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Abstract

Multiclass logistic regression is a fundamental task in machine learning with applications in clas-
sification and boosting. Previous work (Foster et al., 2018) has highlighted the importance of
improper predictors for achieving “fast rates” in the online multiclass logistic regression prob-
lem without suffering exponentially from secondary problem parameters, such as the norm of the
predictors in the comparison class. While Foster et al. (2018) introduced a statistically optimal
algorithm, it is in practice computationally intractable due to its run-time complexity being a large
polynomial in the time horizon and dimension of input feature vectors. In this paper, we develop a
new algorithm, FOLKLORE, for the problem which runs significantly faster than the algorithm of
Foster et al. (2018) — the running time per iteration scales quadratically in the dimension — at the
cost of a linear dependence on the norm of the predictors in the regret bound. This yields the first
practical algorithm for online multiclass logistic regression, resolving an open problem of Foster
et al. (2018). Furthermore, we show that our algorithm can be applied to online bandit multiclass
prediction and online multiclass boosting, yielding more practical algorithms for both problems
compared to the ones in (Foster et al., 2018) with similar performance guarantees. Finally, we also
provide an online-to-batch conversion result for our algorithm.

Keywords: multiclass logistic regression, online learning

1. Introduction

Logistic regression is a classical model in statistics used for estimating conditional probabilities
that dates back to (Berkson, 1944). The model has been extensively studied in statistical and on-
line learning and has been widely used in practice both for binary classification and multi-class
classification in a variety of applications.

In recent years, motivated by applications in clickthrough-rate prediction in large scale adver-
tisement systems, the problem of online logistic regression has been intensively studied. This is a
sequential decision-making problem where examples consist of a feature vector and a categorical
class label. In each time step an online learner is provided a feature vector representing the example
to be classified, and the learner is required to output a prediction of probabilities! of the label of the
example. The learner’s performance is measured by their regret, which is the difference between
their cumulative log-loss, and the log-loss of the best possible linear predictor of bounded norm for
the online sequence of examples computed in hindsight.

This problem is an instance of online convex optimization and hence the standard tools for
deriving low regret algorithms, viz. Online Gradient Descent (Zinkevich, 2003) (OGD) and Online
Newton Step (Hazan et al., 2007) (ONS) apply. However, the regret bounds derived using these

1. To be precise, the learner outputs logits which induce a probability distribution via softmax.
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methods are suboptimal. To discuss these bounds, let d be the dimension of the input feature vectors
(assumed to have length at most 1), B > 0 be a bound on (an appropriate) norm of the comparator
linear predictor, and 71" be the number of prediction rounds. Then OGD has a regret bound of
O(BV/T), whereas ONS has a regret bound of O(de®” log(T)). While the latter bound has much
better dependence on 7' than the former, the exponential dependence on the B parameter makes it
worse for most practical settings of interest.

In COLT 2012, McMahan and Streeter (2012) posed the open problem of whether it is possi-
ble to develop an algorithm with regret scaling polynomially in B but logarithmically in 7". This
question was answered in the negative by Hazan et al. (2014) who proved a lower bound showing
that no proper online learning algorithm (i.e. one that generates a linear predictor to use in each
round before observing the feature vector in that round) can achieve these desiderata. Foster et al.
(2018) broke this lower bound via an improper online learning algorithm based on Vovk’s Aggre-
gating Algorithm (Vovk, 1998) which enjoys a regret bound of O(dlog(BT)), thus achieving a
doubly-exponential improvement in the dependence on B compared to ONS. A similar result was
also obtained by Kakade and Ng (2005) for the binary classification case. Foster et al. (2018) also
proved a lower bound showing that this regret bound is optimal, even for improper predictors. De-
spite the optimality of the regret bound, this algorithm is unfortunately not very practical since its
running time is a polynomial in d, B, and T" with high degrees. Foster et al. (2018) recognized the
impracticality of their method, and state that “obtaining a truly practical algorithm with a modest
polynomial dependence on the dimension is a significant open problem.” Jézéquel et al. (2020)
solved this open problem for the binary classification setting, and developed a new improper online
learning algorithm called AIOLI that has a suboptimal regret bound of O(dB log(BT)), but much
better running time: each round can be implemented to run in O(d? +log(T')) time. Thus, AIOLI is
a practical algorithm for online binary logistic regression. Similarly, for the offline (batch statistical,
i.i.d.) setting for binary logistic regression, Marteau-Ferey et al. (2019) and Mourtada and Gaiffas
(2019) have developed learning algorithms with fast rates. The former develops a proper learning
algorithm via generalized self-concordance techniques along with additional assumptions on the
data distribution, whereas the latter develops an improper learning algorithm based on empirical
risk minimization with an improper regularizer.

With the exception of (Foster et al., 2018), none of the papers mentioned above giving algo-
rithms with fast rates and non-exponential dependence on B extend to the practically important
online multiclass logistic regression setting. In fact, it is possible to formally show that the style of
analysis for the AIOLI algorithm (Jézéquel et al., 2020) using Hessian dominance does not work for
even 3 classes, see Section F. Jézéquel et al. (2020) also note the difficulty of extending the analysis
to the multiclass setting and explicitly list developing a practical algorithm for the multiclass set-
ting, and applying it to problems such as online bandit multiclass prediction and online multiclass
boosting, as open problems.

In this paper, we solve these open problems. Specifically, if K denotes the number of classes, we
devise a new algorithm, FOLKLORE (Fast OnLine K-class LOgistic REgression), that has a regret
bound of O(d(B + log(K))K log(T)), and runs in O(d>K> + BK?log(T)) time per round. Sim-
ilarly to AIOLI, FOLKLORE is also based on Follow-The-Regularized-Leader (FTRL) paradigm
(see (Hazan, 2019) for background on FTRL) with quadratic surrogate losses and an improper regu-
larizer which, in part, penalizes all the K possible labels equally. The main distinction from AIOLI
is the introduction of a linear term in the regularizer which is key to the analysis. The linear term is
designed to ensure that a certain notion of instantaneous regret in any given time step is minimized.
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Algorithm Regret Running time (per step)
OGD BT dK
ONS de® log(T) d’K?
Foster et al. (2018) dlog(T) poly(d, K, B,T)
AIOLI (Jézéquel et al., 2020) [K=2] | dBlog(T) d? + Blog(T)
GAF (Jézéquel et al., 2021) dBK log(T) d*K?3 + K*T
FOLKLORE (This paper) dBKlog(T) | d*K3 + K?Blog(T)

Table 1: Regret bounds and running time (in O()) for relevant algorithms for online logistic regres-
sion. The running time bound for Foster et al. (2018) depends on the sampling algorithm
and is a high-degree polynomial in d, K, B, T.

This crucially relies on the fact that there are only K possible labels, and therefore, only K possible
values of the instantaneous regret. We choose the regularizer to be the solution to a minimax prob-
lem: minimze the maximum of the K possible values of the instantaneous regret. It turns out that
this minimax problem has a closed-form solution, which is used to design FOLKLORE. Since the
minimax problem relies on the knowledge of the feature vector in the current time step, FOLKLORE
becomes an improper online learning algorithm. An intriguing fact is that although FOLKLORE
does not reduce to AIOLI in the binary setting, the probabilities predicted by FOLKLORE in the
binary case exactly match those predicted by AIOLI (with some minor adjustments) (see Section D).

We then employ FOLKLORE as a subroutine in two problems of interest, also previously con-
sidered by Foster et al. (2018): online bandit multiclass prediction, and online multiclass boost-
ing. For the online bandit multiclass problem, we give a new reduction which transforms a re-
gret bound in the full-information setting to the bandit setting. Using FOLKLORE as the full-
information online multiclass prediction algorithm, the resulting algorithm has a regret bound of
O(y/dK2(B +log(K))log(BT)T), which is roughly an O(v/B) factor worse than the regret
bound of the OBAMA algorithm of Foster et al. (2018), but is significantly more practical. For
the online multiclass boosting problem, we give a new reduction to binary logistic regression. Us-
ing FOLKLORE (or AIOLI) as the online prediction algorithm results in a sample complexity of
O(T log(K)/(N~?) 4+ 10g?(T)/(v?) + KS/~). Again, this is a factor log(T") worse than the Ad-
aBoost.OML++ algorithm of Foster et al. (2018), but significantly more practical.

