
A Appendix: Algorithms

Algorithms 1 and 2 contain the pseudo-code of action replacement mechanism and complete opti-
mization procedure in MBHI, respectively.

Algorithm 1 Action Replacement Mechanism in MBHI

1: Inputs: Initial state s0, MPC horizonH , number of CEM iterations T , number of gradient steps
I , transition ensemble T̂ξ, reward ensemble R̂φ, Block ensemble B̂µ

2: for t = 0 to T − 1 do:
3: Sample K action sequences {a(t)0:H−1}Kk=1 ∼ CEM(·)
4: for i = 1 to I do:
5: Calculate imaginary rollouts {s(t)1:H}k = T̂ξ({a(t)0:H−1}k, s0)
6: Calculate MPC returns for each action sequence by Eq (11)
7: Update the action sequence {a(t)0:H−1}Kk=1 via gradient ascent
8: end
9: Recalculate imaginary rollouts and MPC returns

10: Update CEM(·) distribution with top N action sequences sorted by MPC returns
11: end
12: Output: The first action a∗0 from optimal action sequence a∗0:H−1

Algorithm 2 Actual algorithm of MBHI

1: Inputs: Number of initial samples N0, interacting step T , length of safety detection H , safe
threshold ε, scaling factors cl and ch, Block ensemble B̂µ

2: Initialize: random initialize policy πθ, value ensemble Q̂ϕ, transition ensemble T̂ξ, reward
ensemble R̂φ, termination model D̂ψ

3: Collect N0 samples with random policy, initialize replay buffer D = {(st, at, rt, st+1, dt)}N0
t=1

and pre-train {T̂ξ, R̂φ, D̂ψ} N0 times
4: for each epoch do:
5: Get initial state s0
6: for t = 1 to T do:
7: Check the safety pt of the current policy πθ with Eq (9) in imaginary rollouts of depth H

starting from state st
8: if pt ≥ ε then Compute action at using Algorithm 1
9: else Compute at ∼ πθ(at|st) with policy network

10: Execute at to the real world and add transition to D
11: Train the dynamics model {T̂ξ, R̂φ, D̂ψ} on buffer D with Eq (2)
12: Update πθ and Q̂ϕ with model-based learning methods on buffer D with Eq (13)
13: end
14: end

B Appendix: Experiment Setup

Huawei Confidential6

Figure 1: Visualization of the experimental environments. From left to right: PuckWorld, Reacher, Ant-Limit
and Ant-Block.

1



• PuckWorld-L: A randomly generated puck has to reach a given random target in two-
dimensional space. The maximum speed of the puck is 0.025, and the maximum acceler-
ation is 0.002. Therefore, it needs to decelerate multiple steps in advance before the puck
can stop. The constraint is that the puck cannot enter the black area in the middle. It’s a
catastrophe if the puck enters the black area.

• PuckWorld-H: Same as PuckWorld-L, except that the maximum acceleration is 0.025.
It means that the puck can be stopped immediately. The catastrophe is the same as
PuckWorld-L.

• Reacher: A two-link arm has to reach a given random target in two-dimensional space.
The arm is not allowed to touch the vertical bar. It’s a catastrophe if the arm collides with
the vertical obstacle.

• Ant-Limit: An ant with four legs needs to run as fast as possible along the positive X-axis
in three-dimensional space. The ant can only move between two parallel boundaries. It’s a
catastrophe if the ant’s centroid crosses the boundary.

• Ant-Block: The basic environment is the same as Ant-Limit. The difference is that a
vertical obstacle blocks the motion path of the ant. It’s a catastrophe if the ant’s centroid
collides with the obstacle.

In PuckWorld and Reacher, 100 reward is given when the agent successfully reaching the target
area, -100 when causing a catastrophe, and 0 in the rest of time. In Ant, -100 reward is given when
the agent causing a catastrophe, and the reward is the same as the original environment Ant at other
times. The episode will be terminated immediately if the agent violates the safety constraints.

C Appendix: Detailed Analysis of The Human Oversight Phase

In all experiments, only the obstacle was labeled as unsafe, which greatly reduces the workload of
human labors (no need to deduce) and can quickly evaluate the proposed method. Since the input of
the Blocker is (st, at, st+1) in practice, the transition can also be intercepted and labeled in advance.
In this case, the labeled unsafe transition means that once it is visited, the agent cannot be rescued.

