
Supplementary Material

A Overview

Here we provide technical details in support of our main paper. Below is a summary of the contents.

Sec. B: Qualitative examples of relation classification on CLEVR-CoGenT;
Sec. C: Qualitative examples of relative direction regression on Leonardo;
Sec. D: Visualizations of the attention learned by SORNet;
Sec. E: More details on the predicates and tasks in the Leonardo dataset;
Sec. F: Additional Details on model architecture and training.

B Qualitative Results on CLEVR-CoGenT

Fig. 2 shows qualitative results of spatial relation classification on CLEVR-CoGenT (Sec. 5.1 in
main paper). These examples demonstrate that SORNet is able to identify objects not only using
color cues, but also shape (e.g. blue sphere vs blue cylinder in the topmost example), size (e.g. small
cyan cube vs big cyan cube in the second from top example) and material (e.g. small purple metal
cube vs small purple rubber cube in the third from top example). We also visualize the relevant
canonical object views provided to the model. As we can see, the canonical object views can have
very different appearance from the corresponding objects in the input image. It is more appropriate
to consider these canonical views as a visual replacement for natural language, rather than the result
of object detection or segmentation.

C Qualitative Results on Relative Direction Predition

In Fig. 3 we visualize the results of relative direction prediction (Sec. 5.5 in main paper). Specif-
ically, we train regressors on top of frozen SORNet embeddings to predict the relative direction (a
3D unit vector) and distance (a 1D scalar) between each pair of objects, as well as between the end
effector and each object. We visualize the predicted direction as arrows, scaled by the predicted
distance. Trained only on a thousand examples, the regressor is able to predict continuous spatial
relations accurate enough to guide robot execution (see our supplementary video), thanks to the spa-
tial information encoded in the SORNet embeddings. Note that SORNet is never trained on explicit
poses of objects, but it understands relative locations just like humans. As a result, the object-centric
embedding can be quickly finetuned for downstream tasks that require accurate spatial information.

D Attention Visualization

Fig. 4 visualizes the attention weights learned by the visual transformer model in order to obtain
the object-centric embeddings. More specifically, we take the normalized attention weights from
the tokens corresponding to the canonical object views to the tokens corresponding to the context
patches and convert the weights into a colormap, where the intensity of the colormap corresponds
to the magnitude of the attention weight over that patch. We then overlay the colormap with the
input image. We can see that while the model puts the highest attention to the patch containing the
object of interest, it also learns to pay attention to the robot arm and other objects, while ignoring
irrelevant background. We also visualize the canonical object patches given to the model, which can
look wildly different from the same objects in the image. The model needs to associate the canonical
view with the input view of the object under different lighting conditions and occlusions.

E The Leonardo Dataset

Here we include additional details for the Leonardo dataset.

E.1 List of Predicates

Table ?? shows the 52 predicates for 4-object test scenes.
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Figure 1: 3 camera views used to train the multi-view models.

E.2 Training and test tasks

Fig. 5 shows initial frame, final frame and goal conditions for a sample from each task in the
Leonardo dataset.

E.3 Viewpoints

Fig. 1 shows the 3 camera views used to train the multi-view models. Each camera view is also
slightly perturbed around the base camera pose during training.

F Model Architecture and Training

F.1 ResNet Baseline

The ResNet baseline uses ResNet18 backbone implemented in torchvision. The feature map before
average pooling is flattened into a 512-dimensional vector and passed through 4 2-layer MLPs with
512 hidden units and outputs predicates relevant for each of the 4 objects (19 for each objects). For
binary predicates (e.g. stacked(red block), blue block) during inference, we add the
logits from MLPs responsible for both objects to make the final prediction.

F.2 ViT Baseline

The ViT baseline uses ViT-B/32 backbone, with 12 layers of 12-head self-attention layers. The width
of the model (dimension of token embeddings) is set to 768. This ViT model passes the embedding
from a single trainable classification token through a 2-layer MLP with 512 hidden units to predict
all 52 predicates.

F.3 ViT Multihead Baseline

The ViT multihead baseline also uses ViT-B/32 backbone with the same architecture as the ViT
baseline, except that it has 4 trainable classification tokens which gives 4 embedding vectors. Then,
the same predicate classifier for SORNet is used to predict unary and binary predicate values.

