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Abstract
Escaping from saddle points and finding local minimum is a central problem in nonconvex op-

timization. Perturbed gradient methods are perhaps the simplest approach for this problem. How-
ever, to find (ε,

√
ε)-approximate local minima, the existing best stochastic gradient complexity for

this type of algorithms is Õ(ε−3.5), which is not optimal. In this paper, we propose LENA (Last
stEp shriNkAge), a faster perturbed stochastic gradient framework for finding local minima. We
show that LENAwith stochastic gradient estimators such as SARAH/SPIDER and STORM can find
(ε, εH)-approximate local minima within Õ(ε−3 + ε−6

H ) stochastic gradient evaluations (or Õ(ε−3)
when εH =

√
ε). The core idea of our framework is a step-size shrinkage scheme to control the

average movement of the iterates, which leads to faster convergence to the local minima.
Keywords: Stochastic Gradient Descent; Local Minima; Nonconvex Optimization.

1. Introduction

In this paper, we focus on the following optimization problem

min
x∈Rd

F (x) := Eξ[f(x; ξ)], (1.1)

where f(x; ξ) : Rd → R is a stochastic function indexed by some random vector ξ, and it is
differentiable and possibly nonconvex. We consider the case where only the stochastic gradients
∇f(x; ξ) are accessible. (1.1) can unify a variety of stochastic optimization problems, such as finite-
sum optimization and online optimization. Since in general, finding global minima of a nonconvex
function could be an NP-hard problem (Hillar and Lim, 2013), one often seeks to finding an (ε, εH)-
approximate local minimum x, i.e., ‖∇F (x)‖2 ≤ ε and λmin

(
∇2F (x)

)
≥ −εH , where ∇F (x) is

the gradient of F and λmin

(
∇2F (x)

)
is the smallest eigenvalue of the Hessian of F at x. In many

machine learning applications such as matrix sensing and completion (Bhojanapalli et al., 2016; Ge
et al., 2017), it suffices to find local minima due to the fact that all local minima are global minima.

For the case where f is a deterministic function, it has been shown that vanilla gradient descent
fails to find local minima efficiently since the iterates will get stuck at saddle points for exponential
time (Du et al., 2017). To address this issue, the simplest idea is to add random noises as a pertur-
bation to the stuck iterates. When second-order smoothness is assumed, Jin et al. (2017) showed
that the simple perturbation step is enough for gradient descent to escape saddle points and find
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(ε,
√
ε)-approximate local minima within Õ(1/ε2) gradient evaluations, which matches the number

of gradient evaluations for gradient descent to find ε-stationary points. Faster convergence rate can
be attained by applying accelerated gradient descent (Carmon et al., 2018; Jin et al., 2018) or cubic
regularization with Hessian-vector product (Agarwal et al., 2017).

Such results suggest that perturbed gradient methods can find local minima efficiently, at least
for deterministic optimization. When it comes to stochastic optimization, a natural question arises:

Can perturbed stochastic gradient methods find local minima efficiently?

To answer this question, we first look into existing results of perturbed stochastic gradient meth-
ods for finding local minima. Ge et al. (2015) showed that perturbed stochastic gradient descent
can find (ε,

√
ε)-approximate local minima within Õ(poly(ε−1)) stochastic gradient evaluations.

Daneshmand et al. (2018) showed that under a specific CNC condition, stochastic gradient descent is
able to find (ε,

√
ε)-approximate local minima within Õ(1/ε5) stochastic gradient evaluations. Later

on, Li (2019) showed that simple stochastic recursive gradient descent (SSRGD) can find (ε,
√
ε)-

approximate local minima within Õ(ε−3.5) stochastic gradient evaluations, which is the state-of-
the-arts to date. However, none of these results by perturbed stochastic gradient methods matches
the optimal result Õ(ε−3) for finding ε-stationary points, achieved by stochastic recursive gradient
algorithm (SARAH) (Nguyen et al., 2017b; Pham et al., 2020), stochastic path-integrated differen-
tial estimator (SPIDER) (Fang et al., 2018), stochastic nested variance-reduced gradient (SNVRG)
(Zhou et al., 2018) and stochastic recursive momentum (STORM) (Cutkosky and Orabona, 2019)
(See also Arjevani et al. (2019) for the lower bound results). Therefore, whether perturbed stochas-
tic gradient methods can find local minima as efficiently as finding stationary points still remains
unknown.

In this work, we give an affirmative answer to the above question. We propose a general frame-
work named LENA, which works together with existing popular stochastic gradient estimators such
as SARAH/SPIDER and STORM to find approximate local minima efficiently. We summarize our
contributions as follows:

• We prove that LENA finds (ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic
gradient evaluations. Specifically, in the classic setting where εH =

√
ε, our LENA together

with the SARAH/SPIDER estimator enjoys an Õ(ε−3) stochastic gradient complexity, which
outperforms previous best known complexity result Õ(ε−3.5) achieved by Li (2019). Our
result also matches the best possible complexity result Õ(ε−3) achieved by negative curvature
search based algorithms (Fang et al., 2018; Zhou et al., 2018), which suggests that simple
methods such as perturbed stochastic gradient methods can find local minima as efficiently as
the more complicated ones.

• In addition, we show that LENA with a recent proposed STORM estimator is also able to find
(ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic gradient evaluations.

• At the core of our LENA is a novel Last step shrinkage scheme to control the average move-
ment of the iterates, which may be of independent interest to other related nonconvex opti-
mization algorithm design.

To compare with previous methods, we summarized related results of stochastic first-order methods
for finding local minima in Table 1.
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Table 1: Comparison of different optimization algorithm for find approximate local minima of non
convex online problems.

Algorithm Gradient complexity Classic Setting Neon2

Neon2+Natasha2 (Allen-Zhu, 2018) Õ(ε−3.25 + ε−3ε−1
H + ε−5

H ) Õ(ε−3.5) needed
Neon2+SCSG (Allen-Zhu and Li, 2018) Õ(ε−10/3 + ε−2ε−3

H + ε−5
H ) Õ(ε−3.5) needed

SNVRG++Neon2 (Zhou et al., 2018) Õ(ε−3 + ε−2ε−3
H + ε−5

H ) Õ(ε−3.5) needed
SPIDER-SFO+(+Neon2)(Fang et al., 2018) Õ(ε−3 + ε−2ε−2

H + ε−5
H ) Õ(ε−3) needed

Perturbed SGD (Ge et al., 2015) Poly(d, ε−1, ε−1
H ) Õ(Poly(ε−1)) No

CNC-SGD (Daneshmand et al., 2018) Õ(ε−4 + ε−10
H ) Õ(ε−5) No

SSRGD1 (Li, 2019) Õ(ε−3 + ε−2ε−3
H + ε−1ε−4

H ) Õ(ε−3.5) No
LENA (This paper) Õ(ε−3 + ε−6

H ) Õ(ε−3) No

Notation We use lower case letters to denote scalars, lower and upper case bold letters to denote
vectors and matrices. We use ‖ · ‖ to indicate Euclidean norm. We use Bx(r) to denote a Euclidean
ball center at x with radius r.We also use the standard O and Ω notations. We use λmin(M) to
denote the minimum eigenvalue of matrix M. We say an = O(bn) if and only if ∃C > 0, N >
0,∀n > N, an ≤ Cbn; an = Ω(bn) if and only if ∃C > 0, N > 0,∀n > N, an ≥ Cbn. The
notation Õ is used to hide logarithmic factors.

2. Related Work

In this section, we review some important related works.
Variance reduction methods for finding stationary points. Our algorithm takes stochastic gradi-
ent estimators as its subroutine. Specifically, Johnson and Zhang (2013); Xiao and Zhang (2014)
proposed stochastic variance reduced gradient (SVRG) for convex optimization in the finite-sum
setting. Reddi et al. (2016); Allen-Zhu and Hazan (2016) analyzed SVRG for nonconvex optimiza-
tion. Lei et al. (2017) proposed a new variance reduction algorithm, dubbed stochastically controlled
stochastic gradient (SCSG) algorithm, which finds a ε-stationary point within O(ε−10/3) stochastic
gradient evaluations. Nguyen et al. (2017a) proposed SARAH which uses a recursive gradient es-
timator for convex optimization, and it was extended to nonconvex optimization in (Nguyen et al.,
2017b). Fang et al. (2018) proposed a SPIDER algorithm with a recursive gradient estimator and
proved an O(ε−3) stochastic gradient evaluations to find a ε-stationary point, which matches a cor-
responding lower bound. Concurrently, Zhou et al. (2018) proposed an SNVRG algorithm with a
nested gradient estimator and proved an Õ(ε−3) stochastic gradient evaluations to find a ε-stationary
point. Wang et al. (2019) proposed a Spiderboost algorithm with a constant step size, achieves the
same O(ε−3) gradient complexity. Pham et al. (2020) extended SARAH (Nguyen et al., 2017b)
to proximal optimization and proved O(ε−3) gradient complexity for finding stationary points.
Recently, Cutkosky and Orabona (2019) proposed a recursive momentum-based algorithm called
STORM and proved an Õ(ε−3) gradient complexity to find ε-stationary points. Tran-Dinh et al.
(2019) proposed a SARAH-SGD algorithm which hybrids both SGD and SARAH algorithm with

