
A Scale-Invariance and “Volume” Interpretation of α
We show that Eq. 3 results in the formulation being scale-invariant with respect to b. Consider
the same behavior under two different units b1 and b2 with b1 = c · b2. For example, b1 can be
the trajectory length in centimeters and b2 is the same quantity but in meters, and c = 100. Thus,
p(c · b1) = p(b2) and b∗1 = c · b∗2. To maintain the same α level in Eq. 3, we need to have σ1 = c ·σ2.
This implies that

p(t, τ |b̂1 = b∗1) =
N (b∗1; b(τ, t), σ2

1)p(τ |t)π(t)

p(b̂1 = b∗1)
(6)

=
N (b∗2; b(τ, t), σ2

2)p(τ |e)π(t)

p(b̂2 = b∗2)
= p(t|b̂2 = b∗2) (7)

because N (b∗1; b(τ, t), σ2
1) = N (b∗2; b(τ, t), σ2

2) due to the same scaling of b1 ∼ b2 and σ1 ∼ σ2,
and p(b̂1 = b∗1) = p(b̂2 = b∗2) as they are the same event. We conclude that the posterior distribution
is scale-invariant with respect to b(τ, t).

To motivate the bound of [b∗ −
√

3σ, b∗ +
√

3σ] in Eq. 3, we consider a uniform approximation
to N (b∗, σ2). To match the mean b∗ and standard deviation σ, U(b∗ −

√
3σ, b∗ +

√
3σ) is needed.

If we use this uniform distribution in Eq. 2 in lieu of the normal distribution, the posterior can be
instantiated by sampling from the prior and rejecting tasks for which the trajectory behavior b(τ, t)
falls outside of this bound. Thus, Eq. 3 specifies that the “volume” of (α · 100)% under p(t, τ) is
maintained.

The same invariance and “volume” interpretation holds for Eq. 5 as well. The former stems from
the standardization on b performed in Eq. 4. The latter uses the same uniform approximation but the
bound is one-sided since β ∈ (0, 1) by nature of the sigmoid transformation.

B MCMC Sampling with Stochastic Dynamics
Using the same logic as the case of stochastic controller, ROCUS can also accommodate stochas-
ticity in transition dynamics (e.g. object position uncertainty after it is pushed), as long as such
stochasticity can be captured in a random variable v and p(v|t) can be evaluated. This is typically
possible in simulation, and the modification to Alg. 1 is similar to the case of stochastic controllers.
In the real world, we can

• treat a sampled trajectory as the deterministic one;
• restart multiple times to estimate Eτ [b(τ, t)]; or
• use likelihood-free MCMC methods [34].

We leave these investigations to future work, and use deterministic dynamics in our experiments.

C Mathematical Definitions of Behaviors
A versatile and general form of a behavior is the (normalized or unnormalized) line integral of some
scalar field along the trajectory. Specifically, we have

b =

∫
τ

V (x) ds or b =
1

||τ ||

∫
τ

V (x) ds. (8)

Using this general definition, we define a list of behaviors in Tab. 2.

Trajectory length simply measures how long the trajectory is. In most of the behaviors below, the
normalizing factor is also length to decorrelate the behavior value from it.

Average velocity, acceleration and jerk are useful for a general understanding about how fast and
abruptly the robot moves, which is an important factor to its safety.

Straight-line deviation measures how much the robot trajectory deviates from the straight-line path,
in either the task space or the state space. A specific task instance in which the straight-line path
is feasible (e.g. with no obstacles) is typically considered easy. Thus, we can find tasks of varying
difficulty level on the spectrum of deviation values. In the definition, xi is the initial state, xf is the
final state, and proj is the projection operator.