F.4 SORNet

SORNet uses the same backbone architecture as the two baselines above. The canonical object views
are linearly-projected and flattened just like the context patches from the input image. The predicate
classifier takes the token vectors corresponding to the canonical object views from the topmost layer
of the transformer and outputs predicate values. Each MLP in the predicate classifier has 512 hidden
units and outputs a single scalar.

F.5 Training Hyperparameters

All models are trained using binary cross-entropy loss with SGD optimizer (momentum set to 0.9)
on 4 GPUs with 32G memory. The batch size for a single GPU is 512. The ResNet baseline uses
learning rate 0.01 while the ViT baslines and SORNet uses learning rate 0.0001. All models are
trained for 80 epochs.
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Figure 2: relation classification in CLEVR-CoGenT. In addition to color, SORNet is able to disguish
objects based on shape, size and material. It is also able to deal with heavy occlusion. Note that
the object patches provided to SORNet can have very different appearance than the corresponding
objects in the input frame.
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Figure 3: Relative Direction Prediction using pretrained SORNet embeddings. The color of the
arrow corresponds to the target and the origin of the arrow correspond to the source. The length of
the arrow corresponds to the predicted distance. The second row shows relative direction between
object pairs (e.g. red block to green block). Not all predictions are visualized to keep the plot
clean. The third row shows the relative direction from the end effector to the objects. The model’s
prediction is accurate most of the time but be less accurate on challenging cases such as the highly
reflective tabletop in the bottom example.
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Figure 4: Visualization of the attention learnt by SORNet. Leftmost column is the input frame and
remaining columns visualize the attention weights of the object tokens over the context patches. The
corresponding canonical object view is shown on top of each attention visualization. We can see that
SORNet learns to attend to not only the object of interest but also the robot and other objects as well,
while ignoring irrelevant background.
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Figure 5: Visualization of the different tasks in the Leonardo test set.
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(a) Table regions

on surface(red block, left) has obj(robot, red block)
on surface(red block, right) has obj(robot, green block)
on surface(red block, far) has obj(robot, blue block)
on surface(red block, center) has obj(robot, yellow block)
on surface(green block, left)
on surface(green block, right) top is clear(red block)
on surface(green block, far) top is clear(green block)
on surface(green block, center) top is clear(blue block)
on surface(blue block, left) top is clear(yellow block)
on surface(blue block, right)
on surface(blue block, far) in approach region(robot, red block)
on surface(blue block, center) in approach region(robot, green block)
on surface(yellow block, left) in approach region(robot, blue block)
on surface(yellow block, right) in approach region(robot, yellow block)
on surface(yellow block, far)
on surface(yellow block, center)

stacked(red block, green block) aligned with(red block, green block)
stacked(red block, yellow block) aligned with(red block, yellow block)
stacked(red block, blue block) aligned with(red block, blue block)
stacked(green block, yellow block) aligned with(green block, yellow block)
stacked(green block, blue block) aligned with(green block, blue block)
stacked(green block, red block) aligned with(green block, red block)
stacked(blue block, green block) aligned with(blue block, green block)
stacked(blue block, yellow block) aligned with(blue block, yellow block)
stacked(blue block, red block) aligned with(blue block, red block)
stacked(yellow block, green block) aligned with(yellow block, green block)
stacked(yellow block, blue block) aligned with(yellow block, blue block)
stacked(yellow block, red block) aligned with(yellow block, red block)

(b) Predicatets in a 4-object scene

Table 1: List of 52 predicates that capture spatial relationships and skill preconditions for rearrange-
ment tasks with 4 objects (red block, green block, blue block, yellow block), on a table divided into
4 regions (left, right, far and center) with respect to the robot

7


	Overview
	Qualitative Results on CLEVR-CoGenT
	Qualitative Results on Relative Direction Predition
	Attention Visualization
	The Leonardo Dataset
	List of Predicates
	Training and test tasks
	Viewpoints

	Model Architecture and Training
	ResNet Baseline
	ViT Baseline
	ViT Multihead Baseline
	SORNet
	Training Hyperparameters