1. The complexity result of SSRGD in Table 1 is achieved only when εH ≥ ε1/2.
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an Õ(ε−3) gradient complexity when ε is small. Li et al. (2020) proposed a PAGE algorithm with
probabilistic gradient estimator which also attains an Õ(ε−3) gradient complexity. In our work, we
employ SARAH/SPIDER and STORM as the gradient estimator in our LENA framework since they
are most representative and simple to use.
Utilizing negative curvature descent to escape from saddle points. To escape saddle points, a
widely used approach is to first compute the direction of the negative curvature of the saddle point
and move away along that direction. In deterministic optimization, Agarwal et al. (2017) proposed
a Hessian-vector product based cubic regularization method which finds (ε,

√
ε)-approximate local

minima within Õ(ε−7/4) gradient and Hessian-vector product evaluations. Carmon et al. (2018) pro-
posed an accelerated gradient method with negative curvature finding that finds (ε,

√
ε)-approximate

local minima with in Õ(ε−7/4) gradient and Hessian-vector product evaluations. Both of these
complexities match the complexity Õ(ε−7/4) achieved by perturbed accelerated gradient descent,
proposed by Jin et al. (2018). In stochastic optimization, to find (ε, εH)-approximate local minima,
Allen-Zhu (2018) proposed a Natasha algorithm using Hessian-vector product to compute the nega-
tive curvature direction with the total computation cost of Õ(ε−3.25+ε−3ε−1H +ε−5H ). Later, Xu et al.
(2017) proposed a Neon method which computes the negative curvature direction with perturbed
stochastic gradients, whose total computational cost is Õ(ε−10/3+ε−2ε−3H +ε−6H ). Allen-Zhu and Li
(2018) proposed a Neon2 negative curvature computation subroutine with Õ(ε−10/3+ε−2ε−3H +ε−5H )
stochastic gradient evaluations. Fang et al. (2018) then showed that SPIDER equipped with Neon2
can find (ε, εH)-approximate local minima within Õ(ε−3 + ε−2ε−2H + ε−5H ) stochastic gradient eval-
uations, while independently Zhou et al. (2018) proved that SNVRG equipped with Neon2 can find
(ε, εH)-approximate local minima within Õ(ε−3 + ε−2ε−3H + ε−5H ) stochastic gradient evaluations.
In contrast to this line of works, our algorithm is simpler since it does not need to use the negative
curvature search routine.

3. Preliminaries

In this section, we present assumptions and definitions that will be used throughout our analysis.
We first introduce the standard smoothness and Hessian Lipschitz assumptions.

Assumption 3.1 For all ξ, f(·; ξ) is L-smooth and its Hessian is ρ-Lipschitz continuous w.r.t. x,
i.e., for any x1,x2, we have that

‖∇f(x1; ξ)−∇f(x2; ξ)‖2 ≤ L‖x1 − x2‖2, ‖∇2f(x1; ξ)−∇2f(x2; ξ)‖2 ≤ ρ‖x1 − x2‖2

This assumption directly implies that the expected objective function F (x) is also L-smooth and
its Hessian is ρ-Lipschitz continuous. This assumption is standard for finding approximate local
minima in all the results presented in Table 1.

Assumption 3.2 The squared difference between the stochastic gradient and full gradient is bounded
by σ2 <∞, i.e., for any x, ξ ∈ Rd, ‖∇f(x; ξ)−∇F (x)‖22 ≤ σ2.

Assumption 3.2 is standard in online/stochastic optimization, including for finding second-order
stationary points (Fang et al., 2018; Li, 2019), and immediately implies that the variance of the
stochastic gradient is bounded by σ2. It can be relaxed to be ‖∇f(x; ξ) − ∇F (x)‖2 has a σ-Sub-
Gaussian tail.
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Let x0 ∈ Rd be the starting point of the algorithm. We assume the gap between the initial
function value and the optimal value is bounded.

Assumption 3.3 We have ∆ = F (x0)− infx F (x) < +∞.

Next, we give the formal definition of approximate local minima (a.k.a., second-order stationary
points).

Definition 3.4 We call x ∈ Rd an (ε, εH)-approximate local minimum, if

‖∇F (x)‖2 ≤ ε, λmin

(
∇2F (x)

)
≥ −εH .

The definition of (ε, εH)-approximate local minima is a generalization of the classical (ε,
√
ε)-

approximate local minima studied by Nesterov and Polyak (2006); Jin et al. (2017).

4. The LENA Framework

In this section, we present our main algorithm LENA. We begin with reviewing the mechanism of
perturbed gradient descent in deterministic optimization, and then we discuss the main difficulty of
extending it to the stochastic optimization case. Finally, we show how we overcome such a difficulty
by presenting our LENA framework.
How does perturbed gradient descent escape from saddle points? We review the perturbed gra-
dient descent (Jin et al., 2017) (PGD for short) with its proof roadmap, which shows how PGD finds
(ε,
√
ε)-approximate local minima efficiently. In general, the whole process of perturbed gradient

descent can be decomposed into several epochs, and each epoch consists of two non-overlapping
phases: the gradient descent phase (GD phase for short) and the Escape from saddle point phase
(Escape phase for short). In each epoch, PGD starts with the GD phase by default. In the GD phase,
PGD performs vanilla gradient descent to update its iterate, until at some iterate x̃, the norm of the
gradient ‖∇F (x̃)‖2 is less than the target accuracy Õ(ε). Then PGD switches to the Escape phase.
In the Escape phase, PGD first adds a uniform random noise (or Gaussian noise) to the current it-
erate x̃, then it runs `thres = Õ(ε−1/2) steps of vanilla gradient descent. PGD then compares the
function value gap between the current iterate and the beginning iterate of Escape phase x̃. If the
gap is less than a threshold F = Õ(ε1.5), then PGD outputs x̃ as the targeted local minimum.
Otherwise, PGD starts a new epoch and performs gradient descent again.

To see why PGD can find (ε,
√
ε)-approximate local minima within Õ(ε−2) gradient evalua-

tions, we do the following calculation. First, when PGD is in the GD phase, the function value
decreases Õ(ε2) per step (following the standard gradient descent analysis). When PGD is in the
Escape phase, the function value decreases F/`thres = Õ(ε2) per step on average. Therefore, the
total number of steps will be bounded by Õ(ε−2), which is of the same order as GD for finding
ε-stationary points.
Limitation of existing methods. However, extending the two-phase PGD algorithm from deter-
ministic optimization to stochastic optimization with a competitive gradient complexity is very
challenging. We take the SSRGD algorithm proposed by Li (2019) as an example, which uses
SARAH/SPIDER (Fang et al., 2018) as its gradient estimator. Unlike deterministic optimization
where we can access the exact function value F (x) and gradient ∇F (x) defined in (1.1), in the
stochastic optimization case we can only access the stochastic function f(x; ξ) and the stochastic
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gradient ∇f(x; ξ). Therefore, in order to estimate the gradient norm ‖∇F (x)‖2 (which is re-
quired at the beginning of Escape phase), a naive approach (adapted by Li (2019)) is to sample a
big batch of stochastic gradients ∇f(x; ξ1), . . . ,∇f(x; ξB) and uses their mean to approximate
∇F (x). Standard concentration analysis suggests that in order to achieve an ε-accuracy, the batch
size B should be in the order Õ(ε−2). Thus, each Escape phase leads to a F = Õ(ε1.5) function
value decrease with at least Õ(ε−2) number of stochastic gradient evaluations, which contributes
Õ(1/ε1.5 · ε−2) = Õ(ε−3.5) gradient complexity in the end. This is already worse than the O(ε−3)
gradient complexity of SPIDER for finding ε-stationary points.
Our approach. Here we propose our LENA framework in Algorithm 1, which overcomes the
aforementioned limitation. In detail, LENA inherits the two-phase structure of PGD and SSRGD,
and it takes either SARAH/SPIDER or STORM (Cutkosky and Orabona, 2019) as its gradient
estimator. The two gradient estimators are summarized as subroutines GradEst-SPIDER and
GradEst-STORM in Algorithms 2 and 3 respectively, and we use dt to denote their estimated gra-
dient at iterate xt. The key improvement of LENA is that it directly takes the output of the gradient
estimator GradEst to estimate the true gradient ∇F (x), which avoids sampling a big batch of
stochastic gradients as in Li (2019) and thus saves the total gradient complexity. A similar strat-
egy has also been adapted in Fang et al. (2018), but for the negative curvature search subroutine.
However, such a strategy leads to a new problem to be solved.

Since we use dt to directly estimate ∇F (xt), in order to make such an estimation valid, we
need to guarantee that the error between dt and∇F (xt) is small enough, e.g., up to O(ε) accuracy.
Notice that the recursive structure of SARAH/SPIDER and STORM suggests the following error
bound:

∀t, ‖dt −∇F (xt)‖22 = Õ

( t−1∑
i=st

‖xi+1 − xi‖22
)
, (4.1)

where st is some reference index only related to t. Therefore, in order to make the error ‖dt −
∇F (xt)‖2 small, it suffices to make the movement of the iterates ‖xi+1 − xi‖2 small either indi-
vidually or on average. In the GD phase, when the norm of the estimated gradient ‖dt‖2 is large,
we use normalized gradient descent, which forces the movement ‖xi+1 − xi‖2 = ηt‖dt‖2 = η to
be small. Such an approach is also adapted by Fang et al. (2018) as a normalized gradient descent
for finding either first-order stationary points or local minima. In the Escape phase, which starts
at the ms-th step. We achieve this goal by our proposed “last step shrinkage” scheme. In detail,
we record the accumulative squared movement starting from xms+1 (after the perturbation step) as
D :=

∑t
i=ms+1 ‖xi+1−xi‖22 =

∑t
i=ms+1 η

2
i ‖di‖22. When the average movement D/(t−ms+ 1)

is large, we pull the last step size ηt back to a smaller value, which forces the average movement
D/(t −ms + 1) to be small. Fortunately, such a simple step-size calibration scheme allows us to
carefully control the error between dt and ∇F (xt), and to reduce the gradient complexity.