After this manuscript initially appeared on arXiv, we were made aware of the independent and
concurrent work (Jézéquel et al., 2021) which provides an efficient low-regret algorithm called
Gaussian Aggregating Forecaster (GAF) for 1-mixable losses satisfying certain assumptions. In
particular for multiclass logistic regression, GAF has the same regret bound of O(dBK log(T))
as FOLKLORE, but a per-step running time of O(d?K?® + K2T3). GAF is based on the same
lower-bound approximation as our algorithm, however it still requires sampling which leads to a
T-dependent running time complexity per step. Our algorithm on the other hand is purely based
on the FTRL paradigm and enjoys a much better running time. This and other relevant results for
multiclass logistic regression are summarized in Table 1.
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2. Problem setting and notation

Let || - ||,, denote the £, norm on R¢ and || - ||  as the Frobenius norm of a matrix. Further let || - ||2.0
denote the 2 — oo norm of a matrix defined as

A

[All2,00 = sup Azl

z:||z||2<1

for any K € N, let [K] be the set [1,... K]. Define Ax € RX be the standard K -dimensional
simplex representing distributions over [K]. For any positive definite matrix A, the norm || - ||4 on
R4 is given by ||z||4 = \/(z, Az). We will denote by ® the standard Kronecker product between
matrices. When using vectors v € R/, v € R72, u ® v € RJ172 is defined as the Kronecker product
obtained by interpreting u, v as j; X 1, jo X 1 dimensional matrices respectively.

In the multiclass learning problem the input is assumed to be from the set X = {2z € RY|||z||» <
R} for some R > 0. The number of output labels is K. A linear predictor parameterized by
W € RE*4 given an input € X', assigns a score to every class as given by the vector Wz € RE,
Given a K x d sized matrix W, we will denote by IT/ € RE4 the K d-dimensional vectorization
of W in a canonical manner. Let W}, represent the k" row of the matrix W. The set of linear
predictors we will be dealing with will be assumed to be W = {W € R>E|||W ||z, < B} for
some B > (. Under these restrictions it is readily observed that Vo € X and VW € W, we have
that |Wz|| - < BR.

Given a vector z € R¥ define the softmax function o/(2) : RX — Ag as

e[z]k

> jeix) €

With the above notation we can define the multiclass logistic loss (-, -) function given a vector
z € RX and a distribution y € A, as

A

[0 (2)]k vk € [K].

K

Uzy) £ —yelog(o(2)]k)-

k=1

In several contexts the label y will denote a class in [K] rather a distribution in Ag. In these cases,
we will overload notation and use £(z, y) to denote the logistic loss: — log([o(2)]y).

Online multiclass logistic regression. We define the learning problem as follows. The learner
makes predictions over 71" rounds with individual rounds indexed by ¢. In each round ¢, nature
provides an input z; € X to the learner and the learner predicts z; € R in response. Nature then
provides a label y; € Ak and the learner suffers the loss ¢(z¢,y:). The aim of the learner is to
minimize regret with respect to any W € W, defined as

T

Regret(W) = ZE(Zt,yt) — LWy, yp).
t=1

For notational convenience, we define

ft(W) = K(W.Z't, yt).
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An online learning algorithm for the problem is said to be proper if it generates a linear predict
Wy € W before seeing x;, and then setting z; = Wyxy. An improper predictor is allowed to output
any prediction z; taking into account the observation x;. In particular, the learner we propose will
produce a W; at every step, and predict using z; = Wyz, but W, will depend on the observed xy,
and the learner is thus improper.

Finally, we make the convention that the gradient V/;(W) € R%? and the Hessian V2¢,(W) €
RE@xKd are defined with respect to the canonical vectorization of the the matrix V.

3. Main result

The algorithm we propose FOLKLORE (Algorithm 1), is an improper FTRL over a sequence of
quadratic surrogate losses. At any time step, the algorithm decides on an improper regularizer ¢,
which adjusts the prediction matrix depending on x;. The regularizer ¢; is defined as follows:

K
S(W) 2 %ZE(W@,I@) + (W, By). 3.1)

k=1

The vector B; € R¥? defines a linear term in the regularizer and is key to the analysis. It will be
specified in the course of the analysis. We use the following surrogate loss:

1
BR + In(K)/2

- o
G(W) £ L(Wy) + (W — W, V&(Wy)) + IW =W illZr24, 17 (3-2)

By definition /;(W;) = £,(W;). The following lemma shows that the surrogate loss provides a
lower bound over W € W.

Lemma 1 For any x; and W such that ||Wx||cc < BR, the surrogate function defined in equa-
tion (3.2) is a lower bound on ¥4, i.e.

L(W) < 4y(W).

The above lemma is the multiclass analogue of Lemma 5 in Jézéquel et al. (2020) (although Lemma
5 is not stated in the Hessian form above, it can be readily seen to be the same in the appropriate
parametrization). The proof is provided in Section B.

Remark 2 Given the quadratic form of the surrogate loss, it is natural to suspect that the above
lemma is a by-product of a self-concordance like property of logistic regression (Bach, 2010; Tran-
Dinh et al., 2015). Indeed a similar lower bound can be obtained via generalized self-concordance,
however it requires both ||W¢||2,00 and ||W ||2,o to be bounded. Instead we provide an alternative
full proof to a slightly stronger version requiring boundedness of only W.

The following theorem provides a regret bound for FOLKLORE. We prove this theorem in the
next section.

Theorem 3 The regret of Algorithm 1 with surrogate losses defined by (3.2), improper regulariza-
tion defined by (3.1) and \ = 2% against any sequence of contexts is bounded by

Regret = O((BR + In(K))dK In(T)) .
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Algorithm 1 FOLKLORE

input: regularization A, improper regularization ¢;
Set Ag = - Igyq, Go = 0.

fort=1,...,7T do

Receive x; and play z; = W;x; where

t—1
. =
Wi = argmin A||W|3 + )~ 4(W) + ¢(W) = argmin||[W|%, | + (W,Gi_1) + ¢(W).
WeRdxk —1 WeRdxk

(3.3)
Receive y; and suffer loss .
Update At = At—l + W(KWV%t(Wt)
| Update Gy = G—1 + V(W)

The next theorem specifies the per-step running time of the algorithm. The proof is delegated to the
Appendix (Section E).

Theorem 4 For every step t of Algorithm 1, for any € > 0, we can compute a vector Z; such that
12¢ — Wiay||? < e in total time

O (K + K (14 &) log (1 (14 £))).

Compared to Foster et al. (2018), our algorithm is significantly faster, but the improved running
time comes at the price of a linear dependence on B R instead of logarithmic.

Remark 5 Note that, FOLKLORE is stated with Wy being the true minimizer in (3.3). However it
can be seen from our analysis that it is sufficient to solve the problem upto additive error poly(1/T).
Since Theorem 4 shows a logarithmic dependence on this error for running time, exact minimization
is assumed for brevity through the rest of the paper.

3.1. Analysis

Our analysis proceeds by first recalling the decomposition of the regret into a sum of instantaneous
regret terms obtained by Jézéquel et al. (2020). While this fact was proved by Jézéquel et al. (2020),
for completeness we provide a concise proof in Appendix (Section B).

