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Abstract

We study whether iterated vector fields (vector fields composed with themselves) are conservative.
We give explicit examples of vector fields for which this self-composition preserves conservatism.
Notably, this includes gradient vector fields of loss functions associated to some generalized linear
models. In the context of federated learning, we show that when clients have loss functions whose
gradient satisfies this condition, federated averaging is equivalent to gradient descent on a surrogate
loss function. We leverage this to derive novel convergence results for federated learning. By
contrast, we demonstrate that when the client losses violate this property, federated averaging can
yield behavior which is fundamentally distinct from centralized optimization. Finally, we discuss
theoretical and practical questions our analytical framework raises for federated learning.
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1. Introduction

In this work, we consider vector fields of the form V' : R™ — R". Recall that V' is conservative if
there is some function f : R™ — R such that V = V f. We are interested in whether iterated vector
fields (vector fields of the form VoV o--.oV') are conservative. This question has rich connections to
a variety of areas, including differential geometry, dynamical systems, and optimization. As we will
show, conservative iterated vector fields are particularly important for understanding optimization
algorithms for federated learning.

Notation. Let V(R™,R™) denote the collection of functions from R” to R™. We let D(R", R™)
denote the subset of differentiable functions, and C*(R™, R™) denote the subset of C* functions. If
m = n, we abbreviate these by V(R"), D(R™) and C¥(R"™). Throughout, ||-|| denotes the £ norm
on R™ with corresponding inner product (-, -). We let I € V(R") denote the identity map.

Given V' € V(R™), we use exponents to denote repeated iterations of V. That is, for k > 1 we
define:

VFz):=VoVo---oV(x)

k times

By convention, for any V' € V(R") we define V0 := I.

(© 2022 Z. Charles & K. Rush.
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Summary. LetV € V(R™), and let k be a positive integer. We study the following question.
Question 1 IfV is conservative, is V* also conservative?
This leads to the following definition.

Definition 1 V is k-conservative if V¥ is conservative. V is co-conservative if V¥ is conservative
forallk > 1.

For convenience, we use “conservative” and “1-conservative” interchangeably. In a slight abuse
of notation, we say that A C V(R") is k-conservative if for all V' € A, V is k-conservative. In
order to show that A is co-conservative, it suffices to show that .4 is conservative and closed under
self-composition, as reflected in the following definition.

Definition 2 A C V(R") is closed under self-composition if for all V € Aand k > 1, V¥ € A.
This leads us to the following specialization of Question 1.
Question 2 Ler A C V(R") be conservative. Is A closed under self-composition?

Vector Fields and Optimization. Motivated by optimization, we will often consider vector fields
of the form V' (z) = V f(x), where f : R" — R is differentiable. Given 7 C D(R",R), we define
VF={VeVR"):V=VffeF} ForyeR,wedefine ] —yVF :={I—-~Vf:feF}
A recurring theme in this work is whether a set I — vV F is k-conservative. Such vector fields arise
naturally in optimization, as gradient descent on a function f with learning rate - corresponds to the
discrete-time dynamical system given by x;11 = (I — vV f) ().

Given an initial point zg, the iterates of gradient descent then satisfy x;, = V*(xq) where
V =1 —~V f. Therefore, if I — vV f is oco-conservative, then the k-th iterate of gradient descent is
actually Vhy(xo) for some function hy : R™ — R. While this observation is essentially trivial for
centralized optimization, it will prove much more useful when trying to understand the behavior of
distributed and federated optimization algorithms, as we discuss below.

2. Connections to Federated Learning

Questions about whether a vector field is k-conservative have important implications for federated
learning, one noteworthy approach to which is federated averaging (FEDAVG) (McMahan et al.,
2017). A slightly simplified version of FEDAVG operates as follows. Suppose we have clients
c=1,2,...,C, each with loss function f. : R™ — R. At each round, the server broadcasts its
model the clients. The clients perform k steps of gradient descent (with learning rate ) on their loss
functions, and send the resulting models to the server. The server updates its model as the average of
these client models. Since communication from clients to the server is often a bottleneck (McMahan
et al., 2017; Bonawitz et al., 2019), this algorithm is often practical only when & > 1. When k = 1,
this is equivalent to gradient descent with learning rate + on the average of the client loss functions.

More formally, let V.. := I — 4V f.. At each round ¢, each client computes V*(z;), and the
server updates its model via zy11 = C 1 ZCC:1 V¥ (). This “operator-theoretic” view of FEDAVG
has been previously used to leverage techniques from operator theory to analyze and design federated
learning algorithms (Malinovskiy et al., 2020; Pathak and Wainwright, 2020; Malekmohammadi
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et al., 2021). In order to allow the server to determine the magnitude of its update at each step, Reddi
et al. (2021) propose a “model delta” version of FEDAVG. This corresponds to the server update

c
Typ1 = T — g (wt - Vf@t)) ey

c=1

where 1 > 0 is the server learning rate, which we may set to 1 to recover the average of the client
models. In the sequel we let FEDAVG denote the update rule in (1). If we let V; be the “server”
vector field given by

