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Abstract
Predictive models mapping double-stranded DNA to signals of regulatory activity should, in
principle, produce analogous (or “equivariant”) predictions whether the forward strand or its
reverse complement (RC) is supplied as input. Unfortunately, standard neural networks can
produce highly divergent predictions across strands, even when the training set is augmented
with RC sequences. Two strategies have emerged to enforce equivariance: conjoined/“siamese"
architectures, and RC parameter sharing or RCPS. However, the connections between the two
remain unclear, comparisons to strong baselines are lacking, and neither has been adapted to
base-resolution signal profile prediction. In this work, we extend conjoined & RCPS models
to base-resolution signal prediction, and introduce a strong baseline: a standard model (trained
with RC data augmentation) that is made conjoined only after training, which we call “post-hoc"
conjoined. Through benchmarks on diverse tasks, we find post-hoc conjoined consistently
performs best or second-best, surpassed only occasionally by RCPS, and never underperforms
conjoined-during-training. We propose an overfitting-based hypothesis for the latter finding, and
study it empirically. Despite its theoretical appeal, RCPS shows mediocre performance on several
tasks, even though (as we prove) it can represent any solution learned by conjoined models. Our
results suggest users interested in RC equivariance should default to post-hoc conjoined as a
reliable baseline before exploring RCPS. Finally, we present a unified description of conjoined &
RCPS architectures, revealing a broader class of models that gradually interpolate between RCPS
and conjoined while maintaining equivariance. The code to replicate the experiments is available
at https://github.com/hannahgz/BenchmarkRCStrategies. A 22-minute video explaining
the paper is available at https://youtu.be/UY1Rmj036Wg

1 Introduction

Convolutional Neural Networks (CNNs) have emerged as state-of-the-art models for predicting genome-wide
regulatory signals such as transcription factor binding and chromatin accessibility as a function of DNA
sequence [2, 3, 4]. CNNs contain multiple convolutional layers that are comprised of convolutional filters,
where filters can be thought of as pattern detectors that scan over the input DNA sequence. Over the course
of model training, the weights of a CNN’s filters gradually evolve to identify predictive motifs encoded in the
DNA sequence that determine the locations and strength of transcription factor (TF) binding. Filters in later
layers can build on the motifs learned by filters in previous layers in order to recognize higher-order motif
syntax patterns that orchestrate the binding of TF complexes.
Unfortunately, the standard CNN architectures used for these prediction tasks are based on models developed
in the computer vision literature, and thus do not explicitly account for the reverse-complement symmetry of
double-stranded regulatory DNA. Specifically, they do not model the fact that complementary base pairing
implies that a pattern appearing on the forward strand is semantically analogous to one that appears in the
reverse-complement (RC) orientation (even though a TF can bind the DNA strands asymmetrically, the
presence of a motif in the RC orientation on one strand implies the presence of the motif in the forward
orientation on the complementary strand, and thus has equivalent predictive power). For standard CNNs,
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Figure 1: Architecture of conjoined models and RCPS models used in this work for binary prediction. For the conjoined
model (left), an identical “core model” is applied to both the forward and reverse-complement input sequence, and the predictions of
the two branches are averaged prior to applying the final sigmoid nonlinearity. Cells with similar shading represent neurons with
shared parameters. In the case of the RCPS model (right), the weights of the “forward” filters are paired with corresponding “RC”
filters via RCPS (Fig. 2), such that each forward filter recognizes the reverse-complement of whatever pattern its matching RC
filter recognizes. Once again, cells with similar shading represent neurons with shared parameters - however, blue outlines denote
the “forward” versions of a filter, while red outlines denote the corresponding RC versions. The representations learned by the
“forward” and “RC” filters are merged after the last convolutional layer by applying the “reverse complement” operation (i.e. flipping
along both the length axis and channels axis) to the RC filters and summing. For both the Conjoined and RCPS models, the last
convolutional layer is followed by a local maxpooling operation (not depicted); this maxpooling operation is applied before the
forward and RCPS filters are summed.

learning to recognize both the forward and RC versions of a non-palindromic motif is as challenging as
learning to recognize two completely different motifs. As a result, such models frequently produce very
different predictions depending on whether a strand is supplied in the forward vs. the RC orientation, even
when the training dataset is augmented to contain reverse-complements [1]. Differing predictions erode
confidence in model interpretation, as they could imply that motifs are missed on either the forward or RC
strands.
Early work in deep learning for genomics handled this by combining model predictions across forward and
RC versions of the input - for example, DeepBind [5] took the maximum prediction across both strands,
while FactorNet [4] took the average across strands. Such architectures are sometimes called conjoined a.k.a.
“siamese” architectures [6]1. While the terms “conjoined”/“siamese” usually imply that the representation
merging was performed during both training and testing time (as was done in Alipanahi et al. [5], Quang
and Xie [4] and Bartoszewicz et al. [6]), one can also take a model that was trained without representation
merging and perform the merging only during testing time. Although it has not been described as such,
merging of representations during test-time is equivalent to converting a standard model to a conjoined one
post-training (post-hoc). To date, no work has investigated whether trained conjoined models provide any
benefits over post-hoc conjoined models when the training dataset is augmented with reverse-complements.
Note that when the form of representation merging is “averaging”, a post-hoc conjoined model is essentially

1In this work, when we refer to “conjoined” models in the case of binary predictions, we envision models that merge the
predictions over forward and RC strands at the very final (output) layer. However, as was done in [6], it is equivalently possible to
merge the representations earlier in the network and have several fully-connected layers present between the merge layer and the
output layer. These models satisfy equivariance because once the representations on both the forward and RC strands are merged,
both the forward and RC strands are guaranteed to yield identical activations on all subsequent layers. In fact, such models can
equivalently be thought of as the concatenation of two models: an RC equivariant model that merges representations at its last layer
that then feeds into a standard fully-connected network to give the final output.
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ensembling the model predictions across the forward and RC strands. The conjoined architecture used in this
work for binary prediction tasks is illustrated in Fig. 1.

Figure 2: RCPS pairing of convolutional filter weights [1]. In
RCPS pairing, the weights of an RC filter are designed to recognize
the reverse-complement of the pattern that the matching forward
filter recognizes. RCPS presumes that the “reverse-complement”
of the input is obtained by reversing both the length and channel
axes. In the figure, table cells with similar shading represent input
channels that are paired; blue outlines denote the “forward” version
of an input channel, while red outlines denote the corresponding
RC version. Entries in the table cell denote the filter weights;
weights that are paired between the forward and RC filters are
given the same text color and subscripts. Note that when the input
is a one-hot encoded sequence, the “channel” axis is assumed to
encode ACGT in that order; this results in “A & T” and “C & G”
being treated as RC-paired input channels.

A notable drawback of conjoined architectures is
that forward and RC versions of a non-palindromic
motif must still be learned as though they are two
completely separate motifs - i.e. the model has no
explicit knowledge of DNA double-strandedness.
While it is true that the conjoined model scans both
the forward and RC version of the input sequence,
it is possible for a single input sequence to contain
multiple motifs where some motifs may be in the
forward orientation and others may be in the RC
orientation; a model that only recognizes one ori-
entation for each motif will never correctly identify
all the motifs present irrespective of whether it is
looking at the forward or the RC input sequence.
To address this, Shrikumar et al. [1] proposed RC
parameter sharing (RCPS). In RCPS, the weights of
every convolutional filter are paired with those of a
corresponding “RC” version of the filter such that the
“RC” filter will recognize the reverse-complement of
whatever pattern the forward filter recognizes. This
weight sharing is illustrated in Fig 2, and the RCPS
architecture that we use in this work for binary prediction tasks is illustrated in Fig. 1. This idea of RCPS has
been employed in several subsequent works: Brown and Lunter [7] extended RCPS to models with dropout
and applied it to predict recombination hotspots, Bartoszewicz et al. [6] applied it to predict the pathogenic
potential of novel DNA, and Onimaru et al. [8] used RCPS-like concepts in layers that they refer to as FRSS
(Forward and Reverse Sequence Scan). Nevertheless, to date, there has not been a systematic benchmark of
RCPS against trained or post-hoc conjoined models that have similar architectures.
A third limitation of the existing literature on RC architectures is that they have not been extended to
single base-pair resolution signal profile prediction, which has demonstrated immense potential to learn
high-resolution, higher-order syntax patterns of TF binding [9]. The existing state-of-the-art model for
profile prediction is the BPNet architecture [9], which predicts the shape of the observed signal (in the form
of a probability distribution over a 1kbp interval) at base-pair resolution using both DNA sequence and a
“control” (experimental bias) signal track as input. Separate predictions are made for the forward and reverse
strands; this separation enables modeling of the asymmetric “strand shift” found at TF binding sites in profiles
obtained from TF binding assays such as ChIP-seq (chromatin immunoprecipitation followed by sequencing)
and ChIP-nexus/exo. Extending BPNet architectures to produce analogous (or “equivariant”) predictions for
RC sequences would need to handle reverse complements at multiple stages of the input and output (Fig. 3).
Our contributions are as follows: (1) We devise an extension of Conjoined and RCPS architectures to
base-pair-resolution signal profile prediction. (2) We establish a strong baseline of post-hoc conjoined
models and conduct systematic benchmarks on diverse tasks. (3) We find that post-hoc conjoined models
consistently perform as well as or better than trained conjoined models, and develop a mathematical intuition
for why; we find empirical support for this by studying train vs. test-set performance. (4) We prove that
the representational capacity of the RCPS models encompasses that of a conjoined model, but nevertheless
observe that the RCPS underperforms relative to post-hoc conjoined models on some tasks. We find that
this disparity is not easily attributed to overfitting of RCPS, hinting at optimization difficulties. (5) We
develop a unified description of conjoined and RCPS architectures, including a novel class of architectures
that incrementally interpolates between a fully-conjoined and a full RCPS architecture while maintaining RC
equivariance.