Lemma 6 Let{; be the surrogate quadratic lower bound of the loss function which ensure /, (Wy) =
L(Wy) and L,(W) < Ly(W) for all W € W. Then for any W € W, the regret of Algorithm 1 for
any sequence of regularizers (qbt) _, is bounded by

Regret(W) < N|W||% +

AN

T
> [IV6uWa) = VaW) 2 = IV e (Wl | -
t=1

Given this decomposition, the goal of selecting a suitable ¢, is to minimize the instantaneous regret
defined as

V(W) — Vgt(Wt)Hit—l - ”Vﬁbt(Wt)HZ;II



EFFICIENT METHODS FOR ONLINE MULTICLASS LOGISTIC REGRESSION

For the case of K = 2, Jézéquel et al. (2020) choose the regularizer ¢.(W') as the function
((Wx,0) + £(Waxe,1). A simple calculation shows that a similar approach with the natural ex-
tension ), {(W x4, k) does not quite work (see also Section F for a more general discussion). We
propose to take an alternative approach. Since we do not know the loss ¢; ahead of time, we aim at
finding the ¢, that minimizes the worst case instantaneous regret. For arbitrary values of V¢, (W,),
this minimax problem does not have a finite solution because the instantaneous regret is quadratic
in V{;(W;). The key insight for logistic regression is that the loss function is a convex combina-
tion over the finite set {¢(-;x¢,ex) |k € [K]}. We will focus over these K “base” loss functions
first. For these K functions, there are only K possible values of V¢;(W;). This allows to recast
the quadratic problem in V¢, (W,) as a linear problem, for which a minimax solution exists. The
following lemma summarizes this idea of linearization:

Lemma 7 For any W, any positive definite matrix A > 0, any regularization function ¢y, and any
(W) e {{(Way,y) |y € Ak}, the instantaneous regret decomposes as

IV (W) = Ve(W)|5-1 = V(W) 51
< —2(ATIVL(W), V(W) — b (W, A)) + Tr(A™ V2,(W))

where )
bi(W;A) =c(Waxy) @ x4 — §A diag®(A_1)(1K ® xy),

and diagg, denotes the operator that sets all matrix entries besides those corresponding to the K-
many d x d blocks on the diagonal to 0.

The proof is delegated to the Appendix (Section B). Given the above lemma, the natural minimax
solution for ¢ is to ensure for all W

V(W) — b (W;4) =0, (3.4)

in which case the instantaneous regret reduces to Tr(A~*V2¢,(W;)). Further note that the LHS
in Lemma 7 upper bounds the instantaneous regret with both choices A = A;—; and A = A;. In
terms of regret, the better choice is selecting A = A; due to the telescoping sum. Unfortunately,
Ay depends on W; which makes finding the right ¢; computationally expensive>. Therefore we
continue by choosing A = A;_;. The following lemma (proved in the Appendix (Section B))
shows how to choose ¢; to satisfy (3.4).

Lemma 8 Serting

1 1 . -
B = ?IK X ;T — §At—1 dlag@(At—ll)(lK ® xt)’

in the definition of ¢, (3.1) ensures that for all W we have that NV ¢p,(W) = by(W; A1)

Combining the ideas above we are now ready to prove the main regret bound provided in Theorem
3.

2. This approach requires solving a fixed point equation.
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Proof of Theorem 3. Combining Lemma 6,7,8 and the fact that for all W € 1V, we have that
W% < K B? directly leads to the following conclusion that for all W € W,

T
Regret(W) < AKB? + ) " Tr(A; V2, (W7)).
t=1

We have by definition

A=A 2
' )\+BR+1 /2ZV€

For convenience of analysis we define a slightly different series

) 1 L,
A= BR T (R 2 SZIV £(W5)-

In Lemma 14 in the appendix, we prove that for any ¢
V20,(W,) < R*I,
and therefore by using A = %5, we have
A1 = Ay — %I = A,

Using the concavity of the log det function, which in particular implies for any two positive definite
matrices A, B, Tr(A™}(A — B)) < logdet(A) — log det(B), we get that

T
Regret < AKB? + Z Tr(A; Y V2,(W))
t=1

< A\KB?+ Z Tr(A;71V24,(Wh))

t=1
~ 20 (W,
Tr <At1V L(Wt) >

= AKB? + (BR +1n(K)/2) BR+In(K)/2

< AKB? + (BR +1In(K)/2)

R

(log det(A,) — log det(A 1))

H
Il
—

< AKB? + (BR + In(K)/2) <10g det(Ar) — log det(ixo))

T
= AKB? + (BR +In(K)/2) log det (I T \BR +21n(K)/2) > V2€t(W)>
t=1

< AKB? + (BR + In(K)/2) log det ((1 4+ T)I)
< K(2BR+ (BR +1n(K)/2)(dIn(1 + T)))
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4. Applications

In this section, we show that all applications of logistic loss with linear function classes listed in
(Foster et al., 2018) are solvable with our algorithm.

4.1. Bandit Multiclass Learning

The next application of our techniques is the bandit multiclass problem. This problem, first studied
by Kakade et al. (2008), considers the protocol of online multiclass learning in Section 2 with
nature choosing y; € [K] in each round, but with the added twist of bandit feedback: in each
round, the learner predicts a class g; sampled from some probability distribution p, that it computes,
and receives feedback on whether the prediction was correct or not, i.e. I[g; # y:]. The goal is
to minimize regret with respect to a reference class of linear predictors, using some appropriate
surrogate loss function for the 0-1 loss. In most recent papers, regret bounds for this problem have
been replaced by the weaker notion of relative mistake bounds (i.e. a bound on the number of
mistakes discounted by the minimal logistic loss of a linear predictor).

In COLT 2009, Abernethy and Rakhlin (2009) posed the open problem of obtaining an efficient
algorithm for the problem with O(\/T ) regret using the multiclass logistic loss as the surrogate loss.
Hazan and Kale (2011) solved the open problem and obtained an algorithm, Newtron, based on the
Online Newton Step algorithm (Hazan et al., 2007) with O(\/T ) regret for the case when norm
of the linear predictors scales at most logarithmically in 7". This result was improved by Foster
et al. (2018) who developed an algorithm called OBAMA based on the Aggregating Algorithm that
obtains é(\/T ) relative mistake bound across all paramater ranges, but has poor running time. In
a beautiful paper, van der Hoeven (2020) managed to get a O(\/T) relative mistake bound for this
problem with excellent running time — O(dK) per iteration — by exploiting the gap between the 0-1
loss and the multiclass logistic loss. Relative mistake bounds were also obtained for other surrogate
losses: e.g. multiclass hinge loss by Kakade et al. (2008), and for a special family of quadratic loss
functions by Beygelzimer et al. (2017).

We now give a generic reduction showing that any regret bound for the (full-information) on-
line logistic regression implies a relative mistake bound for bandit multiclass learning. By using
FOLKLORE as the base algorithm for this reduction, we obtain another bandit multiclass predic-
tion algorithm with O(\/T ) relative mistake bound with a practical running time. Algorithm 2 gives
the reduction. It assumes that it is given an algorithm for online logistic regression, Alg, with the in-
terface Alg.Initialize() to initialize the algorithm, Alg .Update(z, y) to update its internal state with
the example (x,y), and Alg .Predict(z) to predict logits for class probabilities given an input x with
the current internal state. The reduction is very simple and based on an exploration-exploitation
split: in each round the algorithm samples a Bernoulli random variable with parameter v (denoted
Ber()), and if the outcome is 1, it chooses a class uniformly at random, and if the predicted class is
correct, updates Alg. Otherwise, the algorithm predicts using the current internal state of Alg. The
following theorem (proved in the Appendix (Section B) provides the regret bound for this reduction.
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Algorithm 2 Bandit multiclass reduction

input: logistic regression algorithm Alg,y € [0, 1]
Alg.Initialize()
fort=1,...,Tdo
if Ber(y) = 1 then
Predict ; ~ unifg.
if Z)t = Yt then
| Alg.Update(z:, y:)

else
| Predict g, ~ o(Alg .Predict(z))

Theorem 9 For an online multiclass logistic regression algorithm which satisfies for all loss se-
quences Uy and comparators W € W:

T
> (W) — (W) < R(T),
t=1

KR(T)
T

where R(T') is a monotonous upper bound function, Algorithm 2 with input vy = satisfies

T

T
> I # yt}] < min{vrvneigvzg(th, y) + VKTR(T), T} .
t=1

t=1

E

Applying Theorem 9 to the regression algorithm of Foster et al. (2018) directly recovers their Theo-
rem 6, but our reduction holds in more generality. Combining the wrapper with Algorithm 1 directly
leads to a relative mistake bound of

T T
E[Y g # il < min 3~ 6(W) + 0 (min{T, VK> (BR+ n(K)) T In(BRT)} ) .
t=1 t=1

We can now compare this result with that of van der Hoeven (2020). Their algorithm gets a relative
mistake bound of O(K BR+/T) with O(dK) running time. Our algorithm gets a better dependence
on BR, but comes at a cost of O(/dlog(T")) factor, and somewhat worse running time.