C
1
Vi==)Y (I-V}F 2
o ;< ) 2)
then (1) is equivalent to
Tpy1 = 2 — Vs (20). 3)

This leads us to our guiding observation: If each V_ is k-conservative, then V; is an average of
conservative vector fields and is conservative as well. Therefore, there is some function f, such that
Vfs = Vg, and (3) is equivalent to z4+1 = 2y — 0V fs(2¢) and FEDAVG is equivalent to applying
gradient descent to the function f; (see Theorem 11 for a formal statement of this). This allows us to
reduce the behavior of FEDAVG to the behavior of gradient descent on this “surrogate loss” fs. Such
an approach was used by Charles and Kone¢ny (2021) to understand the dynamics of FEDAVG and
related methods on quadratic functions. In this work, we consider more general functions, including
some non-convex functions.

2.1. Non-Conservative Dynamics in Federated Learning

As we sketched in the section above (and formalize in Section 6), when the vector fields I — vV f. are
k-conservative, FEDAVG with k local steps behaves identically to gradient descent on some surrogate
loss function. On the other hand, in this section we show that without k-conservatism, FEDAVG can
demonstrate fundamentally non-conservative behavior, making its dynamics distinct from those of
gradient descent. Notably, this can occur even when C' = 2 and there is no stochasticity whatsoever.
For example, for ¢ € {1, 2}, consider the client loss functions

fela,y) == fD(z,y) + £ (z,y) 4)

where
(0%

fc(1)<x7y) ‘= min < 2

-0+ G (o= 1),

2

Notably, I — vV f. may not be k-conservative for £ > 1. As we show in Appendix C, for some
choice of v, B € R, x¢, y. € R? (for ¢ = 1,2), v > 0 and k sufficiently large, the resulting server
vector field Vj in (2) is non-conservative.

To help illustrate this, in Fig. 1, we plot this non-conservative server vector field V;. Note
there is a region of initial points zg under which the dynamics of FEDAVG are entirely circular and
periodic, as long as 7 is sufficiently small. In short, FEDAVG may behave badly in the absence of
k-conservatism.

12(e0) = min (5 (4 + % 20 1).
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Figure 1: Non-conservative server vector field Vs induced by fi, f2 in (4) for k sufficiently large.
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3. Examples of k-Conservative Vector Fields

We now give concrete examples of k-conservative vector fields. These include vector fields associated
to linear and logistic regression. Let Py(R™, R™) denote the subset of V(R"™, R™) whose coordinate
functions are homogeneous polynomials of degree d. We abbreviate this as P;(R™) when n = m.
For more in-depth examples, see Appendix A.

Constant Vector Fields. The space Py(R") of constant vector fields is clearly closed under self-
composition. Constant vector fields are conservative, so Py(IR™) is co-conservative.

Affine Vector Fields. Let A(R"™) be the set of affine vector fields in V(R™). This consists of all V'
of the form V(z) = Az + b for A € R™*", b € R". Let S(R™) denote the set of such V' where A
is symmetric. If V' € A(R") is conservative, it is the gradient of some quadratic function. Simple
algebraic manipulation then implies that V' is conservative iff A is symmetric. Since S(R"™) is closed
under self-composition, S(R™) is co-conservative while A(IR™) is not conservative. In particular, if
f is a quadratic function, V f and I — vV f are both co-conservative.

Continous Univariate Functions. Consider the set C°(R) of continuous functions from R to R.
By elementary analysis, C°(R) is closed under self-composition, and by the fundamental theorem of
calculus, it is conservative. Thus, C°(R) is co-conservative.

More generally, let C°(R)™ denote the subset of V(R™) containing vector fields of the form

V(x1,...,20) = (fi(21), fa(22), - - -, fu(20))

where f1,..., fn € C°(R). Then note that V(z1,...,2,) = V (30, [i7 fi(t)dt) so CO(R)™ is

conservative. Since C°(IR)" is closed under self-composition, it is also co-conservative.

Non-example: Cubic Polynomials. Let f(z,y) = 2%y. By direct computation,
43y hi(x y))
V2 (x,y) = =: ’ .
1P = (gl ) = (i)

We then have (%hl(:c, y) = 4a3, a%hQ(m, y) = 8zy%. By Clairaut’s theorem (see (Spivak, 2018,
Chapter 4)), (V f)? is not conservative. Thus, VP3(R2, R) is conservative but not 2-conservative.
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3.1. Gradient Vector Fields of Generalized Linear Models
Let G(R™,R) C CY(R",R) denote the class of functions f : R” — R of the form

m

J@) = (e, ) )

1=1

where m is a positive integer, z; € R™, and ¢ € C}(R). Such functions arise in statistics and
optimization when learning generalized linear models. For example, when o (t) = In(1 + e~ %), (5)
is effectively the loss function used in logistic regression.

We further define G, (R™,R) C G(R"™,R) to be the set of functions of the form (5) where
{zi}| are mutually orthogonal. We then have the following result.

Theorem 3 Let f € G, (R",R) be as in (5). Let ¢;(t) = ||z]|?0’(t). Forall k > 2,

m (x,2:)
(VH@) =V (Z / a’<¢f‘1(t)>dt> : (6)
=170
Thus, VG| (R™,R) is co-conservative and closed under self-composition.