Here we would like to emphasize some features of our algorithm. First, our LENA is a generic
framework that can use any stochastic gradient estimator satisfying (4.1). Second, following previ-
ous works (Johnson and Zhang, 2013; Fang et al., 2018; Cutkosky and Orabona, 2019), our LENA
requires the access to a stochastic gradient oracle that simultaneously queries the stochastic gradi-
ents at two distinct points with the same randomness ξ. That is stronger than the standard stochastic
gradient oracle adapted by SGD and HVP-RVR (Arjevani et al., 2020), which only queries the
stochastic gradient at a single point.
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Algorithm 1 LENA
Input: Initial point x1, step size η and ηH , perturbation radius r, threshold parameter `thres, average

movement D.
1: d1 ← GradEst(0,0,0,x1), s← 0, t← 1, FIND←false
2: while FIND = false do
3: s← s+ 1, ts ← t, FIND←true
4: while ‖dt‖2 > ε do
5: ηt ← η/‖dt‖2,
6: xt+1 ← xt − ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1
7: end while
8: ms ← t, ξ ∼ UniformB0(r), xt+1 ← xt+ξ, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+1

9: for k = 0, . . . , `thres − 1 do
10: ηt ← ηH , D ←

∑t
i=ms

η2i ‖di‖22
11: if D > (t−ms + 1)D then
12: Set ηt such that

∑t
i=ms

η2i ‖di‖22 = (t−ms + 1)D {“Last Step Shrinkage”}
13: xt+1 ← xt−ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1, FIND← false, break
14: end if
15: xt+1 ← xt − ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1
16: end for
17: end while
Output: xms

Algorithm 2 GradEst-SPIDER(t,dt,xt,xt+1, b, q, B)
Input: Big batch size B, mini-batch size b, loop length q

1: if t mod q = 0 then
2: Generate ξ1t+1, . . . , ξ

B
t+1. Set dt+1 ←

∑B
i=1∇f(xt+1; ξ

i
t+1)/B

3: else
4: Generate ξ1t+1, . . . , ξ

b
t+1. Set dt+1 ← dt +

∑b
i=1

[
∇f(xt+1; ξ

i
t+1)−∇f(xt; ξ

i
t+1)

]
/b

5: end if
Output: dt+1

5. Main Results

In this section, we present the main theoretical results. We first present the convergence guarantee
of LENA-SPIDER, which uses GradEst-SPIDER to estimate the gradient dt in Algorithm 1.

Theorem 5.1 Under Assumptions 3.1, 3.2 and 3.3, we choose batch sizeB = Õ
(
σ2ε−2+σ2ρ2ε−4H

)
,

b = q =
√
B, set GD phase step size η = σ/(2

√
BL), Escape phase step size ηH = Õ(L−1), per-

turbation radius r ≤ min
{
σ/(2
√
BL), log(4/δ)ηHσ

2/(2Bε),
√

2 log(4/δ)ηHσ2/(BL)
}

, thresh-
old `thres = Õ(1/(ηHεH)) and D = σ2/(4BL2). Then with high probability, LENA-SPIDER
can find (ε, εH)-approximate local minima within Õ

(
σL∆ε−3 + σρ3L∆ε−6H

)
stochastic gradient

evaluations.
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Algorithm 3 GradEst-STORM(t,dt,xt,xt+1, a, b, B)
Input: Initial batch size B, mini batch size b and weight parameter a.

1: if t = 0 then
2: Generate ξ1t+1, . . . , ξ

B
t+1. Set dt+1 ←

∑B
i=1∇f(xt+1; ξ

i
t+1)/B

3: else
4: Generate ξ1t+1, . . . , ξ

b
t+1

5: Set dt+1 ← (1− a)
[
dt −

∑b
i=1∇f(xt; ξ

i
t+1)/b

]
+
∑b

i=1∇f(xt+1; ξ
i
t+1)/b

6: end if
Output: dt+1

Remark 5.2 In the classical setting ε =
√
εH , our result gives Õ(ε−3) gradient complexity, which

outperforms the best existing result Õ(ε−3.5) for perturbed stochastic gradient methods achieved by
SSRGD (Li, 2019). For sufficiently small ε, Arjevani et al. (2020) proved the lower bound of gradient
complexity Ω(ε−3 + ε−5H ) for any first-order stochastic methods to find (ε, εH)-approximate local
minima. Our results matches the lower bound Õ(ε−3) when εH ≥ ε3/5. For the general case, there
is still a gap in the dependency of εH between our result and the lower bound, and we leave to close
it as future work.

Next, we present the convergence guarantee of LENA-STORM, which uses the gradient estima-
tor GradEst-STORM to estimate the gradient dt in Algorithm 1.

Theorem 5.3 Under Assumptions 3.1, 3.2 and 3.3, choose the mini batch size b = Õ
(
σε−1 +

σρε−2H
)
, and initial batch size B = b2, set GD phase step size η = σ/(2bL), Escape phase

step size ηH = Õ(L−1), weight a = 562 log(4/δ)/b, threshold `thres = Õ(1/(ηHεH)), pertur-
bation radius r ≤ min

{
σ/(2bL), log(4/δ)2ηHσ

2/(εb2),
√

2 log(4/δ)2ηHσ2/(b2L)
}

, and D =
σ2/(4b2L2). Then with high probability, LENA-STORM can find (ε, εH)-approximate local minima
within Õ

(
σL∆ε−3 + σρ3L∆ε−6H

)
stochastic gradient evaluations.

Remark 5.4 Different from LENA-SPIDER, the estimation error ‖dt − ∇F (xt)‖2 of gradient
estimator LENA-STORM is controlled by the weight parameter a. This allows us to come up with a
simpler single-loop algorithm instead of a double-loop algorithm.

Experiments We conduct some experiments to validate the practical performance of LENA. Due
to the space limit, the details of the experiment setup are deferred to Appendix A. Our experiment
results suggest that although LENA does not enjoy a strictly better complexity result than existing
algorithms such as NEON2-based algorithms (Xu et al., 2017; Allen-Zhu and Li, 2018), our LENA
outperforms them empirically due to its simpler algorithm structure.

6. Proof Outline of the Main Results

We outline the proof of Theorem 5.1 and leave the proof of Theorem 5.3 to the appendix.
Let εt denote the difference between true gradient∇F (xt) and the estimated gradient dt, which

is εt := dt − ∇F (xt). The following lemma suggests that the estimation error ‖εt‖2 can be
bounded.
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Lemma 6.1 Under Assumptions 3.1 and 3.2, set b = q =
√
B, η ≤ σ/(2

√
BL), r ≤ σ/(2

√
BL)

and D ≤ σ2/(4BL2), then with probability at least 1− δ, for all t we have

‖εt‖2 ≤
√

8 log(4/δ)σ/
√
B.

Specifically, by the choice of B in Theorem 5.1 we have that ‖εt‖2 ≤ ε/2.

Proof [Proof of Lemma 6.1] By GradEst-SPIDER presented in Algorithm 2 we have

εt+1 =
1

B

B∑
i=1

[
∇f(xt+1; ξ

i
t+1)−∇F (xt+1)

]
, t mod q = 0,

εt+1 = εt +
1

b

b∑
i=1

[
∇f(xt+1; ξ

i
t+1)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇F (xt)

]
, t mod q 6= 0.

By the L-smoothness in Assumption 3.1 we have∥∥∇f(xt+1; ξ
i
t+1)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇F (xt)

∥∥
2
≤ 2L‖xt+1 − xt‖2.

Then by Assumption 3.2 and Azuma–Hoeffding inequality (See Lemma E.1 for details), with prob-
ability at least 1− δ, we have

∀t > 0, ‖εt+1‖22 ≤ 4 log(4/δ)

(
σ2

B
+

4L2

b

t∑
i=bt/qcq

‖xi+1 − xi‖22
)
. (6.1)

Notice that GradEst-SPIDER is parallel with LENA. Thus we need to further bound (6.1) by
considering iterates in three different cases: (1) for step i in the GD phase, by normalized gradient
descent we have ‖xi+1 − xi‖22 ≤ η2; (2) for i = ms for some s in the Escape phase, we have
‖xi+1−xi‖22 ≤ r2; and (3) for the other steps in Escape phase, we have on average, ‖xi+1−xi‖22 ≤
D due to the “Last Step Shrinkage” scheme. Therefore we have

‖εt+1‖22 ≤ 4 log(4/δ)

(
σ2

B
+

4L2

b
· q ·max{η2, r2, D}

)
≤ 8 log(4/δ)σ2

B
.

Lemma 6.1 guarantees that with high probability ‖∇F (xt)‖2 ≤ ‖dt‖2 + ε, which ensures
‖∇F (xms)‖2 ≤ 2εwhen the algorithm terminates. Next lemma bounds the function value decrease
in the GD phase, which is also valid for LENA-STORM.

Lemma 6.2 Suppose the event in Lemma 6.1 holds, η ≤ ε/(2L), then for any s, we have

F (xts)− F (xms) ≥
(ms − ts)ηε

8
.

The choice of η in Theorem 5.1 further implies that the loss decreases by at least σε/(16
√
BL) per

step on average.