2 Methods

Full details on the architectures and datasets are provided in Sec. S2. In brief: we created two simulated
datasets consisting of synthetic DNA sequences of lengths 200bp and 1kbp respectively, that contained motif
instances sampled from 3 different TF motif models (Position Weight Matrices i.e. PWMs). Multi-task
CNNs (with 3 binary output tasks) were trained to predict whether a given sequence contained instances of
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Figure 3: Guaranteeing RC equivariance for the task of base-pair-resolution signal profile prediction. Corresponding
architectures for binary output models are in Fig. 1. In the standard BPNet profile prediction architecture, which is fully convolutional,
the input control signal profile is concatenated as an extra channel to the activations of an intermediate convolutional layer, and
separate predictions are made for positive and negative strands. Left: conjoined BPNet architecture for profile prediction. Cells with
similar shading represent convolutional neurons with shared parameters. Unlike previously-proposed conjoined architectures for
binary tasks, the model output on forward and RC inputs cannot simply be averaged; due to the strand-specific profile predictions,
the output on the RC input needs to be reverse-complemented to be compatible with predictions on the forward input. Right: RCPS
architecture for profile prediction. Cells with similar shading represent convolutional neurons with shared parameters; blue outlines
denote the “forward” versions of a filter, while red outlines denote the corresponding RC versions. Unlike the RCPS architectures
used in binary models, the forward and reverse filters are never collapsed into a single representation; this allows the model to
make strand-specific predictions. To maintain RC equivariance, the input “control track” signal profile must be appended to both
ends of the convolutional filter stack (once in the forward orientation and once in the RC orientation). Also note that, in the RCPS
formulation, the last two convolutional layers only specify the weights for one filter; this is because these layers are intended to
contain exactly two channels (one for each DNA strand), and specifying the weights for one filter will result in two output channels
(due to RCPS pairing). For RCPS convolutional layers besides below last two layers, weights are specified for the same numbers of
filters as in the standard models.

a particular motif. We also used genome-wide binarized TF-ChIP-seq data for Max, Ctcf and Spi1 in the
GM12878 lymphoblastoid cell-line [1]. In these data, the positive set contained 1kbp sequences centered on
high-confidence TF ChIP-seq peaks, and the negative set contained 1kbp sequences centered on chromatin
accessible sites (DNase-seq peaks) in the same cell-lines that do not overlap any TF ChIP-seq peaks. Single-
task binary output CNNs were trained on these data. For the base-pair-level signal profile prediction, we used
genome-wide ChIP-nexus profiles of four TFs - Oct4, Sox2, Nanog and Klf4 in mouse embryonic stem cells
[9]. BPNet-style models (Fig. 3) were trained with a multinomial loss to predict the distribution of reads in
1kbp regions for each of the two strands within ChIP-nexus peaks. Separate models were trained for each TF.

2.1 Metrics to evaluate profile prediction

Profile model predictions were evaluated according to three metrics: Spearman correlation, Pearson correla-
tion, and Jensen-Shannon divergence. Recall that BPNet’s predicted base-resolution signal profiles take the
form of a probability distribution. This predicted distribution is compared against the observed distribution of
reads. In the case of Spearman and Pearson correlation, we bin both the true distribution and the prediction
distribution into bins of size 1bp, 5bp and 10bp, and compute the correlation for each example, strand and
binning resolution (here, “binning” means taking the maximum value of the constitutive elements in the bin).
In the case of Jensen-Shannon divergence (JSD), the predicted and true probability distributions are smoothed
using a Gaussian kernel with σ = 3, and the JSD is computed separately for each example and strand. The
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reported values for the Spearman correlation, Pearson correlation and JSD are the average of the correlations
across all examples, strands and binning resolutions (if applicable).

3 Results

3.1 Post-hoc conjoined models outperform trained conjoined models

Across all datasets, we found that post-hoc conjoined architectures (when trained with RC data augmentation)
consistently perform as well as or better than trained conjoined architectures. In fact, post-hoc conjoined
models consistently achieved the best performance on the profile prediction tasks (Fig. 4), even when
their trained conjoined counterparts failed to significantly outperform standard models trained with data
augmentation.
We developed a hypothesis to explain this behavior, which we illustrate first with a theoretical argument:
consider a standard (non-conjoined) model f that gives a too-high prediction for an input sequence S and a
too-low prediction on the reverse-complement S′. If the model were trained with data augmentation, both
S and S′ would be separate examples in the same batch, and the gradient descent update would raise f(S′)
while lowering f(S). By contrast, when training with the conjoined version of f , there would be no separate
loss computed for f(S) and f(S′); only (f(S′) + f(S))/2 would be compared to the true value. Thus, if
(f(S′) + f(S))/2 were close to the true value, the gradient descent update for the conjoined model would
not change f(S′) or f(S), even though the model has not learned the true value in either case. Models

Figure 4: Benchmarking models on binary TF ChIP-seq peak prediction, simulated binary classification, and base-pair-
resolution signal profile prediction tasks. Bar heights represent the average performance over 10 random seeds, and error bars
represent the 95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped samples. “Standard-RCAug”
and “Standard-noRCAug” are standard models trained with and without RC data augmentation. RCPS denotes RC Parameter
Sharing. CJ-trained are models that were conjoined during both training and test time. CJ-posthoc are standard models trained with
RC data augmentation that were converted to conjoined models only after training. CJ-posthoc consistently performs as well or
better than all other methods on all tasks except CTCF ChIP-seq, SPI1 ChIP-seq, and 1000bp simulated (all of which involve binary
prediction). On these tasks, RCPS does best - however, RCPS does not perform significantly better than StandardRCAug on all
profile prediction tasks and the Max binary task (as per overlapping confidence intervals). For the binary TF ChIP-seq models, the
training hyperparameters were set to the tested combination that gave the best overall AuPRCs: 8000 (rather than 4000) maximum
training iterations, AuROC (rather than model loss) as the metric used to choose the best validation-set epoch, and upsampling
(rather than upweighting) of positives examples to achieve a 1:4 class ratio during training (see Sec. S4.3 for more details, including
a reporting of the results with AuROC rather than AuPRC as the performance metric). For the simulated datasets, we report AuROC
(rather than AuPRC) as the main performance metric as the dataset was not imbalanced. As with the binary TF ChIP-seq models,
and consistent with Shrikumar et al. [1], the best validation-set epoch for the binary simulated models was selected using AuROC
(rather than model loss). For the profile prediction models, we report the Spearman correlation of the true signal profile vs. the
predicted signal profile as the metric; plots showing different performance metrics for profile prediction are in Fig. S4.6 , and the
profile metrics are explained in Sec. 2.1.
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that are conjoined during training may therefore overfit to the training set and fail to converge to the most
generalizable solution - for example, they may latch on to artifactual signal on S while failing to recognize
true motifs on S′.
However, alternative explanations for poor performance are also possible; for example, it is known that
multitasked deep learning models can be challenging to optimize because the gradients from different tasks
may conflict with each other during training [11]; perhaps the two branches of the conjoined model may
similarly result in conflicting gradients during training. Model initialization can also play a significant role in
the performance of a deep learning model, and it is possible that initializations may impact different model
architectures differently (note, however, that we train our binary networks with batch normalization, which is
thought to reduce sensitivity to initialization [12]). To investigate our overfitting hypothesis, we compared
the training vs. test-set performance of post-hoc conjoined models to the training vs. test-set performance
of the trained conjoined models (Fig. S4.1). Consistent with our hypothesis, we found that for the binary
TF ChIP-seq and base-pair-resolution signal prediction tasks, the mean training-set performance of the
trained conjoined models was comparable to or better than the mean training set performance of the post-hoc
conjoined models, even though the mean test-set performance of trained conjoined models was comparable
to or worse than the mean test-set performance of post-hoc conjoined models. We can therefore conclude
that, for these tasks, a failure to optimize on the training set does not explain the poor performance of trained
conjoined models. However, for simulated datasets, we found that the improvement in test-set performance
for post-hoc conjoined models was also accompanied by an improvement in training-set performance. We
note, however, that the models were all trained with early stopping, and it is therefore possible that the trained
conjoined models might have surpassed the post-hoc conjoined models in training set performance if all
models were forced to train for the same number of iterations.

3.2 RCPS shows inconsistent performance across tasks

While we were able to replicate the performance of RCPS reported by Shrikumar et al. [1] on their binary
classification datasets, we made a few interesting observations. First, RCPS on the 200bp simulated sequence
dataset did not perform significantly better than data-augmented post-hoc conjoined models (which were
not included as a baseline in Shrikumar et al. [1]). Second, as discussed in Sec. S4.3, RCPS did not perform
as well relative to conjoined models and data-augmented standard models on the Max ChIP-seq task when
the maximum number of training iterations was increased beyond what Shrikumar et al. [1] used. Third,
on base-pair-resolution profile prediction datasets, RCPS consistently underperformed relative to post-hoc
conjoined models - in fact, the 95% confidence intervals for both RCPS and trained conjoined models either
overlapped with or were lower than the confidence interval for data-augmented standard models on these
datasets (Fig. 4).
These results can be considered particularly surprising given that the solution learned by the post-hoc
conjoined models could have equivalently been represented using the RCPS models. The proof of this
equivalence is given in Sec. S1. We thus conclude that the mediocre performance of RCPS is not due to
a representational limitation. One hypothesis is that the RCPS models, like the trained conjoined models,
may overfit to the training set (Sec. 3.1). In fact, the risk of overfitting is arguably greater for RCPS models
due to their increased representational capacity (Sec. S2.3). As before, we investigated this hypothesis by
plotting the training vs. test-set performance of RCPS against that of the conjoined models. However, we
found that in the cases where RCPS underperforms relative to post-hoc conjoined models on the held-out
set, the training-set performance of the RCPS models was never significantly better than that of the post-hoc
conjoined models (Fig. S4.1). While it is true that the models were trained with early stopping (and therefore
the training set performance of RCPS could have surpassed that of the post-hoc conjoined models if all
models were forced to train for the same number of iterations), we can still draw a contrast between the
trend we observed with trained conjoined models, for which we found clear cases where the training-set
performance surpassed that of the post-hoc conjoined models even though the test-set performance was worse.
Thus, it remains unclear whether the mediocre performance of RCPS on these tasks can be attributed to a
tendency to overfit vs. more general optimization difficulties. Further, when we reduced the effective number
of filters in the RCPS models to equal the number of filters in standard models, we consistently observed a
drop in test-set performance for the RCPS models (Sec. S4.5), again suggesting that overfitting per-se may
not be the culprit.
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4 Discussion

