
Supplementary Material
Single-Shot Scene Reconstruction

Sergey Zakharov1, Rareş Ambruş1, Vitor Guizilini1, Dennis Park1, Wadim Kehl2,
Fredo Durand3, Joshua B. Tenenbaum3, Vincent Sitzmann3, Jiajun Wu4, Adrien Gaidon1

1Toyota Research Institute, 2Woven Planet, 3Massachusetts Institute of Technology, 4Stanford University

1 Implementation Details

In this section, we provide a detailed description of how we trained the different components of our
pipeline, as well as what data was used. All our networks are implemented using PyTorch [1] and
trained on a GPU cluster of 8 Tesla V100 GPUs.

1.1 Detection Transformer Block

We used a pretrained panoptic DETR [2] with a ResNet101 backbone initially trained on MS
COCO [3] dataset. In particular, we used off-the-shelf pretrained weights for the backbone, trans-
former encoder and decoder, 2D bounding box head, and class label head.

1.2 3D Reasoning Block

The 3D reasoning block is trained using the AdamW [4] solver with learning rate of 10−5 and weight
decay set to 10−4.

NOCS Generation To train the foreground NOCS prediction head we first generate a collection
of NOCS maps given ground truth object masks, object poses, and depth maps from a large syn-
thetic dataset of road scenes by Parallel Domain [5]. The dataset contains poses and masks for each
of the objects present in high-quality rendered RGB scenes (see Figure 1). The depth map is first
transformed to a point cloud using given camera parameters and separate object instances are se-
lected using object masks. Each instance is then transformed using the inverse pose and normalized
using a common non-uniform scale per class - for vehicles we use a scale factor of (3, 1.3, 1.1).
A non-uniform scaling is applied to maximize the surface area and subsequently improve NOCS
prediction. The transformed points are then stored in an image or 2D NOCS map by utilizing initial
pixel indices.

Foreground NOCS Prediction and Pose Estimation Our NOCS head regresses tensors of size
H/4×W/4×C, whereC represents the number of unique colors of the correspondence map, which
is set to 256 in our implementation. The resulting output channels store probability values for the
class corresponding to the channel number. Then, we form NOCS maps consisting of U, V, and W
channels, by aggregating output channels using resulting probability values - we first apply softmax
along the channel dimension to ensure that all probabilities sum up to 1 and then multiply them by
the channel index. Discrete color class classification problem proved to be useful for much faster
convergence and for better overall correspondence quality and shape prediction when compared to
direct regression, which can be explained by a significant simplification of the output solution space
- discrete 2563 for classification and infinite continuous solution space [−1; 1]3 in the case of direct
regression.

Our pose estimation is based on 2D-3D correspondence estimation. The procedure is defined as
follows: Our NOCS head outputs normalized object coordinates (NOCS), mapping each RGB pixel
to a 3D location on the object’s surface. NOCS are then used to (i) recover a partial canonical

5th Conference on Robot Learning (CoRL 2021), London, UK.

Figure 1: Example renderings from the PD dataset used for SDN training.

shape of the detected object and multiplied by the class scale to recover real dimensions, and (ii)
to establish correspondences between the recovered partial shape and image points. We then use a
standard OpenCV PnP-RANSAC solver given estimated correspondences and a camera matrix to
estimate the pose.

Amodal Background Prediction. To train the background depth prediction network, we gener-
ate a complementary dataset by rendering random objects onto the scene and then completing the
occluded regions during the training as shown in Figure 4. For the RGB network we only estimate
colors of the missing regions, while for the depth network we refine the geometry of the entire image
(Figure. 3). Both networks use a standard ResNet [6] backbone. Upsampling is implemented using
bilinear interpolation as opposed to deconvolution to decrease the number of optimization parame-
ters. As for objective functions we use simple L1 reconstruction losses for both RGB and depth, and
an additional surface normal loss for the depth domain comparing normals estimated using ground
truth and predicted depth maps. The adversarial losses for both domains aim to make the predic-
tions look more realistic. Both networks are trained for 100 epochs on the PD dataset. In the case of
VKITTI2, we additionally refine the depth head for another 20 epochs.

1.3 PriorDB

Our differentiable database of object priors is first pretrained on a collection of 27 Parallel Domain
geometrical primitives (Figure 2) to recover their SDF fields with high precision. All vehicles are
normalized using a non-uniform scale factor of (3, 1.3, 1.1) to maximize the surface area. The LF
fields are then pretrained using RGB renderings (Figure 1) and generated NOCS maps. In particular,
for each object instance we recover its partial shape using the NOCS map and use corresponding
RGB colors as the learning target.