9
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Proof [Proof of Lemma 6.2] For any ts ≤ t < ms, we can show the following property (See
Lemma E.2),

F (xt+1) ≤ F (xt)−
ηt
2
‖dt‖22 +

ηt
2
‖εt‖22 +

L

2
‖xt+1 − xt‖22. (6.2)

Plugging the update rule xt+1 = xt − ηtdt into (6.2) gives,

F (xt+1) = F (xt)− ‖xt+1 − xt‖22
(

1

2ηt
− L

2

)
+
ηt‖εt‖22

2

≤ F (xt)− η2
(

1

2ηt
− L

2

)
+
ηtε

2

8
,

≤ F (xt)−
ηε

8

where the first inequality holds due to the fact that ηt = η/‖dt‖2 and ‖εt‖2 ≤ ε/2, and the second
inequality is by ηt = η/‖dt‖2 ≤ η/ε ≤ 1/(2L).

The following lemma shows that if xms is a saddle point, then with high probability, the algo-
rithm will break during the Escape phase and set FIND to be false. Thus, whenever xms is not a
local minima, the algorithm cannot terminate.

Lemma 6.3 Under Assumptions 3.1 and 3.2, set perturbation radius r ≤ LηHεH/(Cρ),step
size ηH ≤ min{1/(16L log(ηHεH

√
dLC−1ρ−1δ−1r−1)), 1/(8CL log `thres)} = Õ(L−1), `thres =

2 log(ηHεH
√
dLC−1ρ−1δ−1r−1)/(ηHεH) = Õ(η−1H ε−1H ), and D < C2L2η2Hε

2
H/(ρ

2`2thres), where
C = O(log(d`thres/δ) = Õ(1). We also set b = q =

√
B ≥ 16 log(4/δ)/(η2Hε

2
H). Then for

any s, when λmin(∇2F (xms)) ≤ −εH , with probability at least 1 − 2δ algorithm breaks in the
Escape phase.

Proof [Proof of Lemma 6.3] Let {xt}, {x′t} be two coupled sequences by running LENA-SPIDER
from xms+1,x

′
ms+1 with xms+1 − x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈ Bxms

(r). Here r0 =

δr/
√
d and e1 denotes the smallest eigenvector direction of Hessian∇2F (xms).

When λmin(∇2F (xms)) ≤ −εH , under the parameter choice in Lemma 6.3, we can show that
at least one of two sequence will escape the saddle point (See Lemma E.3). To be specific, with
probability at least 1− δ,

max
ms<t<ms+`thres

{‖xt − xms+1‖2, ‖x′t − x′ms+1‖2} ≥
LηHεH
Cρ

. (6.3)

(6.3) suggests that for any two points xms+1,x
′
ms+1 satisfying xms+1 − x′ms+1 = r0e1, at least

one of them will generate a sequence of iterates which finally move more than LηHεH/(Cρ). Thus,
let S ⊆ Bms(r) be the set of xms+1 which will not generate a sequence of iterates moving more
than LηHεH

Cρ , then in the direction e1, the ”thickness” of S is smaller than r0. Simple integration
shows that the ratio between the volume of S and Bms(r) is bounded by δ. Therefore, since xms+1

is generated from xms by adding a uniform random noise in ball Bms(r), we conclude that the
probability for xms+1 locating in S is less than δ. Applying union bound, we get with probability
at least 1− 2δ,

∃ms < t < ms + `thres, ‖xt − xms+1‖2 ≥
LηHεH
Cρ

. (6.4)

10
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Denote E as the event that the algorithm does not break in the Escape phase. Then under E , for any
ms < t < ms + `thres, we have

‖xt − xms+1‖2 ≤
t−1∑

i=ms+1

‖xi+1 − xi‖2 ≤

√√√√(t−ms)
t−1∑
i=ms

‖xi+1 − xi‖22 ≤ (t−ms)
√
D,

where the first inequality is due to the triangle inequality and the second inequality is due to Cauchy-
Schwarz inequality. Thus, by the choice of `thres and D, we have

‖xt − xms+1‖2 ≤ (t−ms)
√
D ≤ `thres

√
D < C · LηHεH

ρ
.

Then by (6.4), we know that P(E) ≤ 2δ. Therefore when λmin(∇2F (xms)) ≤ −εH , with probabil-
ity at least 1− 2δ, LENA breaks in the Escape phase.

Next lemma bounds the decreasing value of the function during the Escape phase if the algo-
rithm breaks in the Escape phase(i.e. FIND is false).

Lemma 6.4 (localization) Suppose the result of Lemma 6.1 holds, set ηH ≤ 1/
(
L
√

128 log(4/δ)
)
,

r ≤ min
{

log(4/δ)ηHσ
2/(2Bε),

√
2 log(4/δ)ηHσ2/(BL)

}
, and D = σ2/(4BL2). Suppose the

algorithm breaks in the Escape phase starting at xms , then we have

F (xms)− F (xts+1) ≥ (ts+1 −ms)
log(4/δ)ηHσ

2

B
.

Proof [Proof of Lemma 6.4] For any ms < i < ts+1, we can show the following property (See
Lemma E.2),

F (xi+1) ≤ F (xi)−
ηi
2
‖di‖22 +

ηi
2
‖εi‖22 +

L

2
‖xi+1 − xi‖22. (6.5)

Plugging the update rule xi+1 = xi − ηidi into (6.5) gives,

F (xi+1) ≤ F (xi) +
ηi
2
‖εi‖22 −

(
1

2ηi
− L

2

)
‖xi+1 − xi‖22

≤ F (xi) +
ηH
2

8 log(4/δ)σ2

B
− 1

4ηH
‖xi+1 − xi‖22 (6.6)

where the the second inequality holds due to Lemma 6.1 and ηi ≤ ηH ≤ 1/(2L) for any ms < i <
ts+1. Telescoping (6.6) from i = ms + 1 to ts+1 − 1, we have

F (xts+1) ≤ F (xms+1) + 4ηH log(4/δ)(ts+1 −ms − 1)
σ2

B
− 1

4ηH

ts+1−1∑
i=ms+1

‖xi+1 − xi‖22.

Finally, we have

F (xms+1)− F (xts+1) ≥
ts+1−1∑
i=ms+1

‖xi+1 − xi‖22
4ηH

− 4 log(4/δ)(ts+1 −ms − 1)ηH
σ2

B

11
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= (ts+1 −ms − 1)

(
D

4ηH
− 4 log(4/δ)ηHσ

2

B

)
= (ts+1 −ms − 1)

(
σ2

16ηHBL2
− 4 log(4/δ)ηHσ

2

B

)
≥ (ts+1 −ms − 1)

4 log(4/δ)ηHσ
2

B
, (6.7)

where the last inequality is by the choice of ηH ≤ 1/
(
L
√

128 log(4/δ)
)
. For i = ms, we have (See

Lemma E.2)

F (xms+1) ≤ F (xms) + (‖dms‖2 + ‖εms‖2 + Lr/2)r. (6.8)

Plugging ‖dms‖2 ≤ ε and ‖εms‖2 ≤ ε/2 into (6.8) gives,

F (xms+1) ≤ F (xms) + (4ε+ Lr/2)r ≤ F (xms) +
2 log(4/δ)ηHσ

2

B
, (6.9)

where the last inequality is by the choice r ≤ min
{

log(4/δ)ηHσ
2/(2Bε),

√
2 log(4/δ)ηHσ2/(BL)

}
.

Combining (6.7) and (6.9) and applying ts+1 −ms ≥ 2 gives,

F (xms)− F (xts+1) ≥ [4(ts+1 −ms − 1)− 2]
log(4/δ)ηHσ

2

B
≥ (ts+1 −ms)

log(4/δ)ηHσ
2

B
.

Now, we can provide the proof of Theorem 5.1 .
Proof [Proof of Theorem 5.1] The analysis can be divided into two phases, i.e., GD phase and
Escape phase. The function value will decrease at different rates in different phases.
GD phase: In this phase, ‖dt‖2 ≥ ε and ‖ε‖2 ≤ ε/2 due to Lemma 6.1. Thus the gradients of the
function are large ‖∇F (x)‖2 ≥ ε/2. Lemma 6.2 further shows that the loss decreases by at least
σε/(16

√
BL) on average.

Escape phase: In this phase, the starting point xms satisfies ‖∇F (xms)‖2 ≤ ‖dms‖2+‖εt‖2 ≤ 2ε.
If xms is a saddle point with λmin(∇2F (xms)) ≤ −εH , then by Lemma 6.3, with high probability
LENA-SPIDER will break Escape phase, set FIND←False and begin a new GD phase. Further by
Lemma 6.4, the loss will decrease by at least log(4/δ)ηHσ

2/B per step on average.
Sample Complexity: Note that the total amount for function value can decrease is at most ∆ =
F (x0) − infx F (x) < +∞. So the algorithm must end and find an (ε, εH)-approximate local
minimum within Õ(

√
BL∆σ−1ε−1 + BL∆σ−2) iterations. Notice that on average we sample

max{b, B/q} =
√
B examples per iteration, so the total sample complexity is Õ(BL∆σ−1ε−1 +

B3/2L∆σ−2). Plugging in the choice of B = Õ(σ2ε−2 + σ2ρ2ε−4H ) in Theorem 5.1, we have the
total gradient complexity

Õ

(
σL∆

ε3
+
σρ2L∆

εε4H
+
σρ3L∆

ε6H

)
= Õ

(
σL∆

ε3
+
σρ3L∆

ε6H

)
,

where the equation is due to the Young’s inequality.
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7. Conclusions and Future Work

In this paper, we propose a perturbed stochastic gradient framework named LENA for finding local
minima. LENA can find (ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic gradient
evaluations, which matches the best possible complexity results in the classical εH =

√
ε setting.