Proof Let V = V f. We claim that forall £ > 1,

m

O BLACICENE

=1

where gb? is the identity function. We will show this inductively. This clearly holds for £ = 1. By the
inductive hypothesis, we then have

VE (@) = 3 o (VM (@), 2)) =

o ( <§: o' (67 ({2, 25))) 7, Z¢> )Zi

=1

M
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o' (¢ (@, 2))) .
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—

)

Here, the second equality follows from the inductive hypothesis, while the third equality follows
from the orthogonality of the z;. Therefore, if we define hy : R — R via

. = <I’Zi> 10 k—1
i) =3 /0 o (B (1)) dt

then by the chain rule,

Vhi(z) =Y o' (8} (@, 2))z = V().
=1

5
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In order to understand the dynamics of gradient descent on generalized linear models, we now
extend Theorem 3 to the function class I — yVG, (R", R).

Theorem 4 Let f € G| (R™,R) be as in (5). For fixed v € R, let ;(t) = t — 7||z||>0’ (t). For all

k> 2,
(w,2:)
(I =7V f)i(@) = o AV (Z | e >>dt> ™

Thus, I — VG, (R™ R) is oo-conservative and closed under self-composition.

Proof The proof is nearly identical to the proof of Theorem 3. Let V(x) = © — 4V f(z). A slight
modification of the inductive argument in the proof of Theorem 3 implies that

—x_’YZ 1/1k 1 (T, 2:)))z-

By the chain rule, this implies that

ko o N[l
VFz) =2 w(;/o o () (t))dt).

On the other hand, VG(R",R) is not 2-conservative. Let fi(z,y) = €%, fa(z,y) = e*TY,
f3 = f1 + f2. Note that by Theorem 3, V f;, V fa are both co-conservative. However, by direct
computation

exp(e® + TtV exp(e® erty hi(z,
(Vf3)*(z,y) = ( bl +exp(e>””4—_i- 2§”€ry)+2 )> B <h;E$az§> '

One can then verify that g O hy(xz,y) # a%hg(:v,y), so by Clairaut’s theorem, V f3 is not 2-
conservative. Notably, fi, fg and f3 are all convex functions, demonstrating that whether V.F
is oo-conservative is not determined by whether the class F is convex.

While f € G, (R™,R) implies that V f is co-conservative, exactly characterizing the set of
oo-conservative vector fields in VG(R™, R) remains open. Part of the difficulty in this problem
comes from the fact that a function f € C*°(R"™, R) can have multiple representations satisfying (5).

4. Smooth k-Conservative Vector Fields

We now explicitly construct the space of smooth, k-conservative vector fields. Given V' € C*°(R"),
let J(V) : R™ — R™ " denote its Jacobian, which we can view as an n x n matrix over C*°(R", R).
If Ve C>°(R™), then by the Poincaré lemma (Warner, 1983, Section 4.18), V' is k-conservative if
and only if J(V*) is symmetric. For k > 1, we then define Dy, : C*°(R") — C>(R", R™*") by

Di(V) := J(VF) — J(vhT, ®)

Thus, V' € C*°(R") is k-conservative if and only if Dy (V') = 0. We may now define the space of
smooth, k-conservative vector fields by W*(R") := D, '({0}) and W>®(R") := N2 WH(R™).
We note a few facts about W (R"):
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1. WF(R™) and W>(R") are closed in C°°(R") under several natural topologies, like that
of uniform convergence of all derivatives on compact sets. To see this, note that Dy, is a
continuous function in this topology, so D; ' ({0}) = W¥(R") is closed. Thus, W (R") is
an intersection of closed sets, and is closed itself.

2. W*(R") is closed under scalar multiplication. While it contains linear subspaces (such as the
space of symmetric linear vector fields, see Section 3), it is not closed under addition. For a
simple counter-example, see the end of Section 3.1.

3. While W (R") is closed under self-composition, it is not closed under arbitrary composition.
See Appendix A for an explicit counter-example.

Some basic open questions on the structure of W (R"):

1. How does W¥(R") relate to W7 (R") for k # j? As we show in Appendix A, WF(R") ¢
WI(R™) for j < k. More generally, are there smooth vector fields that are k-conservative but
not j-conservative for j # k?

2. If we restrict to Py(R"™), the zero locus of Dy, defines a projective variety over the coefficients
of polynomials in P4(R™). For example, applying (8) to P;(R™), we find:
e WI(R™) NPy (R") is a hyperplane.
o W2(R2
o W3(
e WI(R2) N W2(R?) N P2(R?) is a quadric surface.

)

) NP1 (IR?) is a union of two hyperplanes.

R?) NP1 (R?) is a union of a hyperplane and a quadric surface.
) 2

See Appendix A for the full details on these computations. Can we say anything more general?
For example, what is the degree of W*(R™) N P4(R")?

