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1 Gradient Analysis in Gaussian Mixture Model

As a supplementary to Sec.3.5 of the main paper, in case we model the output distribution as a
Gaussian mixture model pGMM(yt) =

∑
i φiN (yt; µ̂i,t, σ̂i,tI), the gradient of Lt w.r.t. the mean of
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This gradient shows that the center µ̂i,t of component i will be pushed towards the ground truth
location ygt,t and way from the negative location yneg,t. For σ̂i,t we have
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2 Original Learning Objective of Base Models

Following is the original loss of Trajectron++ [1]. This loss is used to maximize the lower bound of
ground truth’s likelihood when the coefficient α = 1. For more details, please refer to the original
paper [1].

L = −Eẑ∼qθ3(z|Xi,Yi,gt)[log pθ2(Yi,gt |Xi, ẑ)]

+ αDKL(qθ3(z |Xi,Yi,gt)‖pθ1(z |Xi))− Iq(Xi; z)

≥ − log p(Yi,gt |Xi,Yi,gt)− Iq(Xi; z), when α = 1

(3)



The original loss of Gaussian LaneGCN, a variant of LaneGCN [2], is

L = Lcls + αLreg (4)
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Here, k̂ indicates the best-predicted mode that is most close to the ground truth. The classification
loss Lcls is a max-margin loss. For more details of Lcls, please refer to the original paper [2].

3 L2 Gradient Clipping with Gaussian LaneGCN

The original regression loss of LaneGCN is smooth L1 distance. Given the prediction error e =
||ygt,t − µ̂t,k̂||, The loss can be written as follows
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2 if e < 1

e− 0.5 if e ≥ 1
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The gradient of Lreg with respect to e in this case is
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The e >= 1 part can be viewed as clipping the gradient of an L2 loss to 1 when the gradient is bigger
than 1. Therefore, the smooth L1 loss can be viewed as a normal L2 loss with gradient clipping to
avoid too large gradients when the prediction error is high. Since there is also an L2 loss term in the
log likelihood loss in Eq.6, we apply this gradient clipping trick to the L2 loss term in Eq.6. The
clipping is implemented by creating a new L2 function with modified backward propagation.

4 Derivation of Eq.3 and Eq.4

Here we show how to obtain Eq.3 and Eq.4 of the main paper
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5 Analysis of ε in Eq.5 of the Main Paper
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Therefore, ε term scales the original gradient by x
x+ε

6 Hyperparameter γ

The hyperparameter γ in Eq.2 of the main paper is simply set to 1 and turned on smoothly during
training. In this section, we list the performance of the model when γ = 0.1, 0.3, 1, 3, 10 in the
nuScenes dataset. The new numbers reported here (0.1,0.3,3,10 cases) are average over 3 runs. The
numbers of γ = 1 and the original Trajectron++ [1] are the same as the main paper and are averaged
over 5 runs.

Model Trajectron++ γ = 0.1 γ = 0.3 γ = 1 γ = 3 γ = 10

FDE-Full 2.74 2.65 2.60 2.51 2.52 2.54
Context-Vio. 10.59% 9.90% 9.29% 8.85% 9.02% 8.84%

We notice that if we use a small γ, the improvement over the original Trajectron++ is decreased. This
is expected since a smaller γ reduces the effect of our unlikelihood loss. The performance doesn’t
change much when we further increase γ from 1 to 3 and 10. However, we notice that when we
set γ to 3 and 10, as the training goes, the prediction accuracy decreases after it reaches the best
performance. We think this is because the model focuses too much on obeying the context and pays
less attention to getting close to the ground truth in these cases. In conclusion, balancing the original
training loss and our likelihood loss matters, and simply setting γ to 1 could balance the original
training loss and our unlikelihood loss well.

7 Qualitative Results

We demonstrate our method’s qualitative results compared with Trajectron++ for 3 seconds prediction
in nuScenes [3] and with Gaussian LaneGCN in Argoverse [4]. We randomly sample 50 trajectories
from the predicted prediction, use kernel density estimation (KDE) to approximate the total output
distribution from the samples, and print it out in Fig.1. White points represent the ground truth
trajectories. Compared to Trajectron++ and Gaussian LaneGCN, our method complies with the
contextual information more and therefore the predicted distributions are more accurate and plausible.
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(a) Trajectron++ + Unlikelihood (Ours) (b) Trajectron++

(c) Trajectron++ + Unlikelihood (Ours) (d) Trajectron++

(e) Trajectron++ + Unlikelihood (Ours) (f) Trajectron++

Figure 1: Qualitative results of our method and Trajectron++.
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(a) Gaussian LaneGCN + Unlikelihood (Ours) (b) Gaussian LaneGCN

(c) Gaussian LaneGCN + Unlikelihood (Ours) (d) Gaussian LaneGCN

(e) Gaussian LaneGCN + Unlikelihood (Ours) (f) Gaussian LaneGCN

Figure 2: Qualitative results of our method and Gaussian LaneGCN. White dots indicate the ground
truth future. Black dots indicates the ground truth locations at the first step.
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