As opposed to the networks in the object reasoning block, both SDF and LF networks are imple-
mented using SIREN-based [7] 6-layer MLPs with 512-dimentional hidden layers, which make use
of periodic activation functions and are shown to be more capable than ReLU implicit representa-
tions at representing fine details. We train PriorDB using the Adam solver with a learning rate of
10−6.

1.4 Surfel-based Rendering

The essential component of our surfel-based renderer is the formation of disc primitives. Similarly
to [8], we construct the surface discs with the following steps:

Figure 2: Object primitives used as prior shapes for PriorDB.

2

Figure 3: Amodal Background Prediction: Given an object mask predicted by SDN, we mask out
the foreground of the input RGB images as well as predicted features. A concatenated tensor is then
fed to the amodal background prediction nets, which recover the full background depth (including
the occluded regions) and RGB colors for the occluded regions.

1. Given the normal of a projected point ni =
∂f(pi;z)

∂pi
, we estimate the 3D coordinates of the

resulting tangent plane visible in the screen. The distance d of the plane to each 2D pixel
(u, v) can be computed by solving a system of linear equations for the plane and camera
projection:

u′ = (u− ou) d
fu

v′ = (v − ov) d
fv

Au′ +Bv′ + Cd−Au′i −Bv′i − Cdi = 0

(1)

The first two equations are the perspective projection equations and the third one is a plane
equation. If we solve the above system by a simple substitution, we get the following:

d(
A(u− ou)

fu
+
B(v − ov)

fv
+ C)

−Au′0 −Bv′0 − Cd0 = 0 −→

d =
Au′i +Bv′i + Cdi

(A(u′−ou)
fu

+ B(v′−ov)
fv

+ C)

=
ni · pi

ni ·K−1(u, v, 1)T

(2)

where K−1 is the inverse camera matrix, followed by backprojection to get the final 3D
plane coordinate:

P = K−1 · (u · d, v · d, d)T . (3)

2. Next, we estimate the distance between the plane vertex and surface point and clamp if it
is larger than a disc diameter:

M = max(diam− ||pi − P ||2, 0) (4)

To ensure water-tightness we compute the diameter from the query location density: diam =
mini 6=j ||xi − xj ||2

√
3. Executing the above steps for each pixel yields a depth map Di and a

tangential distance mask Mi at point pi.

Rendering Optimization Computing Eq. 2 and Eq. 3 for all image pixels can be extremely in-
efficient, especially for large image sizes. To address this issue, we limit computations to small
pre-defined regions (7 × 7 in our case) centered at 2D positions of the surfels. This can easily be
implemented using sparse tensors supported by PyTorch [1]. Once Eq. 2 and Eq. 3 are computed,
we convert the collection of sparse tensors back to the dense format using known positions to regress
a final rendering using our depth accumulation function as defined in the main paper.

To further optimize the performance, we avoid computing the above equations for all 3D points
defining the object surface and limit the computations only to the points visible from the camera. To
compute the set of visible points we utilize a hidden point removal (HPR) operator first introduced
by Katz et al. in [9].

3

Figure 4: Example renderings from the PD dataset used for training background prediction: with
instances (left) and without (right).

2 Optimization

In this section we provide further details on 2D and 3D optimization losses defined in Section 3.2 of
the main paper. For each detected instance we run 100 iterations and use the SGD optimizer with a
learning rate of 3× 10−2 and a smaller learning rate of 10−5 for LF module weights.

3D losses We first use the predicted SDF/LF representation of the object to recover the full object
surface in the form of a colored point cloud c = {c1, ..., ck} using a 0-isosurface projection. Then
we estimate nearest neighbors between it and partial reconstruction based on predicted NOCS points
p = {p1, ..., pn} and minimize the distance between the points by optimizing the feature vector zsdf .
At each iteration step nearest neighbors are recomputed and we only keep points that are closer than
0.2m to each other. The loss is then calculated as the mean distance over all correspondences C3D.

Lsdf =
1

|C3D|
∑

(i,j)∈C3D

||pi − cj ||1. (5)

Our 3D Luminance Field loss is defined similarly to the SDF loss, but instead of point coordinates,
we compare RGB values between the partial reconstruction based on predicted NOCS and input
RGB colors against our recovered colored object point cloud.

Llf =
1

|C3D|
∑

(i,j)∈C3D

||prgbi − crgbj ||1. (6)

Figure 5: Object reference
frame: X, Y, X axes are ren-
dered as red, green, and blue
arrows respectively. Mirror-
ing the right side of the car
for Lsymm loss are achieved by
simply inverting the Y axis.

Finally, our symmetry loss works by minimizing the difference
between the left and right sides of our reconstructed colored ob-
ject point cloud. Instead of finding nearest neighbors between two
pointclouds, we perform the same operation for the left side of the
car and inverted right side of the car, which equals to inverting the
Y axis in our object reference frame as shown in Fig. 5.