3. For all k > 1, define pj, : W®(R") — W>®(R") via V + V¥ Many of the discussions
above can be rephrased in terms of properties of this map. For example, Theorem 3 implies
that py, is an endomorphism on VG, (R™,R). Are there other important function classes for
which pj, is an endomorphism? More broadly speaking, we may also wish to understand the
image of pi. Note that this is important for federated learning, as according to the discussion
in Section 2, this will govern what kinds of dynamics of FEDAVG are possible in settings
where clients have co-conservative loss functions.

5. Conservatism and Lifting

In this section, we show that if V' is k-conservative, then many properties of V' “lift” to the vector
field V*. This will further allow us to show that if f € C°°(R™, R) has a k-conservative gradient
field and Vi = (V f)*, then many properties of f will lift to A.

Due to their importance in optimization, we will focus on geometric notions related to convexity.
Under smoothness, such notions can be rephrased in terms of eigenvalues of Jacobian matrices. Thus,
we first prove a result concerning how eigenvalues of such matrices lift under self-composition of
vector fields.



ITERATED VECTOR FIELDS, CONSERVATISM, AND FEDERATED LEARNING

Proposition 5 Suppose f € C*°(R™,R) and V f is j-conservative for 1 < j < k, with (V) =
Vgj. Then for all such j, the function g; is smooth and satisfies:

1. Suppose there are o, 3 > 0 such that for all x, ol < J(V f)(x) X BI. Then for all x,

T < J(Vgj)(z) = B*I.

2. Suppose there is some \ > 0 such that for all x, —\I < J(V f)(z) < M. Then for all z,

T < J(Vgj) () < NFT.
Items 1 and 2 also hold if we change =< to < throughout.

Proof Since f is smooth, (Vf)? € C®°(R"). Since (Vf)! = Vg, (and in particular, g; is
differentiable), we must have g; € C*°(R", R).

For Item 1, we proceed inductively. For k£ = 1, the result holds by assumption. For the inductive
step, let 2 < k < K, and assume the result holds for £ — 1. Let Jj(x) denote the Jacobian of Vg; at
a point z. By the chain rule,

Ji(z) = J1(Vgj-1(z))Jj-1(x). ©)

By the inductive hypothesis, we have

I < T () = BT
and by our assumptions on V f, we have

al < .Ji(Vgj-1)(x) < AL

Since J;(x) is symmetric (as it is the Jacobian of a gradient field), its eigenvalues are therefore
products of eigenvalues of J;_1(x) and J;(Vgj—1)(x). Hence, its maximum eigenvalue is at most
37, and its minimum eigenvalue is at most a7.

The proof of Item 2 follows in a similar way, noting that by the inductive hypothesis, the matrices
on the right-hand side of (9) will have eigenvalues in the ranges of [\, A] and [-\~%, A ~1]. Since
J;(z) is symmetric, its eigenvalues are products of the eigenvalues of the matrices in the right-hand
side of (9), and the result follows. |

Remark 6 Note the critical role of symmetry in the argument above. In R", J(V*) is symmetric
if and only if V is k-conservative. Thus, k-conservatism is exactly the condition required for us to
reason about how the eigenvalues of J(V'*) relate to that of J(V).

We will use Proposition 5 to show that iterating co-conservative vector fields preserves geometric
properties, including Lipschitz continuity, as in the following definition.

Definition 7 A vector field V € C'(R™) is B-Lipschitz continuous if for all x € R",
V' is Lipschitz continuous if there is some (3 for which V' is [3-Lipschitz continuous.

J(V)(@)|| < 5.

In the definition above, || - || refers to the operator norm induced by the /2 norm on R", viewing
J(V)(z) as an n x n matrix over R. In the following, we let L(R™) C V(R™) denote the set of
Lipschitz continuous vector fields. Proposition 5 directly implies the following result.
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Corollary 8 Let F C C*(R"™,R) be the set of (a) smooth, strongly convex functions, (b) smooth,
strictly convex functions, or (c) smooth, convex functions. Then V FNW(R™) and VF W (R™)N
L(R™) are closed under self-composition.

Proof This follows directly from Proposition 5. In particular, for (1), if f is smooth and strongly
convex, then there is some positive « such that o < J(V f)(z) for all z. Since V f € W>(R"), for
all k > 1, there is some gy, such that Vg, = (V f)*. By Proposition 5, we have o*T < J(Vgy)(z),
S0 g is smooth and strongly convex. If V f is also Lipschitz continuous, then there is some 3 for
which J(V f)(x) < BI for all z, and a similar argument shows that o*I < J(Vgy,)(z) < B*I.
The case of convex or strictly convex follows in an analogous manner, as they correspond
(respectively) to the bounds 0 < J(V f)(z) and 0 < J(V f)(z) (for all =), which is also preserved
under k-fold composition by Proposition 5. |

Thus, convexity "lifts" under self-composition of the associated gradient vector field: If f is
smooth, convex, and V f is k-conservative, then (V f)¥ = Vg for some smooth, convex function g.
Next, we consider vector fields V =1 — (I — 4V f )k where v > 0 (induced by gradient descent).
In the following lemma, we show that if V' is co-conservative and Vk = Vhy, then hy, inherits
smoothness and critical points from f.

