
A Review of Safe RL with Hard Safety Constraints

Ferlez et al. [21] propose a ShieldNN leveraging Barrier Function (BF) to design a safety filter neu-
ral network with safety guarantees. However, ShieldNN is specially designed for an environment
with the kinematic bicycle model (KBM) [10] as the dynamical model, which is hard to general-
ize to other problem scopes. Fisac et al. [9] also propose a general safety framework based on
Hamilton-Jacobi reachability methods that can work in conjunction with an arbitrary learning al-
gorithm. However, these methods [9, 22] still exploit approximate knowledge of the explicit form
of system dynamics to guarantee constraint satisfaction. Berkenkamp et al. [23] combine RL with
Lyapunov analysis to ensure safe operation in discretized systems. Though provable safe control
can be guaranteed under some Lipschitz continuity conditions, this method still requires the explicit
knowledge of the system dynamics (analytical form). To relieve the requirements of explicit system
dynamics, Grover et al. [24, 25] learn parameters of nominal control that is wrapped around with
safety constraints using adaptive filtering approach. Dalal et al. [19] propose to learn the system dy-
namics directly from offline collected data, then add a safety layer that analytically solves a control
correction formulation per each state to ensure every state is safe. However, the closed-form solu-
tion relies on the assumption of the linearized dynamics model, which is not true for most dynamics
systems. They also assume the set of safe control can be represented by a linearized half-space for
all states, which does not hold for most of the discrete-time system. Yinlam et al. [26] propose to
project either the policy parameters or the action to the set induced by linearized Lyapunov con-
straints, which still suffers from the same linear approximation error and non control-affine systems
as in [19] and is not able to guarantee zero-violation. In contrast, our proposed method does not
require the explicit form of system dynamics, and our method can be guaranteed to generate safe
control as long as the safe set is not a collection of singleton points, and the safe set itself can be
disjoint and unconnected.

11

B Algorithms

The main body of AdamBA algorithm is summarized in Algorithm 1, and the main body of ISSA
algorithm is summarized in Algorithm 2. The inputs for Adaptive Momentum Boundary Approx-
imation are the approximation error bound (✏), learning rate (�), reference control (ur), gradient
vector covariance (⌃), gradient vector number (n), reference gradient vector (~vr), and safety status
of reference control (S). The inputs for ISSA are the approximation error bound (✏), the learning
rate (�), gradient vector covariance (⌃), gradient vector number (n) and reference gradient vector
(~vr).

Algorithm 1 Adaptive Momentum Boundary Approximation
1: procedure ADAMBA(✏,�,⌃, n, ur,~vr, S)
2: Initialize:
3: if ~vr is empty then
4: Generate n Gaussian distributed unit gradient vectors ~vi ⇠ N (0,⌃), i = 1, 2, . . . , n
5: else
6: Initialize one unit gradient vector ~v1 = ~vr

k~vrk

7: Approximation:
8: for i = 1, 2, · · · , n do
9: Initialize the approximated boundary point Pi = ur, and stage = exponential outreach.

10: while stage = exponential outreach do
11: Pi = Pi + ~vi�
12: if Pi is out of control set then
13: Discard Pi

14: break
15: if Pi safety status 6= S then
16: stage = exponential decay

17: break
18: � = 2�
19: while � � ✏ and stage = exponential decay do
20: � = 0.5�
21: Pi = Pi + ~vi�, if Pi safety status = S
22: Pi = Pi � ~vi�, if Pi safety status 6= S
23: Return Approximated Boundary Set P

12

Algorithm 2 Implicit Safe Set Algorithm (ISSA)
1: procedure ISSA(✏,�,⌃, n, ur)
2: Phase 1: . Phase 1
3: Use AdamBA(✏,�,⌃, n, ur, ;,UNSAFE) to sample a collection S of safe control on the

boundary of UD
S .

4: if S = ; then
5: Enter Phase 2
6: else
7: For each primitive action ui 2 S, compute the deviation di = kui � urk2
8: return argminui

di
9:

10: Phase 2: . Phase 2
11: Use grid sampling by iteratively increasing sampling resolution to find an anchor safe control

ua, s.t. safety status of ua is SAFE.
12: Use AdamBA(✏, kur�uak

4 ,⌃, 1, ur, ua�ur

kua�urk ,UNSAFE) to search for boundary point u⇤

13: if u⇤ is not found then
14: Use AdamBA(✏, kur�uak

4 ,⌃, 1, ua, ur�ua

kur�uak , SAFE) to search for boundary point ua⇤

15: Return ua⇤

16: else
17: Return u⇤

13

C Proof of Proposition 1

The motivation for synthesizing the safety index is to ensure that 1) there exists a nontrivial subset
of the user-defined safe set that is forward invariant, and 2) at every state, there always exists a safe
control such that �(xt+1) max{�(xt) � ⌘, 0}. We consider the safety index as � = maxi �i,
where �i has the following form:

�i = � + dnmin � dni � kḋi, (5)

where di denotes the relative distance between the robot and the i-th obstacle, and �, n, k, ⌘ 2 R+

are tunable parameters. This form works for collision avoidance for general second-order systems.

In the following discussions, we will prove proposition 1 specifically in collision avoidance in a 2D
plane, where the dynamics are in the general form xt+1 = f(xt, ut), not necessarily control affine.

C.1 Preliminary Results

Suppose d is the relative distance between the robot and the obstacle in 2D plane, where the obstacle
is not necessarily static. We have d̈ = �a cos(↵) + v sin (↵)w and ḋ = �v cos(↵), where a is the
relative acceleration of the robot in the obstacle frame. ~v is the relative velocity vector of the robot in
the obstacle frame with magnitude v, ↵ is the angle between ~v and vector from robot to obstacle, and
w = ↵̇ is the relative angular velocity of the robot in the obstacle frame. According to Assumption 1,
we have 1) w 2 [wmin, wmax], where wmin 0 and wmax � 0; and 2) a 2 [amin, amax], where
amin 0 and amax � 0.

