± 7.1

Table Setup from Dresser 7.7± 6.3 15.6± 4.2 97.6± 3.4 58.7± 7.4
Table Setup from Dishwasher 52.2± 4.2 48.9± 5.7 90.0± 7.7 95.2± 6.7
Unload Dishwasher to Dresser 26.7± 2.7 26.7± 2.7 94.6± 3.9 44.2± 14.1

Few-Shot
Generalize

Table Cleanup to Dishwasher 13.3± 4.7 6.7± 2.7 91.2± 4.9 94.8± 3.7
Table Cleanup to Sink 24.4± 6.8 11.1± 6.8 80.6± 3.7 98.7± 1.9

Table Setup from Dresser 8.8± 8.3 7.8± 8.7 98.0± 2.8 64.4± 6.7
Table Setup from Dishwasher 40.0± 16.3 24.4± 12.9 78.2± 10.6 100.0± 0.0
Unload Dishwasher to Dresser 2.2± 1.6 2.2± 1.6 98.9± 1.6 100.0± 0.0

Table 2: Error Detection Results When trained on expert data, our error detectors can accurately detect
errors, achieving over 85% precision and recall across all tasks. With suboptimal data, the error detectors
can similarly reject non-error states consistently but can struggle to detect true error states. Lastly, the error
detectors can adapt to the few-shot generalization setting, maintaining high precision and recall despite the
generalized policy’s significant deterioration.

situations where safety is critical and the additional confidence in reliable error detection is worth
the cost of lowered success rate. Further results comparing our method against potential alternatives
can be seen in Appendix A.8.

5.3 Simulated Results: Few-Shot Generalization

Lastly, we evaluate the generalizability of our policy and error detector by taking the models trained
on the expert data and finetuning them on the few-shot demonstrations exhibiting major distribu-
tion shift, where the critical furniture objects (dishwasher, dresser, and sink) have swapped places.
Similar to Sec.5.2, we evaluate the success with and without the error detector, and also report the
corresponding detection metrics, shown at the bottom of Table 2.

Imitation Learning Has Potential to Generalize With Little Additional Data. While the success
rates drop significantly compared to the original baselines, we find that our model can still solve
the task given only a limited number of successful demonstrations in this generalized setting. These
results show promise for IL to lower the data burden for learning general visuomotor policies in
similar MM settings as our kitchen environment, where the discrete number of unique object in-
stances is finite but the combinatorial possibilities are huge. Appendix A.9 highlights the benefits of
finetuning versus training solely on the few-shot demonstrations.

Error Detection Can Adapt to Distribution Shifts. Even in this generalized setting, our error
detector still performs well, and often achieves more than 80% precision and 90% recall across
all tasks. This shows how our detector, once initially trained, can quickly adapt its modeled state
distribution to account for new training data and still accurately detect true error states while ignoring
non-error states.

6 Conclusion

We presented three contributions for IL in MM setups. First, we introduced MOMART, a novel
teleoperation platform for MM. Second, we used MOMART collect a first of its kind large-scale
MM dataset of continuous control. And third, we presented variants of IL and error detection for
the MM setup that train performant visuo-motor policies and accurately detect errors. Our next step
after the pandemic is to bring our new teleoperation interface to control a real mobile manipulator
(Sec. A.10). We hope our diverse dataset can provide researchers the accessible means to investigate
many other important problems in MM from an IL perspective.
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