4.1 How to extend RCPS to fully-connected layers

When comparing RCPS models to Conjoined models, one apparent point of difference that a reader may
notice is that Conjoined models merge the representations of the forward and RC strands after the last fully-
connected layer, whereas all existing papers that use RCPS to predict a scalar output perform a representation
merging at or before the first dense layer [1, 7, 6]. This merging of RCPS representations at the first fully-
connected layer is motivated by an implicit assumption that weights at the first fully-connected layer should
be roughly symmetric around the positional axis (and therefore it should OK to merge the representations
of the forward and RC strands at this layer). However, there may be some cases where the weights of this
fully-connected layer are not expected to be symmetric, such as in the context of raw sequencing reads (non
specific regulatory genomics tasks) or with regulatory elements that have a strong directional asymmetry
(for example, proximal promoter elements that have been oriented such that the transcription start site is
on the same strand as the provided input sequence). In such a situation, it may be advantageous to perform
representation merging at a later stage. Fortunately, it is easy to extend the RCPS framework to account for
fully-connected layers, because such layers can be viewed as a special case of convolutional layers where
the receptive field equals the full length of the input. Thus, extending RCPS to full-connected layers simply
requires implementing the fully-connected layers as convolutional layers with the appropriate receptive
field. Put differently, the “channel” axis of the convolutional layer maps onto the number of units in the
fully-connected layer, and the “length” axis of the convolutional layer disappears due to having a size of 1.

4.2 A unified description of RC-equivariant models

In this section, we will develop a unified description of reverse-complement architectures present in the
literature. Before we do so, it is useful to recap how we generalize the concept of a “reverse-complement”
to higher convolutional layers. The key insight introduced in Shrikumar et al. [1] is that if the cth filter
from the beginning of the channel axis can recognize the reverse-complement of the pattern recognized by
the cth filter from the end of the channel axis, then flipping the length and channel axes at an intermediate
convolutional layer is equivalent to recomputing the activations of that layer on the reverse-complement input
sequence. Note that this definition of a “reverse-complement” encompasses one-hot encoded input sequences
when the input is encoded using the ordering ACGT (which is what we use in this work): an A represents
the reverse-complement of T, and a C represents the reverse-complement of G. When networks satisfy this
property at all convolutional layers, they are said to be “equivariant” under reverse-complementation [13, 7];
formally, if we define the revcomp operation to mean “flip the length axis and channel axis”, and we use f(S)
to represent the output of convolutional layer f on sequence S, then revcomp(f(S)) = f(revcomp(S)).
RCPS architectures design the convolutional layers to satisfy equivariance by pairing the weights of the
forward and “RC” filters using the approach illustrated in Fig. 2.

4.2.1 The Conjoined-RevComp “Wrapper” (CJRCWrapper)

Figure 5: RCPS conv layer implemented in the CJRCWrapper paradigm (Sec.
4.2.1). Cells with similar shading represent filters with shared parameters. Blue
outlines denote “forward” filters and red outlines denote paired “RC” filters. Green text
denotes the CJRCWrapper’s “merge” operations. An RCPS conv layer is equivalent to
a CJRCWrapper around a “submodel” containing the forward convolutions, where the
merge involves reverse-complementing “rc_out” and concatenating with “orig_out”
along the channel axis.

We now introduce the Conjoined-
RevComp “Wrapper” (“CJRCWrap-
per”), which can be viewed as a
generalization of Conjoined models
that can accept the output of an in-
termediate model layer as its input,
so long as the notion of a reverse-
complement is defined for said in-
put. A CJRCWrapper contains two
components: a submodel followed
by a merge operation. When given
an input, the CJRCWrapper pro-
ceeds as follows: first, the output
of the submodel is computed on the
input (call this “orig_out”). Then,
the reverse-complement of the in-
put is calculated (if the equivariance
scheme described above is followed,
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this is done by flipping both the length and channel axes), and the reverse-complemented input is also pro-
vided to the submodel; call the result “rc_out”. Finally, “orig_out” and “rc_out” are combined using the
merge operation (ideally in a way that maintains the equivariance). Note that the CJRCWrapper places no
constraints on the nature of the submodel; any submodel (even one without convolutional layers) can be
used. Similar wrappers have been independently proposed in Bartoszewicz et al. [6] but can be viewed under
the CJRCWrapper paradigm. We now describe how architectures in the literature can be viewed from the
perspective of the CJRCWrapper.

4.2.2 RCPS in the CJRCWrapper paradigm

In an RCPS convolution, the cth filter from the beginning of the convolutional stack is paired with a
corresponding “RC” filter at the cth position from the end of the convolutional stack that can recognize
the reverse-complement of what the forward filter recognizes. It follows that the RCPS convolution is a
CJRCWrapper around a “submodel” comprised of a single convolutional layer consisting of the forward
convolutional filters, where the ’merge’ operation proceeds as follows: flip the length and channel axes of
“rc_out”, then concatenate “orig_out” with “rc_out” along the channel axis. The flipping along the length and
channel axes prior to concatenation is sufficient to maintain equivariance in the output. This is illustrated in
Fig. 5. Additional architectures involving RC parameter sharing from the literature [6, 8, 14] can also be
viewed within the CJRCWrapper paradigm, and are discussed more in Sec. S3

4.2.3 Conjoined in the CJRCWrapper paradigm

In contrast to RCPS models, which can be viewed as containing several CJRCWrapper layers that each
enclose submodels containing at most one convolutional layer, Conjoined models have a single CJRCWrapper
that encloses a submodel containing all the convolutional layers. In the case of Conjoined models for binary
classification tasks, the merge operation for the CJRCWrapper is a simple elementwise operation, such as an
average in the case of FactorNet [4], or maxpooling in the case of DeepBind [5]. When we extend Conjoined
architectures to BPNet-style models, our merge operation is a flipping of the strand and length axes, followed
by the elementwise sum.

4.2.4 A Spectrum of Architectures Between RCPS and Conjoined

We have shown that each layer in an RCPS models is essentially a CJRCWrapper around a single convolu-
tional layer (optionally followed by batch normalization or dropout), while a Conjoined model is a single
CJRCWrapper around an entire submodel that can contain multiple convolutional layers. This leads to a
natural intermediary, which is a model with multiple CJRCWrappers that can each contain more than one
convolutional layer. If the merging operation between each CJRCWrapper is done in a way that maintains
equivariance (e.g. by flipping the length and channel axes of the “rc_out” before concatenating the along the
channel axis), the resulting model would also maintain RC equivariance.
Inspired by this observation, we explored the performance of a hybrid CJ-RCPS model on the base-pair-
resolution signal profile prediction task. As a reminder, the standard profile prediction models consist of
11 convolutional layers (one standard convolution, followed by 6 dilated convolutions, followed by two
convolutional layers). The last two convolutional layers each have two filters (one for the forward strand and
one for the RC strand; see Sec. S2.2.2). In our hybrid model, we enclosed the first seven convolutional layers
in a CJRCWrapper, while the last two convolutional layers followed the RCPS formulation (see Fig. 3). We
observed that this hybrid model tended to outperform trained conjoined models but was not significantly
better than full RCPS and remained worse than post-hoc conjoined models (Fig. S4.2). We defer a more
complete exploration of the full space of hybrid architectures to future work.

4.3 Conclusion

In this work, we showed that post-hoc conjoined models (trained with RC data augmentation) consistently
perform as well as or better than models that were conjoined during training, likely because models that
were conjoined during training are more susceptible to overfitting. In fact, post-hoc conjoined models
achieved the best or second-best performance across all datasets, surpassed only by RCPS on select datasets.
Unfortunately, RCPS was unreliable, in that it sometimes failed to outperform standard models trained with
RC data augmentation - particularly for profile prediction. This occasional mediocre performance of RCPS is
not due to a representational limitation, given that the RCPS models are capable of representing the solution
learned by their conjoined counterparts.
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As qualitative support for our observations on the unreliable performance of RCPS, we note Brown and
Lunter [7] used a non-standard initialization of the final output layer to encourage their RCPS models to
converge to good solutions. Even so, Brown & Lunter found RCPS did not significantly outperform standard
models trained with RC data augmentation on in vivo binding data, despite the fact that RCPS did better
on simulated data. These apparent difficulties may prevent the full potential of RCPS from being realized
out-of-the-box. We thus recommend that deep learning practitioners exercise caution when adopting RCPS
into their architectures, and always make sure to compare RCPS against a baseline of post-hoc conjoined
models.
We also presented a unified view of conjoined and RCPS architectures, and use it to elucidate a class of
architectures that gradually interpolate between fully-conjoined and fully-RCPS models while maintaining
RC equivariance. We explored an instantiation of this type of model on the base-pair-resolution profile
prediction dataset, and found that while it improved performance relative to trained conjoined models, it did
not outperform post-hoc conjoined models. We defer a thorough exploration of this new class of models to
future work.
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Appendices

S1 RCPS models can be used to represent equivalent conjoined models

In this section, we will show that the RCPS models considered in this work are capable of representing the
solutions learned by the corresponding conjoined models that they are benchmarked against. The high-level
intuition for our approach is as follows: recall that for each filter in an RCPS model, a corresponding
"reverse-complement" filter is created through weight sharing. We will design the weights of our RCPS
model such that (1) the activations of the RCPS “forward” convolutional filters on an input S match up
with the activations of the standard model’s convolutional filters on input S, and (2) the activations of the
RCPS “reverse-complement” convolutional filters on an input S match up with the activations of the standard
model’s convolutional filters on S′ (where S′ is the reverse-complement of S). We will then show how there
is a mapping between linear operations in the RCPS model (that occur between the convolutional layers and
the final output) and the step where the conjoined model averages the output of the standard model on S and
S′. Thus, the RCPS model can represent any function learned by the corresponding conjoined model.

