
A Details of the Low-Level Convex MPC Controller

Stance Leg Control

(a) The stance controller optimizes ground reaction
forces f1,...,4 to track a desired base trajectory.

Swing Leg Control

(b) The swing controller tracks the leg on a quadratic
curve, which is fitted using (plift-off,pair,pland).

Figure 8: Our low-level convex MPC controller uses different controllers for stance (left) and swing (right)
legs.

A.1 Stance Leg Controller

The stance leg controller optimizes for the ground reaction forces using Model Predictive Control
(MPC) (Fig. 8a), where the objective is for the base to track a desired trajectory. The robot is
modeled using the simplified centroidal dynamics model. We now describe our setup in detail:

Notation We represent the base pose of the robot in the world frame as x = [⇥,p,!, ṗ] 2 R12.
⇥ = [�, ✓,] is the robot’s base orientation represented as Z-Y-X Euler angles, where is the yaw,
✓ is the pitch and � is the roll. p 2 R3 is the Cartesian coordinate of the base position. ! and ṗ
are the linear and angular velocity of the base. rfoot = (r1, r2, r3, r4) 2 R12 represents the four
foot positions relative to the robot base. MPC optimizes for the ground reaction force f1,...,4 at each
foot, which we denote as u = (f1,f2,f3,f4) 2 R12. In denotes the n ⇥ n identity matrix. [·]⇥
converts a 3d vector into a skew-symmetric matrix, so that for a, b 2 R3, a⇥ b = [a]⇥b.

Centroidal Dynamics Model Our centroidal dynamics model is based on [3] with a few modi-
fications. We assume massless legs, and simplify the robot base to a rigid body with mass m and
inertia Ibase (in the body frame). The rigid body dynamics in world coordinates are given by:

d

dt
(Iworld!) =

4X

i=1

ri ⇥ fi (4)

p̈ =

P4
i=1 fi

m
+ g (5)

where g = [0, 0,�9.8]T is the gravity vector. To simplify Eq.4, note that when angular velocity is
small, we can omit the centripetal forces and write the left hand side as:

d

dt
(Iworld!) = Iworld!̇ + ! ⇥ (Iworld!) ⇡ Iworld!̇ (6)

Given the robot the orientation matrix in the world frame R 2 SO(3), the world-frame inertia is:

Iworld = RIbaseR
T (7)

When the robot is close to upright (✓,� ⇡ 0), the relationship between the angular velocity and the
change rates of Euler angles can be written as:

⇥̇ =

2

4
�̇

✓̇

 ̇

3

5 ⇡
"

cos() sin() 0
� sin() cos() 0

0 0 1

#
! = Rz()! (8)

12

With the above simplifications, we get the linear, time-varying dynamics model:

d

dt

2

64

⇥
p
!
ṗ

3

75

| {z }
ẋbase

=

2

64

03 03 Rz() 03

03 03 03 13

03 03 03 03

03 03 03 03

3

75

| {z }
A

2

64

⇥
p
!
ṗ

3

75

| {z }
xbase

(9)

+

2

64

03 . . . 03

03 . . . 03

I�1
world[r1]⇥ . . . I�1

world[r1]⇥
I3/m . . . I3/m

3

75

| {z }
B

2

64

f1

f2

f3

f4

3

75

| {z }
u

+

2

64

0
0
0
g

3

75

We then discretize the continuous time dynamics equation, which we use in our MPC formulation.

xt+1 = A0xt +B0ut + g0 (10)

where A0, B0, g0 are the discrete time counterpart of A, B and g in Eq. (9).

Reference Trajectory Generation Given the desired linear velocity of the base v̄base, we compute
a desired trajectory x̄t for the next T timesteps, where T is the MPC planning horizon. In each
reference state, we set ¯̇p to v̄base and set p̄ to numerically integrate v̄base for speed-tracking, and set
the desired orientation ⇥̄ and angular velocity to !̄ to 0 to ensure stable walking.

MPC Formulation Given the reference trajectory x̄1,...,T , we solve for the ground reaction forces
u1,...,T by solving the following Quadratic Program (QP):

min
u1,...,T

TX

t=1

kxt � x̄tkQ + kutkR (11)

subject to xt+1 = A0xt +B0ut + g0 Eq. (10)
f
z
i,t = 0 if leg i is a swing leg at t
fmin  f

z
i,t  fmax if leg i is a stance leg at t

� µf
z
i,t  f

x
i,t  µf

z
i,t 8i, t

� µf
z
i,t  f

y
i,t  µf

z
i,t 8i, t

where Q, R are diagonal weight matrices. The constraints include the centroidal dynamics, the
contact schedule of each leg and the approximated friction cone conditions. The optimized contact
forces are then converted to motor torques using Jacobian transpose: ⌧ = JTf .