Our results show that simple perturbed gradient methods can be as efficient as more sophisticated
algorithms for finding local minima in the classical setting. Recall that there still exists a mismatch
between our upper bound (ε−3 + ε−6H ) and the lower bound (ε−3 + ε−5H ) in the general case of εH ,
and we leave it as a future work to close this gap.
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Appendix A. Experiments

In this section, we conduct some experiments to validate our theory. We consider the symmetric
matrix sensing problem. We need to recover a low-rank matrix M∗ = U∗(U∗)>, where U∗ ∈
Rd×r. We have n sensing matrix {Ai}i∈[n] with observation bi = 〈Ai,M

∗〉. The optimization
problem can be written as

min
U∈Rd×r

f(U) =
1

2n

n∑
i=1

(〈Ai,UU>〉 − bi)2.

For the data generation, we consider d = 50, r = 3 and d = 100, r = 3. Then we generate the
unknown low-rank matrix M∗ = U∗(U∗)>, where every element in U∗ ∈ Rd×r is independently
drawn from the Gaussian distribution N (0, 1/d). We then generate n = 20d random sensing
matrices {Ai}i∈[n] following standard normal distribution, and thus bi = 〈Ai,M

∗〉. The global
optimal value of the above optimization problem is 0, because there is no noise in the model. Next
we randomly initialize a vector ũ0 ∈ Rd from the Gaussian distribution. Then we set u0 = αũ0
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where α is a small constant to guarantee that ‖u0‖2 < λmax(M∗) and set the initial input U0 =
[u0,0,0]. We have fixed initialization U0 for every optimization algorithm.

We choose our algorithm as LENA-SPIDER and take SGD, perturbed SGD (Ge et al., 2015),
SPIDER (Fang et al., 2018), SPIDER-SFO+(+Neon2) (Fang et al., 2018) and SSRGD (Li, 2019) as
the baseline algorithms to compare. We evaluate the performance by objective function ‖UU> −
M∗‖2F /‖M∗‖2F and then report the objective function value versus the number of stochastic gradient
evaluations in Figure 1. We can see that without adding noise or using second-order information,
SGD and SPIDER are not able to escape from saddle points (i.e., the objective function value of the
converged point is far above zero). Our algorithm (LENA-SPIDER), SSRGD, Perturbed SGD and
SPIDER-SFO+(+Neon2) can escape from saddle points. Compared with SSRGD and perturbed
SGD, our algorithm converges to the unknown matrix faster.

(a) Matrix Sensing (d = 50) (b) Matrix Sensing (d = 100)

Figure 1: Convergence of different algorithms for matrix sensing: objective function value versus
the number of oracle calls

Our algorithm empirically outperforms the NEON2-based algorithm SPIDER-SFO+, which can
be seen through the experiment results. The reason is that the accuracy of the negative curvature
estimation is very crucial to the success of NEON2-based algorithms. However, we found that the
accuracy heavily depends on the number of iterations in the NEON2 algorithm, which requires care-
ful parameter tuning to balance the computational cost and the accuracy. In contrast, our algorithm
only relies on gradient descent-type updates besides an added noise, which is easier to tune.

Appendix B. Proof of Theorem 5.3

In this section we present the main proof to Theorem 5.3. We define εt = dt − ∇F (xt) for
simplicity.

To prove the main theorem, we need two groups of lemmas to charctrize the behavior of the
Algorithm LENA-STORM.

Next lemma provides the upper bound of εt.

Lemma B.1 Set η ≤ σ/(2bL), r ≤ σ/(2bL) and D ≤ σ2/(4b2L2), a = 562 log(4/δ)/b, B =
b2,a ≤ 1/4`thres , with probability at least 1− 2δ, for all t we have

‖εt‖2 ≤
210 log(4/δ)σ

b
.
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Furthermore, by the choice of b in Theorem 5.1 we have that ‖εt‖2 ≤ ε/2.
Proof See Appendix C.1.

Lemma B.2 Suppose the event in Lemma B.1 holds and η ≤ ε/(2L), then for any s, we have

F (xts)− F (xms) ≥
(ms − ts)ηε

8
.

Proof The proof is the same as that of Lemma 6.2, with the fact ‖εt‖2 ≤ ε/2 from Lemma B.1.

The choice of η in Theorem 5.3 further implies that the loss decrease by σε/(16bL) on average.
Next lemma shows that if xms is a saddle point, then with high probability, the algorithm will

break during the Escape phase and set FIND←false. Thus, whenever xms is not a local minimum,
the algorithm cannot terminate.

Lemma B.3 Under Assumptions 3.1 and 3.2, set perturbation radius r ≤ LηHεH/ρ, a ≤ ηHεH ,
b ≥ max{16 log(4/δ)η−2H L−2ε−2H , 562 log(4/δ)a−1},`thres = 2 log(8εH

√
dρ−1δ−1r−1)/(ηHεH),

ηH ≤ min{1/(10L log(8εHLρ
−1r−10 )), 1/(10L log(`thres))} and D < L2η2Hε

2
H/(ρ`

2
thres). Then

for any s, when λmin(∇2F (xms)) ≤ −εH , with probability at least 1− 2δ algorithm breaks in the
Escape phase.

Proof See Appendix C.2.

Next lemma shows that LENA-STORM decreases when it breaks.

Lemma B.4 (localization) Suppose the event in Lemma B.1 holds, set perturbation radius r ≤
min

{
log(4/δ)2ηHσ

2/(4b2ε),
√

2 log(4/δ)2ηHσ2/(b2L)
}

, ηH ≤ 1/
(
212L log(4/δ)

)
, and D =

σ2/(4b2L2). Then for any s, when LENA-STORM breaks, then xms satisfies

F (xms)− F (xts+1) ≥ (ts+1 −ms)
log(4/δ)2ηHσ

2

b2
. (B.1)

Proof See Appendix C.3.

With all above lemmas, we prove Theorem 5.3.
Proof [Proof of Theorem 5.3] Under the choice of parameter in Theorem 5.3, we have Lemma B.1
to B.4 hold. Now for GD phase, we know that the function value F decreases by σε/(16bL) on
average. For Escape phase, we know that the F decreases by log(4/δ)2ηHσ

2/b2 on average. So
LENA-STORM can find (ε, εH)-approximate local minima within Õ(bL∆σ−1ε−1+b2L∆σ−2) iter-
ations (we use the fact that ηH = Õ(L−1)). Then the total number of stochastic gradient evaluations
is bounded by Õ(B+ b2L∆σ−1ε−1 + b3L∆σ−2). Plugging in the choice of b = Õ(σε−1 +σρε−2H )
in Theorem 5.3, we have the total sample complexity

Õ

(
σL∆

ε3
+
σρ2L∆

εε4H
+
σρ3L∆

ε6H

)
.

The proof finishes by using Young’s inequality.
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Appendix C. Proof of Lemmas in Section B

In this section we prove lemmas in Section B. Let filtration Ft,b denote the all history before sample
ξt,b at time t ∈ {0, · · · , T}, then it is obvious that F0,1 ⊆ F0,b ⊆ · · · ⊆ F1,1 ⊆ · · · ⊆ FT,1 ⊆ · · · ⊆
FT,b.

We also need the following fact:

Proposition C.1 For any t, we have the following equation:

εt+1

(1− a)t+1
− εt

(1− a)t
=

1

(1− a)t+1

∑
i≤b
εt,i,

where

εt,i =
a

b
[∇f(xt+1; ξ

i
t+1)−∇F (xt+1)]

+
1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)].

Proof Following the update rule in LENA-STORM, we could have the update rule of ε described as

εt+1 =
1− a
b

∑
i≤b

[
dt −∇f(xt; ξ

i
t+1)

]
+

1

b

∑
i≤b

[
∇f(xt+1; ξ

i
t+1)−∇F (xt+1)

]
=
a

b

∑
i≤b

[∇f(xt+1; ξ
i
t+1)−∇F (xt+1)] + (1− a)(dt −∇F (xt))

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)

]
=
a

b

∑
i≤b

[∇f(xt+1; ξ
i
t+1)−∇F (xt+1)] + (1− a)εt

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)

]
,

where the last equation is by definition εt := dt −∇F (xt). Thus we have

εt+1

(1− a)t+1
− εt

(1− a)t

=
1

(1− a)t+1

(a
b

∑
i≤b

[∇f(xt+1; ξ
i
t+1)−∇F (xt+1)]

+
1− a
b

∑
i≤b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)

])
,

=
1

(1− a)t+1

∑
i≤b
εt,i.

18
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C.1. Proof of Lemma B.1

Proposition C.2 For two positive sequences {ai}ni=1 and {bi}ni=1. SupposeC = maxi,j∈[n]{|ai/aj |},
b̄ =

∑n
i=1 bi/n. Then we have,

n∑
i=1

aibi ≤ max
i
ai · n · b̄ ≤ C

n∑
i=1

aib̄.

Proof [Proof of Lemma B.1] By Proposition C.1 we have

εt+1

(1− a)t+1
− εt

(1− a)t
=

1

(1− a)t+1

∑
i≤b
εt,i.