Lsymm =
1

|C3D|
∑

(i,j)∈C3D

||li − rj ||1.

The final 3D loss is a weighted sum of its components:

Lall
3D = wsdf ∗ Lsdf + wlf ∗ Llf + wsymm ∗ Lsymm, (7)

where in our implementationwsdf = 1,wlf = 0.1, andwsymm =
0.1.

2D losses Our surfel differentiable renderer allows to effec-
tively define 2D losses for shape, pose, and appearance optimiza-
tion. In our pipeline, we define three 2D losses: Lnocs2D , Llf2D ,
and Lmask. All three are per-pixel loss functions comparing predicted and rendered 2D maps.

4

(a) GT (b) PixelNeRF (c) PackNet (d) Ours

Figure 6: Qualitative view synthesis results. The view synthesis is performed on images not seen
during training. PixelNeRF trained on monocular sequences can not generalize to a novel view point.
PackNet depth estimation method distorts objects due to imprecisions in predicted geometry. Our
method, while retaining PackNet-like artifacts for the background, preserves the objects’ geometry
much better.

The 2D NOCS loss compares the predicted NOCS map coming from the NOCS head of the 3D
reasoning block with the NOCS output of the renderer. Moreover, we limit the loss to the subset
pixels contained in the union of predicted and rendered masks.

Lnocs2D =
1

|P |
∑
p∈P
||nmappredp − nmaprenp ||2, (8)

where p ∈ P indexes all pixels contained in the union of predicted and rendered masks mu =
mpred ∪mren over all input images.

The 2D Luminance Field loss compares the input RGB image with the RGB output of the renderer

Llf2D =
1

|P |
∑
p∈P
||lfmappredp − lfmaprenp ||2. (9)

Finally, the 2D mask loss compares the predicted mask coming from 3D reasoning block with the
mask output of the renderer for the pixels contained in the union of both masks.

Lmask2D
=

1

|P |
∑
p∈P
||mmappredp −mmaprenp ||2. (10)

Similarly to the 3D case, the final 2D loss is defined as a weighted sum of three 2D losses:

Lall
2D = wnocs2D ∗ Lnocs2D + wlf2D ∗ Llf2D + wmask2D

∗ Lmask2D
, (11)

where in our implementation wnocs2D = 1, wlf2D = 1, and wmask = 0.1.

3 Additional Evaluations

3.1 Pose/ Shape Optimization

No opt. Shape Pose Shape + Pose

Angle (deg) 5.99 5.99 6.55 5.97
Chamfer (mm) 14.72 9.90 14.72 8.80
Translation (m) 4.00 4.00 3.98 3.99

Table 1: Optimization ablation. The ef-
fect of optimization on 2 tasks: full ob-
ject shape estimation (bidirectional Cham-
fer distance) and pose estimation.

We note that our initial pose, as regressed by an outlier-
robust PnP solver, is usually already very accurate for
a given NOCS prediction. However, since we opti-
mize both pose and shape at the same time, allow-
ing pose to change ensures the maximal alignment.
To confirm this we ran an additional ablation for four
2D optimization modalities - no optimization, only
shape, only pose, both pose and shape. We quantify
the pose regressed using (i) the median angular error

5

Trai
n Method Test

Lower is better Higher is better

AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

V
K

IT
T

I

Monodepth2

V
K

IT
T

I 0.132 3.754 15.261 0.443 0.805 0.823 0.912
PackNet-SfM 0.127 3.471 14.988 0.420 0.826 0.841 0.925
Ours 0.122 3.064 14.297 0.388 0.859 0.912 0.929
Monodepth2

K
IT

T
I 0.239 3.217 8.425 0.354 0.469 0.655 0.767

PackNet-SfM 0.211 2.746 7.701 0.319 0.546 0.704 0.780
Ours 0.175 2.375 7.384 0.360 0.642 0.756 0.803

PD

Monodepth2

PD

0.089 1.122 6.828 0.268 0.899 0.949 0.976
PackNet-SfM 0.081 1.112 6.527 0.259 0.909 0.933 0.974
Ours 0.066 0.942 6.126 0.212 0.933 0.972 0.982
Monodepth2

D
D

A
D 0.187 3.951 6.465 0.184 0.429 0.506 0.586

PackNet-SfM 0.165 2.500 6.017 0.165 0.366 0.591 0.620
Ours 0.139 3.808 6.612 0.231 0.497 0.559 0.590

Table 2: In-Domain Depth estimation results Our results suggest that our method does not just
transfer between synthetic and real-world domains (as demonstrated in the main paper, Table 1), but
also enables a better in-domain performance for foreground objects. For easy comparison, we also
include out-of-domain estimation results from Table 1 of the main paper.

