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Abstract
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves
in the finite-horizon setting, where the transition kernel of the underlying Markov games can be
parameterized by a linear function over the current state, both players’ actions and the next state. In
particular, we assume that we can control both players and aim to find the Nash Equilibrium by min-
imizing the duality gap. We propose an algorithm Nash-UCRL based on the principle “Optimism-
in-Face-of-Uncertainty”. Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE),
which is computationally efficient. Specifically, we show that Nash-UCRL can provably achieve
an Õ(dH

√
T ) regret, where d is the linear function dimension, H is the length of the game and T

is the total number of steps in the game. To assess the optimality of our algorithm, we also prove an
Ω̃(dH

√
T ) lower bound on the regret. Our upper bound matches the lower bound up to logarithmic

factors, which suggests the optimality of our algorithm.
Keywords: Markov Games; Reinforcement Learning; Linear Function Approximation.

1. Introduction

Multi-agent reinforcement learning (MARL) has achieved tremendous practical success across a
wide range of machine learning tasks, including large-scale strategy games such as GO (Silver
et al., 2016), TexasHold’em poker (Brown and Sandholm, 2019), real-time video games such as
Starcraft (Vinyals et al., 2019), and autonomous driving (Shalev-Shwartz et al., 2016). Among
these models used in MARL, two-player zero-sum Markov games (MG) (Shapley, 1953; Littman,
1994) is probably one of the most widely studied models and can be regarded as a generalization of
the Markov Decision Processes (MDP) (Puterman, 2014).

In two-player Markov games, the two players share states, play actions simultaneously and
independently, and observe the same reward. One player (i.e., max-player) aims to maximize the
return while the other (i.e., min-player) aims to minimize it. A special case of general Markov
games (i.e., simultaneous-move games) is turn-based games, where only one player can take action
in each step, i.e., the max and min players take turns to play the game. The players aim to find the
Nash equilibrium for this game. Most existing results on learning two-player Markov games either
assume the access to a generative model that can sample the next state for an arbitrary state-action
pair (Jia et al., 2019; Sidford et al., 2020; Cui and Yang, 2020), or a well-explored behavior policy
(Lagoudakis and Parr, 2012; Perolat et al., 2015; Pérolat et al., 2016a,b, 2017), and fail to consider
the exploration-exploitation tradeoff (Kearns and Singh, 2002).
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In order to get rid of the generative model and well-explored behavior policy assumptions, Wei
et al. (2017) extended the UCRL2 algorithm (Jaksch et al., 2010) for MDP to zero-sum simultaneous-
move Markov games in the average-reward setting, and proposed the UCSG algorithm that achieves
a sublinear regret when competing with an arbitrary opponent. Recently, Bai and Jin (2020); Bai
et al. (2020); Liu et al. (2020) proposed a series of algorithms for learning tabular episodic two-
player zero-sum Markov games (they call it self-play algorithm for competitive reinforcement learn-
ing), and proved the upper and lower regret bounds and/or sample complexity. For Markov games
with large state and action spaces, it is natural to use linear function approximation. In particular,
Xie et al. (2020) proposed the OMNI-VI algorithm for Markov games where the transition kernel
and reward function possess a linear structure, and achieved an Õ(

√
d3H3T ) regret bound, with

d being the dimension of the linear structure and H being the episode length. However, as we
will show in this paper, the information theoretic lower bound for the zero-sum two-player Markov
games with linear structures is Ω(dH

√
T ). Therefore, there is still a gap between the upper and

lower bounds of existing algorithms for Markov games with linear structures. This raises the fol-
lowing question:

Can we design a minimax optimal algorithm for learning zero-sum Markov games with linear
function approximation?

In this paper, we give an affirmative answer to the above question for a class of episodic Markov
games in the offline setting1, where both players are controlled by a central learner. The goal of the
central learner is to find an approximate Nash Equilibrium (NE) of the game, with the approximation
error measured by a notion of duality gap. In particular, we consider Markov games with a linear
mixture structure, where the transition probability kernel is a linear mixture model that is inspired
by the linear mixture MDPs studied in (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou
et al., 2021b). We propose the first nearly minimax optimal algorithm based on the principle of
“Optimism-in-Face-of-Uncertainty” without assuming the access to the generative model or well-
explored behavior policy. We summarize the contributions of our work as follows:

• We propose a Nash-UCRL algorithm for general Markov games (i.e., simultaneous-move
game) that can provably achieve an Õ(dH

√
T ) upper bound on the regret, where d is the

dimension of linear mixture structure, H is the length of the game, and T the total number
of steps in the Markov game. Our algorithm can be specialized to turn-based games and also
achieves Õ(dH

√
T ) regret.

• To access the optimality of our algorithm Nash-UCRL, we prove an Ω(dH
√
T ) regret lower

bound . Our upper bound matches the lower bound up to logarithmic factors, which suggests
the optimality of our algorithm. While our lower bound is proved for Markov games with
linear mixture structure, we argue that it is also a valid lower bound for Markov games with
linear structure (Xie et al., 2020).

Notation We use lower case letters to denote scalars, lower and upper case bold letters to denote
vectors and matrices. We use ‖·‖ to indicate Euclidean norm, and for a semi-positive definite matrix
Σ and any vector x, ‖x‖Σ := ‖Σ1/2x‖ =

√
x>Σx. For a real value x and an interval [a, b], we

1. Here we follow the same terminology “offline setting” as in Xie et al. (2020), which is also called “self-play” in Bai
and Jin (2020); Bai et al. (2020)
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use [x][a,b] to indicate the projection of x onto [a, b]. We also use the standard O and Ω notations.
We say an = O(bn) if and only if ∃C > 0, N > 0,∀n > N, an ≤ Cbn; an = Ω(bn) if and only if
∃C > 0, N > 0,∀n > N, an ≥ Cbn. The notation Õ is used to hide logarithmic factors.

2. Related Work

Tabular Markov game. Under the tabular setting, Littman and Szepesvári (1996) extended the
value iteration and Q-learning algorithms (Watkins, 1989) to zero-sum Markov games. Littman
(2001); Greenwald et al. (2003); Hu and Wellman (2003) further extended it to general-sum Markov
games with n-player. Hansen et al. (2013) provided the first strong polynomial algorithm for solv-
ing two-player turn-based Markov games. Sidford et al. (2018) proposed a variance-reduced variant
of the minimax Q-learning algorithm with near-optimal sample complexity. Lagoudakis and Parr
(2012); Perolat et al. (2015); Fan et al. (2020) considered value-iteration with function approxi-
mation and established finite-time convergence to the NEs of two-player zero-sum Markov games.
Their results are based on the framework of fitted value-iteration (Munos and Szepesvári, 2008).
Jia et al. (2019) studied turn-based zero-sum Markov games, where the transition model is assumed
to be embedded in some d-dimensional feature space. Cui and Yang (2020) proposed an algorithm
for turn-based zero-sum Markov games based on plug-in estimator and achieved minimax sample
complexity. For the simultaneous-move zero-sum Markov games, Zhang et al. (2020) proposed an
algorithm which achieved minimax sample complexity if the algorithm is reward-agnostic. All the
above works either assume a generative oracle or a well explored behavioral policy for drawing
transitions, therefore bypassing the exploration issue. Bai and Jin (2020) proposed a VI-ULCB al-
gorithm for tabular episodic zero-sum Markov games, which achieves Õ(

√
H3S2ABT ) regret for

simultaneous move (i.e., general Markov game) and O(
√
H3S2(A+B)T ) regret for turn-based

game, where A and B are the number of actions for each player, H is the length of the game, and
T is the total number of steps played in the game. They also proved an Ω(

√
H2S(A+B)T ) lower

bound. For general Markov game, Bai et al. (2020) proposed an Optimistic Nash Q-learning algo-
rithm with a regret of Õ(

√
H4SABT ), and an Optimistic Nash V-learning algorithm with a regret

of Õ(
√
H5S(A+B)T ), both of which improve the regret in Bai and Jin (2020) in the dependence

on S,A,B. The best known regret is achieved by Nash-VI proposed in Liu et al. (2020), which is
Õ(
√
H2SABT ). As can be seen, without assuming the access to a generative model or a well ex-

plored behavioral policy, there is still a gap between the upper and lower regret bounds for existing
algorithms, even for the simplest tabular Markov games.
Online RL with linear function approximation. There are several lines of work aiming at pro-
viding theoretical guarantees for online RL with function approximation. The first line of work
focus on the linear function approximation setting, which assumes that the MDP (e.g., transition
probability, reward, or value function) can be represented as a linear function of some given feature
mapping. These works proposed algorithms which enjoy sample complexity/regret scaling with
the dimension of the feature mapping, rather than the cardinality of state and action spaces. For
example, Yang and Wang (2019a); Jin et al. (2020); Wang et al. (2019); Zanette et al. (2020a); He
et al. (2021) considered the linear MDP model, where the transition probability function and reward
function are linear in some feature mapping over state-action pairs. Zanette et al. (2020b) studied
MDPs with low inherent Bellman error, where the value functions are nearly linear w.r.t. the feature
mapping. Yang and Wang (2019b); Modi et al. (2020); Jia et al. (2020); Ayoub et al. (2020); Cai
et al. (2019); Zhou et al. (2021b); He et al. (2021) studied the linear mixture MDPs, where the tran-
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sition probability kernel is a linear mixture of a number of basis kernels. Inspired by linear mixture
MDPs, we introduce the linear mixture Markov game.