4.2. Online Multiclass Boosting

The next application of our techniques is the problem of online multiclass boosting (OMB). We
begin by describing first the basic setup of OMB, following closely the notation of Jung et al.
(2017). In this problem, over a sequence of 1" rounds indexed by ¢, the learner receives an instance
xy € X, then selects a class §; € [K|, and finally observes the true class y; € [K|. The goal is to
minimize the total number of mistakes Zle I[g¢ # y¢|. Assisting the algorithm in this task are N
copies of a weak learner which abide by the following protocol. At any time stept = 1,...,7, the
weak learners receive a feature vector x; and a cost-matrix C; € C (from some class of matrices
C € REXE)Y and returns a prediction /; € [K]. Then the true label y; is revealed to the learner
and the weak learner suffers the loss C (v, l;). Following Jung et al. (2017), we restrict C = {C €

10
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REXE | vy € [K]: C(y,y) = 0and ||C(y,-)|1 < 1}. Weak learners are characterized by the
following property.

Definition 10 (Weak learning condition (Jung et al., 2017)) An environment and a learner out-
putting (lt)thl satisfy the multiclass weak learning condition with edge v and sample complexity
S if for all outcomes (yt)g;l and cost matrices (Ct)?zl from the set C adaptively chosen by the

environment, we have
T

T
Z ytalt < Z ko, yt Ct yt’k)] +S?

t=1

where -, is the distribution that samples uniform over K| with probability (1 — ~) and otherwise
picks the label y.

Given weak-learners as described above, the aim of multiclass boosting (using multiple in-
stantiation of the weak learner) is to achieve arbitrarily low error/regret (measured by the number
of mistakes made by the algorithm), keeping the number of samples received and the number of
weak learners instantiated by the algorithm as low as possible. Foster et al. (2018) propose Ad-
aBoost. OLM++ (Algorithm 4 in the Apendix), an extension of AdaBoost.OLM (Jung et al., 2017)
and AdaBoost.OL (Beygelzimer et al., 2015) using their proposed algorithm for multiclass logistic

regression as a subroutine. Overall they exhibit an algorithm that achieves a target error rate €, after
seeing T' = Q (6%2 + f—:{q) samples, leveraging at most N = O ( ) -many weak learners with
edge . However since Foster et al. (2018) instantiate a logistic regression instance for every weak
learner, their algorithm suffers a very high computational overhead per-step per weak-learner due
to the use of the Aggregating Algorithm. In this section we demonstrate a more efficient reduction
for the online multiclass boosting problem which reduces the problem a binary logistic regression
problem. As a result we can leverage our proposal FOLKLORE or AIOLI achieving the same (up
to log(T") factors) bounds as Foster et al. (2018) but significantly faster running time.

We now briefly revisit AdaBoost. OLM++ (detailed description and proofs found in Appendix C).
The high level idea is to let each weak learner i € [N] iteratively improve the aggregated logits pre-
dicted. In time step ¢, let sf;_l denote the aggregation up to weak learner ¢ — 1, then the cost matrix
of the i-th weak learner is determined by the gradient of the logistic loss of s} =1 and its prediction [,
shifts the aggregation by si = s}~ Ly ajey,. Foster et al. (2018) show that one obtains small overall
error, as long as the adaptive aggregations s = s, 4 aje;, have small regret compared to the best
fixed o’ in hindsight.

We formalize this intuition in the following.

Definition 11 (Boosting regression problem) The problem proceeds as a T-round problem where
at every step t, the environment (potentially adversarially and adaptively) picks and reveals to the
algorithm, a logit s; € RX and a label |; € [K). The algorithm predicts a vector ; € R¥. Then a
true label picked by the environment y; € [K| is revealed to the algorithm. The aim of the algorithm
is to ensure the following type of regret bound:

T
> —loa((o(3)ly) < min 3~ ~loa([o(se +aei)]y,) +R(T)
t=1 =1

where R(T') is a regret function.

11
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With the above definition, we can generalize the guarantee for the AdaBoost. OLM++ algorithm
(Foster et al., 2018) (stated as Algorithm 4 in the Appendix (Section C)) as in the following propo-
sition (proof provided in the Appendix (Section C)).

Proposition 12 (Variant of Theorem 8 and Proposition 9 (Foster et al., 2018)) Given an algo-
rithm solving the boosting regression problem with regret R(T), the predictions (j);)}_, generated
by Algorithm 4 satisfy with probability at least 1 — 6,

ZH{Qt#yt}:O Zf\if}’iz

t=1
Suppose further that all weak learners satisfy the weak learning condition with edge v and sample
complexity S, then with probability at least 1 — 9, we have

T
(Tlog(K) + NR(T) + log(N/5)> '

T
ZH{@t #yt=0 (le(\);g,y(f) + Réz) + [25 —|—log(N/5)> .
t=1

Foster et al. (2018) provide a solution to the boosting regression problem with regret R(T') = O(1)
by recasting it as a regular regression problem, mapping « to W, € R¥*2K and expanding the
dimension to d = 2K. Unlike FOLKLORE, the regret bound of multiclass logistic regression
provided by Foster et al. (2018) scales with the algebraic dimension of the comparator class W,
which is only 1 instead of 2K2. We show in the next paragraph a significantly more efficient
reduction based on FOLKLORE.

Solving the boosting regression. We present a suitable reduction of the boosting regression to
binary regression, which therefore does not scale with the number of classes K. Algorithm 3
first collapses the dimension of the prediction from K classes to a binary decision representing a
prediction of whether the predicted label /; is correct. Then it clips the magnitude of the logits to
log(T') to ensure bounded R and runs FOLKLORE? over the resulting binary regression problem.
Finally it expands the binary result to K classes by predicting all classes y # I; proportional to their
input logits sy .

Algorithm 3 Boosting regression with FOLKLORE subroutine
Input: FOLKLORE with K =2,d =2, R =1+ In(T), B = 2.
fort=1,...,7T do

Receive s, I3

St 4 (st log Dy, exp(stk))

Z; = (min{log(7"), max{—log(7), %(Et,l —382)}, 1).

(¢ < FOLKLORE.Predict(Z;)

St < Gea

Vk € [K] \ {lt} : <§t,k < Stk + Ct72 — 10g Zk’;élt exp(stk/) .
Play s; and receive true class y;.

FOLKLORE.Update(i:t, 1+ H{yt 7é lt})

The following theorem provides a bound on the regret of Algorithm 3. We provide the proof in the
Appendix (Section C).

3. AIOLI would work equally well, since we only require binary regression.

12
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Theorem 13 Algorithm 3 solves the boosting regression problem with R(T') = O(logz(T)).

Combining Theorem 13 with Proposition 12 directly leads to an efficient algorithm for online mul-
ticlass boosting. The running time complexity during each time-step of algorithm 3 is only O(K).
Hence, in contrast to the work of Foster et al. (2018), our regression routine does not dominate the
overall running time complexity of AdaBoost.OLM++, where computing the cost matrices C! alone
is at least linear in K.

4.3. Online-to-Batch Conversion

The FOLKLORE algorithm can be used to obtain a predictor for the batch statistical setting via the
standard online-to-batch conversion. Given a a sample set of size 7" drawn i.i.d. from the underlying
distribution, this predictor runs FOLKLORE on the sample (with an arbitrary order) and stops at a
random time 7 € {1,2,...,T}. Then, given a new input feature vector z € X, the predicted class
probabilities are computed by solving the optimization problem (3.3) in FOLKLORE at time step 7
using the procedure from Theorem 4. Standard online-to-batch conversion analysis (Cesa-Bianchi

et al., 2004) then implies that the expected excess risk of this predictor over the optimal linear
( (BR+In(K))dK In(T) )
. .

prediction W with ||[W||2 ~c < B is bounded by the average regret, i.e. by O

5. Conclusion and Future work

In this paper we gave an efficient online multiclass regression algorithm which enjoys logarithmic
regret with running time scaling only quadratically in the dimension of the feature vectors, thus
answering an open question of Foster et al. (2018). We also showed how to apply this algorithm to
the online bandit multiclass prediction and online multiclass boosting problems via new reductions.