The human time-cost can be roughly formulated as follows [12]:

C = thuman ×Nall, (1)

where C is the total time-cost of the oversight phase, thuman is the time-cost per human label, and
Nall is the number of training samples. In our experiments, since the judgment of catastrophe is
very simple, thuman is about 0.1 seconds. Therefore, the main way to reduce C is to reduce Nall.
We fixed this problem through two methods. One is to shield the negative rewards for catastrophes
from the environment to prevent the agent from quickly learning to avoid obstacles. The second is
to initialize the agent near the obstacle with certain probability. Beacuse the catastrophe is not com-
plicated, the Human Oversight phase of PuckWorld and Reacher lasted for about 3 hours, and Ant
lasted for abount 5 hours. Finaly, we believe that the available historical logs containing catastrophes
will be able to effectively alleviate the problem of time-cost.

D Appendix: Visualization of The Parameter λ

The value of parameter λ defines the relative weighting of exploitation and exploration. With λ = 0
that training a policy only maximizes the expected return, and λ = 1 traing a policy that only be
encouraged to visit unfamiliar states. Fig 2 shows the plot of λ during policy training. In PuckWorld
and Reacher, with the convergence of the policy and the full exploration of the environment, the
value of λ gradually decreases to zero. While in Ant, λ does not converge to a small value, beacuse
the space in Ant is infinite, and Ant encourages the agent to walk as far as possible, instead of
completing the task as soon as possible in a limited space. Therefore, during the training process,
the agent in Ant is constantly visiting new states. We notice that the λ in Ant has a significant
decrease in the initial of training. This is because the agent has not learned to move in the positive
direction of X-axis, and has been walking near the origin, resulting in full exploration of this area.

2



0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu
e 
of
 

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iterations 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu
e 
of
 

(b)

0 1 2 3 4 5
Iterations 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu
e 
of
 

(c)

Figure 2: Visualization of the active learning parameter λ in Eq (13) during training. (a) PuckWorld, (b)
Reacher, (c) Ant. The x-axis denotes the environment step.

E Appendix: Ablations

E.1 Scaling Factors

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

-150

-100

-50

0

50

100

150

Av
er

ag
e 

re
tu

rn

cl = 0, ch = 0
cl = 1, ch = 1
cl = 0, ch = 100
cl = 1, ch = 100

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

5

10

15

20

25

30

C
um

ul
at

iv
e 

ca
ta

st
ro

ph
es

cl = 0, ch = 0
cl = 1, ch = 1
cl = 0, ch = 100
cl = 1, ch = 100

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

-150

-100

-50

0

50

100

150

Av
er

ag
e 

re
tu

rn

cl = 0, ch = 0
cl = 1, ch = 1
cl = 0, ch = 100
cl = 1, ch = 100

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

50

60

70

C
um

ul
at

iv
e 

ca
ta

st
ro

ph
es

cl = 0, ch = 0
cl = 1, ch = 1
cl = 0, ch = 100
cl = 1, ch = 100

(d)

Figure 3: Evaluation of how scaling factors cl and ch affect MBHI performance in PuckWorld-L and
PuckWorld-H. (a) and (b) are the performance and cumulative catastrophe of environment PuckWorld-L. (c)
and (d) are the learning curves and cumulative catastrophe of environment PuckWorld-H.

An ablation study is performed on scaling factors cl and ch in Fig 3. (cl = 0, ch = 0) means
that when the agent’s action are intercepted by the Blocker, it cannot obtain a negative reward to
perceive potential dangers. When the model is evaluated in the PuckWorld, ideally, there is about
25% probability that the agent will pass through the dangerous area, that is, the expectation of the
cumulative reward is E[G] = 3

4 × rtarget +
1
4 × rcatastrophe = 50. But in practice, due to the

Blocker’s prediction error, the agent will visit the dangerous area during the training process and
thus have the opportunity to learn about catastrophes. As shown in Fig 3a and Fig 3c, the learned

3



policy’s performance is better than 50, but the standard deviation of the cumulative reward is larger
than other ablations, and it cannot converge to the optimal policy.