First, we will recap how RCPS models are constructed. Let Wl,c denote the weights of convolutional channel
c (0-indexed) in layer l of the RCPS model, and let Cl denote the total number of channels (including
additional reverse-complement channels generated by RCPS) in layer l of the RCPS model. The matrix Wl,c

has dimensions of (w,Cl−1), where we use w to denote the width of the convolutional filters (without loss of
generality, we will assume all layers use filters of the same width w; we will also set C0 = 4 to represent the
number of channels used in the one-hot encoding of ACGT in the input layer). Under RCPS, the weights of
Wl,c are tied to the weights of Wl,Cl−1−c. Specifically, if we used W l,c

i,j to denote the convolutional kernel
weight on position i and input channel j, and use bl,c to denote the bias term for channel c in layer l, then we
have:

W l,c
i,j =W l,Cl−1−c

w−1−i,Cl−1−1−j

bl,c = bl,Cl−1−c (1)

This weight sharing ensures that filter (l, Cl − 1− c) will recognize the reverse-complement of whichever
pattern is recognized by filter (l, c).

Now, let us extend this notation to the corresponding standard models. Let W∗,l,c denote the weights of
convolutional channel c at layer l of the standard model, and let C∗l denote the total number of channels in
layer l of the standard model. In all our benchmarks, we had Cl = 2C∗l (this was due to the duplication of
filters in the RCPS models caused by reverse-complement weight sharing; we also ran comparisons where
Cl = C∗l (Sec. S4.5) - however, when Cl = C∗l , the equivalence explained in this section does not hold). Let
us further use Al

i,j(S) and A∗,li,j(S) to denote the activations in layer l, position i, channel j for the RCPS
and standard model respectively when sequence S is supplied as input. When l = 0 (denoting the input
layer), we will pretend A0

i,j and A∗,0 are simply the identity function. Let us also use S′ to denote the
reverse-complement of S, and let Ll denote the length of layer l.
If we set the weights for channels c = 0 through c < C∗l in the convolutional layers of the RCPS model such
that:

W l,c
i,j =

{
W ∗,l,ci,j j < C∗l−1, c < C∗l
0 j ≥ C∗l−1, c < C∗l

bl,c =
{
b∗,l,c c < C∗l (2)

And if we also set the weights for channels c ≥ C∗l through c < Cl in accordance with RCPS weight sharing
(Eqn. 1) such that:
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W l,c
i,j =

{
0 j < C∗l−1, c ≥ C∗l
W ∗,l,Cl−1−c

w−1−i,Cl−1−1−j j ≥ C∗l−1, c ≥ C∗l
bl,c =

{
b∗,l,Cl−1−c c ≥ C∗l (3)

Then we can prove that:

Al
i,j(S) =

{
A∗,li,j(S) j < C∗l
A∗,lLl−1−i,Cl−1−j(S

′) j ≥ C∗l
(4)

S1.1 Proof of Eqn. 4

We will prove this by induction. We note that Eqn. 4 holds true in the case of the input layer l = 0, assuming
that one-hot encoding was done using the ordering ACGT. As mentioned, A0 and A∗,0 are simply the identity
function, so A0

i,j(S) = A∗,li,j(S) = Si,j . Eqn. 4 simply states that if there is an A (j = 0) or a C (j = 1)
at position i in the input sequence S, there will respectively be a T (Cl − j − 1 = 4 − 1 = 3) or a G
(Cl − j − 1 = 4− 2 = 2) at position L0 − 1− i of the reverse-complement S′. Here L0 is simply the length
of the input sequence. Thus, Eqn. 4 holds for the base-case of l = 0 due to the reverse-complement property
of DNA.
We will now show that if Eqn. 4 holds for the base-case of l = 0, it holds for all l > 0. From the definition
of a convolutional operation, we have:

Al
i,j = σ

bl,j + k<w∑
k=0

c<Cl−1∑
c=0

W l,j
k,cA

l−1
i+k,c

 (5)

Where σ denotes a nonlinearity. Let us begin by proving the case where j (the index of the convolutional
channel) satisfies j < C∗l (i.e. j is in the first half of the convolutional filters - recall that Cl = 2C∗l ). From
Eqn. 2, we have:

Al
i,j(S) = σ

b∗,l,j + k<w∑
k=0

c<C∗
l−1∑

c=0

W ∗,l,jk,c Al−1
i+k,c(S) +

c<Cl−1∑
c=C∗

l−1

0×Al−1
i+k,c(S)


= σ

b∗,l,j + k<w∑
k=0

c<C∗
l−1∑

c=0

W ∗,l,jk,c Al−1
i+k,c(S)


= σ

b∗,l,j + k<w∑
k=0

c<C∗
l−1∑

c=0

W l,j
k,cA

∗,l−1
i+k,c(S)

 (From Eqn. 4, by induction)

= A∗,li,j(S) (From the definition of a convolution)

Let us now prove the case where j ≥ C∗l . Substituting Eqn. 3, we have:
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Al
i,j(S) = σ

b∗,l,j + k<w∑
k=0

c<C∗
l−1∑

c=0

0×Al−1
i+k,c(S) +

c<Cl−1∑
c=C∗

l−1

W ∗,l,Cl−1−j
w−1−k,Cl−1−1−cA

l−1
i+k,c(S)


= σ

b∗,l,j + k<w∑
k=0

c<Cl−1∑
c=C∗

l−1

W ∗,l,Cl−1−j
w−1−k,Cl−1−1−cA

l−1
i+k,c(S)


= σ

b∗,l,Cl−1−j +

k<w∑
k=0

c<Cl−1∑
c=C∗

l−1

W ∗,l,Cl−1−j
w−1−k,Cl−1−1−cA

∗,l−1
Ll−1−1−(i+k),Cl−1−1−c(S

′)

 (From Eqn. 4, by induction)

= A∗,lLl−1−i,Cl−1−j(S
′) (From the definition of a convolution)

Thus, we have proven Eqn. 4 for any layer in a stack of convolutions, extending from the input upwards.
In words, this shows that the convolutional activations of the standard model on the forward sequence S
correspond to the convolutional activations of the “forward” filters of the RCPS model on the sequence
S, and that the convolutional activations of the standard model on the RC sequence S′ correspond to the
convolutional activations of the “RC” filters of the RCPS model on sequence S.

S1.2 Combining the representations on the forward and reverse strands

Let us now consider how the conjoined model combines the representations on the forward and reverse
strands. In binary conjoined models, the stack of convolutional layers is followed by a linear transformation
that predicts the logit of the sigmoid, after which the representations from both strands are averaged and
passed through the sigmoid. Specifically, if we use l̂ to denote the last convolutional layer, g∗ to denote the
function computing the logit in the standard model, and we use W∗,g & b∗,g to denote the weights & biases
of g∗, we have:

g∗(S) = b∗,g +
∑
i,j

W ∗,gi,j A
∗,l̂
i,j(S)

Thus, the corresponding output g∗∗(S) of the conjoined model is:

g∗∗(S) = 0.5

b∗,g +∑
i

j<C∗
l̂∑

j=0

W ∗,gi,j A
∗,l̂
i,j(S)

+

b∗,g +∑
i

j<C∗
l̂∑

j=0

W ∗,gi,j A
∗,l̂
i,j(S

′)


= b∗,g + 0.5

∑
i

j<C∗
l̂∑

j=0

W ∗,gi,j

(
A∗,l̂i,j(S) +A∗,l̂i,j(S

′)
)

In the case of the RCPS binary models, the “forward” and “RC” channels at the end of the stack of
convolutional layers are added together (after reverse-complementing the RC channels to be compatible with
the forward channels - see Fig. 1), and then a linear operation is applied to obtain the logit of the sigmoid. If
we let g denote the function computing the logit of the RCPS model, and use Wg & bg to denote the weights
and biases of g, we have:

g(S) = bg +
∑
i

j<
C
l̂

2∑
j=0

W g
i,j

(
Al̂

i,j(S) +Al̂
Ll̂−1−i,Cl̂−1−j

(S)
)

= bg +
∑
i

j<
C
l̂

2∑
j=0

W g
i,j

(
A∗,l̂i,j(S) +A∗,l̂i,j(S

′)
)

(From Eqn. 4)
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The reason we iterate from j = 0 to j < Cl̂
2 is that the effective number of filters in the RCPS model gets

halved when the forward and reverse-complement channels are added together. Also recall that Cl̂
2 = C∗

l̂
. If

we therefore set bg = b∗,g and W g
i,j = 0.5W ∗,gi,j , we will achieve g(S) = g∗∗(S).

In the case of the profile prediction models, there is an additional nuance that separate predictions are made
for the two output strands. For simplicity, we will treat the control bias track as though it is another channel
at the end of the last nonlinear convolutional layer. We will denote the activations of the last nonlinear
convolutional layer in the standard profile prediction model using A∗,l̂. Since the operations following the
last nonlinear convolutional layer are all linear convolutions (see Sec. S2.2.2), we will represent the output of
the strands at position i for the standard model as:

A∗i,+(S) = b∗,+ +

k<w∑
k=0

c<C∗
l̂∑

c=0

W ∗,+k,c A
∗,l̂
i+k,c(S)

A∗i,−(S) = b∗,− +

k<w∑
k=0

c<C∗
l̂∑

c=0

W ∗,−k,c A
∗,l̂
i+k,c(S)

After the reverse strand predictions are flipped and averaged with the forward strand, the output of the strands
for the conjoined model is:

A∗∗i,+ = 0.5

b∗,+ + b∗,− +
k<w∑
k=0

c<C∗
l̂∑

c=0

(
W ∗,+k,c A

∗,l̂
i+k,c(S) +W ∗,−w−1−k,cA

∗,l̂
Ll̂−1−(i+k),c(S

′)
)

A∗∗i,− = 0.5

b∗,+ + b∗,− +

k<w∑
k=0

c<C∗
l̂∑

c=0

(
W ∗,+w−1−k,cA

∗,l̂
Ll̂−1−(i+k),c(S

′) +W ∗,−k,c A
∗,l̂
i+k,c(S)

)
By comparison, the output of the forward strand for the RCPS model is written as:

Ai,+ = b+ +

w∑
k=0

c<Cl̂∑
c=0

W+
k,cA

l̂
i+k,c(S)