Before proving Proposition 1, we present preliminary results that are useful towards proving the
Proposition. Note that the set of safe control UD

S (x) := {u 2 U | �(f(x, u)) max{�(x)� ⌘, 0}}
is non-empty if it is non-empty in the following two cases: �(x)�⌘ < 0 or �(x)�⌘ � 0. Lemma 1
shows that the safety index design rule guarantees non-empty set of safe control when �(x)�⌘ � 0.
Lemma 2 shows the set of safe control is non-empty when �(x)� ⌘ < 0.
Lemma 1. If the dynamic system satisfies the assumptions in Assumption 1 and there’s only one

obstacle in the environment, then the safety index design rule in Section 4.1 ensures that the robot

system in 2D plane has nonempty set of safe control at state where �(x)� ⌘ � 0.

Proof. When �(x)� ⌘ � 0, the condition �(f(x, u)) max{�(x)� ⌘, 0} becomes the condition:

�(f(x, u)) �(x)� ⌘ (6)

According to the last assumption in Assumption 1, we have dt ! 0. Therefore, the discrete time
approximation error approaches zero, and �(f(x, u)) = �(x) + dt · �̇(x, u) + �, where � ! 0.
Then we can rewrite (6) as:

�̇ �⌘/dt (7)

According to (5) and the condition that environment has only one obstacle, the condition on �̇ is
equivalent to �ndn�1ḋ � kd̈ �⌘/dt. Therefore, in order to get a feasible control satisfying (7),
we need to make sure that the following statement holds:

8x, 9u, s.t. d̈ � ⌘/dt� ndn�1ḋ

k
. (8)

According to Assumption 1, we have that for all possible values of a and w, there always exists a
control u to realize such a and w. Based on state variables ↵, and v, the control variables a and w,
and use the relationships between d̈, ḋ and these state and control variables, we rewrite (8) as the
following:

8(↵, v), 9(a,w), s.t. � a cos(↵) + v sin(↵)w � ⌘/dt+ ndn�1v cos(↵)

k
(9)

According to the safety index design rule, we have ⌘ = 0. Note that velocity v is always a non-
negative value. If v = 0, we have RHS of (9) is 0, and the LHS of (9) is �a cos(↵). Since

14

a 2 [amin, amax], where amin 0 and amax � 0, there always exists a control such that LHS of
(9) is non-negative, which satisfies (9).

Thus, we only need to consider v > 0, and prove that the safety index design rule can ensure
nonempty set of safe control by satisfying the following condition :

8(↵, v), 9(a,w), s.t. � a
cos(↵)

v
+ sin(↵)w � ndn�1 cos(↵)

k
(10)

There are only three scenarios, cos(↵) > 0, cos(↵) = 0, or cos(↵) < 0. First, we check the simplest
case, which is cos(↵) = 0. When cos(↵) = 0, the RHS of the (10) is zero, and �a cos(↵)

v is also
zero. Note that since w is the angular velocity action which can be either positive or negative, thus
no matter sin(↵) is 1 or �1, we can always find a w to make sure sin(↵)w > 0.

Next, we consider the second case where cos(↵) > 0, which means that the vehicle is moving closer
towards the obstacles (ḋ < 0). Now, we rewrite (10) as the following:

8(↵, v), 9(a,w), s.t. � a

v
+ tan(↵)w � ndn�1

k
(11)

and (11) can be verified by showing:

min
v,tan(↵)

max
a,w

(�a

v
+ tan(↵)w) � max

d

ndn�1

k
(12)

To prove (12), we will find the lower bound of LHS of (12), and upper bound of RHS of (12), and
establish the constraint such that lower bound of LHS is greater than upper bound of RHS.

Now we find the lower bound of LHS of (12). Firstly, we have tan(↵) 2 (� inf, inf) and w 2
[wmin, wmax], we have mintan(↵) maxw tan(↵)w � 0. Secondly, since a 2 [amin, amax] and
v 2 [0, vmax], we have:

min
v,tan(↵)

max
a,w

(�a

v
+ tan(↵)w) � �amin

vmax
(13)

Since we are considering �(x) � ⌘ � 0, which is equivalent to d (� + dnmin � kḋ)1/n, thus the
following condition holds:

max
d

ndn�1

k
 max

ḋ

n(� + dnmin � kḋ)
n�1
n

k
=

n(� + dnmin + kvmax)
n�1
n

k
(14)

According to the safety index design rule, where n(�+dn
min+kvmax)

n�1
n

k �amin
vmax

. The following
condition holds:

min
v,tan(↵)

max
a,w

(�a

v
+ tan(↵)w) � �amin

vmax
� n(� + dnmin + kvmax)

n�1
n

k
� max

d

ndn�1

k
(15)

Finally, we consider the third case where cos(↵) < 0, which means that the vehicle is moving away
from the obstacles (ḋ > 0). We can rewrite (10) as following:

8(↵, v), 9(a,w), s.t. � a

v
+ tan(↵)w ndn�1

k
(16)

which can be verified by showing:

max
v,tan(↵)

min
a,w

�a

v
+ tan(↵)w min

d

ndn�1

k
(17)

Similarly, we can show that:

max
v,tan(↵)

min
a,w

(�a

v
+ tan(⌘)w) �amax

vmax
(18)

15

and:

min
d

ndn�1

k
� 0 (19)

Therefore, regardless of k, n, and � value, (16) is always satisfied.

In summary, we have proven that if the control system satisfies the assumptions in Assumption 1 and
there’s only one obstacle in the environment, then the safety index design rule in Section 4.1 ensures
that the robot system in 2D plane has nonempty set of safe control at state where �(x)� ⌘ � 0.

Lemma 2. If the dynamic system satisfies the assumptions in Assumption 1 and there’s only one

obstacle in the environment, then the safety index design rule in Section 4.1 ensures any control is a

safe control for robot system in 2D plane at state where �(x)� ⌘ < 0.