A.2 Swing Leg Control

The swing leg controller calculates the swing foot trajectories and uses Proportional-Derivative (PD)
controllers to track these trajectories (Fig. 8b). To calculate a leg’s swing trajectory, we first find its
lift-off, mid-air and landing positions (plift-off,pair,pland) (Fig. 8b). The lift-off position plift-off is the
foot location at the beginning of the swing phase. The mid-air position pair = pref + (0, 0, zdes) is a
fixed distance above the normal standing position pref. We use the Raibert Heuristic [38] to estimate
the desired foot landing position:

pland = pref + vCoMTstance/2 (12)

where vCoM is the projected robot’s CoM velocity onto the x � y plane, and Tstance is the expected
duration of the next stance phase, which can be calculated using the stepping frequency and swing
ratio from the gait policy (Section 3.2). Raibert’s heuristic ensures that the stance leg will have equal
forward and backward movement in the next stance phase, and is commonly used in locomotion
controllers [4, 3, 13].

13

Given these three key points, plift-off,pair, and pland, we fit a quadratic polynomial, and computes
the foot’s desired position in the curve based on its progress in the current swing phase. Given the
desired foot position, we then compute the desired motor position using inverse kinematics, and
track it using a PD controller. We re-compute the desired foot position of the feet at every step
(500Hz) based on the latest velocity estimation.

B Modeling Motor Power Consumption

B.1 DC Motor Model

r�

+

v

i

M

�

+

vemf

Figure 9: Schematic drawing of DC motor model.

We model a DC motor circuit as in Fig. 9, which includes a motor with internal resistance r and
torque constant k. To apply a torque ⌧m, the motor controller applies a voltage v to the motor,
which generates a current i. As the motor rotates with angular velocity !m, it also generates a
back-emf voltage vemf. We aim to express the battery power consumption p = vi in terms of the
motor velocity !m and applied motor torque ⌧m. If we ignore motor inductance and only consider
steady-state behaviors, the circuit characteristic can be written as:

⌧m = ki (13)
vemf = k!m (14)

i =
v � vemf

r
(15)

where Eq.13 and Eq.14 models steady-state motor behavior, and Eq.15 is derived from Ohm’s law.
Solving for v in terms of ⌧m,!m and motor constants k, r, we get:

v = k!m +
⌧mr

k
(16)

The power supplied by the battery can be computed by:

p = vi =
⇣
k!m +

⌧mr

k

⌘
⌧m

k
= ⌧m!m +

r

k2
⌧
2
m (17)

Note that the first term is the mechanical power delivered by the motor, and the second term is
the extra heat dissipation in the motor circuit. Since Unitree’s battery management system does not
support regenerative braking, we lower-bound the power consumption by 0, and get:

pactual = max
⇣
⌧m!m +

r

k2
⌧
2
m, 0

⌘
(18)

B.2 Power Consumption of A1 motors

Based on the motor characteristic curve of A1 (Fig. 10), at ⌧m = 4Nm and the output power is
approximately 400w, with an efficiency of approximately 50%. Therefore, ⌧m!m ⇡ r

k2 ⌧
2
m ⇡ 400w.

We can then deduce that r
k2 ⇡ 25 and express power consumption as:

pactual ⇡ max(⌧m!m + 25⌧2m, 0) (19)

The motor of A1 have a gear reduction ratio of 9.1. Therefore the joint velocity and joint torque
(⌧,!) can be expressed in terms of motor velocity and motor torque (⌧m,!m) as:

⌧ = 9.1⌧m

! =
!m

9.1

14

Figure 10: Characteristic curve for A1 motors [14] from robot manufacturer. The angular velocity and output
torque are measured at the motor level without gear reduction.

Substituting into Eq. 19, we can express the power consumption in terms of joint torque and velocity:

pactual ⇡ max

✓
⌧! +

25

9.12
⌧
2
, 0

◆
⇡ max(⌧! + 0.3⌧2, 0) (20)

C Experiment Details

C.1 Comparison with Different Learning Algorithms

CMA-ES Setup We obtain the CMA-ES implementation from Pycma [54]. We represented the
policy using a fully connected neural network with 1 hidden layer of 256 units and tanh non-linearity.
We initialize the algorithm with a mean of 0 and standard deviation of 0.03, and perform each update
using a population size of 32.

ARS Setup In ARS, we represented the policy using a fully connected neural network with 1
hidden layer of 256 units and tanh non-linearity. The policy parameter is initialized to be all 0 at
the start of training. At each iteration, we estimate the gradient by sampling 16 policy perturbations
with standard deviation of 0.03, and update the policy using a step size of 0.02.

PPO and SAC Setup We obtain the PPO and SAC implementation from the Stable-baselines-3
[55] repo. For both algorithms, we represent the actor and the critic using a fully connected neural
network with 2 hidden layers of 64 units each and tanh nonlinearity. For PPO, we additionally
normalize the observation and reward using a moving average filter, which increases the total reward
by 3x. We list the hyperparameters used in each algorithm in Table 3 and 4.

Parameter Value
Learning rate 0.0003

env steps per update 800
Batch size 64

epochs per update 10
Discount factor 0.99

GAE � 0.95
Clip range 0.2

Table 3: Hyperparameters used for PPO.

Parameter Value
Learning rate 0.0003

Replay buffer size 106

Batch size 256
Discount factor 0.99

Entropy coefficient Auto learned
env steps per update 10

gradient steps per update 1

Table 4: Hyperparameters used for SAC.