= b+ +

w∑
k=0

c<C∗
l̂∑

c=0

W+
k,cA

∗,l̂
i+k,c(S) +

c<Cl̂∑
c=C∗

l̂

W+
k,cA

∗,l̂
Ll̂−1−(i+k),Cl̂−1−c

(S′) (By Eqn. 4)

If we thus set the weights such that b+ = 0.5(b∗,+ + b∗,−) and

W+
k,c =

{
0.5W ∗,+k,c c < C∗

l̂

0.5W ∗,−w−1−k,Cl−1−c c ≥ C∗
l̂

We achieve Ai,+ = A∗∗i,+. The weights for Ai,− would be given by Eqn. 2, and a similar calculation can be
done to show Ai,− = A∗∗i,−. Thus, the RCPS models can be used to represent the functions learned by the
corresponding conjoined models.
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S2 Further Details on Model Architectures and Datasets

S2.1 Binary prediction

S2.1.1 Binary prediction datsets

For evaluation on simulated data, we created two simulated datasets consisting of synthetic DNA sequences
of lengths 200bp and 1kbp respectively, that contained motif instances sampled from 3 different Position
Weight Matrices (PWMs). For evaluation on genomic data, we used genome-wide binarized TF-ChIP-seq
data for Max, Ctcf and Spi1 in the GM12878 lymphoblastoid cell-line [1]. In these data, the positive set
contained 1kbp sequences centered on high-confidence TF ChIP-seq peaks, and the negative set contained
1kbp sequences centered on chromatin accessible sites (DNase-seq peaks) in the same cell-lines that do not
overlap any TF ChIP-seq peaks.
Our simulated datasets were based on those used in Shrikumar et al. [1], but with a few slight modifications.
Three “sets” of sequences were generated using the simdna package [15]; one contained instances of the
GATA_known6 Position Weight Matrix (PWM), one contained instances of the ELF1_known2 PWM, and
one contained instances of RXRA_known1 (motifs were taken from Kheradpour and Kellis [16]). 10,000
sequences were generated for each set, for a total of 30,000 sequences. The sequences were simulated as
follows: (1) generate a random background sequence of length Xbp (where X was either 200 or 100) with 40%
GC content (2) determine the number of instances of the motif to insert by sampling from a truncated Poisson
distribution with mean 2, max 3 and min 1 (3) sample the motif instances from the specified PWM (either
GATA_known6, RXRA_known1 or ELF1_known1), (4) reverse complement each sampled instance with
probability 0.5 (5) insert each sampled instance at a random position within the sequence, with the constraint
that it does not overlap a previously inserted instance. We randomly allocated 30% of the data to validation,
30% to testing, and 40% to training. Labels were then generated as follows: there were three binary tasks,
each task corresponding to a particular set; a sequence was labeled as a 1 for a task if it originated from the
corresponding set, and with a 0 otherwise.Finally, we simulated mislabeling noise by flipping each individual
label with 20% probability (this approach of adding noise differed slightly from the approach used in [1] in
that, in our case, the probability of flipping the label for a particular task was independent of the probability
of flipping the label for the other tasks).
Our processed TF ChIP-seq datasets were identical to those created by Shrikumar et al. [1], where
the raw data was produced by the ENCODE consortium [17]. For Ctcf, the file used was
“wgEncodeBroadHistoneGm12878CtcfStdAlnRep0”, for Spi1, the file used was “wgEncodeHaibTfb-
sGm12878Pu1Pcr1xAlnRep0”, and for Max, we used “wgEncodeSydhTfbsGm12878MaxIggmusAlnRep0”.
The positive and negative sets were prepared as follows: for the positive set, we used 1000bp windows
centered around the summits of rank-reproducible peaks [18]. For the negative set, we used 1000bp around
the summits of DNase peaks in Gm12878 that did not overlap the top 150K relaxed ChIP-seq peaks of the
TF (the “relaxed” peaks were called by SPP at a 90% FDR). The file used for DNase peaks was “E116-
DNase.macs2.narrowPeak.gz”, produced by the Roadmap consortium [19]. The training set consisted of all
chromosomes except chr1 & chr2, the validation set consisted of chr1, and the testing set consisted of chr2.
The Max dataset had 12,542 positives and 206,628 negatives, the CTCF dataset had 44,982 positives and
225,533 negatives, and the SPI1 dataset had 42,938 positives and 203,960 negatives.

S2.1.2 Binary prediction models

Our model architectures for the binary datasets were based on the ones from Shrikumar et al. [1]. All standard
models trained on the simulated data employed one convolutional layer with 20 filters of kernel width 21 and
stride 1, followed by batch normalization and the ReLU nonlinearity, followed by maxpooling with width
and stride 20, followed by the sigmoid output layer with 3 neurons. All standard models trained on the TF
ChIP-seq data had three 16-filter stride-1 convolutional layers of kernel widths 15, 14 & 14 respectively, each
of which was accompanied by batch normalization and a ReLU nonlinearity, followed by maxpooling of
width 40 & stride 20, followed by the single sigmoid output. Details on certain the training hyperparameters
are described in Sec. S2.1.4. The conjoined and RCPS architectures used are illustrated in Fig. 1 and are
described in more detail in Sec. S2.1.3. We also explored the effect of varying various architectural and
training hyperparmeters in Sec. S4.3 & S4.7.
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S2.1.3 Details on the Conjoined and RCPS architectures for binary tasks

For the conjoined models trained on binary prediction tasks, we averaged the predicted sigmoid logits across
both forward and RC inputs prior to passing the result through a sigmoid function to obtain the final prediction.
Note that this differs slightly from prior work [5, 4]; in Alipanahi et al. [5], the maximum prediction is
taken across strands, while in Quang and Xie [4], predictions are averaged after the sigmoid nonlinearity is
applied. We justify taking the average rather than the maximum as this was found to produce superior results
in our own benchmarking (Sec. S4.6) and in Bartoszewicz et al. [6], where they found that averaging was
equivalent to summation and superior to taking the maximum; we suspect this is because averaging results in
more informative gradient updates for conjoined models during training (if the “max” is applied across both
strands, then during training, the gradient of the model with respect to one of the strands would always be
zero). We justified taking the average of the sigmoid logits rather than taking the average of the post-sigmoid
probabilities because of the equivalence proven in Sec. S1, and also because of the following probabilistic
interpretation: the logit of a sigmoid represents the log of the predicted odds ratio that the input belongs to the
positive class; averaging sigmoid logits can thus be interpreted as taking the geometric mean of two predicted
odds ratios. In our benchmarking, we found that taking the average of the logits performed comparably to (if
not slightly better than) taking the average of the post-sigmoid probabilities (Sec. S4.6).
For the RCPS architectures trained on binary prediction tasks, we summed representations across strands
prior to the final sigmoid output layer (Fig. 1). This is similar to Bartoszewicz et al. [6] and is functionally
equivalent to the “weighted sum” layer used in Shrikumar et al. [1] to merge representations, but with a
more simplified implementation. Because taking the sum rather than the average can impact the learning rate
dynamics, we verified that using the average of the representations did not produce substantially different
results than using the sum (Sec. S4.6).

S2.1.4 Binary prediction training hyperparmeters

Following Shrikumar et al. [1], all binary prediction models were trained with a binary cross-entropy loss and
the Adam optimizer with the default Keras learning rate of 0.001. In the case of the simulated binary datasets,
we replicated the setup from Shrikumar et al. [1] and defined our “epochs” to be 5000 training examples (note:
canonically, an “epoch” is defined to be a single pass through the entire training set - however, when the data
is loaded on-the-fly using a generator in order to avoid loading all the data at once, epochs can instead be
defined by the number of training examples seen). At a batch size of 500 for the simulated data, each “epoch”
therefore corresponded to 10 training iterations. The training was terminated when the validation set loss
failed to show improvement over 10 consecutive “epochs”, and the model weights at the “epoch” with the
best validation set loss were used for performance comparisons. In the case of the TF ChIP-seq datasets,
Shrikumar et al. [1] defined an “epoch” as 5000 training examples, and used batch sizes of 100 - thus, each
“epoch” corresponded to 50 training iterations. Shrikumar et al. [1] trained each of the TF ChIP-seq models
for 4000 training iterations and used the model weights from the epoch that achieved the best validation
set AuROC. Shrikumar et al. [1] also upweighted their positive examples according to the class imbalance
(16.47:1 for Max, 4.75:1 for Spi1 and 5.01:1 for Ctcf). We replicated this exact setup, but also explored how
changes in these training hyperparameters impacted performance (Fig. S4.3, S4.4, S4.5 and Sec. S4.3) - in
particular, we set the maximum number of training iterations to be 8000 (in addition to 4000), we selected
the best validation set epoch according to prediction loss (in addition to AuROC), and we handled the class
imbalance by upsampling positive examples to achieve a 1:4 class ratio (rather than upweighting positive
examples in the loss).