12

Name Definition Name Definition

Trajectory Length b =

∫
τ

1 ds Straight-Line Deviation b =
1

||τ ||

∫
τ

||x− projxf−xi
x|| ds

Average Velocity b =
1

||τ ||

∫
τ

||ẋ|| ds Obstacle Clearance b =
1

||τ ||

∫
τ

min
xo∈O

||x− xo|| ds

Average Acceleration b =
1

||τ ||

∫
τ

||ẍ|| ds Near-Obstacle Velocity b =

∫
τ
||ẋ||/minxo∈O ||x− xo|| ds∫
τ

1/minxo∈O ||x− xo|| ds

Average Jerk b =
1

||τ ||

∫
τ

||...x|| ds Motion Legibility b =
1

||τ ||

∫
τ

p(g|x) ds

Table 2: A list of behavior definitions.

Obstacle clearance measures the average distance to the closest obstacle. Finding situations in
which the robot moves very close to obstacles is crucial to understanding the collision risk level. In
the definition, O represents the obstacle space.

Near-obstacle velocity calculates how fast the robot moves around obstacles. We define it as the
average velocity on the trajectory weighted by the inverse distance to the closest obstacle. Other
weighting method can be used, as long as it is non-negative and monotonically decreasing with dis-
tance. This behavior is correlated with the damage of a potential collision, as high-speed collisions
are usually far more dangerous and costly. Since we want the value to represent the average velocity,
we normalize by the integral of weights along the trajectory.

Motion legibility measures how well the goal can be predicted over the course of the exhibited
trajectory. In our definition, we use p(g|x), or the conditional probability of the goal g given at the
current robot state x, but there may be better application-specific definitions.

D Dynamical System Modulation
We review the DS formulation proposed by Huber et al. [7], and present our problem-specific adap-
tations for 2D Navigation in App. H.2 and 7DoF arm reaching in App. J.3. A reader familiar with
DS motion controllers may skip this review.

Given a target x∗ and the robot’s current state x, a linear controller u(x) = x∗ − x will guarantee
convergence of x to x∗ if there are no obstacles. However, it can easily get stuck in the presence
of obstacles. Huber et al. [7] proposes a method to calculate a modulation matrix M(x) at every x
such that if the new controller follows uM (x) = M(x) ·u(x), then x still converges to x∗ but never
gets stuck, as long as x∗ is in free space. In short, the objective of the DS modulation is to preserve
the linear controller’s convergence guarantee while also ensuring that the robot is never in collision.

The modulation matrix M(x) is computed from a list of obstacles, each of which is represented by
a Γ-function. For the i-th obstacle Oi, its associated gamma function Γi must satisfy the following
properties:

• Γi(x) ≤ 1 ⇐⇒ x ∈ Oi,
• Γi(x) = 1 ⇐⇒ x ∈ ∂Oi,
• ∃ ri, s.t.∀ t1 ≥ t2 ≥ 0,∀u,Γi(ri + t1u) ≥ Γi(ri + t2u).

In words, the Γ-function value needs to be less than 1 when inside the obstacle, equal to 1 on the
boundary, greater than 1 when outside. This function must also be monotonically increasing radially
outward from a specific point ri. This point is dubbed the reference point. From this formulation,
ri ∈ Oi and any ray from ri intersects with the obstacle boundary ∂Oi exactly once. The latter
property is also the definition that Oi is “star-shaped” (Fig. 12). For most common (2D) geometric
shape such as rectangles, circles, ellipses, regular polygons and regular stars, ri can be chosen as the
geometric center.

We first consider the case of a single obstacle O, represented by Γ with reference point r. Use d to
denote the dimension of the space. We define

M(x) = E(x)D(x)E−1(x). (9)

13

We have

E(x) = [s(x), e1(x), ..., ed−1(x)], (10)

where

s(x) =
x− r

||x− r||
(11)

is the unit vector in the direction of x from r, and e1(x), ..., ed−1(x) form a d−1 orthonormal basis
to the gradient of the Γ-function, ∇Γ(x) representing the normal to the obstacle surface. D(x) is a
diagonal matrix whose diagonal entries are λs, λ1, ..., λd−1, with

λs = 1− 1

Γ(x)
, (12)

λ1, ..., λd−1 = 1 +
1

Γ(x)
. (13)

each eigenvalue determines the scaling of each direction. Conceptually, as the robot approaches the
obstacle, this modulation decreases the velocity for the component in the reference point direction
(i.e. toward obstacles) while increases velocity for perpendicular components. The combined effect
results in the robot being deflected away tangent to the obstacle surface.