Proof. When �(x)� ⌘ < 0, the condition �(f(x, u)) max{�(x)� ⌘, 0} becomes the condition:

�(f(x, u)) 0 (20)

According to the last assumption in Assumption 1, we have dt ! 0. Therefore, the discrete time
approximation error approaches zero, and �(f(x, u)) = �(x) + dt · �̇(x, u) + �, where � ! 0.
Then we can rewrite (20) as:

�̇ ��/dt (21)

According to (5) and the condition that environment has only one obstacle, the condition on �̇ is
equivalent to �ndn�1ḋ� kd̈ ��/dt. Therefore, in order to get a feasible control satisfying (21),
we need to make sure that the following statement holds:

8x, 9u, s.t. d̈ � �(x)/dt� ndn�1ḋ

k
(22)

Since ⌘ = 0 according to the safety index design rule, �(x) � ⌘ < 0 indicates �(x) < 0. Since
dt ! 0 according to Assumption 1, we further have �(x)/dt ! �1. According to Assumption 1,
we have the state space is bounded, thus both d and ḋ are bounded, which indicates ndn�1ḋ is also
bounded. Therefore, the following condition holds:

�(x)/dt� ndn�1ḋ

k
! �1 (23)

We have for all possible values of a and w, there always exists a control u to realize such a and w
according to Assumption 1, which indicates the mapping from u to a,w is a non-injective surjective
function. Since a and w are bounded and both can achieve zeros according to Assumption 1, we
have 8u, the corresponding a,w are bounded. Since d̈ = �a cos(↵) + v sin(↵)w, the following
condition holds:

8x, 8u, s.t. d̈ is bounded (24)

which indicates (22) holds. Therefore, we have proven that if the dynamic system satisfies the
assumptions in Assumption 1 and there’s only one obstacle in the environment, then the safety
index design rule in Section 4.1 ensures that any control is a safe control for robot system in 2D
plane at state where �(x)� ⌘ < 0.

C.2 Proof of Proposition 1

Proof. Note that the set of safe control UD
S (xt) := {u 2 U | �(f(x, u)) max{�(x) � ⌘, 0}} is

non-empty if it is non-empty in the following two cases: �(x)� ⌘ < 0 or �(x)� ⌘ � 0.

Firstly, we consider the case where �(x)� ⌘ � 0. We have �(x)� ⌘ = maxi �i(x)� ⌘ � 0, where
�i is the safety index with respect to the i-th obstacle. According to assumption 1, we have that
at any given time, there can at most be one obstacle becoming safety critical, such that � � ⌘ � 0

16

(Sparse Obstacle Environment). Therefore, maxi �i(x)� ⌘ � 0 indicates there’s only one obstacle
(j-th obstacle) in the environment that �j(x) � ⌘ � 0. Whereas for the rest of the obstacles, we
have �k(x)� ⌘ < 0, k 6= j.

Denote UD
S j(x) := {u 2 U | �j(f(x, u)) �(x)j � ⌘} where �j(x) � ⌘ � 0. According to

Lemma 1, we have if the dynamic system satisfies the assumptions in Assumption 1, then the safety
index design rule in Section 4.1 ensures UD

S j(x) is nonempty.

Denote UD
S k(x) := {u 2 U | �k(f(x, u)) 0} where �k(x) � ⌘ < 0 and k 6= j. According to

Lemma 2, we have if the dynamic system satisfies the assumptions in Assumption 1, then the safety
index design rule in Section 4.1 ensures UD

S k(x) = U . Since UD
S j(x) ⇢ U , we have UD

S j(x) ⇢
UD
S k(x). Thus, we have that �k(f(x, u)) 0 �j(x)� ⌘, for u 2 UD

S j(x).

Therefore, we further have that if �(x) � ⌘ � 0, by applying u 2 UD
S j(x), the following condition

holds:

�(f(x, u)) = max
i
�i(f(x, u)) �j(x)� ⌘ = max{�(x)� ⌘, 0} (25)

Secondly, we consider the case where �(x) � ⌘ < 0. We have �(x) � ⌘ = maxi �i(x) � ⌘ < 0,
where �i is the safety index with respect to the i-th obstacle. Therefore, we have 8i,�i(x)� ⌘ < 0.

According to Lemma 2, we have that if the dynamic system satisfies the assumptions in As-
sumption 1, then the safety index design rule in Section 4.1 ensures that 8u 2 U , we have
8i,�i(f(x, u)) < 0. Therefore, if �(x) � ⌘ < 0, by applying u 2 U , the following condition
holds:

�(f(x, u)) = max
i
�i(f(x, u)) 0 = max{�(x)� ⌘, 0} (26)

In summary, if the dynamic system satisfies the assumptions in Assumption 1, then the safety index
design rule in Section 4.1 ensures that the robot system in 2D plane has nonempty set of safe control
at any state, i.e., UD

S (x) 6= ;, 8x.

17

D Proof of Proposition 2

D.1 Preliminary Results.

Before proving Proposition 2, we present preliminary results that are useful towards proving the
proposition. Lemma 3 shows that if AdamBA is able to find two consecutive control inputs with
different status (safe or unsafe), then AdamBA will converge to a control input on the boundary of
the set of safe control. Lemma 4 shows that if the synthesized safety index can guarantee a non-
trivial set of safe control, then we can find an anchor point in phase 2 of Algorithm 2 with finite
iterations. Lemma 5 shows that if we enters phase 2 of Algorithm 2, we can always find a local
optima solution of (4).

Lemma 3 (Convergence). If AdamBA enters the exponential decay phase (line 16 in algorithm 1),

then it can always return an approximated boundary point with approximation error upper bounded

by ✏.

Proof. Denote P1 as the approximated boundary point when AdamBA first enters the exponential

decay phase and P�1 as the approximated boundary point at second to last iteration during exponen-

tial outreach phase. Note that P1 is also the approximated boundary point at the last iteration during
exponential outreach phase.

Denote Pt as the approximated boundary point at t-th iteration of exponential decay phase, we also
denote �t as the learning rate at t-th iteration of exponential decay phase. To proof the lemma,
we define an auxiliary procedure during exponential decay phase as following: we maintain two
points PN and PS , which denote one unsafe control point, and one safe control point along ~vi. It is
obvious that Pt is either PN or PS . Denoting the boundary point as Pb, we have 9� 2 (0, 1), Pb =
�PS+(1��)PN . Next, we choose the Pt+1 = 1

2 (PN+PS), and we update PN and PS , such that 1)
PN = Pt+1, PS = PS if Pt+1 safety status is unsafe, 2) PN = PN , PS = Pt+1 if Pt+1 safety status
is safe. Then we have that Pb is still between PN , PS , i.e., 9�1 2 (0, 1), Pb = �1PS + (1� �1)PN .