3. Preliminaries

In this section, we introduce the setup of the episodic two-player zero-sum Markov games with
simultaneous moves and the linear mixture structure we use in this paper.

3.1. Two-Player Markov Games

The two-player zero-sum Markov game (MG) (Shapley, 1953; Littman, 1994) is a generalization
of the standard Markov decision process (MDP) where the max-player seeks to maximize the total
return, and the min-player seeks to minimize the total return.
Simultaneous-move MG. Formally, we denote a two-player zero-sum simultaneous-moves episodic
Markov Game by a tuple M(S,Amax,Amin, H, {rh}Hh=1, {Ph}Hh=1). S is a countable state space,
Amax,Amin are the finite action spaces of the max-player and the min-player respectively. H is
the length of the game/episode. For simplicity, we assume the reward function for the max-player
{rh}Hh=1 is deterministic and known function rh : S ×Amax×Amin → [−1, 1]. Ph(s′|s, a, b) is the
transition probability function which denotes the probability for state s to transit to state s′ given
players’ action pair (a, b) at step h.
Markov Policy and Value Function. We first define the stochastic policies, which give distribu-
tions over the actions. A policy π = {πh : S → ∆Amax}Hh=1 is a collection of functions which
map a state s ∈ S to a distribution of actions. Here ∆Amax is the probability simplex over action
set Amax. Similarly, we can define a policy ν = {νh : S → ∆Amin}Hh=1 for the min-player, where
∆Amin is the probability simplex over action set Amin. We use the notation πh(a|s) and νh(b|s) to
present the probability of taking action a or b for state s at step h under Markov policy π, ν respec-
tively. We define the action-value function (a.k.a., Q function) Qπ,νh : S × Amax × Amin → R as
follows

Qπ,νh (s, a, b) = Eπ,ν,h,s,a,b
[ H∑
h′=h

r(sh′ , ah′ , bh′)

∣∣∣∣sh = s, ah = a, bh = b

]
,

and the value function V π,ν
h : S → R as follows

V π,ν
h (s) = Ea∼πh(·|s),b∼νh(·|s)Q

π,ν
h (s, a, b), V π,ν

H+1(s) = 0.

In the definition of Qπ,νh , Eπ,ν,h,s,a,b is an expectation over state-action pairs of length H − h + 1
induced by the policy (π, ν) and the transition probability of the MG M , when initializing the
process with the triplet (s, a, b) at step h. Because rh(·, ·, ·) ∈ [−1, 1], it is easy see that both Q
functions and value functions are bounded

|Qπ,νh (·, ·, ·)| ≤ H, |V π,ν
h (·)| ≤ H.

Furthermore, for any joint distribution σ ∈ ∆(Amax × Amin), we denote by Pmaxσ the marginal
distribution for the max-player and by Pminσ the marginal distribution for the min-player.
Best Response and Bellman Equation. The goal of the max-player is to maximize the total re-
wards. The goal of the min-player is to minimize the total rewards that the max-player will get
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because this is a zero-sum game. In other words, the max-player wants to maximize V π,ν
h (·) by

choosing a good policy π, while the min-player wants to minimize V π,ν
h (·) by choose a good policy

ν. Accordingly, we can define the action-value function and the value function when the max-player
gives the best response to a fixed policy ν of the min-player:

Q∗,νh (s, a, b) = max
π

Qπ,νh (s, a, b), V ∗,νh (s) = max
π

V π,ν
h (s).

By symmetry, we can also define

Qπ,∗h (s, a, b) = min
ν
Qπ,νh (s, a, b), V π,∗

h (s) = min
ν
V π,ν
h (s).

For any function V : S → R, we introduce the shorthands:

[PhV ](s, a, b) = Es′∼Ph(·|s,a,b)V (s′), [VhV ](s, a, b) = [PhV 2](s, a, b)−
(
[PhV ](s, a, b)

)2
,

where V 2 stands for the function whose value at s is V 2(s). Using these notation, we have following
Bellman equations:

Qπ,νh (s, a, b) = r(s, a, b) + [PhV π,ν
h+1](s, a, b),

and the Bellman optimality equation (Shapley, 1953):

Qπ,∗h (s, a, b) = r(s, a, b) + [PhV π,∗
h+1](s, a, b), V π,∗

h (s) = inf
σ∈∆min

Ea∼πh(·|s),b∼σQ
π,ν
h (s, a, b).

Nash Equilibrium. A Nash Equilibrium (NE) of the game is a pair of policies π∗, ν∗ such that

V π∗,ν∗

1 (s) = V π∗,∗
1 (s) = V ∗,ν

∗

1 (s), for all s ∈ S. (3.1)

(3.1) means that (π∗, ν∗) are the best response to each other, so no player can do better by only
changing her own policy. Nash equilibrium can also be viewed as “the best response to the best
response”. For most applications, they are the ultimate solutions we want to pursue. We further
abbreviate the value of the Nash equilibrium V π∗,ν∗

1 (s) as V ∗1 (s). This is because the value of the
Nash equilibrium is irrelevant to the choice of (π∗, ν∗) which is a direct corollary of the following
weak duality property:

Proposition 3.1 (Weak Duality, Xie et al. 2020) Given the NE (π∗, ν∗) of a game, for any policy
pair (π, ν) we have that

V ∗,ν1 (s) ≥ V π∗,ν∗

1 (s) ≥ V π,∗
1 (s), for all s ∈ S. (3.2)

Learning Objective. The weak duality in Proposition 3.1 suggests that the NE value V ∗1 (s) is
sandwiched between V ∗,ν1 (s) and V π,∗

1 (s). So it is natural to measure the suboptimality of learned
policies (πk, νk) at the k-th episode by the gap between their performance and the performance of
the optimal strategy (i.e., Nash equilibrium) when playing against the best responses respectively:

V ∗,ν
k

1 (s)− V πk,∗
1 (s) =

[
V ∗,ν

k

1 (s)− V ∗1 (s)
]

+ [V ∗1 (s)− V πk,∗
1 (s)].
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Accordingly, we aim to design a learning algorithm that outputs a sequence {πk, νk}k based on past
information, and minimize the regret over first K episodes defined as follows:

Regret(M,K) =
K∑
k=1

[
V ∗,ν

k

1 (sk1)− V πk,∗
1 (sk1)

]
.

This measure has been widely used in previous work that studies the offline learning of two-player
game (Bai et al., 2020; Xie et al., 2020; Liu et al., 2020). Following Bai et al. (2020); Xie et al.
(2020); Liu et al. (2020), we assume the central controller can choose a joint distribution µk for
both the max-player and min-player in each episode as their policies, and we set πk = Pmaxµ

k

and νk = Pminµ
k automatically. In this paper, we focus on proving high probability bounds on the

regret Regret(M,K), as well as lower bounds in expectation.
Episodic Linear Mixture Markov Games. In this work, we consider a class of MGs called linear
mixture MGs, inspired by the linear mixture/kernel MDPs studied in Modi et al. (2020); Jia et al.
(2020); Ayoub et al. (2020) for the single-agent RL. Linear mixture MGs assume that at each step
h, the transition probability function Ph(s′|s, a, b) is a linear combination of d feature mappings
φi(s

′|s, a, b), i.e.,

Ph(s′|s, a, b) =
d∑
i=1

θi,hφi(s
′|s, a, b),

where each feature mapping φi(s′|s, a, b) is a function defined on the state-action-action-state pair
(s, a, b, s′) ∈ S × Amax × Amax × S . For the sake of simplicity, we use a vector function φ =
[φ1, · · · , φd] ∈ Rd to denote the collection of φi. After proper normalization, we assume φ satisfy
that for any bounded function V : S → [−1, 1] and any tuple (s, a, b) ∈ S × Amax × Amin, we
have

‖φV (s, a, b)‖2 ≤ 1, (3.3)

where φV (s, a, b) =
∑

s′∈S φ(s′|s, a, b)V (s′). Formally, we define linear mixture MGs as follows:

Definition 3.2 M(S,Amax,Amin, H, {rh}Hh=1, {Ph}Hh=1) is called a time inhomogeneous, episodic
B-bounded linear mixture MG if there exist H unknown vectors θh ∈ Rd satisfying for any
h ∈ [H], ‖θh‖2 ≤ B, and a known feature mapping φ satisfying (3.3), such that Ph(s′|s, a, b) =
〈φ(s′|s, a, b),θh〉 for any state-action-action-state triplet (s, a, b, s′) and any step h. We denote the
linear mixture MG by Mθ for simplicity.