With N obstacles, we compute the modulation matrix Mi(x) for every obstacle using the procedure
above and the individual controllers uMi(x) = Mi(x) ·u(x). The final modulation is the aggregate
of all the individual modulations. However, a simple average is insufficient since closer obstacles
should have higher influence to prevent collisions.

Huber et al. [7] proposed the following aggregation procedure. Let ui denote the individual modu-
lations, with norms ni. The final aggregate modulation u is calculated as

u = naua, (14)

where na and ua are the aggregate norm and direction.

The aggregate norm is computed as

na =

N∑
i=1

wini, (15)

wi =
bi∑N
j=1 bj

, (16)

bi =
∏

1≤j≤N,j 6=i

Γj(x). (17)

The above definition ensures that
∑N
i=1 wi = 1, and wi → 1 when x approaches Oi (and only Oi,

which holds as long as obstacles are disjoint).

ua is instead computed using what Huber et al. [7] calls “κ-space interpolation.” First, similar to
the basis vector matrix E(x) introduced above, we construct another such matrix, but with respect
to the original controller x∗ − x. We denote it as R = [(x∗ − x)/||x∗ − x||, e1, ..., ed−1], where
e1, ..., ed−1 are again orthonomal vectors spanning the null space.

For each ui, we compute its coordinate in this new R-frame as ûi = R−1ui. Its κ-space represen-
tation is

κi =
arccos(û

(1)
i)∑d

m=2 û
(m)
i

[
û
(2)
i , ..., û

(d)
i

]T
∈ Rd−1, (18)

where the superscript (m) refers to the m-th entry. κi is a scaled version of the ûi with the first
entry removed. We perform the aggregation in this κ-space using the weights wi calculated above

14

(19), transform it back to the R-frame (20), and finally transform it back to the original frame (21):

κa =

N∑
i=1

wiκi (19)

ûa =

[
cos(||κa||),

sin(||κa||)
||κa||

κTa

]T
(20)

ua = Rûa. (21)

As mentioned in Eq. 14, the final modulation is u = naua.

D.1 Tail-Effect
An artifact of the above formulation is the “tail-effect,” where the robot is modulated to go around
the obstacle even when it has passed by the obstacle and the remaining trajectory has no chance of
collision under the non-modulated controller. This effect has been observed by Khansari-Zadeh and
Billard [35] for a related but different type of modulation. Fig. 9, reproduced from the paper by
Khansari-Zadeh and Billard [35, Fig. 7], shows the tail effect on the left and its removal on the right.
This tail effect induces the placement of obstacles at the end of the “diagonal corridor” as seen in
our straight-line deviation experiments (Fig. 5, left). If desired, the DS formulation can be modified
to remove this effect.

Figure 9: Tail effect (left) and its removal (right), reproduced from Fig. 7 by Khansari-Zadeh and
Billard [35]. The target is on the far right side.

E RRT Algorithm Description and Sampling
There are many RRT variants with subtle differences. For clarity, Algorithm 2 presents the version
that we use.

Algorithm 2: RRT Algorithm
Input: Start configuration s0, target configuration s∗.

1 T ← tree(root = s0);
2 success← attempt-grow(T , from = s0, to = s∗);
3 while not success do
4 s← sample-configuration();
5 sn ← nearest-neighbor(T , s);
6 success← attempt-grow(T , from = sn, to = s);
7 if success then
8 success← attempt-grow(T , from = s, to = s∗);
9 return path(T , from = s0, to = s∗)

While RRT is stochastic (unlike DS, IL and RL), the entire randomness is captured by the se-
quence of C-space samples used to grow the tree, including failed ones. We call this a growth
g = [s1, s2, s3, ...]. The probabilistic completeness property of RRT generally assures that the algo-
rithm will terminate in finite time with probability 1 if a path to the target exists [8]. Thus, hypo-
thetically, given an infinitely long tape containing every entry of g, we can compute a deterministic
trajectory τ = RRT(s0, s

∗, g) with a finite number of nodes with probability 1.