One open question remaining in this line of work is the following. The regret bound in (Fos-
ter et al., 2018) scales with the algebraic dimension of YV, while ours scales with the worst-case
dimension Kd. Our main technique, specifically Lemma 7 breaks when one tries to reduce the de-
pendency to the algebraic dimension. Designing an algorithm with similar performance guarantees
to ours but with regret scaling with the algebraic dimension of VW would be quite interesting.
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Appendix A. Preliminaries

We begin by providing some simple calculations regarding the gradient and Hessian of the multino-
mial logistic loss functions. For any x, y we have that

Vwt(Wz,y) = (c(Wz) —y) @x
ViAW, y) = (diag(c(Wz)) — o(Wa)o(Wz)") @ (zz7).

Note that the Hessian is independent of y. This fact will be useful in the analysis. The following
lemma provides a simple bound on the Hessian.

Lemma 14 For any x,y, we have that the hessian satisfies
Vipt(Wz,y) < ||z[|3 - Lxa-
Proof We have
VE AW, y) = (diaglc(Wz)) —o(Wa)o(Wz) ) @ (z2T).

We have that zz: " < ||z||314. Further, o(1Wz) is a probability distribution and hence (diag(o (W x))—
o(Wx)o(Wx)") < I. Combining these two inequalities completes the proof. [ |
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Appendix B. Omitted proofs

~

Proof of Lemma 6 For any W, define L, (W) 2 3! £5(W) + \|W |3 with Lo(W) 2 X\|[W||%.
Further define W; = argmingy cgkxd f/t(W). We now have the following consequence for any W,

T
Regret(W) = Z [gt(Wt) — gt(W)] < Z [&(Wt) — ét(W)}

Il
B

(W) + Lioa W) = LW+ Le(Wr) = Le(W) =A(IWAlE = [W3)

t=1

<0 (since Wy minimizes L)
T A~ A~ ~ A~ A A~
<AW(E + Z [Lt(Wt) = Li(Wi) + Le-1(Wi—1) — L1 (W2)
t=1

The first inequality above follows from the fact that ét(Wt) = (,(W;) and for all W, ft(Wt) <
£, (W}). The last inequality follows from the definition of L.

Note that L, is a quadratic function with hessian 2A;. For any quadratic function f with invert-
ible hessian A, it holds that

. 1
f(@) = min (') = V@) 31
Hence
o A s ~ o o 1 o N
Lo(Wi) = L) + Lia(Wer) = Leea (W) = 7 (IVLaWo) 20 = IV Leca W31 ) -

By definition of our strategy of selecting W; in Algorithm 1, (since the optimization if unconstrained
and is for a function which is strongly convex and continuously differentiable), we have that

VLi_1(Wy) + V(W) =0,

which directly gives VLi(W;) = VE(W;) — V(W) and VL1 (W;) = —V ¢ (W;). Plugging
these into the equation above and combining everything completes the proof. |

Proof of Lemma 1 Given W, and a target W with the guarantee that ||WW ;|| < BR, define the

following vectors
w=o0c(Wax) and v = o(Wyay).

Further denote In(w) = [In(w;)]X, as the element-wise logarithm of a vector w and define y =

m. The lower bound is defined as

~ - = - =
G(W) = (W) + (W = W, VEW2)) + W = W1y, v

which implies the following,

~

L(W) = (W) = —(In(v), ) + (In(w), ye) + (W = We)xe, v — ye) +[[(W — Wt>xtHiiag(y)_WT
= —(In(v),gr) + {In(w), o) + (In(w) — (@), v = ye) +7ln(w) = @) F0g) ot
= (In(w) — In(v), v) +7|n(w) = @) 5,000 0 s
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The second equality above follows using the facts that (v —y;, 1) = 0 and (diag(v) —vv")1x =
0. Denote Q2 = {o(W=x)|W € W,z € X'} C Ak be the set of all possible distributions induced

by W € W, then we have

2
B(W) = (W) < max max {In(w) ~ (), ) + 7)) = 100) gy 0o -

£F (v,w)

To analyse the above we first fix a w € () and analyse the expression. Let v* be the optimum fixing
w. Note that since for all W € W, X € X we have |[Wz|» < BR, we conclude that for any
i € [K], we have w; € (0,1). Further, by the KKT conditions, at the optimal point v* € A, there
must exist A € R such that for all ¢ € [K], one of the following must hold,

a(?/Z'F(y*,w) =A

or 0 Fv*,w)<Aandv; =0
Ov; ’ g

or 0 Fv*,w)>Xand vy =1
Ov; ’ g '

We can derive a closed form expression for the derivative given by

7 [ i

We observe that for any i € [k],

0
Jim g ) = o

Therefore by the KKT conditions, there cannot by an ¢ € [K], such v} = 0. Since v* € Ay, this
also implies that there cannot be an ¢ € [K], such v = 1. Therefore by the KKT conditions we
must have that there exists a A € R such that for all ¢,

d .
8V¢F(V Jw) = A

The above condition can be re-written as for all i € [K],

<ln <°"> - 1> (1 — 29KL(w,v*)) + 7 In? <w> +27In <w> )\
v 2 v

Further observe that the LHS above across all 7, is a fixed quadratic function in In(7#) (Note that the

KL term is fixed across constants). Therefore to satisfy the above equation, it must be the case that
across all 4, In( %) can acquire at most two distinct values. Formally, there must exist two values

a1, as € R and a subset J C [K] such that the following holds,

VieJ: o =a
Vi€ [K]\J = = a.
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Using the above define the following quantities, let
weEYu vEY
ieJ ieJ

then we have that

F(v*,w) = f(v,w) 2 vIn (E) +(1—1))1n(11_w> -

v — v

5 (<vln (%) +(1-v)n <11:Z>>2+U1n2 (%) +(1—v)n? G:Z’)) .

At this point we have effectively reduced the computation to the one-dimensional case. Note
that v € [0, 1]. Further since w € €2, we have that

exp(—BR) exp(—2BR)
1 >1 In{ —— | = -2BR — In(K).
n(w) 2 In ((K — 1)exp(BR) + exp(—BR) " K n(K)
Therefore we can reduce the problem as follows
max max F(v,w) < sup sup f(v,w) (B.1)
weQ velAg we(e_i(BR,l) ve[0,1]
Next we show that
sup sup f(v,w) <0 (B.2)
we(ﬁl) ’UE[O,H

which completes the proof. To characterize the sup of f(v,w) over v for a given w, we consider
two cases.

Case 1: Firstly, let v € {0, 1}. In this case, f(v,w) is In(w) < 0 and In(1 — w) < 0 respectively.
Case 2: The next case is when % f(v,w) = 0 for some v € (0,1). The derivative is given by

0 w v
%f(v,w): <ln(1 )—ln(l

—w — v

) (149G 0= P20 - i)

1—w

We will show that % f(v,w) = 0if and only if v = w. The forward direction is immediate. To see
the backward direction, firstly, observe that for all v € (0, 1)

1 v

(v=g)nli =)=

Therefore we have that for any w € (6_;% ,1)and any v € (0,1),

w w

)|

1—w

(1422 - pome o)) BRI

1 w
" 2RB + In(K) lln(l - w)‘
min{In(w), In(1 —w)}
WRB +(K) =

>1
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Therefore we have that

aavf(v,w)20<:><ln(1w ) — In(— )>=0,

—w 1—w

which happens iff and only if v = w. It can now be seen that when v = w, f(v,w) = 0, which
establishes (B.2). Using (B.1), we have also established

max max F(v,w) <0.
weN veEAK

This completes the proof. |

Proof of Lemma 7 To prove Lemma 7, as alluded to before, we first prove a restriction of the lemma
for the case when ¢, € {{(Wxzy,ex) | k € [K]}.

Lemma 15 For any W, any p.d. matrix A - 0, any regularization function ¢, and any ¢,(W') €
{{(Wzy,y) |y € Ak}, the instantaneous regret decomposes as

V(W) = V&(W)[%-1 = IV oe(W)[[5
= —2(A7'VL(W), V(W) — by(W, A)) + Tr(A~' V2, (W),
where

1
b(W3 A) = 0(Way) ® 2 — 5 Adiage (A7) (1 @ 24),

and diagg, denotes the operator that sets all matrix entries besides those corresponding to the K-
many d x d blocks on the diagonal to 0.