It is easy to verify that {εt,i} forms a martingale difference sequence and

‖εt,i‖22 ≤ 2

∥∥∥∥ab [∇f(xt+1; ξ
i
t+1)−∇F (xt+1)]

∥∥∥∥2
2

+ 2

∥∥∥∥1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)

]∥∥∥∥2
2

≤ 2a2σ2 + 8(1− a)2L2‖xt+1 − xi‖22
b2

,

where the first inequality holds due to triangle inequality, the second inequality holds due to As-
sumptions 3.1 and 3.2. Therefore, by Azuma-Hoeffding inequality (See Lemma E.1 for detail),
with probability at least 1− δ, we have that for any t > 0,∥∥∥∥ εt

(1− a)t
− ε0

(1− a)0

∥∥∥∥2
2

≤ 4 log(4/δ)

t−1∑
i=0

b · 2a2σ2 + 8(1− a)2L2‖xi+1 − xi‖22
(1− a)2i+2b2

= 8 log(4/δ)

t−1∑
i=0

a2σ2 + 4(1− a)2L2‖xi+1 − xi‖22
(1− a)2i+2b

.

Therefore, we have

‖εt‖22 ≤ 2(1− a)2t
∥∥∥∥ εt

(1− a)t
− ε0

∥∥∥∥2
2

+ 2(1− a)2t‖ε0‖22

≤ log(4/δ)

[
64L2

b

t−1∑
i=0

(1− a)2t−2i‖xi+1 − xi‖22 +
16aσ2

b

]
+ 2(1− a)2t‖ε0‖22. (C.1)

By Azuma-Hoeffding Inequality, we have with probability 1− δ,

‖ε0‖22 =

∥∥∥∥ 1

B

∑
1≤i≤B

[
∇f(x0; ξ

i
0)−∇F (x0)

]∥∥∥∥2
2

≤ 4 log(4/δ)σ2

B
.

Therefore, with probability 1− 2δ, we have

‖εt‖22 ≤ log(4/δ)

[
64L2

b

t−1∑
i=0

(1− a)2t−2i−2‖xi+1 − xi‖22 +
16aσ2

b
+

32(1− a)2tσ2

B

]
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=
64L2 log(4/δ)

b

t−1∑
i=0

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I

+
16aσ2 log(4/δ)

b
(C.2)

+
32(1− a)2t log(4/δ)σ2

B
. (C.3)

We now bound I . Denote S1 = {i ∈ [t − 1]|∃j, tj ≤ i < mj}, S2 = {i ∈ [t − 1]|∃j, i = mj},
S3 = {i ∈ [t− 1]|∃j,mj < i < tj+1}, We can divide I into three part,

I =
∑
i∈S1

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I1

+
∑
i∈S2

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I2

+
t−1∑
i∈S3

(1− a)2t−2i−2‖xi+1 − xi‖22︸ ︷︷ ︸
I3

. (C.4)

Because ‖xi+1 − xi‖2 = ηt‖di‖2 = η, we can bound I1 as follows,

I1 = η2
∑
i∈S1

(1− a)2t−2i−2 ≤ η2
∞∑
i=0

(1− a)i =
η2

a
. (C.5)

Because the perturbation radius is r, we can bound I2 as follows,

I2 =
∑
i∈S2

(1− a)2t−2i−2‖xi+1 − xi‖22 ≤ r2
∑
i∈S2

(1− a)2t−2i−2 ≤ r2

a
. (C.6)

To bound I3, we have

I3 =
t−1∑
i∈S3

(1− a)2t−2i−2‖xi+1 − xi‖22

=
S∑
s=1

min{t−1,ts+1−1}∑
i=ms+1

(1− a)2t−2i−2‖xi+1 − xi‖22

≤
S∑
s=1

(1− a)−2`thres

min{t−1,ts+1−1}∑
i=ms+1

(1− a)2t−2i−2D

= (1− a)−2`thres

t−1∑
i∈S3

(1− a)2t−2i−2D

≤ D(1− a)−2`thres

a
, (C.7)

where S satisfies mS < t − 1 < tS+1. The first inequality holds due to Proposition C.2 with
the fact that the average of ‖xi+1 − xi‖22 is bounded by D̄, according to the LENA scheme, and
ts+1 −ms < `thres, the last one holds trivially. Substituting (C.5), (C.6), (C.7) into (C.4), we have

I ≤ η2 + r2 + (1− a)2`thresD

a
.

20



FASTER PERTURBED STOCHASTIC GRADIENT METHODS FOR FINDING LOCAL MINIMA

Therefore (C.3) can further bounded by

‖εt‖22 ≤
64L2 log(4/δ)

b

η2 + r2 + (1− a)2`thresD

a
+

16aσ2 log(4/δ)

b
+

32(1− a)2t log(4/δ)σ2

B
.

(C.8)

By the selection of η ≤ σ/(2bL), r ≤ σ/(2bL) and D ≤ σ2/(4b2L2), a = 562 log(4/δ)/b,
B = b2,a ≤ 1/4`thres, it’s easy to verify that

64L2 log(4/δ)

b

η2 + r2 + 2D

a
≤ σ2

b2
(C.9)

(1− a)2`thres ≥ 1− 2a`thres ≥
1

2
(C.10)

16aσ2 log(4/δ)

b
≤ 2242σ2 log(4/δ)2

b2
(C.11)

32 log(4/δ)σ2

B
≤ 32 log(4/δ)σ2

b2
. (C.12)

Plugging (C.9) to (C.12) into (C.8) gives,

‖εt‖2 ≤
210 log(4/δ)σ

b
.

C.2. Proof of Lemma B.3

Lemma C.3 (Small stuck region) Suppose −γ = λmin(∇2F (xms)) ≤ −εH . Set threshold
` = 2 log(8εHρ

−1r−10 )/(ηHγ), ηH ≤ min{1/(10L log(8εHLρ
−1r−10 )), 1/(10L log(`))}, a ≤

ηHγ, r ≤ LηHεH/ρ. Let {xt}, {x′t} be two coupled sequences by running LENA-STORM from
xms+1,x

′
ms+1 with wms+1 = xms+1 − x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈ Bxms

(r), r0 =

δr/
√
d and e1 denotes the smallest eigenvector direction of Hessian ∇2F (xms). Moreover, let

batch size b ≥ max{16 log(4/δ)η−2H L−2γ−2, 562 log(4/δ)a−1}, then with probability 1 − 2δ we
have

∃T ≤ `,max{‖xT − x0‖2, ‖x′T − x′0‖2} ≥
ηHεHL

ρ
.

Proof See Appendix D.1.

Proof [Proof of Lemma B.3] We assume λmin(∇2F (xms)) < −εH and prove our statement by
contradiction. Lemma C.3 shows that, in the random perturbation ball at least one of two points
in the e1 direction will escape the saddle point if their distance is larger than r0 = δr√

d
. Thus, the

probability of the starting point xms+1 ∼ Bxms
(r) located in the stuck region uniformly is less than

δ. Then with probability at least 1− 2δ,

∃ms < t < ms + `thres, ‖xt − xms‖2 ≥
LηHεH
ρ

. (C.13)
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Suppose LENA-STORM does not break, then for any ms < t < ms + `thres,

‖xt − xms‖2 ≤
t−1∑
i=ms

‖xi+1 − xi‖2 ≤

√√√√(t−ms)

t−1∑
i=ms

‖xi+1 − xi‖22 ≤ (t−ms)
√
D,

where the first inequality is due to the triangle inequality and the second inequality is due to Cauchy-
Schwarz inequality. Thus, by the selection of D, we have

‖xt − xms‖2 ≤ (t−ms)
√
D ≤ `thres

√
D <

LηHεH
ρ

,

which contradicts (C.13). Therefore, we know that with probability at least 1−2δ, λmin(∇2F (xms)) ≥
−εH .

C.3. Proof of Lemma B.4

Proof [Proof of Lemma B.4]
Suppose ms < i < ts+1. Then with probability at least 1− δ, then by Lemma E.2 we have

F (xi+1) ≤ F (xi) +
ηi
2
‖εi‖22 −

(
1

2ηi
− L

2

)
‖xi+1 − xi‖22

≤ F (xi) +
ηH
2

220 log(4/δ)2σ2

b2
− 1

4ηH
‖xi+1 − xi‖22 (C.14)

where the the second inequality holds due to Lemma B.1 and the fact that for any ms < i < ts+1,
ηi ≤ ηH ≤ 1/(2L). Taking summation of (C.14) from i = ms + 1 to t− 1, we have

F (xt) ≤ F (xms+1) + 219ηH log(4/δ)2(t−ms − 1)
σ2

b2
− 1

4ηH

t−1∑
i=ms+1

‖xi+1 − xi‖22. (C.15)

Finally, we have

F (xms+1)− F (xts+1) ≥
ts+1−1∑
i=ms+1

‖xi+1 − xi‖22
4ηH

− 219 log(4/δ)2(t−ms − 1)ηH
σ2

b2

= (ts+1 −ms − 1)

(
D

4ηH
− 219 log(4/δ)2ηHσ

2

b2

)
= (ts+1 −ms − 1)

(
σ2

16ηHb2L2
− 219 log(4/δ)2ηHσ

2

b2

)
≥ (ts+1 −ms − 1)

4 log(4/δ)2ηHσ
2

b2
, (C.16)

where the last inequality is by the selection of ηH ≤ 1/
(
212L log(4/δ)

)
. For i = ms, by Lemma

E.2 we have

F (xms+1) ≤ F (xt) + (2‖dt‖2 + 2‖εt‖2 + Lr/2)r
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≤ F (xms) + (4ε+ Lr/2)r

≤ F (xms) +
2 log(4/δ)2ηHσ

2

b2
, (C.17)

where the last inequality is by r ≤ min
{

log(4/δ)2ηHσ
2/(4b2ε),

√
2 log(4/δ)2ηHσ2/(b2L)

}
.