To enable MH inference, we take inspiration from Bayesian nonparametrics: we instantiate g on an
as-needed basis. We start with an empty vector of g = []. When calculating RRT(s0, s

∗, g), if a
new point beyond existing entries of g needs to be sampled, we append it to g. During MH inference,
we use a transition kernel that operates element-wise on instantiated entries of g (i.e. independently
perturbing each entry of g). If the transition kernel does not depend on the current g (e.g. drawing
uniformly from the C-space), then past instantiated entries do not even need to be kept.

15

Note that RRT trajectories are often smoothed post hoc. Since our main focus is to evaluate and
identify problems for an existing one, we use the original formulation. Moreover, it is easy to use
ROCUS to evaluate model updates (e.g. original vs smoothed RRT) as discussed in Sec. 7.

F MCMC Sampling Details
We used a truncated Gaussian transition kernel for all experiments. For the RBF-defined 2D envi-
ronment, we initialize 15 obstacle points with coordinates sampled uniformly in [−0.7, 0.7]. The
transition kernel operates independently on each obstacle coordinate: given the current value of
x, the kernel samples a proposal from N (µ = x, σ2 = 0.12) truncated to [−0.7, 0.7] (and also
appropriately scaled). For the arm reaching task, the target is sampled uniformly from two dis-
joint boxes, with the left box at [−0.5,−0.05] × [−0.3, 0.2] × [0.65, 1.0] and the right box at
[0.05, 0.5]× [−0.3, 0.2]× [0.65, 1.0]. Again, we use the same transition kernel with σx = 0.1, σy =
0.03, σz = 0.035 in three directions. Again, the distribution is truncated to the valid target region
(x ∈ [−0.5,−0.05] ∪ [0.05, 0.5], y ∈ [−0.3, 0.2], z ∈ [0.65, 1.0]). In other words, the transition
kernel implicitly allows for the jump across two box regions.

In addition, the stochastic RRT controller also requires a transition kernel. As discussed in Sec. 5.1,
we initialize its values on an as-needed basis. When necessary, we sample a configuration uniformly
between the lower- and upper-limit (i.e. [xL, xU]). For each configuration, the same Gaussian kernel
truncated to [xL, xU], and σ = 0.1(xU − xL) is used.

Each sampling run collected 10,000 samples, with the first 5,000 discarded as burn-in. On a
consumer-grade computer with a single GeForce GTX 1080 GPU card (for neural network-based
controllers), the sampling generally takes around 1 to 3 hours. The number of samples and burn-ins
are selected fairly conservatively to ensure representativeness, as Fig. 10 plots the sampled behavior
values in the chain for three analyses and confirms that these numbers are more than sufficient to
ensure proper mixing. Note that ROCUS is designed to be an offline analysis tool as opposed to be
used for real-time sample generation, and therefore several hours of runtime would be acceptable
in most cases. Furthermore, MCMC sampling is embarrassingly parallel by simply using multiple
chains concurrently, with the only overhead cost being the discarded burn-in samples.

0 5000 10000
MCMC Iteration

0.05

0.10

0.15

0.20

0.25

Be
ha

vi
or

 V
al

ue

0 5000 10000
MCMC Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5000 10000
MCMC Iteration

0.4

0.6

0.8

1.0

1.2

Figure 10: The sampled behavior values for three MCMC chains. From left to right, the three
panels show DS min straight-line deviation on 2D navigation, RRT min straight-line deviation on 2D
navigation and RL min end-effector movement on 7DoF arm reaching. The visualization confirms
that 10,000 iterations with 5,000 burn-ins are more than sufficient to find representative samples.