Lemma9 Ler f € C*(R",R) and v € R-g. Suppose that (I — vV f) is j-conservative for
1 <j <k ThenVj := I — (I —yV[f)* is conservative, and if Vhy, = Vi then (1) hy, is smooth,
and (2) if V f(y) = 0, then Vhy(y) = 0.

Proof For (1), hy is clearly differentiable. Moreover, Vh, = Vi, € C>*(R"), as smoothness
is preserved under addition and composition. Hence, h; € C*°(R",R). For (2), note that (I —
V)(y) =y~ Vf(y) =y. Therefore, Vhy(y) =y — (I = Vf)*(y) =y —y = 0. u

In fact, many geometric properties important to optimization (such as convexity) are also inherited
by hg, provided that « is not too large, as in the following.

Lemma 10 Suppose f € C*°(R",R) and V f is 3-Lipschitz continuous. Suppose that for some
v € Rsq, (I — V) is j-conservative for 1 < j < k, with Vhy, = I — (I — vV f)*. Then:

1. If f is a-strongly convex and vy < 2(a + B) ™! then hy, is (1 — \F)-strongly convex and ¥ hy,
is (1 4 \¥)-Lipschitz continuous for A = 1 — o

2. If f is convex and v < 23" then hy, is convex and NV hy, is 2-Lipschitz continuous. If v < 71,
then V hy, is 1-Lipschitz continuous.

3. If f is strictly convex and y < 237" then hy, is strictly convex.

4. If f is 5-weakly convex for § < [ and v < 2371, then hy, is (\F — 1)-weakly convex and ¥V hy,
is (1 + AF)-Lipschitz continuous for X\ = 1 + ~0.

Proof This is a direct consequence of Proposition 5. For (1), by assumption we have ol =
J(Vf)(z) = BI for all z, and therefore —\ < J(I —~V f)(x) < A for all z where A =1 — ya.
By Proposition 5, we have that for all =

XL 2 J((I =V )F)(z) 2 AT
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and so
0= (1= < J(Vh)(z) < (1+ ).

The remaining parts of the lemma are proved in an analogous way using Proposition 5 and basic
algebraic manipulations. |

6. Convergence Rates in Federated Learning

We now use our machinery above to understand the convergence of FEDAVG in various settings.
Recall that the server update at each round is given by z;11 = x; — nV,(x;), where the “server vector
field” Vs is given by (2). Throughout, we assume that each client ¢ performs & steps of gradient
descent with learning rate -y > 0 on their loss function f.. We make the following assumption.

Assumption 1 Forall ¢, f. € C*°(R™,R) and I — vV f. is j-conservative for 1 < j < k.

This leads to the following result on sufficient conditions for V; to be conservative.

Theorem 11 Under Assumption 1, Vs is a conservative vector field. Moreover, if Vs = V f, then f
is smooth and the FEDAVG server update in (1) is equivalent to the following gradient descent step:

Tip1 = 2 — NV fo(y). (10)

Proof By Assumption 1, forc = 1,...,C, there is some function h, such that Vh. = (I —yV f.)".
We can then define g, : R” — Rby g () := 3||z||*—h¢(z). By construction, Vg, = I—(I—+V f)F,
sothat V, = C~! 25:1 V¢.. Therefore, V, = V f, where f, = C~! chzl gc- The smoothness of
any f, such that V; = V £, follows directly from Lemma 9. |

In this setting, if we have some understanding of f, (for example, whether f; is convex), we can
immediately apply centralized optimization results to derive convergence results for FEDAVG. To
better understand the structure of f,, we will use Lemma 10. Since this requires Lipschitz continuity,
we make the following assumption.

Assumption 2 For all ¢, V f. is 8-Lipschitz continuous.

Under Assumptions 1 and 2, Lemma 10 lifts geometric properties of the client loss functions f.
to the function f5. Combining this with Theorem 11, we can translate convergence rates for gradient
descent to convergence rates for FEDAVG in strongly convex and convex settings. We make no direct
assumptions on client heterogeneity. Throughout, we let f; be a function such that V; = V f;, as
guaranteed by Theorem 11.

Theorem 12 Suppose Assumptions 1 and 2 hold, and that for all ¢, f. is a-strongly convex. Then f
has a unique minimizer z%, and if v = 2(a + B) ™1, n = 1, the iterates {x:}3°, of FEDAVG satisfy

kt
* -G *
o= a3l < (552) lloo - 51, an

10
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Proof This follows directly by combining Theorem 11 and Lemma 10 with well-known convergence
rates for smooth, strongly convex functions (for example, see (Nesterov, 2003, Theorem 2.1.15)).
See Appendix B.1 for more details. |

The convergence rate in (11) was shown first by Malinovskiy et al. (2020, Theorem 2.11), which
extended to non-conservative gradient vector fields. The salient difference is that under under our
assumptions, the limit point x} is actually the global minimizer of some strongly convex function.
As we discuss below, this allows us to immediately derive analogous results for variants of FEDAVG
that apply other server optimizers.