In this paper, we assume the underlying linear mixture MG is parameterized by {θ∗h}Hh=1, denoted
by Mθ∗ .

Difference between linear and linear mixture MGs. Linear mixture MGs assume that at each
step h, the transition probability function Ph(s′|s, a, b) is a linear combination of d feature mappings
φi(s

′|s, a, b) for i = 1, . . . , d, i.e., Ph(s′|s, a, b) = 〈φ(s′|s, a, b),θh〉. The linear MG setting
considered by Xie et al. (2020), however, assumes Ph(s′|s, a, b) = 〈φ(s, a, b),µh(s′)〉, whereµh(·)
is an unknown vector-valued measure function on S. These two models are different and do not
include each other in general. For instance, consider the following MG which is inspired by Zhou
et al. (2021b): S = Z,Amax = Amin = N and Ph(s′|s, a, b) =

∑d
i=1 θ

h
i pi(s

′|s, a, b), pi(s′|s, a, b) =
1(s′ >= s)(a + b)s

′−s exp(−(a + b))/(s′ − s)!. This MG is a linear mixture MG but not a linear
MG.
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4. Algorithm

In this section, we propose our algorithm Nash-UCRL in Algorithm 1. Due to the space limit, we
only show the detailed update rules for the max-player in Algorithm 1, and the full algorithm is
presented in Algorithm 2 in Appendix D. All the parameters corresponding to the max-player are
marked by an overline, while the parameters for the min-player are marked by an underline.

Algorithm 1 Nash-UCRL
1: Input: Regularization parameter λ, number of episodeK, number of horizonH , approximation

error ε.
2: For any h, Σ

(i)
1,h ← Σ

(i)
1,h ← λI; b

(i)
1,h ← b

(i)
1,h ← 0; θ

(i)
1,h ← θ

(i)
1,h ← 0, for i ∈ {0, 1}.

3: for k = 1, . . . ,K do
4: V k,H+1(·)← 0, V k,H+1(·)← 0.
5: for h = H, . . . , 1 do
6: Set Qk,h(·, ·, ·) as in (4.4), and Q

k,h
(·, ·, ·) in a similar way (See Algorithm 2).

7: for s ∈ S do
8: Let µkh(·, ·|s) = ε-CCE(Qk,h(s, ·, ·), Q

k,h
(s, ·, ·)).

9: V k,h(s) = E(a,b)∼µkh(·,·|s)Qk,h(s, a, b), V k,h(s) = E(a,b)∼µkh(·,·|s)Qk,h(s, a, b).

10: πkh(·|s) = Pmaxµ
k
h(·, ·|s), νkh(·|s) = Pminµ

k
h(·, ·|s).

11: end for
12: end for
13: Receives sk1
14: for h = 1, . . . ,H do
15: Take action (akh, b

k
h) ∼ µkh(·, ·|skh) and central controller receives skh+1 ∼ P(·|skh, akh, bkh).

16: Set VestV k,h+1(skh, a
k
h, b

k
h) as in (4.10) and Ek,h as in (4.13), σk,h as in (4.6).

17: Set Σ
(0)
k+1,h,b

(0)
k+1,h as in (4.7) and (4.8), Σ

(1)
k+1,h,b

(1)
k+1,h as in (4.11) and (4.12).

18: Set Σ
(0)
k+1,h,b

(0)
k+1,h,Σ

(1)
k+1,h,b

(1)
k+1,h,V

estV k,h+1(skh, a
k
h, b

k
h), Ek,h, σk,h in similar ways

(See Algorithm 2).
19: Set θ

(i)
k+1,h ←

[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, θ(i)

k+1,h ←
[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, i = 0, 1

20: end for
21: end for

To achieve the near-minimax optimality of solving a linear mixture MG, Nash-UCRL adopts
the following three techniques, which we will introduce in sequence.
Value-targeted regression To find the NE of an MG, it suffices to find good estimates of the op-
timal value functions V ∗,ν

k

h and V πk,∗
h . By the Bellman optimality equations and the definition of

linear mixture MGs, it is sufficient to estimate the underlying unknown parameter θ∗h up to good ac-
curacy. Inspired by the UCRL with “value-targeted regression” (VTR) proposed by Jia et al. (2020);
Ayoub et al. (2020), Nash-UCRL uses a supervised learning framework to learn θ∗h. In the sequel,
we introduce how the VTR framework works at episode k and step h. At the beginning of episode
k, Nash-UCRL maintains two estimated value functions: optimistic value function V k,h+1 for the

max-player, which overestimates the optimal value function V ∗,ν
k

h , and optimistic value function

V k,h+1 for the min-player, which underestimates the value function V πk,∗
h . We focus on the over-

estimate V k,h+1 first. Note that the following equation holds due to the definition of linear mixture
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MGs:

[PhV k,h+1](skh, a
k
h, b

k
h) = 〈φV k,h+1

(skh, a
k
h, b

k
h),θ∗h〉, (4.1)

which suggests that (φV k,h+1
(skh, a

k
h, b

k
h), V k,h+1(skh+1)) can be regarded as a context and the cor-

responding targeted value of a linear regression problem with the unknown parameter θ∗h.

Therefore, Nash-UCRL constructs θ
(0)
k,h as the estimator of θ∗h based on linear regression on

(φV k,h+1
(skh, a

k
h, b

k
h), V k,h+1(skh+1)) (the detailed construction of θ

(0)
k,h will be specified later). Due

to the randomness of skh+1, θ
(0)
k,h can not estimate θ∗h exactly. Therefore Nash-UCRL also constructs

an ellipsoid C(0)
k,h centered at θ

(0)
k,h as the confidence set, which contains θ∗h with high probability:

C(0)
k,h :=

{
θ :

∥∥∥∥[Σ(0)
k,h

]1/2
(θ − θ(0)

k,h)
∥∥∥

2
≤ β(0)

k

}
. (4.2)

Here Σ
(0)
k,h is the “covariance matrix” of the context φV k,h+1

(skh, a
k
h, b

k
h), and β

(0)
k is the radius

of the confidence set. Both of them will be specified later. Then, to encourage the agent to ex-
plore, Nash-UCRL constructs an optimistic action-value function Qk,h as follows, following the
“optimism-in-the-face-of-uncertainty” principle (Abbasi-Yadkori et al., 2011):

Qk,h :=
[
rh + max

θ∈C(0)k,h

〈θk,h,φV k,h+1
〉
]

[−H,H]
, (4.3)

where the projection onto [−H,H] is because the action-value function of the Markov game lies in
[−H,H]. The closed-form solution of (4.3) is as follows

Qk,h(·, ·, ·) =
[
rh(·, ·, ·) + 〈θ(0)

k,h,φV k,h+1
(·, ·, ·)〉+ β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

(·, ·, ·)
∥∥∥

2

]
[−H,H]

,

(4.4)

Similar procedures can be applied to construct the confidence set C(0)
k,h and the optimistic action-

value function Q
k,h

for the min-player with parameters θ(0)
k,h, Σ

(0)
k,h. Finally, Nash-UCRL constructs

the optimistic value functions V k,h, V k,h and the policy µkh based on Qk,h, Qk,h for the current
episode and step (which will be specified later).
Coarse Correlated Equilibrium (CCE). Now we introduce how to compute the (πkh, ν

k
h) based on

the optimistic action-value functions Qk,h, Qk,h. Unlike the single-agent RL, we cannot certify the

policy by independently solving max-min problem on Q or Q. This is because Q and Q are not
the estimators of action-value function for the NE but the estimators of action-value function for
the best response. Thus we must coordinate both players for their choices of actions. After we get
Qk,h(s, ·, ·) for the max-player and Q

k,h
(s, ·, ·) for the min-player, we solve a general-sum matrix

game to find the Coarse Correlated Equilibrium (CCE), following Xie et al. (2020). Here we give
the formal definition of CCE as follows:

Definition 4.1 (Moulin and Vial 1978; Aumann 1987) Given two payoff matrices Qmax, Qmin ∈
R|Amax|·|Amin|, we denote the ε-Coarse Correlated Equilibrium (ε-CCE) as a joint distribution σ over
Amax and Amin satisfying that

E(a,b)∼σQmax(a, b) ≥ max
a′∈Amax

Eb∼PminσQmax(a
′, b)− ε,

8
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E(a,b)∼σQmin(a, b) ≤ min
b′∈Amin

Ea∼PmaxσQmin(a, b′) + ε.