To use the above lemma first note that for any W
VOW) = g Ve W, ep).
kE[K]
Therefore an application of Jensen’s inequality implies that

IV (W) — VL(W)[5-1 = Vo (W)5

<

~—
HMN

Ve (W) — W(Wxtjek)lli1)>—IIV¢t(W)II,241

I
M= <

el - (IIVG(W) — VE(Way, ex) |31 — [V (W)[15-1) -

b
Il

1

Further using Lemma 15 we get that

IV (W) = V(W) |- = Ve (W)]5-s
K
<Y 20{ATINUW s, ep), Vor (W) — by(W, A)) + Tr(A-IV20(W))

< —2(A7'VL(W), V(W) — b (W, A)) + Tr(A~ V24 (W) .
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Therefore all that is left to prove is Lemma 15 which we prove next
Proof of Lemma 15 Recall that for 0y = o (W x) and for a label y, the gradient and Hessian of the
logistic loss are respectively

VIWay,y) = (0r — ey) @ 24
VH(Way,y) = (diag(or) — 010/ ) ® () ) .

Therefore we begin by analyzing the quadratic part of the term which is given by

VG5 = (o0 — ey) @ 4%
= Tr((diag(e,) @ zx, )A™Y) 4+ (A7 (o) — 2e,) ® 4, 04 @ x4)
= Tr((diag(e, — 01) @ ey JA™Y) + 2(A7 (0 — €) @ x1), 00 @ )+
Tr(((diag(oy) — o0y ) @ ] J)A™L) .

=Tr(V2L,(W)A-1)

Finally, note that

Tr((diag(e, — o) ® zxy )A™) = Tr((diag(e, — o) @ 2z, ) diagg (A1)
= Tr((1x ® 21)((ey — o) ® a1) | diagg (A1)
= ((ey — 0¢) @ m¢), diagg (A" (1x @ 24)) -

Combining everything and replacing (o; — e,) ® x; = V{(W) we get that,
IVE(W) 51 = (A7IVE(W), —Adiage (A~ (1x @ 2¢) + 200 @ 21) + Te(V2E(W)A™)
Now noting the following expansion

V(W) = VLW |51 = [IVee (W) 51 = VL) |51 — 2(AT VE(W), Vg (W))

and replacing the above finishes the proof.

Proof of Lemma 8 Recall that V(W xy, e;) = (0¢ — e) ® x¢. Hence

1 1 . _
Vo (W) = (c(Way) — ?1[() Ray+ Br=oc(Way) @ xp — §At,1 d1ag®(Atjl)(1K ® xt)
= bt(W§At71)'
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Proof of Theorem 9 At any time ¢, with probability v we sample a class uniformly at random.
Otherwise we sample a class from o; of our algorithm. We update our algorithm only if the class
was sampled by the extra exploration and if we selected the correct class. We have

T T
|3 0000#00] <2 [0 - | 407
t=1 t=1
T
<E Z —In(ory,) | +T
t=1
K T
< ?IE Z —1In(oty,)I{g: = y: A explore } | +~T
t=1
K T
< 71}3 > —In(oy (W), )I{g = ye A explore } + Regy| + 4T
t=1
d K
= > In(ou(W)y,) + = Regy +4T
t=1 v
Plugging in the optimal choice of v completes the proof. |

Appendix C. Online Multiclass Boosting

AdaBoost. OLM++ (Algorithm 4) takes N weak learners (WL?)Y |, which are stateful objects that
support the operations Predict(z, C') and Update(z, C, y) based on the weak learner protocol de-
scribed in section 4.2. We use the index ¢ to denote the number of updates of any stateful object.
Additionally, we have a copy of an algorithm solving the boosting regression problem BoostReg
for each weak learner with operations Predict(s, [) and Update(s, [, y). The algorithm maintains s,
which are the weighted aggregated scores of the first 7 weak learners. They are literately updated

from 5.~ ! given the prediction /¢ such that the regret Zle (log([a(si)]yt) —log([o(si™! + oeyi)]y, ))

is small with respect to some o € [—2, 2]. The predictions s{ induce a label §; = arg maxy(x)(s}) -
which are treated as expert recommendations. Over these expert predictions, AdaBoost. OLM++
runs the hedge algorithm (Freund and Schapire, 1997) to make its final decision. Finally, the cost
matrices C} are computed in the following way. Let

Cilh 1) 2 - logllo (It = olsi™ e~ Tk =},

then Cf is the translated and rescaled transformation of 5; that lies in C:
, 1/~ .
Citk,y) = = (Citk.y) = Cily. ) - (k)

The following proof is included for completeness and follows up to minor modifications the work
of Foster et al. (2018).
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Algorithm 4 AdaBoost.OLM++ (Foster et al., 2018)

Input: weak learners WL!, ..., WL" boosting regression algorithm BoostReg
For all i € [N, set v¢ < 1, initialize weak learner WL!, and initialize copy of boosting regression
algorithm BoostReg].

fort=1,....,ndo

Receive instance x;.

sY < 0 € RE,

fori=1,...,Ndo
Compute cost matrix C} from si_l using (C.1).
I} + WLI.Predict(z, CY).
st « BoostReg!.Predict(s! ™1, 1%).

§i < arg maxy, si(k).

Sample i; with Pr(i; = 7) o< v}.

Predict §; = ¢ji* and receive true class y; € [K]. fori =1,..., N do
WL, < WLi.Update(z, Cf, yy).
BoostReg!, | < BoostReg!.Update(s, ', 1%, y).

vl vl exp(=I{5 # wi))-

Proof of Proposition 12 We begin with the first part of the proposition. Denote the number of
mistakes of the i-th expert (which is the combination of the first ¢ weak learners) by

T

T
M; = g # ye} = > Harg maxy si(k) # yi},
t=1

t=1

with the convention that My = T. The weights v} simply implement the multiplicative weights
strategy, and so Lemma 17, which gives a concentration bound based on Freedman’s inequality
implies that with probability at least 1 — §,*

T

> g # wi} < 4min M; + 21og(N/). (C2)
t=1

Note that if k* £ arg max;, s (k) # y, then [0(52_1)]% > [o(si Y], and o(si7h) € Ag
imply [o(s;™ )]y, < 1/2, which then implies >kt [o(si )] > 1/2 and finally

T

= Cilyey) = > lolsi k> % (C.3)

t=1 t=1 k‘;éyt

This also holds for i = 1 because s? = 0 and —C} (ys, ) = (K — 1)/ K > 1/2.

4. Note that previous online boosting works (Beygelzimer et al., 2015; Jung et al., 2017) use a simpler Hoeffding bound
at this stage, which picks up an extra v/T term. For their results this is not a dominant term, but in our case it can
spoil the improvement given by improper logistic regression, and so we use Freedman’s inequality to remove it.
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Define the difference between the total loss of the i-th and (i — 1)-th expert to be

T

A= Z€(5é7yt) —L(s; )

t=1
By the assumption on the employed regression algorithm, we have
A; < inf [ZE ey + s y) — (s y) |+ R(T).

a€[—2,2]

By Lemma 18 each term in the sum above satisfies

~.

ae+5 ) —f(si1, (e* = D)o (s;™ )]l; = (e = )Ci(ys, 1), N l% 7 Y,
et )= 8o < { (€ = D0~ (6§ ) =~ ~ DG, =
With notation w’ = — Y7, Ci(yes ), ¢ > L=y, Ci(ye, ), and ¢ = L3 1y, Ci(y, 1),

we rewrite

f ((aey + 5071, 0(st1, =w'- inf “_ 1)+ (e7* = 1) ].
a;[nm[Z (e + 57 ) — £, yt)] w ael[lig,z][(e )cl + (e )ci]

) 0

One can verify that w’ > 0, ¢, c, >0, ¢}, — "
it follows that

=1; € [-1,1] and ¢, + ¢". < 1. By Lemma 19,

i —a i o i w'y?
whe dnf e m D+ (e -] < -
Summing A; over i € [N], we have
T T T
D U ) = > UsYu) =D A, fwa + NR(T). (C.4)
t=1 t=1 i=1

We lower bound the left hand side as

T

T T
Z‘asivvyt) - ZE(Sgayt) > — ZE(Sgayt) = _TIOg(K)7
t=1 t=1 t=1

where the inequality uses non-negativity of the logistic loss and the equality is a direct calculation
from s = 0. Next we upper bound the right-hand side of (C.4). Since w’ = — ZtT:I CHye, i)
Eq. (C.3) implies