θ(qi, q̂i) = 2 · arccos(|qi · q̂i|) comparing the ground truth pose q and the optimized pose q̂; and (ii)
for translation, we estimate the difference between the ground truth translation and the optimized
one considering only X and Y components. Additionally, we show the performance of shape esti-
mation using the median bidirectional Chamfer distance to see how different modalities perform in
this context. We performed this experiment on the PD test set.

3.2 View-Synthesis: Qualitative Results

We present qualitative results of the view synthesis experiment in Figure 6. To generate output
images, we first render predicted hole-filled backgrounds by warping RGB values using predicted
depth given respective camera transformation. Then, we transform extracted partial instances given
camera poses and render them using our surfel-based renderer. As can be seen from the results,
PixelNeRF trained on monocular sequences fails to generalize well to a stereo view-point providing
a highly impaired noisy and blurry result. The PackNet-SfM baseline generates output by warping
original RGB images using regressed full-scene depth maps. This baseline results in sharp images,
but significantly distorts foreground objects due to predicted depth inaccuracy. Finally, our method
preserves object geometry by using our differentiable renderer, yielding overall best results, but still
retains PackNet-like artifacts on the background due to similar depth-estimation limitations.

3.3 In-Domain Depth Estimation

Table 2 extends the depth evaluation experiment presented in Section 4.4 of the main paper to
demonstrate in-domain performance of our pipeline. The results suggest that our method does not
just transfer between synthetic and real-world domains (as demonstrated in Table 2 of the main
paper), but also enables a better in-domain performance for foreground objects. We attribute this
behavior to the fact that depth networks operate at a per-pixel level, minimizing an objective that
takes into consideration the entire image. This includes mostly background structures (e.g., road
and buildings), making the depth network learn to accurately predict these structures at the expense
of foreground objects. Our NOCS head, on the other hand, aims to only estimate partial shapes of
objects of interest yielding superior results.

3.4 Failure Modes and Limitations

In this section we discuss common failure modes of the algorithm. Starting from the first stage of our
pipeline, we can only reconstruct objects if we detected them - therefore false negatives are treated
as background. However, in our scenes this usually happens when objects are significantly far away
from the camera and representing them as background is a sufficiently good approximation. A
second failure case that can affect distance scene objects is noisy NOCS map prediction. Erroneous
NOCS maps directly affect the performance of PnP-based pose estimation. Despite using an outlier-
robust RANSAC scheme, this still sometimes causes objects to be misaligned with respect to the

6

Figure 7: Example reconstructions on the PD dataset.

road surface and could even place objects behind the camera. While these problems can be resolved
by manually estimating the road surface and aligning cars accordingly, usually in this case the quality
of NOCS maps and, therefore, resulting partial shape reconstruction, does not allow for further
optimization.

Another set of problems comes from the choice of the underlying background representation. While
fairly robustly predicting geometry behind the detected objects, our method fails in the case of non-
detected objects and structures limiting view-synthesis abilities. Moreover, luminance prediction of
the regressed occluded surfaces does not always yield satisfactory results due to poorer generaliza-
tion capabilities of the background module (when compared with NOCS prediction), which addi-
tionally impairs the visual quality. Finally, having a disjoint foreground-background representation
sometimes causes alignment problems and self-occlusions, which could be resolved by representing
background also as an implicit surface and allowing for further optimization.

Our PriorDB in its current implementation also has a number of limitations. First of all, we currently
only consider average size vehicles, which restricts our ability to generalize to other types of shapes.
Another limitation comes from the fact that PriorDB stores only rigid objects. We leave extensions
to non-rigid objects as as well as other shape types as future work.

Figure 8: Example reconstructions on the VKITTI2 dataset.

7

Figure 9: Example reconstructions on the KITTI dataset.

3.5 Scene Reconstructions

Figures 7,8, and 9 provide a diverse set of reconstructions demonstrating the performance of our
system on a variety of different scenes from different datasets.

References
[1] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[2] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
detection with transformers. In ICCV, 2020.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In ECCV, 2014.

[4] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv, 2017.

[5] Parallel domain. https://paralleldomain.com/, May 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[7] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representa-
tions with periodic activation functions. NeurIPS, 2020.

[8] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon. Autolabeling 3d objects with differentiable
rendering of sdf shape priors. In CVPR, 2020.

[9] S. Katz, A. Tal, and R. Basri. Direct visibility of point sets. In SIGGRAPH. 2007.

8

https://paralleldomain.com/

	Implementation Details
	Detection Transformer Block
	3D Reasoning Block
	PriorDB
	Surfel-based Rendering

	Optimization
	Additional Evaluations
	Pose/ Shape Optimization
	View-Synthesis: Qualitative Results
	In-Domain Depth Estimation
	Failure Modes and Limitations
	Scene Reconstructions