When k = 1, this recovers the convergence of gradient descent on fq,g = C -1 25:1 fe- Hence,
FEDAVG with k£ > 1 yields an exponential improvement in convergence (with respect to k), but
may not converge to the minimizer x* of f,,4. To understand this discrepancy, one could analyze
|z — x*||. A tight upper bound was given for strongly convex quadratic functions by Charles
and Konec¢ny (2021, Lemma 5). A bound in the general strongly convex setting (not assuming
k-conservatism) was given by Malinovskiy et al. (2020, Theorem 2.14), though whether this bound
can be improved under Assumption 1 is an open question.

We now give a convergence rate for FEDAVG in the convex setting.

Theorem 13 Suppose Assumptions 1 and 2 hold, and that for all ¢, f. is convex with finite minimizer.
Then fs has a finite minimizer x*, and if v = B~Y, n = 1, the iterates {z¢}72, of FEDAVG satisfy

* 1 *
Fs(we) = fs(wg) < o llwo = . (12)
Proof This follows by combining Theorem 11 and Lemma 10 with well-known convergence rates
for smooth, convex functions (for example, see (Bubeck, 2015, Theorem 3.3)). See Appendix B.2
for more details. n

To the best of our knowledge, Theorem 13 is the first result showing that FEDAVG exhibits
convergent behavior on a class of functions, even with fixed learning rates and £ > 1. Unlike Theorem
12, it is not clear that the convergence in (12) is “faster” (in some sense) than the convergence of
gradient descent on f4,4. Such analysis is an open and important problem.

6.1. Extensions to Other Methods

These techniques allow us to transfer convergence rates for many optimization algorithms to federated
learning under the same assumptions as Theorems 12 and 13; We can directly analyze any federated
learning algorithm where the server update in (3) is replaced with another optimizer (as proposed by
Reddi et al. (2021)). If we treat V() as an estimate of the gradient of the loss function, applying
gradient descent leads us to the update step in (3). Given any first-order “server optimization” method
SERVEROPT, we can generalize (3) via

X441 = SERVEROPT(Vy(zy)). (13)

For example, SERVEROPT could be gradient descent with momentum or an adaptive method such
as Adagrad (Duchi et al., 2011; McMahan and Streeter, 2010). These two choices of SERVEROPT
lead to FEDAVGM (Hsu et al., 2019) and FEDADAGRAD (Reddi et al., 2021) respectively, and can
lead to improved empirical convergence. Note that under Assumption 1, (13) becomes z¢4; =
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SERVEROPT(V fs(x¢)), which is simply first-order optimization. Thus, convergence rates for
SERVEROPT can be translated to a converge rates for the federated optimization update in (13).
Notably, this directly implies that in certain settings, there are algorithms which converge faster than
FEDAVG to the same point.

For example, in the same settings as Theorem 12, we can improve convergence by using gradient
descent with heavy-ball momentum instead of just gradient descent. By an almost identical proof to
Theorem 12, we have the following result.

Theorem 14 Let {x:}{°, be the iterates of (13) where SERVEROPT is gradient descent with
heavy-ball momentum. Under the same setting as Theorem 12, for some choice of parameters of

SERVEROPT, we have
* \/E —1 ! *
— < — 14
o =2l < (Y221 ) lloo =] 14
where k = (1 4+ X°) /(1 = X\F) and A = (B — a) /(B + a).
Proof The proof is the same as for Theorem 12, but we apply convergence rates for gradient descent
with heavy-ball momentum instead (see (Polyak, 1964)). See Appendix B.1 for more details. |

One can verify that the convergence rate in (14) is faster than (11). We stress that while the same
kind of result can be derived for any number of centralized optimization algorithms, the key point is
that our observations allows us to leverage existing knowledge of centralized optimization methods in
the context of federated learning. In particular, this can enable more informed, theoretically grounded
decisions about which choice of optimizer and hyperparameters to use in (13).

7. Open Problems

As we have shown, FEDAVG is well-behaved when certain vector fields are k-conservative (see
Theorems 12 and 13) and can exhibit non-convergent, circular behavior when they are not (Sec-
tion 2.1). Better characterizations of when FEDAVG exhibits convergent behavior (or fails to do so)
is an important open problem. Similarly, we have only scratched the surface on how the dynamics of
the client loss functions lift to the server dynamics. While many convexity-adjacent properties lift
(Lemma 10), one can show that many natural properties (including being bounded below) do not
lift. What about properties such as the Polyak-Lojasiewicz condition (Karimi et al., 2016)? More
generally, we would like to characterize which properties lift and use this to better understand the
behavior of FEDAVG on a larger class of functions.

Another important area is understanding the empirical effectiveness of methods such as FEDAVG.
As discussed by Wang et al. (2021), theoretical convergence rates of federated learning methods often
do not improve upon centralized rates for algorithms such as gradient descent. While Theorem 12
shows that FEDAVG accelerates convergence to a non-optimal point, it is unclear whether Theorem
13 implies a similar acceleration. More generally, is there some sense in which the limit point
x% is a useful point of convergence, either for learning a global model, or as a starting point for
personalization?