Nash-UCRL computes the distribution µkh(·, ·|s), a ε-CCE of Qk,h, Qk,h for each state s in Line

8. Then Nash-UCRL selects the value functions V k,h, V k,h as the expectation of Qk,h, Qk,h over

the policies µkh as in Line 9 of Algorithm 1. The difference between CCE and NE is whether the
policy of each player is independent of each other. The policy µkh given by ε-CCE is correlated
for each player because it is found in the class ∆Amax×Amin rather than ∆Amax × ∆Amin . After
obtaining µk, Nash-UCRL sets πkh(·|s) = Pmaxµ

k
h(·, ·|s) and νkh(·|s) = Pminµ

k
h(·, ·|s), i.e., the

marginal distributions of µkh. Notice that a Nash equilibrium always exists and a Nash equilibrium
for a general-sum game is also a CCE. Thus a CCE always exists, so does ε-CCE.

Remark 4.2 Since we assume the action spaces are finite, the constraints for ε-CCE can be rewrit-
ten as |Amax| + |Amin| linear constraints, which can be efficiently solved by linear programming
(See e.g., Bai et al. (2020); Liu et al. (2020)).

Weighted linear regression for value function estimation. Now we specify how to construct
the estimators θ

(0)
k,h,θ

(0)
k,h. For the simplicity, we only show the construction for the max-player

and the construction for the min-player is presented in Appendix D. With the linear structure of
V k,h+1(skh+1) in (4.1), it is natural to set the estimator θk,h as the minimizer to the linear regression
problem with square loss over context-target pairs (φV k,h+1

(skh, a
k
h, b

k
h), V k,h+1(skh+1)), similar to

UCRL (Jia et al., 2020; Ayoub et al., 2020). However, such an estimator is somehow limited since
it treats each context-target pair equally and ignore the difference between these pairs. In principle,
one should pay more attention to the pairs with less target variance since they carry more informa-
tion about the unknown parameter θ∗h. This observation inspires us to adapt the recently proposed
weighted ridge regression scheme by Zhou et al. (2021a) to estimate θ∗h:

θ
(0)
k,h = argmin

θ∈Rd

λ‖θ‖22 +

k−1∑
j=1

[〈
φV j,h+1

(sjh, a
j
h, b

j
h),θ

〉
− V j,h+1(sjh+1)

]2
/σ2

j,h, (4.5)

where σ2
j,h is an appropriate upper bound on the variance of the value function [VhV j,h+1](sjh, a

j
h, b

j
h).

In particular, we construct σ2
k,h as follows

σk,h =
√

max{H2/d,VestV k,h+1(skh, a
k
h, b

k
h) + Ek,h}, (4.6)

where [Vest
k,hV k,h+1](skh, a

k
h, b

k
h) is a scalar-valued empirical estimate for the variance of the value

function V k,h+1 under the transition probability Ph(·|shk , ahk , bhk), and Ek,h is an offset term that is
used to guarantee that σ2

k,h upper bounds [VhV k,h+1](skh, a
k
h, b

k
h) with high probability.

Weighted ridge regression (4.5) has a closed-form solution θ
(0)
k,h =

[
Σ

(0)
k,h

]−1
b

(0)
k,h, where the

covariance matrix Σ
(0)
k,h can be computed by recursion starting at Σ

(0)
1,h = λI:

Σ
(0)
j+1,h = σ−2

j,hφV j,h+1
(sjh, a

j
h, b

j
h)φV j,h+1

(sjh, a
j
h, b

j
h)> + Σ

(0)
j,h, (4.7)

and the correlation vector b
(0)
k,h can be computed by recursion starting at b

(0)
1,h = 0:

b
(0)
j+1,h = b

(0)
j,h + σ−2

j,hφV j,h+1
(sjh, a

j
h, b

j
h)V j,h+1(sjh+1). (4.8)

9
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By using a Bernstein-type self-normalized concentration inequality for vector-valued martingales
proposed in Zhou et al. (2021a), one can show then that, with high probability, θ∗h lies in the ellipsoid

C(0)
k,h defined in (4.2), where β(0)

k is the confidence radius chosen later in Lemma 5.1.
Variance Estimator. It remains to set σ2

j,h. We need to specify how to calculate the empirical vari-
ance [Vest

k,hV k,h+1](skh, a
k
h, b

k
h) and selectEk,h to guarantee σ2

j,h upper bounds [VhV k,h+1](skh, a
k
h, b

k
h)

with high probability. Recall the definition of [VhV ](·, ·, ·) as follows:

[VhV k,h+1](skh, a
k
h, b

k
h) = [PhV

2
k,h+1](skh, a

k
h, b

k
h)−

(
[PhV k,h+1](skh, a

k
h, b

k
h)
)2

=
〈
φ
V

2
k,h+1

(skh, a
k
h, b

k
h),θ∗h

〉
︸ ︷︷ ︸

I1

−
[〈
φV k,h+1

(skh, a
k
h, b

k
h),θ∗h

〉]2︸ ︷︷ ︸
I2

.

where the second equality holds due to the definition of linear mixture MGs. Notice that the ex-
pectation of V 2

k,h+1(skh+1) over the next state, skh+1, is a linear function of φ
V

2
k,h+1

(skh, a
k
h, b

k
h).

Therefore, we use 〈φ
V

2
k,h+1

(skh, a
k
h, b

k
h),θ

(1)
k,h〉 to estimate the term I1 where θ(1)

k,h is the solution to

the following ridge regression problem:

θ
(1)
k,h = argmin

θ∈Rd

λ‖θ‖22 +
k−1∑
j=1

[〈
φ
V

2
j,h+1

(sjh, a
j
h, b

j
h),θ

〉
− V 2

j,h+1(sjh+1)
]2
. (4.9)

For term I2, we can use 〈φV k,h+1
(skh, a

k
h, b

k
h),θ

(0)
k,h〉 to estimate it. Thus we have the following

variance estimator,

VestV k,h+1(skh, a
k
h, b

k
h)←

[
〈φ

V
2
k,h+1

(skh, a
k
h, b

k
h),θ

(1)
k,h〉
]
[0,H2]

−
[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]2
[−H,H]

,

(4.10)

where the projection is used to control the range of our variance estimator. Lastly, we can compute
θ

(1)
k,h in a closed form θ

(1)
k,h =

[
Σ

(1)
k,h

]−1
b

(1)
k,h, where the covariance matrix Σ

(1)
k,h is updated recursively

in the following way:

Σ
(1)
j+1,h = Σ

(1)
j,h + φ

V
2
j,h+1

(sjh, a
j
h, b

j
h)φ

V
2
j,h+1

(sjh, a
j
h, b

j
h)>, (4.11)

and the correlation vector b
(1)
k,h is updated in the following recursive form:

b
(1)
j+1,h = b

(1)
j,h + φ

V
2
j,h+1

(sjh, a
j
h, b

j
h)V

2
j,h+1(sjh+1). (4.12)

By the standard self-normalized concentration inequality for vector-valued martingales in Abbasi-
Yadkori et al. (2011), we can show that, with high probability, σ2

j,h upper bounds [VhV k,h+1](skh, a
k
h, b

k
h)

if we select Ek,h as follows

Ek,h = min
{
H2, β

(1)
k ‖

[
Σ

(1)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)‖2

}
+ min

{
H2, 2Hβ

(2)
k ‖

[
Σ

(0)
k,h

]−1/2
φV k,h+1

(skh, a
k
h, b

k
h)‖2

}
, (4.13)

where β(1)
k , β

(2)
k are constants chosen later in Lemma 5.1.
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Remark 4.3 Our Nash-UCRL is computational efficient for specific feature mapping φ, as Ayoub
et al. (2020); Zhou et al. (2021a) suggested. For a special class of φ, where

φ(s′|s, a, b) = ψ(s′)� µ(s, a, b), ψ(·) : S → Rd, µ(·, ·, ·) : S ×Amax ×Amin → Rd,

� is the componentwise product, Nash-UCRL can be implemented within poly(d, |Amax|, |Amin|) ·
KH time complexity with the access to some integration oracle O. The details are deferred to
Appendix A.

Difference between Nash-UCRL and previous algorithms Here we compare our Nash-UCRL
with the OMNI-V proposed by Xie et al. (2020). First, Xie et al. (2020) studied the linear MGs
while we study the linear mixture MGs. Second, due to the difference between the studied models,
OMNI-V needs to maintain a covering set of the estimated Q functions (Eq. (5), Xie et al. 2020),
which makes its space complexity exponential in d. In sharp contrast, our Nash-UCRL relies on the
value targeted regression (Jia et al., 2020; Ayoub et al., 2020) and does not need to maintain such a
cover set.