S2.2 Base-pair-level signal profile prediction

S2.2.1 Profile prediction datasets

We trained our BPNet models using the processed datasets from Avsec et al. [9]. These datasets were
ChIP-nexus profiles of the pluripotent TFs Sox2, Oct4, Klf4, and Nanog in mouse embryonic stem cells. At
each position and strand in each of the four TFs, the profile included the 5’ end read counts. 1000bp windows
were selected around the peak summits from the Irreproducible Discovery Rate (IDR) optimal peaks sets
[18]. These sequences were inputted into the BPNet Architecture. Because ChIP-nexus experiments can have
certain biases, experimental control data was used from PAtCh-CAP59 [20]. The validation set consisted of
regions on chr1, chr8 and chr9, the testing set of regions on chr2, chr3 and chr4, and the training set consisted
of all other regions. The dataset sizes for the training, validation and test sets were, 6748, 2084 & 2167 for
Sox2, 15946, 4818 & 5085 for Oct4, 35009, 10542 & 10908 for Nanog, and 36201, 10283 & 11117 for Klf4.
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S2.2.2 Profile prediction models

BPNet models predict the shape of the observed TF binding signal at base-pair-resolution resolution in a
1kb interval using both DNA sequence and the “control” signal track as inputs. The predicted profiles take
the form of a probability distribution over each position, for each strand. This probability distribution is
compared to the observed distribution of raw read counts in the interval and is scored using a multinomial
loss function.
The original BPNet architecture contained two output heads, where one head predicted the shape of the signal
profile at base-pair-resolution resolution, and the other head predicted the total read counts in a given region.
For the purpose of controlled benchmarking, we trained models on only the profile prediction head (thereby
avoiding differences in performance caused by competition between the two heads). Our BPNet architecture
consists of a one-hot encoded input sequence that is supplied to a convolutional layer with 64 filters and a
kernel width of 21, followed by a stack of 6 dilated convolutional layers with 32 filters each and a kernel
width of 3. The dilation rate of the convolutional layers increased by a factor of 2 with each layer - i.e. the
dilations were 2,4,8,16,32 and 64. The output of each layer was also added to the output of the previous layer
in order to create the input to subsequent layers. At the end of the stack of dilated convolutional layers (all of
which had ReLU activations), a linear convolutional layer with 2 filters and a filter width of 75 was applied
(note that this is equivalent to the “deconvolutional” layer used in the BPNet paper; when the stride is 1, as is
the case here, a “deconvolutional” layer is equivalent to a convolutional layer). The output of this layer was
then concatenated to the control track’s signal profile, and then a second linear convolutional layer with 2
filters and a kernel width of 1 was used to obtain the final profile prediction (one filter each for the positive
and negative strands). Note that, from the perspective of the multinomial loss function, these predictions
represent the logits of a distribution to which a softmax is implicitly applied (the softmax is applied separately
for each strand). All convolutional layers except for the final layer were followed by ReLU nonlinearities.
All models were trained using the Adam optimizer and the default Keras learning rate of 0.001 and a batch
size of 64. An “epoch” was defined as a full pass through the training dataset, and models were trained using
early stopping with a patience of 10 epochs. The metric used for early stopping was the prediction loss on the
validation set, and “restore_best_weights” was set to True (meaning that the model weights at the epoch with
the best validation set loss were used). Our handling of reverse-complement equivariance for BPNet-style
models is described in Fig. 3. The effects of different hyperparameter choices was explored in Sec. S4.7.
One modification that we made to the BPNet architecture was to avoid zero-padding; in the original BPNet
architecture, the inputs to convolutional layers were zero-padded such that the output of the convolutional
layer had the same dimensions as its input (this is called “same” padding in keras). The “same” padding
was necessary for the residual connections, which perform elementwise additions of different convolutional
layers. To avoid zero-padding, we instead supplied a longer initial input sequence (1346bp); in order to make
different convolutional layers have compatible dimensions for the residual connections, we trimmed away the
ends of the longer layer prior to performing the elementwise addition.

S2.3 A note on the number of filters in RCPS

In the case of the RCPS architectures, each filter has a reverse-complement counterpart that is created at
runtime (via weight sharing), which increases the representational capacity of the model. Thus, the “effective”
number of filters in the RCPS model could be considered to be twice the number in the standard models.
For thoroughness, we also ran benchmarks where the RCPS models were specified to have half the number
of filters, such that the “effective” number of filters would be comparable to that in the standard models.
However, we found that this consistently decreased the performance of RCPS on all the tasks we evaluated
(Sec. S4.5). Also note that our default setup, where the “effective” number of filters we use for the RCPS
model is twice the number in the standard model, is necessary for the proof showing that our RCPS models
can represent any solution learned by the corresponding conjoined models; this is because our proof relies on
mapping the activations of the conjoined model on the RC input sequence to the activations of the “RC filters”
in the RCPS model.

S2.4 A note on RC data augmentation

Standard architectures (that are not RC-equivariant by design) can be trained with or without data augmenta-
tion. When RC data augmentation was enabled, it was implemented by extending each training batch with
the reverse complements of the original inputs, which effectively doubles the batch size. A natural question
that the reader might have is why we do not train RC-equivariant architectures (i.e. Conjoined and RCPS
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architectures) with data augmentation. Due to the symmetries present in these architectures, the gradient
update performed on a sequence in the forward orientation is identical to the gradient update performed on
the reverse-complement; thus, if we were to train RC-equivariant architectures with data augmentation, it
would be equivalent to duplicating the examples in each batch.
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S3 Additional RC parameter sharing cases in the CJRCWrapper paradigm

In this section, which is a continuation of Sec. 4.2.1, we discuss how additional architectures from the
literature fall within the CJRCWrapper paradigm.

S3.1 Variants of RCPS

Several variants of RCPS exist in the literature, such as RCPS followed by RC batch normalization, RCPS
followed by RC dropout, and particular merge layers used with RCPS. We discuss these variants as they
relate to the CJRCWrapper below.

S3.1.1 RCPS followed by batch normalization

Shrikumar et al. [1] and Bartoszewicz et al. [6] considered the case of RCPS followed by RC batch normal-
ization. The key property of RC batch normalization is that the batch normalization parameters are shared
between the forward and RC channels. This can be implemented as a CJRCWrapper around a submodel
containing two layers: a single convolutional layer followed by standard batch normalization.

S3.1.2 RCPS followed by RC dropout

Brown and Lunter [7] introduced architectures where RCPS layers were followed by RC dropout. Their setup
was equivalent to a CJRCWrapper around a submodel containing a convolutional layer and a dropout layer
(with the caveat that the dropout mask is preserved when the submodel is run on both the forward and RC
inputs).

S3.1.3 Merge layers used with RCPS for binary classification architectures

RCPS architectures used for binary classification (or, more generally, RCPS architectures used to predict a
single scalar value) are intended to give identical predictions whether the forward or the RC strand is supplied
as input. Consequently, they involve a layer that collapses the forward and RC representations together - for
example, Brown and Lunter [7] had “RC max-pooling”, and in this work we take an elementwise sum over
the forward and RC channels. Such merging layers are equivalent to a CJRCWrapper around a submodel that
is just the identity function, followed by a merging op that takes the elementwise maximum (or summation)
across “orig_out” and “rc_out”.

S3.2 FRSS layers from Onimaru et al. [8]

Onimaru et al. [8] proposed FRSS (Forward and Reverse Sequence Scan) layers as a form of parameter
sharing to account for reverse-complement sequences - however, unlike other architectues discussed in this
paper, the FRSS layers do not strictly guarantee reverse-complement equivariance. In FRSS layers, a one-hot
encoded input sequence is supplied to two “branches”. The first branch applies two standard convolutional
layers (including any associated pooling and nonlinearities) to the input. The second branch is similar to the
first branch, but runs the convolutional operations with “rotated” kernel weights, such that the filters in the
second branch recognize the reverse-complement of whatever patterns their corresponding filters in the first
branch recognize. The outputs of the two branches are then combined via an elementwise summation before
being supplied to the rest of the network layers (which may include additional pooling, convolutional and
fully-connected operations).
The FRSS layer is equivalent to a CJRCWrapper around two standard convolutional layers, where the merge
operation is a flipping of “rc_out” along the length axis, followed by an elementwise summation. Recall
that “rc_out” is the output of the convolution on the reverse-complemented input, which is positionally
flipped relative to the forward-strand input; thus, flipping “rc_out” along the length axis restores positional
correspondence between “orig_out” and “rc_out”.
Although it may seem intuitive to positionally align “orig_out” and “rc_out” prior to summing them, doing
so can break RC equivariance later in the model. To appreciate why, let us presume that the forward version
of the input sequence contains a motif at a location that is xbp from the start of the sequence; this means the
RC version of the input sequence will contain a motif at xbp from the end of the sequence. Now consider
what happens when the representation learned by the FRSS layer is eventually supplied to a fully-connected
layer: unless the fully-connected layer learns to place equal weight on both locations in the input sequence,
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the activations of the fully-connected layer may differ between the forward and RC strands. In practice,
fully-connected layers have been observed to place asymmetrical importance on positions that are equidistant
from the center of the input sequence, even when those positions would be given equal weight by an ideal
model [21]. To avoid this issue and guarantee RC equivariance, our RCPS models flip the positional axis
of the RC filter activations prior to merging the forward and RC channels (similar to what was done in
Brown and Lunter [7]). Doing so breaks the positional alignment of the forward and RC filters, which is
why the merging of forward and RC filters is RCPS models is performed only immediately prior to the
first fully-connected layer (it is presumed that the fully-connected layers mainly focus on the locations of
convolutional filter activations relative to the center of the sequence, which is still preserved by the flipping).

S3.3 Irrep layers from Mallet and Vert [14]