Combining (C.16) and (C.17) we have that

F (xms)− F (xts+1) = F (xms)− F (xms+1) + F (xms+1)− F (xts+1)

≥ (ts+1 −ms − 1)
4 log(4/δ)2ηHσ

2

b2
− 2 log(4/δ)2ηHσ

2

b2

≥ (ts+1 −ms)
log(4/δ)2ηHσ

2

b2
,

where we use the fact that ts+1 −ms ≥ 2.

Appendix D. Proof of Lemmas in Section C

D.1. Proof of Lemma C.3

Define wt := xt − x′t as the distance between the two coupled sequences. By the construction, we
have that w0 = r0e1, where e1 is the smallest eigenvector direction of HessianH := ∇2F (xms).

wt = wt−1 − η(dt−1 − d′t−1)

= wt−1 − η(∇F (xt−1)−∇F (x′t−1) + dt−1 − F (xt−1)− d′t−1 +∇F (x′t−1))

= wt−1 − η
[
(xt−1 − x′t−1)

∫ 1

0
∇2F (x′t−1 + θ(xt−1 − x′t−1))dθ

+ dt−1 − F (xt−1)− d′t−1 + F (x′t−1)

]
= (1− ηH)wt−1 − η(∆t−1wt−1 + yt−1),

where

∆t−1 :=

∫ 1

0

(
∇2F (x′t−1 + θ(xt−1 − x′t−1))−H

)
dθ,

yt−1 := dt−1 −∇F (xt−1)− d′t−1 +∇F (x′t−1) = εt−1 − ε′t−1.

Recursively applying the above equation, we get

wt = (1− ηH)t−ms−1wms+1 − η
t−1∑

τ=ms+1

(1− ηH)t−1−τ (∆τwτ + yτ ). (D.1)

We want to show that the first term of (D.1) dominates the second term. Next Lemma is essential
for the proof of Lemma C.3, which bounds the norm of yt.
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Lemma D.1 Under Assumption 3.1, we have following inequality holds,

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2

+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0, (D.2)

where Dτ = max{‖xτ − xms‖2, ‖x′τ − xms‖2}.

Proof [Proof of Lemma D.1] By Proposition C.1, we have that

yt+1

(1− a)t+1
− yt

(1− a)t
=

εt+1

(1− a)t+1
− εt

(1− a)t
−

ε′t+1

(1− a)t+1
+

ε′t
(1− a)t

=
1

(1− a)t+1

∑
i≤b

[εt,i − ε′t,i],

where εt,i is the same as that in Proposition C.1:

εt,i =
a

b
[∇f(xt+1; ξ

i
t+1)−∇F (xt+1)]

+
1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇f(xt+1; ξ

i
t+1)]

=
1

b
[∇f(xt+1; ξ

i
t+1)−∇F (xt+1)] +

1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)], (D.3)

where we rewrite εt,i as (D.3) because now we want bound the εt − ε′t by the distance between two
sequence. ε′t,i is defined similarly as follows

ε′t,i =
1

b
[∇f(xt+1; ξ

i
t+1)−∇F (xt+1)] +

1− a
b

[
∇F (xt)−∇f(xt; ξ

i
t+1)].

It is easy to verify that {εt,i − ε′t,i} forms a martingale difference sequence. We now bound ‖εt,i −
εt,i′‖22. DenoteHt+1,i = ∇2f(xms ; ξ

i
t+1), then we introduce two terms

∆t+1,i :=

∫ 1

0

(
∇2f(x′t+1 + θ(xt+1 − x′t+1); ξ

i
t+1)−Ht+1,i

)
dθ

∆̂t+1,i :=

∫ 1

0

(
∇2f(x′t + θ(xt − x′t); ξ

i
t+1)−Ht+1,i

)
dθ,

By Assumption 3.1, we have ‖∆t+1,i‖2 ≤ ρmaxθ∈[0,1] ‖x′t+1 + θ(xt+1 − x′t+1) − xms+1‖2 ≤
ρDt+1, similarly we have ‖∆̂t+1,i‖2 ≤ ρDt and ∆t+1 ≤ ρDt+1.

Now we bound εt,i − ε′t,i,

b(εt,i − ε′t,i) =
(

[∇f(xt+1; ξ
i
t+1)−∇F (xt+1)] + (1− a)

[
∇F (xt)−∇f(xt; ξ

i
t+1)

])
−
(

[∇f(x′t+1; ξ
i
t+1)−∇F (x′t+1)]− (1− a)

[
∇F (x′t)−∇f(x′t; ξ

i
t+1)

])
=
(
Ht+1,iwt+1 + ∆t+1,iwt+1 −Hwt+1 −∆t+1wt+1 + (1− a)Hwt

+ (1− a)∆twt − (1− a)Ht+1,iwt − (1− a)∆̂t+1,iwt

)
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=
(
Ht+1,i −H

)(
wt+1 − (1− a)wt

)
+
(
∆t+1,i −∆t+1

)
wt+1

+ (1− a)
(
∆t − ∆̂t+1,i)wt. (D.4)

This implies the LHS of (D.4) has the following bound.

‖b(εt,i − ε′t,i)‖2 ≤ 2L‖wt+1 − (1− a)wt‖2 + 2ρDx
t+1‖wt+1‖2 + 2ρDx

t ‖wt‖2
≤ 2L‖wt+1 −wt‖2 + 2ρDx

t+1‖wt+1‖2 + (2aL+ 2ρDx
t )‖wt‖2

≤ 2L max
ms<τ<t

‖wτ+1 −wτ‖2 + max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2︸ ︷︷ ︸
M

where the first inequality is by the gradient Lipschitz Assumption and Hessian Lipschitz Assump-
tion 3.1, the second inequality is by triangle inequality. Therefore we have

‖εt,i − ε′t,i‖22 ≤
M2

b2

Furthermore, by Azuma Hoeffding inequality(See Lemma E.1 for detail), with probability at least
1− δ, we have that for any t > 0,∥∥∥∥ yt

(1− a)t
− yms+1

(1− a)ms+1

∥∥∥∥2
2

=

∥∥∥∥ t−1∑
τ=ms+1

(
yτ+1

(1− a)τ+1
− yτ

(1− a)τ

)∥∥∥∥2
2

=

∥∥∥∥ t−1∑
τ=ms+1

(
1

(1− a)τ+1

∑
i≤b

[ετ,i − ε′τ,i]
)∥∥∥∥2

2

≤ 4 log(4/δ)

( t−1∑
i=ms+1

b · M2

(1− a)2τ+2b2

)
.

Multiply (1− a)2t on both side, we get

‖yt − (1− a)t−ms−1yms+1‖22 ≤ 4b−1 log(4/δ)

t−1∑
τ=ms+1

(1− a)2t−2τ−2M2

≤ 4 log(4/δ)b−1a−1M2,

where the last inequality is by
∑t−1

i=0(1− a)2t−2i−2 ≤ a−1. Furthermore, by triangle inequality we
have

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2M + (1− a)t−ms−1‖yms+1‖2. (D.5)

Next, we have ‖∇f(xms+1; ξ
i
ms+1)−∇F (x′ms+1)−∇f(x′ms+1; ξ

i
ms+1)+∇F (x′ms+1)‖2 ≤ 2Lr0

due to Assumption 3.1. Then by Azuma Inequality (See Lemma E.1), we have with probability at
least 1− δ,

‖yms+1‖22 = ‖dms+1 −∇F (xms+1)− d′ms+1 +∇F (x′ms+1)‖22
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=

∥∥∥∥1

b

∑
i≤b

[∇f(xms+1; ξ
i
ms+1)−∇F (x′ms+1)−∇f(x′ms+1; ξ

i
ms+1) +∇F (x′ms+1)]

∥∥∥∥2
2

≤ 4 log(4/δ)4L2r20
b

. (D.6)

Plugging (D.6) into (D.5) gives

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2

+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0.

Now we can give a proof of Lemma C.3.
Proof [Proof of Lemma C.3] We proof it by induction that

1. 1
2(1 + ηHγ)t−ms−1r0 ≤ ‖wt‖2 ≤ 3

2(1 + ηHγ)t−ms−1r0.

2. ‖yt‖2 ≤ 2ηHγL(1 + ηHγ)t−ms−1r0.

First for t = ms+1, we have ‖wms+1‖2 = r0, ‖yms+1‖2 ≤
√

16b−1 log(4/δ)L2r20 ≤ 2ηHγLr0(See
(D.6)), where b ≥ 2η−2H γ−2

√
log(4/δ). Assume they hold for all ms < τ < t, we now prove they

hold for t. We bound wt first, we only need to show that second term of (D.1) is bounded by
1
2(1 + ηHγ)tr0. ∥∥∥∥ηH t−1∑

τ=ms+1

(1− ηHH)t−1−τ (∆τwτ + yτ )

∥∥∥∥
2

≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−1−τ (‖∆τ‖2‖wτ‖2 + ‖yτ‖2)

≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−ms−2r0(
3

2
‖∆τ‖2 + 2ηHγL)

≤ ηH
t−1∑

τ=ms+1

(1 + ηHγ)t−ms−2r0(3ηHεHL+ 2ηHγL)

= ηH`(1 + ηHγ)t−ms−2r0 · 5ηHγL
≤ 10 log(8εHρ

−1r−10 )ηHL(1 + ηHγ)t−ms−2r0

≤ 1

2
(1 + ηHγ)t−ms−1r0,

where the first inequality is by the eigenvalue assumption over H, the second inequality is by the
Induction hypothesis, the third inequality is by ‖∆τ‖2 ≤ ρDτ = ρmax{‖xτ − xms‖2, ‖x′τ −
xms‖2} ≤ ηHεHL + rρ ≤ 2ηHεHL, the fourth inequality is by the choice of t −ms − 1 ≤ ` ≤
2 log(8εHρ

−1r−10 )/(ηHγ), the last inequality is by the choice of ηH ≤ 1/(10 log(8εHρ
−1r−10 )L).