5. Main Results

In this section, we present the main theoretical results. We first show that under a specific parameter
choice, our constructed confidence sets C(0)

k,h and C(0)
k,h include θ∗h with high probability, and the esti-

mated variances VestV k,h+1(skh, a
k
h, b

k
h) and VestV k,h+1(skh, a

k
h, b

k
h) deviate from the true variances

by at most the offset terms Ek,h, Ek,h.

Lemma 5.1 Setting β(0)
k in (4.2) and β(1)

k , β
(2)
k in (4.13) to

β
(0)
k = 16

√
d log(1 + k/λ) log(4k2H/δ) + 8

√
d log(4k2H/δ) +

√
λB

β
(1)
k = 16

√
dH4 log(1 +KH4/(dλ)) log(4k2H/dδ) + 8H2 log(4k2H/δ) +

√
λB

β
(2)
k = 16d

√
log(1 + k/λ) log(4k2H/δ) + 8

√
d log(4k2H/δ) +

√
λB,

then with probability at least 1− 3δ, we have θ∗h ∈ C
(0)
k,h ∩ C

(0)
k,h. In addition, we have

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)| ≤ Ek,h

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)| ≤ Ek,h

Next, we present the regret of Nash-UCRL.

Theorem 5.2 Setting λ = 1/B2, ε = O(HT−1/2), then with probability at least 1− 5δ, the regret
of Algorithm 1 Regret(Mθ∗ ,K) is bounded by

Õ
(√

d2H2 + dH3
√
T + d2H3 + d3H2

)
,

where T = KH .

Theorem 5.2 suggest that when d ≥ H and T ≥ d4H2, the regret of Nash-UCRL is bounded
by Õ(dH

√
T ).

11
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Remark 5.3 Our Nash-UCRL also enjoys a finite sample complexity. By the standard online-to-
batch conversion, we can show that Nash-UCRL is guaranteed to find an ε-approximate NE, i.e.,
(π, ν) satisfying V ∗,ν1 − V π,∗

1 ≤ ε, within Õ((d2H3 + dH4)/ε2) episodes.

Remark 5.4 We can apply our algorithm to tabular MGs and our results can be reduced to the
setting with |S| = S, |Amax| = A, |Amin| = B by choosing φ(s′|s, a, b) as the one-hot representa-
tion of P(s′|s, a, b). It is easy to verify that (3.3) holds and d = S2AB. Thus the regret bound given
in Theorem 5.2 reduces to Õ(

√
S4H2A2B2T ), which does not match the lower bound of tabular

MGs in Bai and Jin (2020). We would like to point out that by using some techniques specialized
to the tabular setting, the regret bound of our algorithm for tabular MGs can be improved, which is
beyond the scope of this work.

Here, we present a lower bound for linear mixture MGs. It has been shown in Zhou et al.
(2021a) that the regret lower bound for learning linear mixture MDPs is Ω(dH

√
T ), from which we

can prove a lower bound for learning linear mixture MGs, since MDPs can be regarded as a special
case of MGs with one dummy player, i.e., Ph(s′|s, a, b) = Ph(s′|s, a) and rh(s, a, b) = rh(s, a).
Formally, we have the following lower bound:

Theorem 5.5 (Regret lower bound) Let B > 1 and K ≥ max{(d−1)2H/2, (d−1)/(32H(B−
1))}, d ≥ 4, H ≥ 3. Then for any algorithm there exists an episodic, B-bounded linear mixture
MG Mθ∗ such that the expected regret of first T rounds is lower bounded as follows:

E[Regret(Mθ∗ ,K)] ≥ Ω
(
dH
√
T
)
,

where T = KH .

Remark 5.6 When d ≥ H and T ≥ d4H2, the regret of Nash-UCRL matches the lower bound up
to logarithmic factors. Therefore, Nash-UCRL is nearly minimax optimal.

Remark 5.7 Based on a similar argument made in Zhou et al. (2021a), we can show that the
same lower bound holds for the Markov games with linear structures. Recall that the best-known
algorithm for learning MGs with linear structures is OMNI-VI (Xie et al., 2020), which has an
Õ(
√
d3H3T ) regret. This suggests that there is still a gap that needs to be closed for learning MGs

with linear structure. Please see the appendix for more details.

Turn-based linear mixture MG can be regarded as a special case of linear mixture simultaneous-
move MG. Therefore, we can still use Algorithm 1 to find the Nash equilibrium and then by Theorem
5.2, we can further show that the regret of our turn-based algorithm is also bounded by Õ(dH

√
T ).

Notice that for the turn-based game, at each step only one player can take action. Thus, the ε-CCE
routine in Line 8 of Algorithm 1 needs be replaced by two separate subroutines: taking πkh and νkh
as greedy policies w.r.t. Qk,h and Q

k,h
. For completeness, we present the turn-based version of

Algorithm 1 as Algorithm 3 in Appendix E.

6. Conclusions and Future Work

In this paper, we proposed the first provably optimal algorithm for learning two-player zero-sum
Markov games with linear function approximation and without assuming access to the generative
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model. Specifically, we show that Nash-UCRL can provably achieve an Õ(dH
√
T ) regret, where

d is the linear function dimension, H is the length of the game/episode, and T is the total number
of steps in the Markov game. We also prove an Ω̃(dH

√
T ) lower bound on the regret. Our upper

bound matches the lower bound up to logarithmic factors, which suggests the optimality of our
algorithm.

There are several important future directions. First, in the current linear mixture MG, the feature
mapping encodes the information of both players. To reproduce the difference between (A + B)
and AB in the tabular setting, we may need to construct a separate feature mapping for each player
(Bai et al., 2020). Second, while our algorithms can be extended to the decentralized setting, it is
not clear if the minimax-optimal regret can still be obtained because of the adversarial policy. How
to achieve a near-optimal decentralized algorithm is another important future work.
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Appendix A. Computational Efficiency of Nash-UCRL

As Ayoub et al. (2020); Zhou et al. (2021a) suggested, the computational efficiency of Nash-UCRL
will depend on the feature mappingφ(s′|s, a, b). In this section we show that for a specific family of
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φwith the access to some integration oracleO, Nash-UCRL can be implemented within polynomial
computational complexity. We consider a special class of φ, where

φ(s′|s, a, b) = ψ(s′)� µ(s, a, b), ψ(·) : S → Rd, µ(·, ·, ·) : S ×Amax ×Amin → Rd,

� is the componentwise product. Meanwhile, we assume that there exists an oracle O such that for
any function V : S → R, the summation

∑
sψ(s)V (s) can be evaluated by considering at most

p(d) number of states s ∈ S. From now on we show how to compute each key step in Nash-UCRL.
First, to compute Qk,h, note that Qk,h can be parameterized by θ̂(0)

k,h and Σ̂
(0)
k,h as follows:

Qk,h(·, ·, ·)

=
[
rh(·, ·, ·) + 〈θ(0)

k,h,φV k,h+1
(·, ·, ·)〉+ β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

(·, ·, ·)
∥∥∥

2

]
[−H,H]

=
[
rh(·, ·, ·) + 〈θ(0)

k,h �
(∑

s′

ψ(s′)V k,h+1(s′)
)

︸ ︷︷ ︸
θ̂
(0)
k,h

,µ(·, ·, ·)〉+ β
(0)
k

∥∥∥Σ̂(0)
k,hµ(·, ·, ·)

∥∥∥
2

]
[−H,H]

,

(A.1)

where the (i, j)-th entry of Σ̂
(0)
k,h is

[
Σ

(0)
k,h

]−1/2

i,j
[
∑

s′ ψj(s
′)V k,h+1(s′)]. Given θ̂(0)

k,h+1 and Σ̂
(0)
k,h+1,

we need O(d2) to compute Qk,h, which is the same as computing Q
k,h

. Then, for each s, we need

O(|Amax||Amin|) complexity to compute µkh(·, ·|s) and O(d2|Amax||Amin|) complexity to compute
V k,h and V k,h. Finally, to obtain θ̂(0)

k,h and Σ̂
(0)
k,h, we need to evaluate V k,h over p(d) states, which by

(A.1), requiresO(p(d)d2|Amax||Amin|) complexity in total. Therefore, we need poly(d, |Amax|, |Amin|)
complexity to compute one Qk,h, and we need poly(d, |Amax|, |Amin|) ·KH complexity for imple-

menting Nash-UCRL, given all θ
(0)
k,h, θ(0)

k,h. The complexity of computing θ
(0)
k,h includes the com-

plexity to solve the regression problem (4.5), (4.9) and to compute the variance estimator σk,h, σk,h,
which again is at most poly(d, |Amax|, |Amin|) ·KH according to previous analysis. Therefore, the
total complexity of implementing Nash-UCRL is poly(d, |Amax|, |Amin|) ·KH .