G 2D Environment Details
In this domain, the environment is the area defined as [xmin, xmax] × [ymin, ymax]. The goal is to
navigate from [xstart, ystart] to [xgoal, ygoal]. We define a flexible environment representation as a
summation of radial basis function (RBF) kernels centered at so-called obstacle points. Specifically,
given NO obstacle points p1,p2, ...,pNO

∈ R2, the environment is defined as

e(p) =

NO∑
i=1

exp
(
−γ||p− pi||22

)
, (22)

and each point p is an obstacle if e(p) > η, for η < 1 to ensure each obstacle point pi is exposed as
an obstacle. Our environments are bounded by [−1.2, 1.2]× [−1.2, 1.2], and the goal is to navigate
from [−1,−1] to [1, 1]. NO = 15 and pi coordinates are sampled uniformly in xi, yi ∈ [−0.7, 0.7].
A smaller γ and η makes the obstacles larger and more likely to be connected; we choose γ = 25
and η = 0.9. Fig. 11 shows random obstacle configurations demonstrating high diversity in this
environment. We also implement a simple simulator: given the current robot position [x, y] and the

16

action [∆x,∆y], the simulator clamps ∆x,∆y to the range of [-0.03, 0.03], and then moves the
robot to [x + ∆x, y + ∆y] if there is no collision, and otherwise simulates a frictionless inelastic
collision (i.e. compliant sliding) that moves the robot tangent to the obstacle. Fig. 11 depicts a
randomly selected assortment of 2D environments. These environments demonstrate the flexibility
and diversity of the RBF environment definition.

Figure 11: An assortment of randomly generated RBF 2D environments, providing a sense of the
diversity generated with this formulation. The green dots are the environment starting points and the
red stars are navigation targets. We show DS modulation for the first three environments in Fig. 13.

H Implementation Details of 2D Navigation Controllers
H.1 IL Controller
The imitation learning controller is a memoryless policy implemented as a fully connected neural
network with two hidden layers of 200 neurons each and ReLU activations. The input is 18 dimen-
sional, with two dimensions for the current (x, y) position of the robot, and 16 dimensions for a
lidar sensor in 16 equally-spaced directions, with a maximum range of 1. The network predicts the
heading angle θ, and the controller operates on the action of [∆x,∆y] = [0.03 cos θ, 0.03 sin θ].

The network is trained on smoothed RRT trajectories. Specifically, we use the RRT controller to
find and discretize a trajectory. Then the smoothing procedure repeatedly replaces each point by the
mid-point of its two neighbors, absent collisions. When this process converges, each point on the
trajectory becomes one training data point.

Since only local observations are available and the policy is memoryless, the robot may get stuck in
obstacles, which happens in approximately 10% of the runs. In addition, while the output target is
continuous, a regression formulation with mean-squared error (MSE) loss is inappropriate, due to
multimodality of the output. For example, when the robot is facing an obstacle, moving to either
left or right would avoid it, but if both directions appear in the dataset, the MSE loss would drive the
prediction to be the average, resulting in a head-on collision. This problem has been recognized in
other robotic scenarios such as grasping [36] and autonomous driving [37]. We follow the latter to
treat this problem as classification with 100 bins in the [0, 2π] range.

H.2 DS Controller
For the DS controller, there are two technical challenges in using the modulation [7] on our RBF-
defined environment. First, we need to identify and isolate each individual obstacle, and second, we
need to define a Γ-function for each obstacle.

To find all obstacles, we discretize the environment into an occupancy grid of resolution 150× 150
covering the area of [−1.2, 1.2]× [−1.2, 1.2]. Then we find connected components using flood fill,
and each connected component is taken to be an obstacle.

To define a Γ-function for each obstacle, we first choose the reference point as the center of mass of
the connected component. Then we cast 50 rays in 50 equally spaced directions from the reference
point and find the intersection point of each ray with the boundary of the connected component.
Finally, we connected those intersections in sequence and get a polygon. In case of multiple in-

17

tersection points, we take the farthest point as vertex of the polygon, essentially completing the
non-star-shaped obstacle to be star-shaped, as shown in Fig. 12.