When the scaling factor cl or ch is non-zero, the knowledge of catastrophes is introduced to the agent
by means of intrinsic reward, and helps agent avoid dangerous areas. Furthermore, in sparse reward
environment, this kind of intrinsic reward can also accelerate convergence. ch controls the penalties
of the area in the immediate vicinity of the catastrophe. We make ch much larger than cl, which can
strongly correct the behavior of the agent near the unsafe region. As can be seen in Fig 3, larger ch
can further reduce the number of cumulative catastrophe in the training phase. However, the larger
ch also increases the complexity of the environment and makes policy learning more difficult.

E.2 Safety Bound

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

-150

-100

-50

0

50

100

150

Av
er

ag
e 

re
tu

rn

Bound=1
Bound=0.92
Bound=0.84
Bound=0.68

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

5

10

15

20

C
um

ul
at

iv
e 

ca
ta

st
ro

ph
es

Bound=1
Bound=0.92
Bound=0.84
Bound=0.68

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

-150

-100

-50

0

50

100

150

Av
er

ag
e 

re
tu

rn

Bound=1
Bound=0.92
Bound=0.84
Bound=0.68

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e6

0

10

20

30

40

C
um

ul
at

iv
e 

ca
ta

st
ro

ph
es

Bound=1
Bound=0.92
Bound=0.84
Bound=0.68

(d)

Figure 4: Evaluation of how safety bound affect MBHI performance in PuckWorld-L and PuckWorld-H. (a) and
(b) are the performance and cumulative catastrophe of environment PuckWorld-L. (c) and (d) are the learning
curves and cumulative catastrophe of environment PuckWorld-H.

We also conduct ablation studies about safety bound Bound, which are demonstrated together in Fig
4. Bound = 1 is equivalent to (cl = 1, ch = 1) described in Sec E.1. The introduction of the safety-
aware intrinsic reward improves the sampling efficiency. However, due to insufficient punishment
near the catastrophe, the agent will still occasionally try to cause catastrophes. From Fig 4c we can
clearly find that the variance of Bound = 1 is much larger than other ablations, which means that it
has not learned the optimal safety policy.

As shown in Fig 4a and 4c, as the value of Bound decreases, the speed of policy learning becomes
slower and slower. This is because smaller Bound means the larger subjective disaster area (i.e.
areas with large negative intrinsic reward). This will result in a reduction in the feasible state space
of the agent, and increase the complexity of the task. As a consequence, the agent has to learn
a more conservative policy. Moreover, Fig 4b and Fig 4d indicate that too small Bound can not
further reduce the number of catastrophe, but will greatly affect the speed of policy convergence.

4



F Appendix: Discussion of Safety-critical Components

In many natural scenarios, security constraints are subjective and difficult to be formulated explicitly.
In addition, sub-optimal trajectories or demonstrations are not available, and humans can only judge
whether the current state is safe or not. In this case, human-in-the-loop seems to be the only way
to guarantee the safety of RL systems during training [12]. We studied whether the human-imitator
could avoid both ”local” and ”non-local” catastrophes when enhanced with environmental dynamics
approximators. As shown below, we summarize the key components to ensure safety:

• Look before leap: Imaging in the learning dynamics helps the agent to correct the catas-
trophic policy in advance. As shown in Fig 4, When the momentum of the agent in a certain
direction cannot be decayed to zero immediately, it is necessary to block the dangerous ac-
tion in advance. This is like the braking distance of a car. We must depress, hold down the
brake pedal and turn the wheel in advance to avoid collisions.

• Separated replay buffer: Neural networks are always suffer from catastrophic forgetting
[33], especially in reinforcement learning, where old samples are constantly replaced by
new ones. Since there are very few unsafe samples compared with safe samples, it is easy
to be forgotten. Splitting the replay buffer into safe and unsafe categories can effectively al-
leviate the problem of catastrophic forgetting by over-sampling unsafe samples. Similar to
PER [34], importance-sampling method needs to be used to compensate the bias introduced
by this prioritization.

• Safety-aware intrinsic reward: As presented in Appendix E, using the predicted catas-
trophe probability as an intrinsic reward can make the agent perceive the dangerous area
during training. Furthermore, Larger intrinsic reward leads to a more secure and conserva-
tive policy, but makes the environment more complicated and the policy is more difficult to
converge.

• Model-based RL: Model-based methods can significantly improve the sampling effi-
ciency, so as to learn the safe policy faster. Moreover, the reward function and termination
function in dynamics can also model the catastrophe from unsafe samples, thereby further
improve the safety during policy learning. Besides, different from [7, 14, 18], approxi-
mating the environmental dynamics make the catastrophe prediction network only need to
focus on the safety of the current state-action pair, rather than a sequence, making it easier
to train.