Now we bound ‖yt‖2 by (D.2). We first get the bound for L‖wi+1 −wi‖2 as follows,

L‖wt+1 −wt‖2
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= L

∥∥∥∥− ηHH(I − ηHH)t−ms−2w0 − ηH
t−2∑

τ=ms+1

ηHH(I − ηHH)t−2−τ (∆τwτ + yτ )

+ ηH(∆t−1wt−1 + yt−1)

∥∥∥∥
2

(i)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH

∥∥∥∥ t−2∑
τ=ms+1

ηHH(I − ηHH)t−2−τ (∆τwτ + yτ )

∥∥∥∥
2

+ LηH

∥∥∥∥∆t−1wt−1 + yt−1

∥∥∥∥
2

(ii)

≤ LηHγ(1 + ηHγ)t−ms−2r0

+ LηH

[∥∥∥∥ t−2∑
τ=ms+1

ηHH(I − ηHH)t−2−τ
∥∥∥∥
2

+ 1

]
max

0≤τ≤t−1

∥∥∥∥∆τwτ + yτ

∥∥∥∥
2

(iii)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH

[ t−2∑
τ=ms+1

1

t− 1− τ
+ 1

]
max

0≤τ≤t−1

∥∥∥∥∆τwτ + yτ

∥∥∥∥
2

(iv)

≤ LηHγ(1 + ηHγ)t−ms−2r0 + LηH [log(t−ms − 1) + 1] · [5ηHγL(1 + ηHγ)t−ms−2r0]

(v)

≤ 6LηHγ(1 + ηHγ)t−ms−2r0 + 5 log(t−ms − 1)γη2HL
2(1 + ηHγ)t−ms−2r0, (D.7)

where (i) is by triangle inequality, (ii) is by the definition of max, (iii) is by ‖ηHH(I−ηHH)t−2−τ‖2 ≤
1

t−1−τ , (iv) is due to ‖∆τ‖2 ≤ ρDτ ≤ ρ(ηHγL/ρ+r) ≤ 2γηHL, ‖wτ‖2 ≤ 3(1+ηHγ)τ−ms−1r0/2

and ‖yτ‖2 ≤ 2ηHγL(1 + ηHγ)τ−ms−1r0, (v) is due to ηH ≤ 1/L.
We next get the bound of maxms<τ≤t(2aL+ 4ρDτ ) ·maxms<τ≤t ‖wτ‖2 as follows

max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2 ≤ (2aL+ 8γηHL)
3(1 + ηHγ)t−ms−1

2
r0

≤ 15γηHL(1 + ηHγ)t−ms−1r0. (D.8)

where the first inequality is by ρDt ≤ ρ(γηHL/ρ+ r) ≤ 2γηHL and the induction hypothesis, last
inequality is by a ≤ γηH .

Plugging (D.7) and (D.8) into (D.2) gives,

‖yt‖2 ≤ 2
√

log(4/δ)b−1/2a−1/2
(

2L max
ms<τ<t

‖wτ+1 −wτ‖2

+ max
ms<τ≤t

(2aL+ 4ρDτ ) · max
ms<τ≤t

‖wτ‖2
)

+ 4
√

log(4/δ)b−1/2Lr0

≤ 2
√

log(4/δ)b−1/2a−1/2
(

10 log(`)γη2HL
2(1 + ηHγ)t−ms−1r0

+ 27γηHL(1 + ηHγ)t−ms−1r0

)
+ 4
√

log(4/δ)b−1/2Lr0

≤ 56
√

log(4/δ)b−1/2a−1/2ηHLγ(1 + ηHγ)t−ms−1r0︸ ︷︷ ︸
I1

+ 4
√

log(4/δ)b−1/2(1 + ηHγ)t−ms−1r0︸ ︷︷ ︸
I2
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where the last inequality is by ηH ≤ 1/(10L log `). Now we bound I1 and I2 respectively.

I1 = 56
√

log(4/δ)b−1/2a−1/2ηHLγ(1 + ηHγ)t−ms−1r0

= ηHγL(1 + ηHγ)t−ms−1r0,

where the inequality is applying b ≥ 562 log(4/δ)a−1. Now we bound I2 by applying b ≥
16 log(4/δ)η−2H L−2γ−2,

I2 ≤ ηHγL(1 + ηHγ)t−ms−1r0.

Then we obtain that

‖yt‖2 ≤ 2ηHγL(1 + ηHγ)t−ms−1r0,

which finishes the induction. So we have ‖wt‖2 ≥ 1
2(1 + ηHγ)t−ms−1r0. However, the triangle

inequality give the bound

‖wt‖2 ≤ ‖xt − xms+1‖2 + ‖xms+1 − xms‖2 + ‖x′t − x′ms+1‖2 + ‖x′ms+1 − x′ms
‖2

≤ 2r + 2
εHηHL

ρ

≤ 4
εHηHL

ρ
,

where the last inequality is due to r ≤ εHηHL/ρ. So we obtain that

t ≤ log(8εHηHLρ
−1r−10 )

log(1 + ηHγ)
<

2 log(8εHρ
−1r−10 )

ηHγ
.

Appendix E. Auxiliary Lemmas

We start by providing the Azuma–Hoeffding inequality under the vector settings.

Lemma E.1 (Theorem 3.5, Pinelis 1994) Let ε1:k ∈ Rd be a vector-valued martingale difference
sequence with respect to Fk, i.e., for each k ∈ [K], E[εk|Fk] = 0 and ‖εk‖2 ≤ Bk, then we have
given δ ∈ (0, 1), w.p. 1− δ, ∥∥∥∥ K∑

i=1

εk

∥∥∥∥2
2

≤ 4 log(4/δ)

K∑
i=1

B2
k.

This lemma provides a dimension-free bound due to the fact that the Euclidean norm version of Rd
is (2, 1) smooth, see also Kallenberg and Sztencel (1991); Fang et al. (2018).

Lemma E.2 For any t 6= ms, we have

F (xt+1) ≤ F (xt)−
ηt
2
‖dt‖22 +

ηt
2
‖εt‖22 +

L

2
‖xt+1 − xt‖22.

For t = ms, we have F (xt+1) ≤ F (xt) + (‖dt‖2 + ‖εt‖2 + Lr/2)r.
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Proof [Proof of Lemma E.2] By Assumption 3.1, we have

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖22. (E.1)

For the case t 6= ms, the update rule is xt+1 = xt − ηtdt, therefore

F (xt+1) ≤ F (xt)− ηt〈∇F (xt),dt〉+
L

2
‖xt+1 − xt‖22

= F (xt)− ηt‖∇F (xt)‖22/2− ηt‖dt‖22/2 + ηt‖εt‖22/2 + L‖xt+1 − xt‖22/2

≤ F (xt)− ηt‖dt‖22/2 + ηt‖εt‖22/2 +
L

2
‖xt+1 − xt‖22,

where the first inequality on the first line is due to Assumption 3.1 and the second inequality holds
trivially. For the case t = ms, since ‖∇F (xt)‖2 ≤ ‖dt‖2 + ‖εt‖2 we have

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖22

≤ F (xt) + (‖dt‖2 + ‖εt‖2 + Lr/2)r.

We present the following lemma from Li (2019), which characterizes the moving distance for
a SPIDER-type stochastic gradient estimator during the Escape phase. Note that this lemma can
be directly applied to our Algorithm 1 without modification since our algorithm and the SSRGD
algorithm in Li (2019) share the same Escape phase (See lines 8-14 in Algorithm 1 and lines 9-17
in SSRGD, Algorithm 2, Li 2019).

Lemma E.3 (Lemma 6, Li 2019) Suppose −γ = λmin(∇2F (xms)) ≤ −εH . Set perturbation ra-
dius r ≤ LηHεH/(Cρ), threshold `thres = 2 log(ηHεH

√
dLC−1ρ−1δ−1r−1)/(ηHεH) = Õ(η−1H ε−1H ),

step size ηH ≤ min{1/(16L log(ηHεH
√
dLC−1ρ−1δ−1r−1)), 1/(8CL log `thres)} = Õ(L−1),

b = q =
√
B ≥ 16 log(4/δ)/(η2Hε

2
H). Let {xt}, {x′t} be two coupled sequences by running

LENA-SPIDER from xms+1,x
′
ms+1 with wms+1 = xms+1−x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈

Bxms
(r), r0 = δr/

√
d and e1 denotes the smallest eigenvector direction of Hessian ∇2F (xms).

Then with probability at least 1− δ,

max
ms<t<ms+`thres

{‖xt − xms‖2, ‖x0 − xms‖2} ≥
LηHεH
Cρ

, (E.2)

where C = O(log(d`thres/δ) = Õ(1).
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