Appendix B. Proof of Results in Section 5

We let P be the distribution over (S ×Amax×Amin)N induced by the episodic MG M , and further
denote the sample space Ω = (S × Amax × Amin)N. Thus, we work with the probability space
given by the triplet (Ω,F ,P), whereF is the product σ-algebra generated by the discrete σ-algebras
underlying S, Amax and Amin.

For 1 ≤ k ≤ K, 1 ≤ h ≤ H , let Fk,h be the σ-algebra generated by the random variables
representing the state-action-action pairs up to and including those that appear stage h of episode k.
That is, Fk,h is generated by

s1
1, a

1
1, b

1
1, . . . , s

1
h, a

1
h, b

1
h, . . . , s

1
H , a

1
H , b

1
H ,

s2
1, a

2
1, b

2
1, . . . , s

2
h, a

2
h, b

2
h, . . . , s

2
H , a

2
H , b

2
H ,

...

sk1, a
k
1, b

k
1, . . . , s

k
h, a

k
h, b

k
h .
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B.1. Proof of Lemma 5.1

For simplicity we denote the following confident sets:

C(0)
k,h =

{
θ :
∥∥∥[Σ(0)

k,h

]1/2
(θ − θ(0)

k,h)
∥∥∥

2
≤ β(0)

k

}
, C(0)

k,h =

{
θ :
∥∥∥[Σ(0)

k,h

]1/2
(θ − θ(0)

k,h)
∥∥∥

2
≤ β(0)

k

}
,

C(1)
k,h =

{
θ :
∥∥∥[Σ(1)

k,h

]1/2
(θ − θ(1)

k,h)
∥∥∥

2
≤ β(1)

k

}
, C(1)

k,h =

{
θ :
∥∥∥[Σ(1)

k,h

]1/2
(θ − θ(1)

k,h)
∥∥∥

2
≤ β(1)

k

}
,

C(2)
k,h =

{
θ :
∥∥∥[Σ(0)

k,h

]1/2
(θ − θ(0)

k,h)
∥∥∥

2
≤ β(2)

k

}
, C(2)

k,h =

{
θ :
∥∥∥[Σ(0)

k,h

]1/2
(θ − θ(0)

k,h)
∥∥∥

2
≤ β(2)

k

}
.

By the selection β(0)
k < β

(2)
k in Lemma 5.1, we have that C(0)

k,h ⊂ C
(2)
k,h and C(0)

k,h ⊂ C
(2)
k,h. We first

use standard self-normalized tail inequality to show that θ∗h is included in C(1)
k,h ∩ C

(2)
k,h with high

probability. Based on that we can further decrease β(2)
k to β(1)

k without significantly increasing the

probability of the bad event when θ∗h 6∈ C
(0)
k,h or θ∗h 6∈ C

(0)
k,h.

We start with the following Bernstein-type self-normalized concentration inequality.

Lemma B.1 (Theorem 2, Zhou et al. 2021a) Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic
process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix R,L, σ, λ > 0,
µ∗ ∈ Rd. For t ≥ 1 let yt = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2
t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1− δ we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1
t

≤ βt, ‖µt − µ∗‖Zt ≤ βt +
√
λ‖µ∗‖2, (B.1)

where for t ≥ 1, µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) .

Lemma B.2 For every 1 ≤ k ≤ K and 1 ≤ h ≤ H , we have

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)|

≤ min
{
H2,

∥∥∥[Σ(1)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h − θ∗h)

∥∥∥
2

}
+ min

{
H2, 2H

∥∥∥[Σ(0)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

}
,

and

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)|

≤ min
{
H2,

∥∥∥[Σ(1)
k,h

]−1/2
φV 2

k,h+1
(skh, a

k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h − θ

∗
h)
∥∥∥

2

}
+ min

{
H2, 2H

∥∥∥[Σ(0)
k,h

]−1/2
φV 2

k,h+1
(skh, a

k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ

∗
h)
∥∥∥

2

}
.

18



ALMOST OPTIMAL ALGORITHMS FOR TWO-PLAYER ZERO-SUM LINEAR MIXTURE MARKOV GAMES

Proof [Proof of Lemma 5.1] For simplicity, we only prove the results for the max-player. Fix
h ∈ [H].

We first show that with probability at least 1 − δ/(2H),
∥∥∥[Σ(0)

k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2
≤ β

(2)
k .To

show this, we apply Lemma B.1. Let xi = σ−1
i,hφV i,h+1

(sih, a
i
h, b

i
h) and ηi = σ−1

i,hV i,h+1(sih+1) −
σ−1
i,h〈φV i,h+1

(sih, a
i
h, b

i
h),θ∗h〉, Gi = Fi,h, µ∗ = θ∗h, yi = 〈µ∗,xi〉 + ηi, Zi = λI +

∑i
i′=1 xi′x

>
i′ ,

bi =
∑i

i′=1 xi′yi′ and µi = Z−1
i bi. Then it can be verified that yi = σ−1

i,hV i,h+1(sih+1) and

µi = θ
(0)
i+1,h. Moreover, we have that

‖xi‖2 ≤ σ−1
i,hH ≤

√
d, |ηi| ≤ σ−1

i,h2H ≤ 2
√
d, E[ηi|Gi] = 0, E[η2

i |Gi] ≤ 4d ,

where we apply ‖φV i,h+1
(·, ·, ·)‖2 ≤ H , V i,h+1 ∈ [−H,H] and σi,h ≥ H/

√
d. Since we also have

that xi is Gi measurable and ηi is Gi+1 measurable, by Lemma B.1, we obtain that with probability
at least 1− δ/(2H), for all k ≤ K,

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

is bounded by

16d
√

log(1 + k/λ) log(8k2H/δ) + 8
√
d log(8k2H/δ) +

√
λB = β

(2)
k , (B.2)

implying that with probability at least 1− δ/(2H), for any k ≤ K, θ∗h ∈ C
(2)
k,h.

An argument, which is analogous to the one just used (except that now the range of the “noise”
matches the range of “squared values” and is thus bounded by H2, rather than being bounded by√
d) gives that with probability at least 1−δ/(2H), for any k ≤ K we have

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h−θ∗h)

∥∥∥
2

bounded by

16
√
dH4 log(1 + kH4/(dλ)) log(8k2H/δ) + 8H2 log(8k2H/δ) +

√
λB = β

(1)
k , (B.3)

implying that with probability at least 1− δ/(2H), for any k ≤ K, θ∗h ∈ C
(1)
k,h.

We now show that θ∗h ∈ C
(0)
k,h with high probability. We again apply Lemma B.1. Let xi =

σ−1
i,hφV i,h+1

(sih, a
i
h, b

i
h) and

ηi = σ−1
i,h 1{θ

∗
h ∈ C

(1)
i,h ∩ C

(2)
i,h}
[
V i,h+1(sih+1)− 〈φV i,h+1

(sih, a
i
h, b

i
h),θ∗h〉

]
,

Gi = Fi,h, µ∗ = θ∗h, yi = 〈µ∗,xi〉 + ηi, Zi = λI +
∑i

i′=1 xi′x
>
i′ , bi =

∑i
i′=1 xi′yi′ and

µi = Z−1
i bi. Still we have that ‖xi‖2 ≤ σ−1

i,hH ≤
√
d.Because 1{θ∗h ∈ C

(1)
i,h ∩ C

(2)
i,h} is Gi-

measurable, we have E[ηi|Gi] = 0. We also have |ηi| ≤ σ−1
i,h2H ≤ 2

√
d since |V i,h+1(·)| ≤ H and

σi,h ≥ H/
√
d. To get better bound β(0)

k rather than β(2)
k in (B.2), we need more careful computation

of E[η2
i |Gi] as follows,

E[η2
i |Gi] = σ−2

i,h 1{θ
∗
h ∈ C

(1)
i,h ∩ C

(2)
i,h}[VhV i,h+1](sih, a

i
h, b

i
h)

≤ σ−2
i,h 1{θ

∗
h ∈ C

(1)
i,h ∩ C

(2)
i,h}
[
[Vest
i,hV i,h+1](sih, a

i
h, b

i
h)