Next, we will show that exponential decay implicitly maintains PN and PS as described above.
Suppose at time step t, there are points PN and PS along unit vector ~vi, where Pt is either PN or
PS , and kPN � PSk = �t. In fact, there are four different situations: 1) {Pt = PN}-{S is safe}, 2)
{Pt = PS}-{S is safe}, 3) {Pt = PN}-{S is unsafe}, and 4) {Pt = PS}-{S is unsafe}, where S is
the reference control safety status.

We begin by considering the first situation ({Pt = PN}-{S is safe}). According to exponential

decay, we have the following holds for boundary point Pt+1:

Pt+1 = Pt �
1

2
~vi�t (27)

= PN � 1

2

PN � PS

kPN � PSk
kPN � PSk

=
1

2
(PN + PS)

where the safety status of Pt+1 can either be safe or unsafe. If Pt+1 safety status is safe, then there
exist PS = Pt+1, PN = PN along ~vi, where kPS � PNk = 1

2�t. If Pt+1 safety status is unsafe,
then there exist PN = Pt+1, PS = PS along ~vi, where kPS � PNk = 1

2�t. Since �t+1 = 1
2�t,

then we have shown there are points PN and PS along unit vector ~vi at iteration t+ 1, where Pt+1

is either PN or PS , and kPN � PSk = �t+1.

Similarly, we can derive the same conclusions for the other three situations ({Pt = PS}-{S is safe},
{Pt = PN}-{S is unsafe}, and {Pt = PS}-{S is unsafe}).

Note that when we first enter the exponential decay prodedure, we have either {PS = P1}-{PN =
P�1} or {PN = P1}-{PS = P�1}, such that kPN � PSk = �1.

By induction, at any iteration t during exponential decay, there exist PN and PS along ~vi, such that
Pt is either PN or PS , and kPN � PSk = �t, where �t = 1

2

(t�1)
�1. With the existence of PN and

PS , we further have 9�t 2 (0, 1), Pb = �tPS + (1 � �t)PN . Therefore, we have the following

18

Control Space

�
�

�D
S (x)

ua

s*

s�

Figure 10: Illustration of the grid sampling to find anchor control point.

inequality holds:

kPt � Pbk kPN � PSk = �t =
1

2

(t�1)

�1

Note that the exit condition for exponential decay is 1
2

(t�1)
�1 < ✏, where 1

2

(t�1) ! 0 when t ! 1.
Therefore, we can always find a approximated boundary point Pt after we enter exponential decay

phase, and the approximation error kPt � Pbk is upper bounded bounded by ✏.

Lemma 4 (Existence). If the synthesized safety index can guarantee a non-empty set of safe control,

then we can find an anchor point in phase 2 of Algorithm 2 with finite many iterations (line 11 in

algorithm 2).

Proof. By increasing k, we can always have n(�+dn
min+kvmax)

n�1
n

k < � amin
vmax

satisfying the safety
index design rule. Therefore, we have the existence of a non-trivial set of safe control UD

s such that:

9Q ⇢ UD
S , 9 > 0, s.t. s > , (28)

where Q is a nu-dimensional hypercube with the same length of s. Denote ⇣[i] = maxj,k kuj
[i] �

uk
[i]k, where u[i] denotes the i-th dimension of control u, and uj 2 UD

S , uk 2 UD
S .

By directly applying grid sampling in UD
s with sample interval s⇤ at each control dimension, such

that s⇤ < s. The maximum sampling time T a for finding an anchor point in phase 2 satisfies the
following condition:

T a <
nuY

i=1

d
⇣[i]
s⇤

e , (29)

where T a is a finite number due to infimum condition of s in (28). Then we have proved that we can
find an anchor point in phase 2 of Algorithm 2 with finite iteration (i.e. finite sampling time). The
grid sampling to find anchor control point is illustrated in Figure 10.

Lemma 5 (Feasibility). If we enters the phase 2 of Algorithm 2 with an anchor safe control being

sampled, we can always find a local optimal solution of (4).

Proof. Entering the phase 2 of Algorithm 2, we first apply grid sampling to find a safe control ua as
an anchor point. We then employ AdamBA to outreach from ur following the vector direction from
ur to ua (line 12). If the boundary point u⇤ is not found (u⇤ is empty), we then employ AdamBA
again (line 14) to outreach from ua following the vector direction from ua to ur. We will prove
phase 2 of Algorithm 2 is guaranteed to find a safe control by proving at least one of these two
AdamBA processes is able to return a valid boundary point (i.e, if line 12 fails to find u⇤, then line

19

Control Space

�D
S (x)

ur

�
Figure 11: Illustration of the case where there is no return from phase 1. The red dots represent the sampled
control points.

14 is guaranteed to find a boundary point). Intuitively, as long as we can proof that by choosing
learning rate as kur�uak

4 , at least one of these two AdamBA processes can enter exponential decay

phase, then we can guarantee a boundary solution will be returned by lemma 3.

Specifically, when the system has a non-trivial set of safe control, by Lemma 4, we can always
have one anchor safe control ua satisfying the constraint of (4) after entering phase 2. Note that the
condition we enter phase 2 is that there’s no return from phase 1, which is illustrated in fig. 11.

Denote Ua as the connected set of safe control ua belongs to, i.e., ua 2 Ua ✓ UD
S . Denote

direction of gradient vector from ur to ua as ~va = ua�ur

||ua�ur|| . And denote Ua
~va

to be the set of
safe control points that are both within set of safe control Ua, and is along the ~va direction, i.e.
Ua
~va

= {ua
~va
|ua

~va
2 Ua,

ua
~va

�ur

kua
~va

�urk = ~va}. We further denote un 2 Ua
~va

and uf 2 Ua
~va

as the
Euclidean nearest and farthest control point with respect to ur, i.e., un = argminu2Ua

~va
ku � urk,

and uf = argmaxu2Ua
~va

ku� urk. The illustrations of un and uf are demonstrated in fig. 12.