Figure 12: Left: an obstacle which is not star-shaped. Some radial lines extending from the obsta-
cle’s reference point cross the boundary of the obstacle twice. Right: the same obstacle, modified to
instead be star-shaped.
Given an arbitrary point x, we define

Γ(x) =
||x− r||
||i− r||

, (23)

where r is the reference point and i is the intersection point with the polygon of the ray from r in
x− r direction. It is easy to see that this Γ definition satisfies all three requirements for Γ-functions
listed in App. D.

Finally, to compensate for numerical errors in the process (e.g. approximating obstacles with poly-
gons), we define the control inside obstacle to be the outward direction, which helps preventing the
robot from getting stuck at obstacle boundaries in practice. Three examples of DS modulation of
the 2D navigation environment are shown in Fig. 13.

Figure 13: Streamlines showing the modulation effect of the dynamical system for three 2D nav-
igation tasks. The environments correspond to the first three examples of Fig. 11. Green dots are
starting positions and red stars are navigation targets.

I Additional Results for 2D Navigation

DS Min Legibility DS Min Clear. DS Max Clear.

Figure 14: Left: trajectories and obstacle configurations from sampling minimal DS legibility.
Right: obstacle configurations for minimizing and maximizing DS obstacle clearance. These ex-
amples show how obstacle positions affect the legibility and clearance behaviors.

Legibility We define the instantaneous legibility as the cosine similarity between the current robot
direction and the direction to target x∗, V (x) = ẋ · (x∗ − x)/(||ẋ|| · ||x∗ − x||), with the intuition
that a particular run may be confusing to users if the robot does not often align to the target. Though
this quantity is bounded by [−1, 1], a general legibility definition may not be. Thus, we use the
maximal mode of ROCUS to find DS trajectories and obstacle configurations that achieve minimal
legibility, by negating V (x) first. The left two panels of Fig. 14 present the samples. As expected,
most trajectories take large detours due to the presence of obstacles in the center.

18

Obstacle Clearance We take V (x) = minxo∈O ||x − xo||. For the DS, we sample two poste-
riors to maximize and minimize this behavior. As shown in the right two panels of Fig. 14, when
minimizing obstacle clearance, we see clusters of obstacles in close proximity to the starting and
target positions, such that the robot is forced to navigate around them. When maximizing obstacle
clearance, we instead see central clusters of obstacles, such that the robot can avoid them by bearing
hard left or right.

J Implementation Details of 7DoF Arm Reaching Controllers
J.1 RRT Controller
Since the target location is specified in the task space, we first find the target joint space configuration
using inverse kinematics (IK). The initial configuration starts with the arm positioned down on the
same side as the target. If the IK solution is in collision, we simulate the arm moving to it using
position control, and redefine the final configuration at equilibrium as the target (i.e. its best effort
reaching configuration). We solve the IK using Klamp’t [38].

J.2 RL Controller
The RL controller implements the proximal policy gradient (PPO) algorithm [27]. The state space
is 22-dimensional and consists of the following:

• 7D joint configuration of the robot,
• 3D position of the end-effector,
• 3D roll-pitch-yaw of the end effector,
• 3D velocity of the end-effector,
• 3D position of the target,
• 3D relative position from the end-effector to the target.

The action is 7-dimensional for movement in each joint, which is capped at [−0.05, 0.05].

Both the actor and the critic are implemented with fully connected networks with two hidden layers
of 200 neurons each, and ReLU activations. The action is parametrized as Gaussian where the actor
network predicts the mean, and 7 standalone parameters learns the log variance for each of the 7
action dimensions. At test time, the policy deterministically outputs the mean action given a state.

J.3 DS Controller
For the DS controller in 7DoF arm reaching, we face the same challenges as in 2D navigation:
defining an appropriate Γ-function for the obstacle configuration that holds the three properties
introduced by Huber et al. [7] (listed in App. D). Additionally, the DS modulation technique does not
consider the robot’s morphology, end-effector shape, or workspace limits because it only modulates
the state of a point-mass. Thus, we implement several adaptations. First, we modulate the 3D
position of the tip of the end-effector. The desired velocity of the end-effector tip, given by the
modulated linear controller, is then tracked by the 7DoF arm via the same position-level IK solver
as the RRT controller.