+ min
{
H2,

∥∥∥[Σ(1)
i,h

]−1/2
φ
V

2
i,h+1

(sih, a
i
h, b

i
h)
∥∥∥

2

∥∥∥[Σ(1)
i,h

]1/2(
θ

(1)
i,h − θ∗h

)∥∥∥
2

}
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+ min
{
H2, 2H

∥∥∥[Σ(0)
i,h

]−1/2
φV i,h+1

(sih, a
i
h, b

i
h)
∥∥∥

2

∥∥∥[Σ(0)
i,h

]1/2(
θ

(0)
i,h − θ∗h

)∥∥∥
2

}]
≤ σ−2

i,h

[
[Vest
i,hV i,h+1](sih, a

i
h, b

i
h) + min

{
H2, β

(1)
i

∥∥∥[Σ(1)
i,h

]−1/2
φ
V

2
i,h+1

(sih, a
i
h, b

i
h)
∥∥∥

2

}
+ min

{
H2, 2Hβ

(2)
i

∥∥∥[Σ(0)
i,h

]−1/2
φV i,h+1

(sih, a
i
h, b

i
h)
∥∥∥

2

}]
= 1,

where the first inequality holds due to Lemma B.2, the second inequality holds due to the indicator
function, the last equality holds due to the definition of σi,h. Then, by Lemma B.1, with probability
at least 1− δ/(2H), ∀k ≤ K,

‖µk − µ∗‖Zi ≤ 16
√
d log(1 + k/λ) log(8k2H/δ) + 8

√
d log(8k2H/δ) +

√
λB = β

(0)
k , (B.4)

where the equality uses the definition of β(0)
k . Let E ′ be the event when θ∗h ∈ ∩k≤KC

(1)
k,h ∩ C

(2)
k,h and

(B.4) hold. By the union bound, P(E ′) ≥ 1− 3δ/(2H).
We now show that θ∗h ∈ C

(0)
k,h holds on E ′. For this note that on E ′, for any k ≤ K, µk = θ

(0)
k+1,h

and for any i ≤ K,

yi = σ−1
i,h

(
〈θ∗h,φV i,h+1

(sih, a
i
h, b

i
h)〉+ 1{θ∗h ∈ C

(1)
i,h ∩ C

(2)
i,h}
[
V i,h+1(sih+1)

− 〈φV i,h+1
(sih, a

i
h, b

i
h),θ∗〉

])
= σ−1

i,hV i,h+1(sih+1),

which implies the claim. Therefore, by the definition of C(0)
k,h, we get that on E ′, θ∗h ∈ ∩k≤KC

(0)
k,h ∩

C(1)
k,h. Moreover, P(E ′) ≥ 1 − 3δ/(2H). Finally, taking union bound over h shows that with

probability at least 1− 3δ/2, for all h ∈ [H],

θ∗h ∈ ∩k≤KC
(1)
k,h ∩ C

(2)
k,h (B.5)

To finish our proof, it is thus sufficient to show that on the event when (B.5) holds, it also holds that∣∣[Vest
k,hV k,h+1](skh, a

k
h, b

k
h)− [VhV k,h+1](skh, a

k
h, b

k
h)
∣∣ ≤ Ek,h.

However, by the definition ofEk,h, this is immediate from substituting (B.2), (B.3) into Lemma B.2.

B.2. Proof of Theorem 5.2

Let the event E denote the event when the conclusion of Lemma 5.1 holds. Then Lemma 5.1
suggests that P(E) ≥ 1− 3δ. We introduce another two events in the following lemma.

Lemma B.3 Denote events E1 and E2 as follows

E1 =
{
∀h′ ∈ [H],

K∑
k=1

H∑
h=h′

[
[PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h)
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− V k,h+1(skh+1) + V k,h+1(skh+1)
]
≤ 8H

√
2T log(H/δ)

}
E2 =

{ K∑
k=1

H∑
h=1

VhV µk

h+1(skh, a
k
h, b

k
h) ≤ 3(HT +H3 log(1/δ))

}
.

Then we have P(E1) ≥ 1− δ and P(E2) ≥ 1− δ.

We now present three lemmas based on E , E1, E2. The following lemma shows that Q and V
provide the good UCB for the best response of the max-player and Q and V provide the good LCB
for the best response of the min-player.

Lemma B.4 Suppose the event E hold, then we have for any s,a,b,k,h following inequalities hold,

Q
k,h

(s, a, b)− (H − h+ 1)ε ≤ Qπ
k,∗
h (s, a, b) ≤ Q∗,ν

k

h (s, a, b) ≤ Qk,h(s, a, b) + (H − h+ 1)ε,

and

V k,h(s)− (H − h+ 2)ε ≤ V πk,∗
h (s) ≤ V ∗,ν

k

h (s) ≤ V k,h(s) + (H − h+ 2)ε.

Lemma B.5 Suppose the events E ∩ E1 hold, then we have

K∑
k=1

[V k,1(sk,1)− V k,1(sk,1)] ≤ 4β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2Hd log(1 +K/λ)

+ 8H
√

2T log(H/δ),

K∑
k=1

H∑
h=1

Ph[V k,h+1 − V k,h+1](skh, a
k
h, b

k
h) ≤ 4β

(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2H3d log(1 +K/λ)

+ 8H2
√

2T log(H/δ),

Lemma B.6 Suppose the events E ∩ E2 hold, then we have

K∑
k=1

H∑
h=1

σ2
k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 4H

K∑
k=1

H∑
h=1

Ph[V k,h+1 − V µk

h+1]

+ 2β
(2)
K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β
(1)
K H2

√
T
√

2dH log(1 +K/λ)

K∑
k=1

H∑
h=1

σ2
k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 4H

K∑
k=1

H∑
h=1

Ph[V µk

h+1 − V k,h+1]

+ 2β
(2)
K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β
(1)
K H2

√
T
√

2dH log(1 +K/λ)
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With all these lemmas, we can now give the proof of Theorem 5.2.
Proof [Proof of Theorem 5.2] By definition of Regret we have that

Regret(K) =
K∑
k=1

V ∗,ν
k

1 (sk1)−
K∑
k=1

V πk,∗
1 (sk1)

≤
K∑
k=1

V k,1(sk,1)−
K∑
k=1

V k,1(sk,1) + 4KHε

≤ 4β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2Hd log(1 +K/λ) + 8H

√
2T log(H/δ) + 4KHε

= Õ

(
d
√
H

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h +H
√
T

)
, (B.6)

where the first inequality is by Lemma B.4, the second inequality is by the bound of accumulated
difference between the UCB and LCB in Lemma B.5, the last inequality is due to ε = O(H/

√
T ),

λ = 1/B2 and the choice of β(0)
K = Õ(

√
d) in Lemma 5.1.

Now we bound
∑K

k=1

∑H
h=1 σ

2
k,h + σ2

k,h,

K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h (B.7)

≤ 2H2T/d+ 6(HT +H3 log(1/δ)) + 4H
K∑
k=1

H∑
h=1

Ph[V k,h+1 − V k,h+1]

+ 4β
(2)
K

√
T
√

2dH log(1 +KH4/(dλ)) + 14β
(1)
K H2

√
T
√

2dH log(1 +K/λ)

≤ 2H2T/d+ 6(HT +H3 log(1/δ))

+ 4H

(
4β

(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2H3d log(1 +K/λ) + 8H2

√
2T log(H/δ)

)
+ 4β

(2)
K

√
T
√

2dH log(1 +KH4/(dλ)) + 14β
(1)
K H2

√
T
√

2dH log(1 +K/λ)

= Õ

(√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
d2H5 +H2T/d+ TH +

√
Td1.5H2.5 +H3

√
T

)
(B.8)

where the first inequality is by Lemma B.6, the second inequality is by Lemma B.5 and the last
inequality is due to the choice of β(0)

K = Õ(
√
d) in Lemma 5.1, λ = 1/B2,

β
(1)
K = 16

√
dH4 log(1 + kH4/dλ) log(8k2H/δ) + 8H2 log(8k2H/δ) +

√
λB = Õ(dH2)

β
(2)
K = 16d

√
log(1 + k/λ) log(8k2H/δ) + 8

√
d log(8k2H/δ) +

√
λB = Õ(d).

Therefore by the fact that x ≤ a
√
x+ b⇒ x ≤ 2a2 + b, (B.7) suggests that

K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h = Õ(d2H5 +H2T/d+ TH +
√
Td1.5H2.5 +H3

√
T )

22



ALMOST OPTIMAL ALGORITHMS FOR TWO-PLAYER ZERO-SUM LINEAR MIXTURE MARKOV GAMES

= Õ(d2H5 + d4H3 + TH +H2T/d), (B.9)

where the inequality holds by
√
Td1.5H2.5 ≤ (TH2/4d + d4H3)/2 and H3

√
T ≤ (d2H5 +

H2T/d)/2. Plugging (B.9) into (B.6) we have

Regret(Mθ∗ ,K) = Õ(
√
d2H2 + dH3

√
T + d2H3 + d3H2),

which finishes the proof.