Mallet and Vert [14] used principles based on the theory of “steerable CNNs" [22] to investigate the full
space of possible designs that yield linear reverse-complement equivariant layers. They identify something
they called an “irreducible representation feature space” or “Irrep feature space”, which refers to a linear
layer that is constructed as follows: for each channel in the layer, either the channel has an identical activation
irrespective of whether the input is reverse-complemented (such channels are called +1 channels), or the
channel maintains the magnitude of its activation but flips its sign when the input is reverse-complemented
(such channels are called −1 channels). To calculate the reverse complement of channel activations in the
Irrep feature space, one simply needs to maintain the value of the +1 channel activations while flipping the
sign of the −1 channel activations. The authors note that all linear RC equivariant feature spaces can be
converted to an Irrep feature space by an invertible linear transformation. They refer to the “type” of an RC
equivariant representation by the combination (P, a, b), where P denotes an invertible matrix to convert to an
Irrep feature space, a denotes the number of +1 channels in the Irrep feature space and “b” to denote the
number of −1 channels in the Irrep feature space. By this notation, the irreducible representation itself has
a type of the form (I, a, b), where I is the identity matrix. Mallet and Vert [14] note that the RCPS layers
proposed by Shrikumar et al. [1] all satisfy a = b, and they benchmark RCPS layers against Irrep layers
with different values for the ratio a/(a+ b). As for the choice of nonlinearities, Mallet and Vert [14] use a
ReLU nonlinearity for the +1 channels and a tanh nonlinearity for the −1 channels, thereby allowing the
sign information for the −1 channels to be preserved.
How can Irrep layers be represented within the unified framework? Recall that in Irrep layers, the +1 channels
have identical activation irrespective of whether they are supplied the forward or RC input, while the −1
channels flip their sign. First, we make the following observation: the +1 channels in an Irrep layer can be
thought of as computing the sum of the activations of some standard convolutional channel on the forward
and reverse-complement inputs, while the −1 channels can be thought of as computing the difference of as
computing the difference of the activations. Thus, in order to place Irrep layers in our unified framework,
it suffices to find the weights of a standard convolutional layer that satisfies these properties, and define
the “combine” operation such that it sums the appropriate channels of “orig_out” and “rc_out” for the +1
channels, and subtracts them for the -1 channels.
Let us consider convolutions that act on a feature space with Cin input channels, and which have kernel
width l (that is, each individual neuron in the convolutional layer sees in input patch of dimensions Cin × l).
Accordingly, each channel in the convolutional layer also has weights of dimensions Cin × l, which we will
represent with the letter W . Let R represent the reverse-complement operation that acts on an input of size
Cin × l and returns the reverse-complement of the input. R is presumed to be a linear operation (e.g. if the
previous layer is an RCPS layer, R would flip the length and channel dimensions, which are linear operations;
similarly, if the previous layer were an Irrep layer, R would flip the length dimension, preserve the values of
the +1 input channels and flip the sign of the−1 input channels). In order to satisfy equivariance, the weights
of the +1 channels in the output layer must satisfy R(W ) =W , and the weights of the −1 channels in the
output layer must satisfy −R(W ) =W . Now imagine a regular linear convolutional layer that has the same
number of channels as the Irrep layer, but for which the weights are constructed as follows: for every +1
channel with weights W , we define the corresponding weights of that channel in the new layer as W , and for
every−1 channel with weights W , we define the corresponding weights in the new layer as 0.5(W −R(W )).
The irrep layer can then be represented in the “unified framework” as follows: we compute the activations
of the new layer on both the forward and RC input, producing “orig_out” and “rc_out” respectively. We
flip “rc_out” along the length dimension, then combine it with “orig_out” as follows: for the +1 channels,
we compute “0.5(orig_out + rc_out)” and “orig_out”, while for the -1 channels we compute “0.5(orig_out -
rc_out)”. Finally, we apply a ReLU nonlinearity to the +1 channels and a tanh nonlinearity to the -1 channels,
as was done in Mallet and Vert [14].
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S4 Supplementary Results

S4.1 Comparison of Training vs. Test-set Performance for CJ and RCPS architectures

Figure S4.1: Comparison of training vs. test-set performance for RCPS and CJ architectures. Bar
heights represent the average performance over 10 random seeds, and error bars represent the 95% confidence
intervals for the mean generated by seaborn [10] using 1000 bootstrapped samples. RCPS denotes RC
Parameter Sharing. CJ-trained are models that were conjoined during both training and test time. CJ-posthoc
are standard models trained with RC data augmentation that were converted to conjoined models only after
training. We show AuROC (rather than AuPRC) for the binary models because AuROC was the criterion
used to select the training iteration with the best validation set performance (this is consistent with the training
procedure used in Shrikumar et al. [1]). Similarly, for the profile models, we show the crossentropy loss
of predicting the positions of the reads (this is equal to the multinomial loss - i.e. the training loss - minus
a constant factor; the multinomial loss was used for selecting the best training iteration; lower is better).
On the binary TF ChIP-seq datasets and base-pair resolution signal profile prediction models, we see that
CJ-posthoc models consistently show a mean test-set performance that is comparable to or better than the
mean test-set performance of CJ-trained, coupled with a mean training-set performance that is comparable to
or worse than the mean training-set performance of CJ-trained, which matches the hypothesis that CJ-trained
has a tendency to overfit to the training set relative to CJ-posthoc. Although the trend is not observed on the
simulated data, this could be because the models were trained with early stopping (thus, it is possible that the
training set performance of the trained conjoined models may have surpassed that of the post-hoc conjoined
models if all models were forced to keep training for a fixed number of iterations). By contrast, on tasks
where the mean test-set performance of RCPS comparable to or worse than the mean test-set performance of
CJ-posthoc (i.e. all tasks except binary CTCF ChIP-seq, binary SPI1 ChIP-seq, and the simulated data with
sequence length 1000bp), we observe that the training set performance of RCPS is never significantly better
than that of CJ-posthoc, and (as in the case of the Oct4, Sox2 and Klf4 profile prediction tasks) is sometimes
significantly worse.
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S4.2 Performance of a hybrid Conjoined/RCPS architecture on base-pair-resolution signal profile
prediction

Figure S4.2: Performance of a hybrid Conjoined/RCPS architecture on base-pair-resolution signal
profile prediction. Bar heights represent the average performance over 10 random seeds, and error bars
represent the 95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped
samples. RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during both
training and test time. CJ-posthoc are standard models trained with RC data augmentation that were converted
to conjoined models only after training. “Hybrid CJ/RCPS” is the hybrid Conjoined/RCPS architecture
described in Sec. 4.2.4. Note that, for Jensen-Shannon divergence, lower is better. We observe that this
hybrid architecture performs comparably to or better than CJ-trained, but does not significantly outperform
the full RCPS model and consistently underperforms relatived to CJ-posthoc.

S4.3 Some datasets show sensitivity to training hyperparameters

Previous analyses Shrikumar et al. [1] had shown that RCPS architectures outperformed standard architectures
with RC data augmentation on several binary output TF binding prediction tasks. However, we found that
increasing the maximum number of training iterations (i.e. batch updates) from 4000 (used by Shrikumar
et al. [1]) to 8000, resulted in the standard architectures with RC data augmentation outperforming the RCPS
architecture for predicting binary binding of the Max protein (Fig. S4.3). This trend was not observed for
Ctcf (Fig. S4.4) and Spi1 proteins (Fig. S4.5), where RCPS remained in the lead irrespective of the limit on
the number of training iterations. The Max dataset differs most dramatically from Spi1 and Ctcf in that it is
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has a more acute class imbalance (Max has 16.47:1 positive to negative example ratio compared to 4.75:1
for Spi1 and 5.01:1 for Ctcf). We hypothesize that due to the smaller number of positive training examples,
the Max task is inherently harder to learn on, which may explain why the standard architecture needs more
training iterations to find a good solution.
Inspired by this result, we explored the effect of other hyperparameters that impact model training (Fig.
S4.3, S4.5, S4.4 ). For example, we explored the impact of the metric used to select the “best” validation set
epoch. By default, the Keras “early stopping” callback selects the epoch with the best validation set loss.
We found that this default approach could occasionally yield significantly lower validation-set auROCs and
auPRCs relative to using the epoch with the best validation-set auROC, particularly for the Max dataset.
Note that the approach of selecting the best validation set epoch using auROC was used in Shrikumar et al.
[1], and we found it was necessary to replicate their results. We also found that when the training-set
class imbalance was handled by upsampling positive examples to achieve a positives:negatives ratio of 1:4
(instead of upweighting positive examples in the loss function according to the class ratios, as was done in
Shrikumar et al. [1]), the model auPRCs generally improved for the all three tasks. However, regardless of
these hyperparameter choices, the main trends described in this work were robust to these differences in
hyperparameters.

Figure S4.3: Benchmarking effect of different training hyperparameters for Max TF ChIP-seq binary
peak prediction. Bar heights represent the average performance over 10 random seeds, and error bars
represent the 95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped
samples. “Standard-RCAug” and “Standard-noRCAug” are standard models trained with and without RC
data augmentation. RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during
both training and test time. CJ-posthoc are standard models trained with RC data augmentation that were
converted to conjoined models only after training.

S24



Figure S4.4: Benchmarking effect of different training hyperparameters for Ctcf TF ChIP-seq binary
peak prediction Bar heights represent the average performance over 10 random seeds, and error bars
represent the 95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped
samples. “Standard-RCAug” and “Standard-noRCAug” are standard models trained with and without RC
data augmentation. RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during
both training and test time. CJ-posthoc are standard models trained with RC data augmentation that were
converted to conjoined models only after training.
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Figure S4.5: Benchmarking effect of different training hyperparameters for Spi1 TF ChIP-seq binary
peak prediction. Bar heights represent the average performance over 10 random seeds, and error bars
represent the 95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped
samples. “Standard-RCAug” and “Standard-noRCAug” are standard models trained with and without RC
data augmentation. RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during
both training and test time. CJ-posthoc are standard models trained with RC data augmentation that were
converted to conjoined models only after training.
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S4.4 Alternative Performance Metrics for Signal Profile Prediction

Included here are the results of the performance evaluation for signal profile prediction using Pearson
correlation and Jensen-Shannon divergence as the metrics. Refer to Sec. 2.1 for an explanation of how the
metrics are calculated.

Figure S4.6: Benchmarking of profile prediction models - Pearson correlation and Jensen-Shannon
divergence. Note that, for Jensen-Shannon divergence, lower is better. Results with Spearman correlation as
the metric are in Fig. 4. The metrics are explained in Sec. 2.1. Bar heights represent the average performance
over 10 random seeds, and error bars represent the 95% confidence intervals for the mean generated by
seaborn [10] using 1000 bootstrapped samples. “Standard-RCAug” and “Standard-noRCAug” are standard
models trained with and without RC data augmentation. RCPS denotes RC Parameter Sharing. CJ-trained
are models that were conjoined during both training and test time. CJ-posthoc are standard models trained
with RC data augmentation that were converted to conjoined models only after training.