Second, we used a support vector machine (SVM) to learn the obstacle boundary from a list of
points in the obstacle and free spaces, an approach originally proposed by Mirrazavi Salehian et al.
[31]. Then the decision function of the SVM is used as the Γ-function. As shown in Fig. 15, we
discretize the 3D workspace of the robot and generate a dataset of points in the obstacle space as
negative class and those in the free space as positive class.

Using the radial basis function (RBF) kernel K(x1,x2) = e−γ||x1−x2||2 , with kernel width γ, the
SVM decision function Γ(x) has the following form:

Γ(x) =

Nsv∑
i=1

αiyiK(x,xi) + b =

Nsv∑
i=1

αiyie
−γ||x−xi||2 + b, (24)

and the equation for∇Γ(x) is naturally derived as follows:

∇Γ(x) =

Nsv∑
i=1

αiyi
∂K(x,xi)

∂x
= −γ

Nsv∑
i=1

αiyie
−γ||x−xi||2(x− xi). (25)

19

Figure 15: Left: the division of 3D space as either containing an obstacle or free space. This data is
used to train an SVM, which acts as an interpolator. The classification scores of the SVM are used
as the Γ function for this 3D reaching task. Right: a 2D slice showing the smoothed Γ scores.

In Eq. 24 and 25, xi (i = 1, ..., Nsv) are the support vectors from the training dataset, yi are corre-
sponding collision labels (−1 if position is collided, +1 otherwise), 0 ≤ αi ≤ C are the weights for
support vectors and b ∈ R is decision rule bias. ParameterC ∈ R is a penalty factor used to trade-off
between errors minimization and margin maximization. We empirically set the hyper-parameters of
the SVM to C = 20 and γ = 20. Parameters αi and b and the support vectors xi are estimated by
solving the optimization problem for the soft-margin kernel SVM using scikit-learn. Using this
learned Γ-function, Fig. 16 shows two examples of the modulated trajectory.

Figure 16: Cross-sections showing streamlines of the dynamical system modulation effect for two
distinct targets in the 3D reaching task. Red crosses indicate reference points. Green diamond is the
initial position of the end-effector for all experiments.
Finally, given a desired modulated 3D velocity for the end-effector tip, ẋM = uM (x), we compute
the next desired 3D position by numerical integration:

xt+1 = xt + uM (xt)∆t (26)

where xt,xt+1 ∈ R3 are the current and next desired 3D position of the tip of the end-effector and
∆t = 0.03 is the control loop time step. xt+1 is then the target in Cartesian world space coordinates
that defines the objective of the position-based IK solver implemented in Klamp’t [38].

K Additional Results for 7DoF Arm Reaching
Details on the DS Improvement The DS controller provides guarantees of convergence to a tar-
get in the space where modulation is applied (i.e. task-space in our experiments). To adopt this
controller for obstacle avoidance with a robot manipulator, Huber et al. [7] simplifies the robot to
a spherical shape with center at the end-effector of a 7DOF arm. This translates to considering
the robot as a zero-mass point in 3D space but with the boundaries of the obstacles (described by
Γ-functions) expanded by a margin with the size of the radius of the sphere.

20

Since the shape of the Franka robotic hand is rectangular (6.3 × 20.7 × 14cm) fitting a sphere
with the radius of the longest axis will over-constrain the controller and drastically reduce the target
regions inside the table dividers. We thus implemented the obstacle clearances by extruding the
edges of the top table divider by half of the length of the robot’s end-effector (10cm) and the width
of the divider by half of the height (7cm). Intuitively, this should be enough clearance to avoid
the robot’s end-effector colliding with the table dividers. However, when coupling the DS controller
with the IK solver to control the 7DoF arm, we noticed that the success rate was below 15%, whereas
the success rate is 100% when controlling the end-effector only. We then sampled, via ROCUS,
the target locations for the minimal final end-effector distance to target and noticed that all of the
successful runs were located on the left-side of the partition (Fig. 6 center right).