Now consider the phase 2 of Algorithm 2. We employ AdamBA to outreach from ur following
the vector direction from ur to ua. Denote the boundary point returned by AdamBA in line 12 of
Algorithm 2 as u⇤ (The return of AdamBA is a set, whereas the set here has at most one element).
If we can find u⇤, then u⇤ is on the boundary of the set of safe control, which indicates that phase 2
of Algorithm 2 can find a local optima of (4).

If we cannot find u⇤ (u⇤ is empty) in line 12 of Algorithm 2, as illustrated in Figure 12, then all
the searched control points (red dots in Figure 12) along ~va (red arrow direction in Figure 12) is not
within Ua

~va
. Therefore, we have:

9n 2 N, (2n � 1)||~va|| 2 (0, ||~⇢||)
s.t. 8m 2 N,m > n, (2m � 1)||~va|| /2 (||~⇢||, ||~⇢+ ~ ||) ,

(30)

where ~⇢ = un � ur and ~ = uf � un.

Consider the contrapositive of (30):
8n 2 N, (2n � 1)||~va|| 2 (0, ||~⇢||)
s.t. 9m 2 N,m > n, (2m � 1)||~va|| 2 (||~⇢||, ||~⇢+ ~ ||) ,

(31)

where (31) holds if ||~⇢|| 1
2 ||~ || (k~⇢k and k~ k are also illustrated in fig. 12). The proof is as

follows:

8n 2 N, (2n � 1)||~va|| 2 (0, ||~⇢||),max((2n+1 � 1)||~va||) < 3||~⇢|| < ||~⇢+ ~ ||
i.e. 9m 2 N,m > n, (2m � 1)||~va|| 2 (||~⇢||, ||~⇢+ ~ ||) .

(32)

Therefore, we can derive from (30) that:

||~⇢|| > 1

2
||~ || , (33)

20

Control Space

�
�

�D
S (x)

ua

ur

un

uf

�ua � ur�
4

� ⃗� �

� ⃗� �

Figure 12: Illustration of the case when it is unable to find u⇤.

where (33) holds if (30) holds.

Following the remaining process of the phase 2 of Algorithm 2, we start outreach process from
ua along the gradient vector ur�ua

kur�uak . Denote the n-th search control point as us
n. The Euclidean

distance between us
n and ua is equal to �(2n � 1), where � is the initial learning rate (step size) of

AdamBA.

Therefore, we have:

9n 2 N,� 2 (0, ||(ur � ua)||), (2n � 1)� 2 (
2

3
||(ur � ua)||, ||(ur � ua)||) , (34)

which is equivalent to:

9n 2 N,� 2 (0, ||(ur � ua)||), [1� (2n � 1)]� 2 (0,
1

3
|| ~ur � ~ua||) . (35)

Since ||ur � ua|| < || ~ i + ~⇢i||, we have:

9n 2 N,� 2 (0, ||(ur � ua)||), [1� (2n � 1)]� 2 (0,
1

3
||~ + ~⇢||) . (36)

Then we take (33) into (36):

9n 2 N,� 2 (0, ||(ur � ua)||), [1� (2n � 1)]� 2 (0, ||~⇢||) . (37)

which means:
9n 2 N, ||us

n � ur|| < ||~⇢i|| . (38)
Note that ||us

n � ur|| < ||~⇢i|| means us
n /2 Ua

~va
(i.e., us

n is an unsafe control) and AdamBA will turn
to decay phase to find boundary points.

In Algorithm 2, by take � = 1
4 ||(u

r � ua)||, we have:

us
1 = ua +

1

4
(ur � ua) (39)

Note that us
1 is always in the set of unsafe control. This is because we did not find a safe action

in line 12 of Algorithm 2, where us
1 has been sampled during the exponential outreach phase of

AdamBA called by line 12 of Algorithm 2.

Therefore, we have proved that in the phase 2 of Algorithm 2, we can either directly find a boundary
point u⇤, or we can start from ua and are able to find a control whose safety status is different
from the safety status of ua. By Lemma 3, an approximated safe control on the set of safe control
boundary can always be found, which is also a local optima of (4).

D.2 Proof of Proposition 2

Proof. We have proved Algorithm 2 is able to find local optimal solution of (4) by Lemma 3 and
Lemma 5. We now prove Algorithm 2 can be finished within finite iterations.

21

If phase 1 of Algorithm 2 returns the safe control, then we find a local optima solution of (4) with
finite iterations. The upper bound of the iterations T 1 of simulating black-box dynamics of phase
1 is the addition of maximum iterations from exponential outreach and exponential decay. Denote
⇠ = maxj,k kuj�ukk, where uj 2 UD

S , uk 2 UD
S . The maximum iteration T 1

outreach at exponential

outreach satisfies:
T 1
outreach n log2(

⇠

�
+ 1) (40)

where n is the number of gradient vectors. According to lemma 3, the exit condition for exponen-

tial decay should satisfy that the learning rate < ✏. Therefore, the maximum iteration T 1
decay at

exponential decay satisfies:

T 1
outreach n log2(

⇠

�
+ 1)� n log2(

✏

�
) (41)

Therefore the maximum iteration T 1 for phase 1 satisfies:

T 1 n ⇤ (dn log2(
⇠

�
+ 1)e

| {z }
exponential outreach of phase 1

+ dn log2(
⇠

�
+ 1)� n log2(

✏

�
)e

| {z }
exponential decay of phase 1

) , (42)

If phase 1 of Algorithm 2 has no return, then we enter the phase 2 of Algorithm 2. If the safety index
design can guarantee a non-trivial set of safe control, by Lemma 4 we can always find an anchor
safe control with finite iterations T a, which is bounded by:

T a
nuY

i=1

d
⇠[i]
s⇤

e , (43)

If we can find an anchor safe control, by Lemma 5, we can always find a local optima solution of
(4) by running Algorithm 1 at most twice (line 12 and line 14), where the iteration times T 2 of the
phase 2 is bounded by:

T 2 T a + 2 ⇤ (n ⇤ (dn log2(
⇠⇤

�⇤ + 1)e
| {z }

exponential outreach of phase 1

+ dn log2(
⇠⇤

�⇤ + 1)� n log2(
✏

�⇤)e
| {z }

exponential decay of phase 1

)) . (44)

where ⇠⇤ = ||ur�ua|| and �⇤ = 1
4 ||u

r�ua||. Then, we can give the upper bound of iteration times
T ISSA of Algorithm 2 as T ISSA = T 1 + T 2.