Finally, the dynamics presented in Section 2.1 point to a fundamental failure of methods such as
FEDAVG, to our knowledge the first observation of cyclic dynamics in the literature on FEDAVG.
This mirrors non-conservative dynamics arising from many GAN training methods (Mescheder
et al., 2018). Can we use insights from training multi-agent systems (such as GANSs) to create better
federated learning methods, or even to simply design better client loss functions?
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Appendix A. In-Depth Examples

In this section, we give some in-depth examples regarding the k-conservatism of vector fields in
C>(R?). Note that for V' € C>®(R?), Dy (V), as defined in (8), is a 2 x 2 anti-symmetric matrix
over C*°(R% R). Thus, when setting D (V) = 0, it suffices to consider a single off-diagonal entry.
In a slight abuse of notation, in this section we will identify Dy (V") with either off-diagonal entry of
Dy, (V). Note that this is well-defined up to a factor of —1.

A.1l. Linear Vector Fields

Recall that P; (R™) denotes the set of linear vector fields. Let V' € P;(R™) be of the form V' (z,y) =
(ax + by, cx + dy). Then we have the following equations (where we consider only the non-zero
off-diagonal entries of Dy):

(V) =0
Dy(V)=(b—c)(a+d)

(V)= (b—¢)(a® + ad + be + d?)
D4(V) = (b—c¢)(a+ d)(a® + 2bc + d?).

If V is conservative, then b = ¢ and these equations all vanish. Comparing D1, D5, and D3, we see
that 2-conservative vector fields need not be conservative nor 3-conservative. For example, if we take

V(z) = G _21> z

then V' is 2-conservative and 4-conservative, but not conservative or 3-conservative.

Recall that in Section 3, we defined S;(R") to be the set of symmetric linear vector fields. While
S1(R™) is closed under self-composition, it is not closed under arbitrary composition. is To see this,
consider the symmetric linear vector fields

Va(r) = ((1) é) v, Valz) = (é _01> .
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Then V1, Vo € W (R™). However, V7 o Vo & W (R") since

@) = (] )

which is a non-symmetric linear map.
Notably, P; (R™) contains vector fields that are j-conservative but not k-conservative for k < j.
For j > 2, consider the vector field given by V;(z) = A;x where

o) = cos(6;)  sin(6;) _T
Aj(z) <—Sin(9j) cos(0j)>7 & J

This is the vector field that rotates vectors by an angle of 7/j. Since V;k is conservative precisely
when ij is symmetric, V}k is conservative if and only if sin(k6;) = 0. Thus, V} is k-conservative if
and only if j divides k.

A.2. Gradient Vector Fields of Cubic Polynomials

Consider the vector space P3(R?, R) containing polynomials of the form
f(z,y) = ax® + bx’y + cxy® + dy®

for a, b, c,d € R. All such f satisfy D;(V f) = 0 (as V f is conservative). By direct computation,
taking only the off-diagonal entries of Dy, we get

Dy(Vf) = gi2® + goa®y + gzwy” + gay”.
for 91,92, 93,94 S R[G, b7 c, d] defined by
g1 = —4b(3ac — b* + 3bd — c?)
g2 = 4(3a — 2¢)(3ac — b + 3bd — )
g3 = 4(2b — 3d)(3ac — b* + 3bd — ¢?)
g4 = 4c(3ac — b* + 3bd — c2).
One can then verify that these equations vanish simultaneously if and only if
gla,b,c,d) = 3ac — b* + 3bd — ¢* = 0.

Thus, the set of 2-conservative functions in VP3(R?, R) is the hypersurface given by the zero locus
of g. Since this zero locus is not closed under addition, the set of 2-conservative vector fields in
V7P3(R2, R) is not closed under addition either.

An analogous computation shows that the set of 3-conservative function is given by the zero
locus of 8 homogeneous polynomials of degree 7, each of which is divisible by g. Therefore, all
2-conservative vector fields in VP3(IR?, R) are also 3-conservative.
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Appendix B. Detailed Proofs
B.1. Proof of Theorems 12 and 14

Proof Fix ¢ such that 1 < ¢ < C. By Lemma 9, there is some function h. € such that Vh, =
I—(I—-~Vf.)k Let A= (B—a)/(B+ a). By Assumption 2, Lemma 10, and our assumption on
7, we find that h, is (1 — \¥)-strongly convex and Vh,. is (1 4+ A\¥)-Lipschitz continuous.

Note that the server vector field V in (2) is therefore given by Vs = V f5 where

By basic properties of strong convexity and Lipschitz-continuity, we find that f, is (1 — \¥)-strongly
convex and V f; is (1 4+ A¥)-Lipschitz continuous. In particular, it has a unique minimizer .

For Theorem 12, applying standard results on the convergence of gradient descent on smooth
strongly convex functions (in particular, see (Nesterov, 2003, Theorem 2.1.15)), we find that the
iterates of gradient descent with learning rate of 7 = 1 on f, produces iterates {x;};°, such that

k—1\"
o =il < (557) lleo - a3l

where x = (1 + A\¥)/(1 — \¥). Some simple algebraic manipulation implies

k=1 [(B—-a« k
k+1 \ B+«
proving the result.