Parallel Rollouts to Reduce Training Time Since the low-level controller involves solving MPC
problems, data collection in our environment is computationally heavy, and takes up a significant
portion of the training time. To speed up training, we use multi-processing to parallelize rollouts
whenever possible. For CMA-ES and ARS, we parallelize rollouts across 32 cpu cores, and collect 1

15

Figure 11: Learning curve for hierarchical policies trained by different algorithms. Results show average over
5 random seeds. Error bar indicates 1 standard deviation.

episode (400 steps) from each core per training iteration. For PPO, we parallelize rollouts across 32
cpu cores, and collect 25 steps from each core per training iteration. We do not parallelize rollouts
for SAC since the algorithm does not benefit signficantly from parallel data collection.

Parallelized data collection greatly reduces the wall-clock training time, as CMA-ES (2 hours),
ARS (2 hours) and PPO (12 hours) take significantly less time to reach 1.5 million environment
steps compared to SAC (40 hours). In addition, ES-based algorithms (CMA-ES and ARS) update
their policies less frequently and do not require back-propagation for policy update, which explains
their wall-clock efficiency compared to PPO.

Learning Curves We plot the learning curves for different algorithms in Fig. 12. CMA-ES and
ARS consistently out-performed other algorithms. When using the original observation space, which
contains only the desired and current velocity, both PPO and SAC fail to complete the task, and
show high variance in their learning curves. This is likely due to the lack of sufficient information
to accurately estimate the value function. With the extended observation space, SAC learns to walk
forward, but achieves a lower return compared to CMA-ES and ARS.

C.2 Comparison with Non-Hierarchical Policies

Reward Function for TG Policy We find the original reward function used in hierarchical envi-
ronment (Eq. 3) to be ineffective in training the TG policy. Specifically, the TG policy usually incurs
a significantly higher cost-of-transport compared to the hierarchical policy, especially in early stages
of training. As a result, the reward (Eq. 3) is mostly negative, and CMA-ES learns to maximize re-
turn by terminating each episode early. Therefore, we reduce the energy penalty weight (we in Eq.3)
from 0.37 to 0.037 to ensure that the reward stays positive.

Reward Function for E2E Policy In addition to reducing the energy penalty weight, we found it
necessary to perform further reward shaping for the E2E policy. Without the cyclic trajectory priors
defined by TG, the E2E policy struggles to maintain balance and often walks forward in unstable,
tilted pose. To encourage stable, up-right walking, we include additional terms based on the height
and orientation of the robot, which is similar to the cost function used in the low-level convex MPC
controller (Eq. 11). We end up with the following reward function:

r = c� wv

����
v̄base � vbase

v̄base

����
2

| {z }
Speed Penalty

�we

P12
i=1 max(⌧i!i + ↵⌧

2
i , 0)

mgv̄base| {z }
Energy Penalty (Cost of Transport)

�wo (roll2 + pitch2)| {z }
Orientation Penalty

�wh (h̄� h)2| {z }
Height Penalty

(21)

where the speed penalty and energy penalty is the same as defined in Eq. 3. The orientation penalty
penalizes the robot’s deviation from an upright posture based on the IMU reading. The height

16

(a) E2E (b) TG

Figure 12: Learning curves for non-hierarchical policies. Results are averaged over 5 random seeds. Error bar
shows 1 standard deviation.

penalty penalizes the robot’s deviation from a desired walking height, where h̄ and h are the desired
and actual height of the robot’s center of mass.

We set h̄ = 0.26, which is the same as the reference height in the low-level convex MPC controller
in the hierarchical setting (Section A.1). We use the same weight for the alive bonus c = 3 and
speed penalty wv = 1 as in the hierarchical setup (Eq. 3, reduced we from 0.37 to 0.037, and set
wo = 10, wh = 200 for E2E experiments.

Policy Representation and Training To train the non-hierarchical policies, we followed the same
setup as the hierarchical policy (Section. 4.3). We represent each policy using a neural network with
256 units and tanh non-linearity, and trained the policy using the same CMA-ES algorithm.

Learning Curves We plot the learning curves of non-hierarchical policies in Fig. 12. As noted
in section 5.4, E2E only learns to stand for the entire episode, and the learning curve eventually
becomes unstable. Although TG policy slowly learns to walk, the resulting gait is jaggy and only
uses 3 legs.

17

	Introduction
	Related Work
	A Hierarchical Framework for Gait Optimization
	Overview
	High-Level Gait Generation
	Low-Level Convex MPC Control

	Learning Gait Policies for Fast and Efficient Locomotion
	Preliminaries
	MDP Formulation
	Policy Representation and Training

	Results and Analysis
	Experiment Setup
	Emergence of Energy-Efficient Gaits
	Validation on the Real Robot
	Comparisons with Non-Hierarchical Policies
	Comparisons with Different Learning Algorithms

	Conclusion
	Details of the Low-Level Convex MPC Controller
	Stance Leg Controller
	Swing Leg Control

	Modeling Motor Power Consumption
	DC Motor Model
	Power Consumption of A1 motors

	Experiment Details
	Comparison with Different Learning Algorithms
	Comparison with Non-Hierarchical Policies