S4.5 Performance benchmarks of RCPS with a reduced number of filters

As discussed in Sec. S2.3, in the case of the RCPS architectures, each filter has a reverse-complement
counterpart that is created at runtime (via weight sharing), which increases the representational capacity of
the model. Thus, the “effective” number of filters of the RCPS model could be considered to be twice that of
the standard models. To account for this, we also trained RCPS models with half the number of filters (such
that the “effective” number of filters would be comparable to that in standard models). However, on all tasks
we evaluated, we consistently observed that this decreased performance (Fig. S4.7, Fig. S4.8).
For the TF ChIP-seq binary datasets, this difference was most apparent in the Max TF ChIP-seq binary task,
where the reduction in filters caused the RCPS models with half the number of filters to perform considerably
worse than all other models, including standard models trained without data augmentation. This trend is
consistent with the generally poor performance of RCPS on the Max TF ChIP-seq dataset (Sec. S4.3). For
the Ctcf ChIP-seq binary dataset, the performance of RCPS models with half the number of filters was still
superior to the other non-RCPS models benchmarked, and for Spi1 ChIP-seq the RCPS models with half
filters retained comparable performance to the best non-RCPS models.
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Figure S4.7: Performance of RCPS models with half the number of filters on binary TF ChIP-Seq
datasets. Bar heights represent the average performance over 10 random seeds, and error bars represent the
95% confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped samples. “Standard-
RCAug” and “Standard-noRCAug” are standard models trained with and without RC data augmentation.
RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during both training and test
time. CJ-posthoc are standard models trained with RC data augmentation that were converted to conjoined
models only after training. RCPS-half are models with the same architecture as regular RCPS models but
with half the number of filters. Similar to Fig. 4, training hyperparameters were set to the tested combination
that tended to produced the highest overall AuPRCs.
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Figure S4.8: Performance of RCPS models with half the number of filters on profile prediction datasets.
Bar heights represent the average performance over 10 random seeds, and error bars represent the 95%
confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped samples. “Standard-
RCAug” and “Standard-noRCAug” are standard models trained with and without RC data augmentation.
RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during both training and test
time. CJ-posthoc are standard models trained with RC data augmentation that were converted to conjoined
models only after training. RCPS-half are models with the same architecture as regular RCPS models but
with half the number of filters.
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S4.6 Comparison of Different Representation Merging Strategies for Binary Models

For thoroughness, we compared the performance of conjoined and RCPS models using different strategies
for combining the predictions of the two branches. In addition to standard models trained with and without
data augmentation, we looked at the following cases:

• RCPS models where the representations of the forward and RC strands were combined via summation
(as was done in this work). This was denoted as “RCPS” in the figure legend.
• RCPS models where the representations of the forward and RC strands were combined via averaging

(this is representationally equivalent to summing, but we wanted to test if it impacted learning dynamics
due to scaling of the learning rate). This was denoted as “RCPS-Avg”.
• Trained conjoined models where the predictions on the forward and RC strands were averaged at the

level of the sigmoid logit (as was done in the remainder of this work), prior to applying the final sigmoid
nonlinearity. This was denoteed as “CJ-trained”.
• Trained conjoined models where the maximum prediction across the forward and RC strand was taken

(rather than combining the strand predictions by averaging the logits), as was done in Alipanahi et al.
[5]. This was denoted as “CJ-trained-max”.
• Post-hoc conjoined models where the predictions on the forward and RC strands were averaged at the

level of the sigmoid logit (as was done in the remainder of this work), prior to applying the final sigmoid
nonlinearity. This was denoted as “CJ-posthoc”.
• Post-hoc conjoined models where the predictions on the forward and RC strands were averaged after

applying the sigmoid nonlinearity (similar to what was done in Quang and Xie [4], except Quang and
Xie [4] used trained conjoined models). This was denoted as “CJ-posthoc-postsigmoid”.

Although we found that the mean performance of RCPS-Avg was higher than the mean performance of
RCPS, the 95% confidence intervals were still overlapping. We made a similar observation for CJ-posthoc vs
CJ-posthoc-postsigmoid. We did, however, find that CJ-trained significantly outperformed CJ-trained-max on
the MAX and SPI1 dataset, consistent with Bartoszewicz et al. [6]’s finding that averaging of representations
across the forward and RC strands tended to outperform taking the maximum or the hadamard product. Our
findings are displayed in (Fig. S4.9).

Figure S4.9: Comparison of different averaging strategies for the conjoined models trained on binary
data. Bar heights represent the average performance over 10 random seeds, and error bars represent the 95%
confidence intervals for the mean generated by seaborn [10] using 1000 bootstrapped samples. “Standard-
RCAug” and “Standard-noRCAug” are standard models trained with and without RC data augmentation.
RCPS denotes RC Parameter Sharing. CJ-trained are models that were conjoined during both training and test
time. CJ-posthoc are standard models trained with RC data augmentation that were converted to conjoined
models only after training. RCPS-Avg is the same as RCPS, but where the strand representations are
combined via averaging rather than summing (though averaging is representationally equivalent to summing,
it could affect the learning rate). CJ-trained-max is equivalent to CJ-trained, but where the maximum of the
sigmoid logits was used rather than the average. CJ-posthoc-sigmoid is equivalent to CJ-posthoc, but but
with averaging performed after the sigmoid nonlinearity rather than at the level of the sigmoid logit. Similar
to Fig. 4, training hyperparameters were set to the tested combination that tended to produced the highest
overall AuPRCs.
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S4.7 Additional Hyperparameter Combinations

In addition to the other hyperparameter combinations included, we further explored the number of filters,
decreasing by a factor of sqrt(2) rather than half. We also explored different learning rates and initializations
for RCPS to see if that affected results, appropriately raising the maximum number of allowed epochs when
lower learning rates were used. We chose to explore these hyperparameters because we have previously found
these to be the most important for deep learning models in genomics. We looked at the following cases:

• RCPS models where the representations of the forward and RC strands were combined via summation
(as was done in this work). This was denoted as “RCPS” in the figure legend.
• RCPS models where the number of filters were reduced by either half or by sqrt(2). These were denoted

as “RCPS_half” and “RCPS_sqrt” respectively.
• RCPS models where he_normal initialization was used rather than the default Keras initialization of

glorot_uniform. This was denoted as “RCPS_he_normal”.
• RCPS models trained with Adam with learning rates of 0.0001, 0.0005, and 0.005. These models were

denoted as “RCPS_0.0001”, “RCPS_0.0005”, and “RCPS_0.005” respectively.
• Trained conjoined models where the predictions on the forward and RC strands were averaged at the

level of the sigmoid logit (as was done in the remainder of this work), prior to applying the final sigmoid
nonlinearity. This was denoteed as “CJ-trained”.
• Post-hoc conjoined models where the predictions on the forward and RC strands were averaged at the

level of the sigmoid logit (as was done in the remainder of this work), prior to applying the final sigmoid
nonlinearity. This was denoted as “CJ-posthoc”.

Overall, on the real-world datasets, none of the formulations we tested were able to significantly outperform
the original RCPS models we had trained (according to error bars generated from training with ten random
seeds, as before). In the cases where we had reported that post-hoc conjoined significantly outperformed
RCPS, we still found that the same pattern held. We prioritized tuning RCPS to see if we could boost its
performance rather than performing hyperparameter tuning on the post-hoc conjoined models.
We had previously found that RCPS did the best on the 1000bp sequences but did not significantly outperform
CJ-posthoc on the 200bp sequences. After the hyperparameter search, we found that both RCPS_half and
RCPS_sqrt had error bars that overlapped with the original RCPS models, and on the 200bp dataset the error
bars still overlapped with CJ-posthoc. We did find that RCPS with an Adam learning rate of 0.005 happened
to outperform CJ-posthoc on the 200bp simulated dataset. However, because we did not do hyperparameter
tuning for CJ-posthoc, it is possible that tuning the learning rate for CJ-posthoc on the 200bp dataset may
close the gap. In addition, the error bars for the performance of RCPS seem to be noticeably larger than the
error bars for CJ-trained and CJ-posthoc, which may be suggestive of optimization difficulties.
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Figure S4.10: Performance of RCPS models with sqrt(2) reduced filters and varied learning rates and
initializations on simulated binary prediction. Bar heights represent the average performance over 10
random seeds, and error bars represent the 95% confidence intervals for the mean generated by seaborn
(Waskom et al., 2017) using 1000 bootstrapped samples. RCPS denotes RC Parameter Sharing. RCPS_half
and RCPS_sqrt have half and sqrt(2) number of reduced filters. RCPS_he_normal have all the same parameters
as a regular RCPS model but with he_normal initialization rather than the default keras initialization of
glorot_uniform. RCPS_0.0001, RCPS_0.0005, and RCPS_0.005 are like the original RCPS models but
trained with Adam and learning rates of 0.0001, 0.0005, and 0.005 respectively. CJ-trained are models that
were conjoined during both training and test time. CJ-posthoc are standard models trained with RC data
augmentation that were converted to conjoined models only after training.

Figure S4.11: Performance of RCPS models with sqrt(2) reduced filters and varied learning rates
and initializations on binary TF ChIP-Seq datasets. Bar heights represent the average performance
over 10 random seeds, and error bars represent the 95% confidence intervals for the mean generated by
seaborn (Waskom et al., 2017) using 1000 bootstrapped samples. RCPS denotes RC Parameter Sharing.
RCPS_half and RCPS_sqrt have half and sqrt(2) number of reduced filters. RCPS_he_normal have all the
same parameters as a regular RCPS model but with he_normal initialization rather than the default keras
initialization of glorot_uniform. RCPS_0.0001 and RCPS_0.0005 are like the original RCPS models but
trained with Adam and learning rates of 0.0001 and 0.0005 respectively. RCPS with a learning rate of 0.005
performed poorly so it was not included in the plots. CJ-trained are models that were conjoined during both
training and test time. CJ-posthoc are standard models trained with RC data augmentation that were converted
to conjoined models only after training. On the MAX dataset, where RCPS previously under performed, we
still find that CJ-posthoc performs better than RCPS.
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Figure S4.12: Performance of RCPS models with sqrt(2) reduced filters and varied learning rates and
initializations on profile prediction datasets. Bar heights represent the average performance over 10
random seeds, and error bars represent the 95% confidence intervals for the mean generated by seaborn
(Waskom et al., 2017) using 1000 bootstrapped samples. RCPS denotes RC Parameter Sharing. RCPS_half
and RCPS_sqrt have half and sqrt(2) number of reduced filters. RCPS_he_normal have all the same parameters
as a regular RCPS model but with he_normal initialization rather than the default keras initialization of
glorot_uniform. RCPS_0.0001, RCPS_0.0005, and RCPS_0.005 are like the original RCPS models but
trained with Adam and learning rates of 0.0001, 0.0005, and 0.005 respectively. For Sox2, RCPS_0.0001
performed very poorly so the mean is not visible on the plot. CJ-trained are models that were conjoined
during both training and test time. CJ-posthoc are standard models trained with RC data augmentation that
were converted to conjoined models only after training.
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