N
1
—— < = M; — M; — M; -
2;wm_ Z i1 < min M- - Z%_ min Z%
Combining our upper and lower bounds on Zf\; 1 A; now gives

N

1
—T1 + NR(T) < — min M; - - 2+ NR(T). C.5
og(K Zw (T) < - min 4;’y (T) (C.5)
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Rearranging, we have

: N N
i€[N] S i1V
Returning to (C.2), this implies that with probability at least 1 — &,

Z]I{yt £y} <O (gog(72)> 10 <g7§( 7) > + 210g(N/6),
i=1 1 i=1 1

which finishes the first part of the proof.
By the definition of the cost matrices, the weak learning condition

mMo(<K>>o(NR<>)

Z Ci(ye 1 Z Ekon,,, [Cilye, k)] + S

t=1

implies
T

> Ciu 1) < ZEkNth[ (e, )}‘FKS
t=1

Expanding the definitions of u., ,, and CZ, we have

~. 1—7 - ~.
Bty |Cilye, K)| = <K> [o (s~ )+ > o (si e | +v(o(si Dy —1) = vC (e, ).
k#y:
So we have
T T
Z Zytalt Z ytvyt +KS
t=1 t=1
or, since ég'(yt, yr) <0,
S
Vi > Y= )
w
where w' = — >, (yt, y¢) as in the first part Since @ > b — ¢ implies a®> > b> — 2bc for
non-negative a, b and ¢, we further have %- > 2 2”’5.5 .

Returning to the first inequality in (C.5), the bound we just proved implies

N
1 ,
~Tlog(K) < > wiy? + yKSN + NR(T)
=1
9 N
< - VZ S Mi_y +yKSN + NR(T) (by (C.3)
=1
2

N
< —min M; - L0 + yKSN + NR(T).
i€[N] 4

From here we proceed as in the first part of the proof to get the result. |
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Lemma 16 (Freedman’s Inequality (Beygelzimer et al., 2011)) Let (Z;):<y, be a real-valued mar-
tingale difference sequence adapted to a filtration (J;)i<n with |Z;| < R almost surely. For any
n € [0,1/R)], with probability at least 1 — 0,

- - log(1/9)
Z; < nle —2 E[Z? =l C.6

foralln € [0,1/R].
Lemma 17 (Lemma 23 (Foster et al., 2018)) With probability at least 1—4, the predictions (Ut)t<n
generated by Algorithm 4 satisfy

T

T
Zﬂ{ﬁt #y} < 41111,1112]1{@% # i} + 21og(N/9).
=1

t=1

Lemma 18 (Lemma 24 (Foster et al., 2018)) The multiclass logistic loss satisfies for any z € RE
and y € [K],

Uz +aepy) —Uz,y) < { Ezia_—l)l[;f((lzﬁlfg(z)]y)? g i Z,

Lemma 19 (Jung et al. (2017)) Forany A, B > 0with A— B € [-1,41]and A+ B < 1,

: a —a (A—B)
ael[r—lfz,2] [A(e® — 1)+ B(e™® — 1)] —

IN

Proof of Theorem 13 We reduce the problem successively to a regular regression problem for
which we can induce Theorem 3. Observe that for all £ # [;, there exists a constant ¢; € R such
that 3; . = sy + c. Hence [0(3¢)]re[r)\y, X [0(5t)|ke[k]\y,- FOr the loss, this implies

—log([o(8¢)]x) +log([o (st + ey, )k) = —log(1 — [o(8:)],) + log(1 — [o(s: + ey, )]s,) -

By construction [o(5;)];, = [0((¢)]1 and [o(s; + ey,)];, = [0(5: + ceq)]1, this implies

03¢, y1) — L(s¢ + ey, yp) = (G, L+ T{ys # lt}) — £(3¢ + aer, 1+ T{y: # 1)) .

Shifting the logits by a constant does not change the distribution or the loss, hence setting

1 lu 1511 — 510)
— 2 _ 2 , y
wos (U ) m = (5 )

€(§t + aeq, 1+ ]I{yt #* lt}) = K(Waxt, 1+ ]I{yt =+ lt}) .

we have
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The algorithm clips the logits to the range [— log(7"), log(T')] by 1 = min{log(7"), max{—log(T"), z¢1}}.
We bound the induced error by the clipping

g WO&~ 1) - g Wa s
xt,1€R,a€r[n—aé}f2]7y€{172} ( Lt y) ( Tt y)

= max C(Woiy, 1) — 6(Waxy, 1) (due to symmetry over the labels)
Zt,1 GR,C{G[*Q,Q]

exp(Zt,1 + %a) exp(xe,1 + %a)

= max —1lo — — + lo
1,1 €R,a€[~2,2] g(exp(xm + a) + exp(—Fy1 — %a)) g(exp(a:m + a) +exp(—x41 — 2@)
1+ exp(—2%1 — )
= max log( :
x,1€ER,a€[—2,2] 1+ exp(—Z.rt’l —a)
1+ exp(—2log(T) — «) N o
= max lo Tt < a1 implies Ty 1 = log(T
se1€RaC[-2,2] g( 1+ exp(—2mt71 — Oé) ) ( t,1 t,1 p t,1 g( ))

2

e
= log(1 + exp(—2log(T) +2)) < T3

Combining everything up till now yields
T 2

T
Zf(gta yr) — Lst, ) < T% + D UG 1+ Ky # 1)) — E(Wa@e, 1+ Hye # 1e})
t=1 t=1

T
<O(1) + . D UG 1+ Ty # 1Y) — LWy, 1+ Ty # 1, }).
R e |

Finally invoking Theorem 3 with d = 2, B = 2, R = log(T') + 1, K = 2 completes the proof. W

Appendix D. Reduction to AIOLI for binary logistic regression

The algorithm AIOLI proposed in Jézéquel et al. (2020) for the case of K = 2 proposes to use
a regularizer ¢,(W) Zg]/(:l (Wxy,y) without the additional bias term B; introduced by our
algorithm. We note that the proposal in Jézéquel et al. (2020) is for an alternative formulation
of binary case and uses a different multiplicative constant (i.e. BR as opposed to BR + In(K)),
however the core of the algorithm is in the choice of the regularizer ¢,(W). In this section we show
that for the binary case (due to the inherent symmetries of the problem) instantiating our algorithm
with B; = 0 (as opposed to our proposal) leads to the exact same predictions. We want to emphasize
that this emerges from the special structure of the binary case, but does not hold for K > 2.

Let us begin by understanding certain symmetries of the logistic regression problem. Consider
splitting the (vectorized) parameter space RX? into two orthogonal spaces V £ {1x®z | z € R%}
and its orthogonal space V. Given any W € R4 define the projections WV and WV obtained
by projecting W onto V and V-, and reshaping into K x d matrices, so that

W=wY+w¥

Now note that, since o(z + y1x) = o(z) for any ~, and for any x € R% and V € V we have
Vz o< 1k, our predictions only depend on thl, ie.

o(Wyzy) = o(WY " z,).
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Furthermore consider any V' € V), and let z € R% be such that V = 1x ® z. For any x; € R4
and for any W the hessian V2/;(W) and gradient satisfy

V2€t(W)V = ((diag(o(W)) — O’t(W)O't(W)T)]_K) ® (:EtSU;th) =0
(VG(W), V) = (oe(W) — yt, Lk ) (w1, 2) = 0.

It can now be seen that the optimization problem solved at every step can therefore be split by
considering W = U + V, as

in AWI[ZE+Y 2,(W) + ¢ (W
i Wl Z (W) + ¢:(W)

Uevt

= min (AHU||%+Z U) + ¢ (U )Jr‘r;leig (MVIE + (V. By)) -

Note that the optimization over V is irrelevant for the eventual predictions. We now show that in the
binary case, B; € V which means that for any U € V*, (B;, U) = 0, thereby implying that setting
it to 0 does not affect the eventual predictions.