For Theorem 14, we apply standard results on the convergence of gradient descent with heavy-ball
momentum (see Polyak (1964)). In particular, by setting the learning rate n by

4

(VIFN+VI- )\’f)z

and the momentum parameter m by

m:max{'l_ 11— ) }2

we obtain the desired convergence rate. |

B.2. Proof of Theorem 13

Proof Fix ¢ such that 1 < ¢ < C. By Lemma 9, there is some function h. € such that Vh, =
I — (I —~yVf.)*. By Assumption 2, Lemma 10, and our assumption on , we find that h,. is convex
and 1-Lipschitz continuous. By Theorem 9 and our assumption that f. has a finite minimizer, h. has
a finite minimizer as well.
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Note that the server vector field V; in (2) is therefore given by Vs = V f where

1 C
fil@) =5 > he(@).
c=1

By basic properties of convexity and Lipschitz-continuity, we find that f, is convex and 1-Lipschitz
continuous. Moreover, the average of convex functions with finite minimizers must have a finite
minimizer, so f, also has some finite minimizer z%. By applying standard results on the convergence
of gradient descent on smooth convex functions (in particular, see (Bubeck, 2015, Theorem 3.3)), we
find that the iterates of gradient descent with learning rate of 77 = 1 on f, produces iterates {z;}{°,
such that

fs(we) = fs(@g) < o llwo — 5

Appendix C. Closed Integral Curves in Federated Learning

In this appendix we present calculations that demonstrate the possibility of closed integral curves in
federated learning with nonconvex client losses. The existence of losses of higher regularity than
those presented here (e.g. convex or satisfying the PL condition) whose server dynamics admit closed
integral curve solutions is an interesting open question. We suspect that examples like this can be
transferred to some higher regularity classes, but clearly not all. For example, Charles and Konecny
(2021) demonstrate that such integral curves are impossible for quadratic functions (under minor
assumptions on learning rates).

Our example dynamics take place in R?, and we focus on the case of C' = 2 clients. For ¢ = 1,2
we define a family of functions by

felz,y) == fO(z,y) + fP(z,y), (15)

where

(y_yc)2+ﬁ26($_xc)271>7

f9(2,y) == min <O;C

6(2) (x,y) := min (O;C (y + yc)2 + % (z+ xc)2 , 1> .

We will see that carefully selecting two functions from this family and performing full-gradient
FEDAVG on these clients will yield server dynamics with closed integral curves. First, note that for
any x. and y., o, and 3. can be chosen such that the domains of attraction of the terms fél) and fc(z)
are non-overlapping. One can verify that setting v = 5, = 0.05, and letting oy = 6, 81 = v, 21 =
y1=1,0ras =, 82 = 6,19 = —1,yo = 1 satisfies this requirement. Let these choices define the
functions f; and fo.

Now, assume we perform FEDAVG with fixed learning rate > 0 for some sufficiently large
number of local steps k. We assume these clients follow full gradient descent, and we choose k
large enough so that the clients following full-gradient descent on the losses f; and f> converge to
a stationary point, independent of starting point. This can be guaranteed in our setting by setting
k=0 (77_1), with (easily computable) constant depending on «y and 4.
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Notice that by assuming clients “run until convergence”, the form of the server vector field V;
(defined in (2)) becomes quite simple. We define the following domains in the xy-plane:

I={(z,y): fl(l)(l‘,y) <1},
B e
II = {(z,y): fl(l)(w,y) <1}, (16)
I = {(z,y) : fy ' (x,y) <1},
IV = {(z,9) : fs7(x,y) < 1}.

It is straightforward (though tedious) to verify that our choices of v, § above ensure IN TV, 1IN
ITL, ITNIII, and ITIN IV are all nonempty. With these regions defined, a straightforward computa-
tion shows that the server vector field Vj is given by:

(1—2x,—y) (z,y) e INIV
(—z,1—1y) (x,y) e INIII
(=1 —=z,—y) (x,y) € IINIII
(—z,—1—1y) (x,y) e IINIV
Vs(z,y) =< (1 —2,1—1y) (z,y) € IN (III°UIV®) (17)
(—1-2,1—y) (z,y) € IIIN (I¢ U II°)
(-1—z,—1—1y) (x,y) € IIN (ITI° UIVC)
(1—-z,-1-y) (x,y) e IVN (I¢UII)
0 otherwise.

We define a flow along this vector field in the usual manner, by the ODE

< (@lt).y(0) = Val.).

That the dynamics of FEDAVG will admit closed integral curves in this setting can now be readily
seen, either by inspecting Fig. 1 or explicitly following a closed trajectory. The dynamics of FEDAVG
(as in (1)) correspond to discretizing the ODE above with some step-size 1. That is, FEDAVG
maps a point (x4, y¢) 0 (Te41, Ye+1) = (2, 9¢) + nVs(x¢, y¢). Under this discretization, letting
(z0,y0) = (0,1) and choosing 1 = 1 yields a closed trajectory of period 8. Further, the choice of
discretization does not affect the nature of the closed curve, only its period, as is clear from Fig. 1.
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