In summary, Algorithm 2 can always find a local optima solution of (4) with finite iterations if the
safety index design can guarantee a non-empty set of safe control, which proves Proposition 2.

22

E Proof of Theorem 1

Here we define set XD
S := {x|�(x) 0}. Before we proof the main theorem, we first present a

preliminary result regarding XD
S that is useful towards proving the main theorem:

Lemma 6 (Forward Invariance of XD
S). If the control system satisfies Assumption 1 and the safety

index design follows the rule described Section 4.1, the implicit safe set algorithm guarantees the

forward invariance to the set XD
S .

Proof. If the control system satisfies the assumptions in Assumption 1 and the safety index design
follows the rule described Section 4.1, then we can ensure the system has nonempty set of safe
control at any state by Proposition 1. By Proposition 2, implicit safe set algorithm can always find
local optima solution of (4). The local optima solution always satisfies the constraint �(f(xt, ut))
max{�(xt) � ⌘, 0}, which indicates that 1) if �(xt0) 0, then �(xt) 0, 8t � t0. Note that
�(x) 0 demonstrates that x 2 XD

S .

E.1 Proof the Theorem 1

Proof. Leveraging Lemma 6, we then proceed to prove that the forward invariance to the set XD
S

guarantees the forward invariance to the set S ✓ XS . Recall that S = XS \XD
S . Depending on the

relationship between XD
S and XS , there are two cases in the proof which we will discuss below.

Case 1: XD
S = {x|�(x) 0} is a subset of XS = {x|�0(x) 0}.

In this case, S = XD
S . According to Lemma 6, If the control system satisfies the assumptions in

Assumption 1 and the safety index design follows the rule described Section 4.1, the implicit safe
set algorithm guarantees the forward invariance to the set XD

S and hence S .

Case 2: XD
S = {x|�(x) 0} is NOT a subset of XS = {x|�0(x) 0}.

In this case, if xt 2 S , we have �0(xt) = maxi �0i(xt) 0, which indicates 8i,�0i 0.

Firstly, we consider the case where �0i(xt) < 0. Note that �0i(xt+1) = �0i(xt) + �̇0i(xt)dt +
�̈0i(xt)dt

2

2! + · · · , since the state space and control space are both bounded, and dt ! 0 according to
Assumption 1, we have �0i(xt+1) ! �0i(xt) 0.

Secondly, we consider the case where �0i(xt) = 0. Since xt 2 S , we have maxi �i(xt) 0, which
indicates 8i,�+ dnmin � dni � kḋi 0. Since �0i(xt) = 0, we also have di = dmin. Therefore, the
following condition holds:

� � kḋi 0 (45)

ḋi �
�

k

According to the safety index design rule, we have k,� 2 R+, which indicates ḋi > 0. Therefore,
we have �0i(xt+1) < 0.

Summarizing the above two cases, we have shown that if �0i(xt) 0 then �0i(xt+1) 0, which
indicates if 8i,�0i(xt) 0 then 8i,�0i(xt+1) 0. Note that 8i,�0i(xt+1) 0 indicates that
�0(xt+1) = maxi �0i(xt+1) 0. Therefore, we have that if xt 2 S then xt+1 2 XS . Thus, we
also have xt+1 2 S by Lemma 6. By induction, we have if xt0 2 S , xt 2 S, 8t > t0.

In summary, by discussing the two cases of whether XD
S is the subset of XS , we have proven that

if the control system satisfies the assumptions in Assumption 1 and the safety index design follows
the rule described in Section 4.1, the implicit safe set algorithm guarantees the forward invariance
to the set S ✓ XS .

23

F Expeiment Details

F.1 Safety Gym Experiment Details

F.1.1 Environment Settings

Goal Task In the Goal task environments, the reward function is:

r(xt) = dgt�1 � dgt + [dgt < Rg] ,

where dgt is the distance from the robot to its closest goal and Rg is the size (radius) of the goal.
When a goal is achieved, the goal location is randomly reset to someplace new while keeping the
rest of the layout the same.

Push Task In the Push task environments, the reward function is:

r(xt) = drt�1 � drt + dbt�1 � dbt + [dbt < Rg] ,

where dr and db are the distance from the robot to its closest goal and the distance from the box
to its closest goal, and Rg is the size (radius) of the goal. The box size is 0.2 for all the Push task
environments. Like the goal task, a new goal location is drawn each time a goal is achieved.

Hazard Constraint In the Hazard constraint environments, the cost function is:

c(xt) = max(0, Rh � dht) ,

where dht is the distance to the closest hazard and Rh is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ct = 1 if the robot contacts with
the pillar otherwise ct = 0.

Black-box Dynamics The underlying dynamics of Safety Gym is directly handled by MuJoCo
physics simulator [20]. This indicates the dynamics is not explicitly accessible but rather can be
implicitly evaluated, which is suitable for our proposed implicit safe set algorithm. The implemen-
tation of block-box dynamics for ISSA is through simulation in the MuJoCo physics simulator and
recovering to the pre-simulated state.

State Space The state space is composed of various physical quantities from standard robot sen-
sors (accelerometer, gyroscope, magnetometer, and velocimeter) and lidar (where each lidar sensor
perceives objects of a single kind). The state spaces of all the test suites are summarized in Table 2.
Note that Vase is another type of constraint in Safety Gym [14] and all the returns of vase lidar
are zero vectors (i.e., [0, 0, · · · , 0] 2 R16) in our experiments since none of our eight test suites
environments have vases.

Control Space For all the experiments, the control space U ⇢ R2. The first dimension u1 2
[�10, 10] is the control space of moving actuator, and second dimension u2 2 [�10, 10] is the
control space of turning actuator.

F.1.2 Policy Settings

Detailed parameter settings are shown in Table 3. All the policies in our experiments use the de-
fault hyper-parameter settings hand-tuned by Safety Gym [14] except the cost limit = 0 for PPO-
Lagrangian and CPO.