Binary case. Let K = 2 and through the run of the algorithm denote o (W;z;)1 = p; and therefore
we have that o(W;x¢)2 = 1 — p;. Denoting o, = o (W), we have

1 -1
V2€t(Wt) (diag(ot) — UtUtT) ® (CITtUUt ) =pe(1—pt) (_1 1 ) ®xt$tT'

Hence setting M; = Zi:ﬂ’s(l ps)xsx, , we have

4 (Mat+ My =M,
t= —M, Mg+ M,

With some algebra, we can show that

A1 ATy — M, M,
t M, A, — M,

M; = \"Y2M; + \g) 1M, .

Hence the bias term for K = 2 is given by

1
B = 512 ® T — fAtdlag[@(A )12 ® x4
1 1 -
by ~
= 51[( & (MtJ?t) ey.
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Appendix E. Efficient Implementation of Algorithm 1

In this section we provide a proof of Theorem 4. We begin by noting that the algorithm can be
implemented by computing the vector z; = Wy, and not the full matrix W;. We show that this can
be done efficiently. Note that the algorithm computes W; as the following

o =
W, = argmin |[W|%, | + (W,Gi_1) + ¢ (W).
WeRK xd

Since A;_1 = Alkq4, the above minimization has a unique solution which can be obtained via the
following first order optimality condition,

— 1 ) _
2At_1Wt + Gt—l — iAt_l d1ag®(At_11)(1K & Jit) + O'(Wt:lit) Kz = 0.

Rearranging leads to
— 1.4 1 . 1
W, = _§At—1(Gt—1 +o(Wiy) @ o) + i diagg (A;1) (1x @ xy).

Remember that A; ; € RX9Kd For a matrix M € RE4*Kd and for 4,5 € [K], we denote by
[[M]];,; the d x d matrix obtained by segmenting M into K2 continguous submatrix blocks of size
d x d in the natural manner, and taking the (i, j)*" block. Now define the matrix A € REXE whose
(i,)"" entry is given by

[AL] - %xz—[[AtillHi,jxt-

)

Further define § € R as a vector whose k" entry is given by

Gl = — 2 (o (ATHGron)e) + ~ ] (A7 ke

2 4
We first note the following implications,
A1 = Mgy = At__ll < )\_1le,
A1 2 (TR? + Mgy = A7 = (TR? + \) Mgy
Furthermore note that for any v € R*, we have that

v Av=(v@a) A (0@ wy).

If Amax(M) denotes the largest eigenvalue of a matrix M, then the above equation implies that
~ _ 2
Amaz(A4) < )‘maX(At—ll)thHg = RT
In terms of the computation of z;, it can be seen that z; is the solution of the following equation

Zt :g—AU(Zt),

which in turn is the first order optimality condition of

K
2 = argmin [4(2) £ 2|24, — (. 47'5) + log (Z exp(zw)] .

ZGRK k=1
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We can precondition the above optimization problem as follows: set Z = A~1/2z and instead solve
the following optimization problem

K

_ 1 _ _

7* = argmin (%) £ argmin = ||2]|? — (2, A7Y23) + log E exp([AY22),) | . (E.1)
ZERK ZERK 2 1

It can be observed that the Hessian of the log term above is bounded by )\max(fl)l = RTQI K and

therefore the smoothness of the above optimization problem is bounded by ( 1+ R72> In particular

R2
By

{Z0...2:} (2 will be specified momentarily), on the above problem satisfies the following bound

this implies that 7 steps of gradient descent, with step size = (1 ! ), generating the sequence

2
o =217 < (147 Yexp [~
A 1 R2
(1+5%)

This implies that

$(z0) - D)

s, < (142 e () (B0 - 5).
A (1+%)

T

1) is 1-strongly convex, and hence by the Polyak-Lojasiewicz (PL) inequality,
- — 1 -
$(o) — B(E) < SIVD(E)R

Setting Zog = A-1/% yields

7 ~ 2
93GoIE = 14 2o a 2 < (14

We see that within 7 steps of gradient descent on the problem (E.1) we can obtain a vector 2; =
AY/25_ such that

. R? 3 T
Hzt—th2§ (1+)\> exp | —

3
Therefore setting 7 = (1 + R;) log (61 <1 - RTZ) ), we see that the error ||2; — z]|? < e.

In terms of computation, note that maintaining the inverse of A; 1 requires O(d?K?) time. This
can be seen by the fact that the update to A;_1 is of rank at most K at every step and the update
can be performed via the Sherman-Morrison-Woodbury formula. Having computed At__ll, it can
be seen that the quantities /Nl, g, AY 2, A=1/2 can all be computed in time O(d2K? + K3). Having
computed these quantities it is easy to see that every step of gradient descent on (E.1) takes time at
most O(K?). Therefore total running time for computing a vector #; such that ||3; — z/|?> < e in

total time ,
2 2
O <d2K3 + K*? <1 + 11) log <el (1 + i) )) .
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Appendix F. Challenges for Hessian-dominance based analysis

In this section we describe the difficulty in extending the analysis technique of Jézéquel et al.
(2020) to online logistic regression with more than 2 classes. This analysis is based on a Hessian-
dominance technique which works as follows. We start from the instantaneous regret defined from
Lemma 6:

Ve (We) — Vﬁt(Wt)HQt—l - Hvéﬁt(Wt)Hit—gl-
Since A; > A;_1, this can be upper bounded by

Ve (W) — Vft(Wt)Hi;l - HV@(Wt)HZ;l
= Tr([(Voe(Wi) — VL(W))(Ve(We) — VE(W)) T — Vo (We) Ve (W) T1A).

Then, if we choose a regularizer ¢; such that the following Hessian-dominance condition
(Ve (W) — VEW) (Vou(Wy) — VE(WL)) T — V(W) V(W) T = V24, (Wy)  (E1)
holds for some constant c, then the instantaneous regret can be upper bounded by
Tr(cV24 (W) A7 ).

Summing this up from ¢ = 1 to 7" yields a harmonic sum that can be bounded by standard techniques
by O(clog T'). Note that in this analysis we need ¢ = poly(B, R) to get polynomial dependence on
B and R in the regret bound.

For the binary case K = 2, it is easy to check that both of the following choices of ¢;

G(W) = bWy, 1) + (Way,2)  or  ¢p(W) = 20(Way, 1) + 20(Way, 2)

can be used to satisfy (F.1). Jézéquel et al. (2020) use the first choice of ¢; to design AIOLI.

Unfortunately, this elegant Hessian dominance technique breaks down when we have more than
2 classes, at least for regularizers of a certain form which satisfy a certain symmetry condition
(satisfied by the two choices for the binary case above). To describe the issue, it will be convenient
to drop the ¢ subscript since it is irrelevant to the analysis. We will assume that the regularizer is of
the form ¢(W) = (W z) for some function ) : RE — R, and the symmetry condition we need is
the following: for any two classes y # 3 and any z € RX,if z, = z,/, then V¢(2), = V().

Let K = 3. Consider a regularizer ¢ satisfying the form and symmetry conditions above.
Assume w.l.0.g. that the true label is 1. Then the gradients of the loss and regularizer are

VW) =(c(Wz)—e1)®xz and Vo(W)=Vy(Wz)® x.

With some abuse of notation, for the rest of this section we will use o to denote o(Wz) and ¢’ to
denote Vi)(Wz). Then the Hessian equals

(diag(c) — oo ") @ (zx ).
The Hessian dominance condition (F.1) reduces to the following:

(0 —er—¢)(o—er —¢) =¥ ® (a27) 2 c(diag(0) — 00 ) @ (wa]).  (F2)
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We can now show that the above condition cannot hold uniformly for all W and z such that
|[W]l2,00 < B and ||z|| < R unless ¢ = Q(exp(BR)). In particular, choose

W = diag(0,0,B) and = (0,0,R)",

so that W2 = (0,0, BR)". Now let v = (e; — e3) ® z. Then we have v' o = 0, since 01 = 09,
and v "¢’ = 0, since 1] = 1/} by the symmetry condition. Using these facts, we have

o ([0 = e1 = 0)(o — e =) =0T ® (@a") ) v = 0" [(ere] ) aa Do = [oll§ = R,
Whereas, we have
v’ ((diag(a) —00')® (:m:T)> v=uv' (diag(a) ® (wa)> v = (01 +09)||z|]3 = (01 + 02) R

Since 01 = 09 = m, for the Hessian dominance condition (F.2) to hold, we must have

¢ > Lexp(BR) + 1, as claimed.
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