Since the DS controller approach does not consider collision avoidance in joint-space, in a con-
strained environment, the robot’s forearm or elbow might get stuck on the edges of the table
divider—even though the end-effector is avoiding collision. Due to the asymmetric kinematic struc-
ture of the robot arm, it is more prone to these situations on the right side of the table divider. Such
an insight is not easy to discover as one must understand how the robot will behave in joint space
based on its kinematic structure and the low-level controller used (position-based IK). We thus ex-
tended the edge extrusions to 20cm. This change improved the controller success rate and behavior
drastically as shown in (Fig. 6 rightmost).

Legibility We define legibility of reaching to the target on one side of the vertical divider as the
average negative distance that the end effector moves in the other direction, V (x) = −max(x̃1, 0),
where x̃1 = x1 if target is on the left, or x̃1 = −x1 otherwise, and x1 is the x-coordinate of the
robot end effector with right in the positive direction. We find target locations that are minimally
legible and apply the maximal inference mode on the maximum distance measure.

Modified DS RRT Min Legibility
Modified DS RRT Min Legibility

Figure 17: Posterior samples showing minimal legibility behavior for RRT.

We did not find any illegible motions from RL controllers for 2,000 targets, which is mostly expected
since the RL reward is distance to the target. For RRT, however, since we do not use an optimal
formulation [e.g. 39, 40] or perform post-hoc smoothing, the controller is expected to frequently
exhibit low legibility. Fig. 17 plots the posterior target locations and trajectories. The target locations
leading to illegible motions are spread out mostly uniformly on the right, but concentrated in far-
back area on the left, consistent with our findings on the asymmetry of configuration space. The
trajectory plot confirms the illegibility.

L Future Work
There are multiple directions to extend and complement ROCUS for better usability and more com-
prehensive functionality. First, while we only used ROCUS on individual controllers, future work
can readily extend it to compare two controllers by defining behavior functions that take in the task
and two trajectories, one from each controller, and compute differential statistics. For example, this
could be used to find road conditions that lead to increased swerving behavior of a new AV con-
troller, compared to the existing one. Such testing is important to gain a better understanding of
model updates [33], and is particularly necessary for ensuring that these updates do not unintention-
ally introduce new problems.

In addition, sometimes it is important to understand particular trajectories sampled by ROCUS. For
example, which sensor input (e.g. lidar or camera) is most important to the current action (e.g.
swerving)? Why does the controller take one action rather than another (e.g. swerving rather than
braking)? Preliminary investigation into this explainable artificial intelligence (XAI) problem in the
context of temporally extended decision making has been undertaken [41, 42], but various issues
with existing approaches have been raised [43, 44] and future research is needed to address them.

21

Finally, an important step before actual deployment is to design appropriate user interfaces to facil-
itate the two-way communication between ROCUS and end-users. In one direction, the user needs
to specify the behavior of interest, and it would be desirable for it to involve as little programming as
possible, especially for non-technical stakeholders. In the other direction, ROCUS needs to present
the sample visualization, and potentially model explanations as described above, for users to inspect.
Here, it is important for the information to be accurate but at the same time not overwhelming.

22

	Scale-Invariance and ``Volume'' Interpretation of
	MCMC Sampling with Stochastic Dynamics
	Mathematical Definitions of Behaviors
	Dynamical System Modulation
	Tail-Effect

	RRT Algorithm Description and Sampling
	MCMC Sampling Details
	2D Environment Details
	Implementation Details of 2D Navigation Controllers
	IL Controller
	DS Controller

	Additional Results for 2D Navigation
	Implementation Details of 7DoF Arm Reaching Controllers
	RRT Controller
	RL Controller
	DS Controller

	Additional Results for 7DoF Arm Reaching
	Future Work