F.1.3 Safety Index Settings

The parameters of safety index design are summarized in Table 4, where we adopt k = 0.375 for
test suites with constraint size of 0.05 and k = 0.5 for test suites with constraint size of 0.15.

24

Table 2: The state space components of different test suites environments.

State Space Option Goal-Hazard Goal-Pillar Push-Hazard
Accelerometer (R3) ! ! !

Gyroscope (R3) ! ! !
Magnetometer (R3) ! ! !

Velocimeter (R3) ! ! !
Goal Lidar (R16) ! ! !

Hazard Lidar (R16) ! # !
Pillar Lidar (R16) # ! #
Vase Lidar (R16) ! ! !
Box Lidar (R16) # # !

Table 3: Important hyper-parameters of PPO, PPO-Lagrangian, CPO, PPO-SL and PPO-ISSA

Policy Parameter PPO PPO-Lagrangian CPO PPO-SL & PPO-ISSA
Timesteps per iteration 30000 30000 30000 30000

Policy network hidden layers (256, 256) (256, 256) (256, 256) (256, 256)
Value network hidden layers (256, 256) (256, 256) (256, 256) (256, 256)

Policy learning rate 0.0004 0.0004 (N/A) 0.0004
Value learning rate 0.001 0.001 0.001 0.001

Target KL 0.01 0.01 0.01 0.01
Discounted factor � 0.99 0.99 0.99 0.99

Advantage discounted factor � 0.97 0.97 0.97 0.97
PPO Clipping ✏ 0.2 0.2 (N/A) 0.2

TRPO Conjugate gradient damping (N/A) (N/A) 0.1 (N/A)
TRPO Backtracking steps (N/A) (N/A) 10 (N/A)

Cost limit (N/A) 0 0 (N/A)

F.1.4 Metrics Comparison

In this section, we report all the results of eight test suites by three metrics defined in Safety Gym
[14]:

• The average episode return Jr.
• The average episodic sum of costs Mc.
• The average cost over the entirety of training ⇢c.

The average episode return Jr and the average episodic sum of costs Mc were obtained by averaging
over the last five epochs of training to reduce noise. Cost rate ⇢c was just taken from the final
epoch. We report the results of these three metrics in Table 5 normalized by PPO results. We
calculate the converged reward J̄r percentage of PPO-ISSA compared to other three safe RL baseline
methods (PPO-Lagrangian, CPO and PPO-SL) over eight control suites. The computed mean reward
percentage is 95%, and the standard deviation is 9%. Therefore we conclude that PPO-ISSA is able
to gain 95%± 9% cumulative reward compared to state-of-the-art safe DRL methods.

Note that in safety critical environments, there is always a tradeoff between reward performance
and safety, where safety guarantees prevent aggressive strategies for seeking high reward. On the
other hand, the provable safety is prominently weighted in the tradeoff, since any safety violation
may lead to property loss, life danger in the real robotics applications. Therefore, PPO-ISSA does a
better job in terms of balancing the tradeoff between provable safety and task performance.

25

Table 4: Experiment-specific parameters of safety index design for PPO-ISSA.

Safety Index Parameter Constraint size = 0.05 Constraint size = 0.15
n 1 1
k 0.375 0.5
⌘ 0 0

Table 5: Normalized metrics obtained from the policies at the end of the training process, which is averaged
over eight test suits environments and five random seeds.

(a) Goal-Hazard1-0.05

Algorithm J̄r M̄c ⇢̄c
PPO 1.00 1.00 1.00

PPO-Lagrangian 1.003 1.587 0.859
CPO 1.012 1.052 0.944

PPO-SL [18’ Dalal] 1.038 1.031 1.110
PPO-ISSA (Ours) 1.077 0.000 0.000

(b) Goal-Hazard4-0.05

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.983 0.702 0.797
CPO 1.022 0.549 0.676

PPO-SL [18’ Dalal] 1.014 0.923 0.963
PPO-ISSA (Ours) 0.961 0.000 0.000

(c) Goal-Hazard1-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.086 0.338 0.760
CPO 1.011 0.553 0.398

PPO-SL [18’ Dalal] 1.018 0.898 1.048
PPO-ISSA (Ours) 1.008 0.000 0.000

(d) Goal-Hazard4-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.948 0.581 0.645
CPO 0.932 0.328 0.303

PPO-SL [18’ Dalal] 1.038 0.948 1.063
PPO-ISSA (Ours) 0.895 0.000 0.000

(e) Goal-Pillar1-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.968 0.196 0.239
CPO 0.976 0.328 0.494

PPO-SL [18’ Dalal] 1.017 0.948 1.063
PPO-ISSA (Ours) 1.056 0.000 0.000

(f) Goal-Pillar4-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.035 0.105 0.159
CPO 1.060 0.304 0.221

PPO-SL [18’ Dalal] 1.094 1.055 0.780
PPO-ISSA (Ours) 0.965 0.000 0.000

(g) Push-Hazard1-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.124 0.356 0.384
CPO 0.872 0.231 0.228

PPO-SL [18’ Dalal] 1.107 0.685 0.610
PPO-ISSA (Ours) 0.841 0.000 0.000

(h) Push-Hazard4-0.15

Algorithm J̄r M̄c ⇢̄c
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.72 0.631 0.748
CPO 0.758 0.328 0.385

PPO-SL [18’ Dalal] 0.914 1.084 1.212
PPO-ISSA (Ours) 0.727 0.000 0.000

26

(a) Goal-Hazard1-0.05 (b) Goal-Hazard1-0.15 (c) Goal-Pillar1-0.15 (d) Push-Hazard1-0.15

Figure 13: Average performance of PPO-ISSA and baseline methods on 1-constraint environments over five
random seeds. The three rows represent average episodic return, average episodic cost and overall cost rate of
constraints. The safety advantage of safe RL baseline methods over unconstrained RL method (PPO) becomes
trivial as the constraint number and constraint size decrease, where the cost rate and average episode cost of
PPO-Lagrangian, CPO and PPO are nearly the same when there is only one constraint with size 0.05.

27

G Scalability Analysis

The safe control algorithm ISSA is based on the sampling method algorithm 1 AdamBA. In this
section, we demonstrate the scalability of AdamBA and ISSA in systems with higher dimensions of
state and control.