G Appendix: Visualization of The Agent Motion

(a) (b)

Figure 5: Visualization of state points intercepted by the Blocker. (a) PuckWorld-L, (b) PuckWorld-H. The
gray rectangle indicates the obstacle, which is labeled as unsafe when training the Blocker. Red corresponds to
a high probability of catastrophe predicted by the Blocker (normalized on a log scale), while blue to a lower.

The visualization of interception points in environments PuckWorld-L and PuckWorld-H is shown
in Fig 5. The interception region in PuckWorld-L is much larger than that in PuckWorld-H. In

5



PuckWorld-L, due to the low acceleration and the long braking-distance of the agent, it is necessary
to intercept dangerous actions multiple steps in advance. But, it is enough to replace dangerous
actions one step ahead in PuckWorld-H.

As shown in Fig 5a, the interception points on the outside are significantly less than the areas close
to the catastrophe. This is because the MBHI’s interception strategy does not only depend on the
current state, but also considers the current behavioral policy. Therefore, in the same state, with
different behavioral polices, MBHI’s interception results may also different. That is, if the agent’s
policy can avoid catastrophes by itself in the future, MBHI will not intercept it. In Fig 5, we also
observe that there are more interception points at the lower end of the obstacle, mainly because it is
more difficult to learn to bypass the obstacle than to avoid it.

The visualization of motion sequences is shown in Figure 6, MBHI executes the current behavioral
policy in the imagination to decide whether to block the action.

(a) (b) (c)

(d) (e)

Figure 6: The Visualization of motion sequences in experiments. (a) PuckWorld-L, (b) PuckWorld-H, (c)
Reacher, (d) Ant-Limit, (e) Ant-Block. The red area indicates that the action predicted by the agent’s behavioral
policy is blocked and replaced by the MPC controller. The final display is the safe trajectory monitored by the
Blocker and corrected by MPC.

H Appendix: Implementation Details

In this work, we follow the same network structure and policy learning method as STEVE. All
models are fully connected neural networks optimized by Adam with learning rate of 3e − 4. The
value network, policy network, reward model, termination model and Blocker each has 4 layers of
size 128. The transition model has 8 layers of size 512.

The replay buffer size is 1e6. The first 1e5 frames are sampled by the agent interacting with the envi-
ronment through random actions. After that, the dynamics model is pre-trained 1e5 times, and then
1 model update and 1 policy update are performed for each frame sampled from the environment.
The mini-batch size of all models is 512. We use soft update for the target network instead of hard
update used in STEVE. Note that the replay buffer is divided into two parts, safe and unsafe, and
sampled from them in equal proportions. This prioritization can introduce bias, which we correct

6



with importance sampling method. When correcting the dangerous action by MPC controller, the
Gradient + CEM method uses 5 iterations plus 5 gradient steps to sample 128 candidate actions.

The policy network and value network of DDPG and PPO are also fully connected neural networks
with 4 layers of size 128. The hyper-parameters of DDPG are the same as STEVE, but there is no
model ensemble and dynamics. For the hyper-parameters of PPO, the clipping parameter is set to
0.2, the GAE Lambda is selected as 0.95, the learning rate is 3e− 4, and the mini-batch size is 512.

Table 1: Experiment hyper-parameters.

Hyperparameter
Name

PuckWorld-
Low

PuckWorld-
High Reacher Ant-

Limit
Ant-

Block

Safety detection length 10 1 8 10 10
MPC horizon 10 10 10 10 10
Safety weight 1 1 1 1 1

Active learning coefficient 5e4 10 1e3 10 10
Safe threshold 0.96 0.96 0.96 0.99 0.99

Intrinsic reward bound 0.92 0.92 0.92 0.95 0.95
Scaling factor cl 1 1 1 0.5 0.5
Scaling factor ch 100 100 100 10 10

7


	Appendix: Algorithms
	Appendix: Experiment Setup
	Appendix: Detailed Analysis of The Human Oversight Phase
	Appendix: Visualization of The Parameter 
	Appendix: Ablations
	Scaling Factors
	Safety Bound

	Appendix: Discussion of Safety-critical Components
	Appendix: Visualization of The Agent Motion
	Appendix: Implementation Details