Figure 14: doggo robot: a quadrupedal robot with bilateral symmetry with 12-dimensional control space.

G.1 ISSA in higher dimensional constrol systems

We test ISSA with a doggo robot as shown in Figure 14 with 12 dimensional control space and 80
dimensional state space. We evaluate ISSA with the doggo robot in the Goal-Hazard1-0.15 suite. As
shown in Figure 15, ISSA is able to guarantee zero-violation in higher dimensional control systems.
We notice that in system with higher control dimensions, safe RL methods like PPO-Lagrangian and
CPO perform poorly compared to PPO, which demonstrates the constrained RL algorithms struggle
to learn good reward performance for complex locomotion behavior. Similar comparison results are
also reported in Safety Gym benchmarks [14]. In contrast, PPO-ISSA is able to achieve the best
reward performance while guaranteeing zero safety violation, showing the scalability of ISSA to
achieve satisfying reward performance in systems with higher control dimensions.

To illustrate the computation cost of searching for a safe control using ISSA in systems with higher
control dimensions, we apply ISSA to find safe controls for both Point robot and doggo robot in the
Goal-Hazard1-0.15 suite with different number of unit gradient vectors generated by guassian dis-
tribution. Note that we desire to encourage ISSA phase 1 to find safe control, while the functionality
of ISSA phase 2 is the fail-safe strategy for ISSA phase 1 to ensure feasibility of ISSA since 1) ISSA
phase 2 is relatively more computational expensive than ISSA phase 1 due to random sampling, and
2) ISSA phase 2 can only return one safe control candidate. Thus, we are especially interested in
analyzing the performance of ISSA phase 1.

We report the average computation time, ISSA phase 1 success rate and number of safe control
candidates found by ISSA phase 1 under different robot types and number of unit gradient vectorss
in Table 6, where the success of ISSA phase 1 is defined as it returns at least 1 safe control which
may lead to a large deviation from the original nominal control. As demonstrated in Table 6, we
only need 20 unit gradient vectors for 12 dimensional control space doggo robot to achieve satisfying
success rate in ISSA phase 1 and number of safe control candidates. On the other hand, we need
10 unit gradient vectors for 2 dimensional control space Point robot. Therefore, higher control
dimensionality will not necessarily increase the computation cost exponentially for ISSA to find safe
control. We also notice that, even with the same number of vectors, the computaion time of doggo

(a) Average episode reward (b) Average episode cost (c) Average episode costrate

Figure 15: Average performance of PPO-ISSA and baseline methods on Goal-hazard1-0.15 environment of
doggo robot over five seeds. The three columns represent average episode return, average episode cost and
overallcost rate of constraints.

28

Table 6: Average Computation time, succuss ratio of ISSA phase 1 and number of safe control candidates of
200 ISSA runs on Goal-Hazard1-0.15.

Number of vectors Overall (non-parallel) ISSA Time Tall (s) ISSA phase 1 success rate Number of safe control
n = 3 0.023 0.962 1.193
n = 5 0.038 1.000 2.258

Point robot n = 10 (used) 0.076 1.000 4.576
Control dimension = 2 n = 20 0.160 1.000 9.838

n = 40 0.302 1.000 18.055
n = 100 0.737 1.000 25.740
n = 3 0.068 0.802 2.041
n = 5 0.116 0.903 3.051

Doggo robot n = 10 0.228 0.925 5.127
Control dimension = 12 n = 20 (used) 0.461 0.981 10.673

n = 40 0.910 0.990 19.373
n = 100 2.190 1.000 33.910

robot is 3 times longer than that of Point robot due to the doggo robot simulation takes longer than
point robot simulaton per step in MuJoCo simulator. Here we also highlight a fact that the process
of AdamBA outreach/decay for each unit gradient vector is independent from each other, thus we
can always accelerate ISSA by parallel computation, which is then discussed in Appendix G.2.

G.2 AdamBA in higher dimensional space

As reported in Appendix G.1, in MuJoCo environment, the sampling cost of AdamBA is not ex-
ponentially increasing as the control dimensions increase, where we only need 10 vectors for point
robot (2-dimensional control space) and only need 20 vectors for doggo robot (12-dimensional con-
trol space). However, let’s consider a worse case for AdamBA, where the relative size of safe con-
trol space in the entire control space is exponentially decreasing with dimension linearly increases,
which could result in the computation cost of AdamBA to find the boundary exponentially increas-
ing. We synthesis a simple control problem, where only half of the control space is safe for each
dimension, which means the portion of safe control space to the entire control space is 1

2n where n
is the number of control space dimensions. Note that for every unit gradient vector, the process of
AdamBA outraech/decay is independent of the other unit gradient vectors, which means we could
utilize parallel computation in practice when applying real-time robots. We report the average com-
putation time of AdamBA on the prescribed toy control problem in Figure 16, where we can see that
the computation cost of parallel AdamBA remains nearly the same as the number of vectors expo-
nentially increases, which shows the potential capability of AdamBA scaling to higher dimensional
real-time control systems.

Figure 16: The average computation time of non-parallel AdamBA and parallel AdamBA on toy problem with
different control dimensions and number of vectors.

29

	Introduction
	Problem Formulation
	Related Work
	Method
	Synthesize Safety Index
	Sample-Efficient Black-Box Constrained Optimization
	Implicit Safe Set Algorithm

	Theoretical Results
	Experimental Results
	Evaluating PPO-ISSA and Comparison Analysis
	Feasibility of Safety Index Synthesis
	Sensitivity Analysis and Scalability Analysis

	Conclusion and Future Work
	Review of Safe RL with Hard Safety Constraints
	Algorithms
	Proof of prop:1
	Preliminary Results
	Proof of prop:1

	Proof of prop:2
	Preliminary Results.
	Proof of prop:2

	Proof of thoem:main
	Proof the thoem:main

	Expeiment Details
	Safety Gym Experiment Details
	Environment Settings
	Policy Settings
	Safety Index Settings
	Metrics Comparison

	Scalability Analysis
	ISSA in higher dimensional constrol systems
	AdamBA in higher dimensional space