B.3. Proof of Theorem 5.5

Proof [Proof of Theorem 5.5] For any algorithm, we need to construct a hard-to-learn episodic,B-
bounded linear mixture Markov game. We make the min-player dummy: the action of the min-
player won’t affect the transition ability or reward function. So there exists P̃h(·|·, ·) and r̃h(·, ·)
such that for any state-action-action-state pair s′, a, b, s we have that Ph(s′|s, a, b) = P̃h(s′|s, a)

and rh(s, a, b) = r̃h(s, a). Thus we can get a new MDP M̃(S,Amax, H, {r̃h}, {P̃h}). We further
have V π,∗

h (s) = Ṽ π
h (s) and V ∗,νh (s) = Ṽ ∗h (s). The regret of two-player game can be reduced to the

standard regret for single agent reinforcement learning setting. In particular,

Regret(Mθ∗ ,K) =

K∑
k=1

V ∗,ν
k

1 (sk1)−
K∑
k=1

V πk,∗
1 (sk1)

=
K∑
k=1

Ṽ ∗1 (sk1)−
K∑
k=1

Ṽ πk

1 (sk1).

Notice that r̃h ∈ [−1, 1] rather than [0, 1], we can shift the reward by (1 + r̃h)/2 to make it standard
if necessary. Now recall the Theorem 5.6 in Zhou et al. (2021a)], there exists an episodic, B-
bounded linear mixture MDP M̃(S,Amax, H, {r̃h}, {P̃h}) with feature φ̃(·, ·) parameterized by
Θ = (θ1, . . . ,θH) such that the expected regret is lower bounded as follows:

EΘRegret
(
M̃Θ,K

)
≥ Ω

(
dH
√
T
)
,

where T = KH and EΘ denotes the expectation over the probability distribution generated by the
interconnection of the algorithm and the MDP.

Now we only need to extend the MDP feature φ̃(·|·, ·) to the Markov game feature φ(·|·, ·, ·). In
particular, we set

φ(s′|s, a, b) = φ̃(s′|s, a),∀s′ ∈ S, s ∈ S, a ∈ Amax, b ∈ Amin,

then we know that φ(·|·, ·, ·) satisfies (3.3) because by the definition of linear mixture MDP in Zhou
et al. (2021a), we know that φ̃(·|·, ·) satisfies for any bounded function V : S → [0, 1],

‖φ̃V (s, a)‖2 ≤ 1,

where φ̃V (s, a) =
∑

s′∈S φ̃(s′|s, a)V (s′).
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Appendix C. Proof of Lemmas in Appendix B

C.1. Proof of Lemma B.2

Proof [Proof of Lemma B.2] For simplicity, we only prove the results for the max-player.
By the triangle inequality we have that

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)|

≤
∣∣∣〈φ

V
2
k,h+1

(skh, a
k
h, b

k
h),θ∗h〉 −

[
〈φ

V
2
k,h+1

(skh, a
k
h, b

k
h),θ

(1)
k,h〉
]
[0,H2]

∣∣∣︸ ︷︷ ︸
I1

+
∣∣∣(〈φV k,h+1

(skh, a
k
h, b

k
h),θ∗h〉)2 −

[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]2
[−H,H]

∣∣∣︸ ︷︷ ︸
I2

. (C.1)

We first bound I1. Because 〈φ
V

2
k,h+1

(skh, a
k
h, b

k
h),θ∗h〉 ∈ [0, H2], we have that

I1 ≤
∣∣∣〈φ

V
2
k,h+1

(skh, a
k
h, b

k
h),θ∗h〉 − 〈φV 2

k,h+1
(skh, a

k
h, b

k
h),θ

(1)
k,h〉
∣∣∣

≤
∥∥∥[Σ(1)

k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h − θ∗h)

∥∥∥
2
,

where the first inequality is by the property of projection, the second inequality holds due to Cauchy-
Schwarz. We also have that I1 ≤ H2 since both terms in I1 belongs to the interval [0, H2], so we
have that

I1 ≤ min
{
H2,

∥∥∥[Σ(1)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h − θ∗h)

∥∥∥
2

}
, (C.2)

For the term I2,

I2 =
∣∣∣〈φV k,h+1

(skh, a
k
h, b

k
h),θ∗h〉 −

[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]
[−H,H]

∣∣∣
·
∣∣∣〈φV k,h+1

(skh, a
k
h, b

k
h),θ∗h〉+

[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]
[−H,H]

∣∣∣
≤ 2H

∣∣∣〈φV k,h+1
(skh, a

k
h, b

k
h),θ∗h〉 − 〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
∣∣∣

≤ 2H
∥∥∥[Σ(0)

k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2
,

where the first inequality holds since both terms in this line lies in [−H,H], the second inequality
holds since the Cauchy-Schwarz inequality. We also have that I2 ≤ H2, so we have that

I2 ≤ min
{
H2, 2H

∥∥∥Σ(0)−1/2
k,h φ

V
2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

}
. (C.3)

Plugging (C.3) and (C.2) into (C.1) gets

|VestV k,h+1(skh, a
k
h, b

k
h)− VV k,h+1(skh, a

k
h, b

k
h)|

≤ min
{
H2,

∥∥∥[Σ(1)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(1)
k,h

]1/2
(θ

(1)
k,h − θ∗h)

∥∥∥
2

}
+ min

{
H2, 2H

∥∥∥[Σ(0)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

}
.
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C.2. Proof of Lemma B.3

We first present the Azuma-Hoeffding inequality:

Lemma C.1 (Azuma-Hoeffding inequality, Azuma 1967) LetM > 0 be a constant. Let {xi}ni=1

be a martingale difference sequence with respect to a filtration {Gi}i (E[xi|Gi] = 0 a.s. and xi is
Gi+1-measurable) such that for all i ∈ [n], |xi| ≤M holds almost surely. Then, for any 0 < δ < 1,
with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Proof [Proof of Lemma B.3] To prove P(E1) ≥ 1 − δ, we apply the Azuma-Hoeffding inequal-
ity (Lemma C.1). Fix h′ ∈ H , set xk,h = [PhV k,h+1](skh, a

k
h, b

k
h) − [PhV k,h+1](skh, a

k
h, b

k
h) −

[V k,h+1(skh+1)−V k,h+1(skh+1)]. x1,h′ , . . . , x1,H , x2,h′ , . . . , x2,H , . . . , xK,h′ , . . . , xK,H forms a mar-
tingale difference sequence of which the absolute value is bounded by 8H and length no greater than
T = KH . Thus with probability at least 1− δ/H , we have

K∑
k=1

H∑
h=h′

[
[PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h)− V k,h+1(skh+1) + V k,h+1(skh+1)

]
≤ 8H

√
2T log(H/δ).

Take union bound for h′ ∈ [H], we get P(E1) ≥ 1− δ.
P(E2) ≥ 1−δ holds due to the Lemma C.5 in Jin et al. (2018) or Lemma 8 in Azar et al. (2017).

C.3. Proof of Lemma B.4

Following Lemma directly from the definition of ε-CCE,

Lemma C.2 For each (k, h, s), µkh(·, ·|s), πkh(·|s), νkh(·|s) satisfy that

E(a,b)∼µkh(·,·|s)
[
Qk,h(s, a, b)

]
≥ Eb∼νkh(s)

[
Qk,h(s, a′, b)

]
− ε, ∀a′ ∈ Amax

E(a,b)∼µkh(·,·|s)
[
Q
k,h

(s, a, b)
]
≤ Ea∼πk

h(s)

[
Q
k,h

(s, a, b′)
]
− ε,∀b′ ∈ Amin

Proof [Proof of Lemma B.4] For simplicity, we only prove the following UCB by induction,

Q∗,ν
k

h (s, a, b) ≤ Qk,h(s, a, b) + (H − h+ 1)ε, V ∗,ν
k

h (s) ≤ V k,h(s) + (H − h+ 2)ε. (C.4)

The base case h = H + 1 holds trivially since the terminal cost is zero. Now we assume that the
bounds (C.4) holds for step h+ 1. That is,

Q∗,ν
k

h+1(s, a, b) ≤ Qk,h+1(s, a, b) + (H − h)ε, V ∗,ν
k

h+1 (s) ≤ V k,h+1(s) + (H − h+ 1)ε. (C.5)

If Qk,h(s, a, b) ≥ H , then it is obvious to have Q∗,ν
k

h (s, a, b) ≤ Qk,h(s, a, b)+(H−h)ε, otherwise
we have that

Qk,h(s, a, b)−Q∗,ν
k

h (s, a, b)
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= 〈θ(0)
k,h,φV k,h+1

〉+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
− 〈θ∗h,φV k,h+1

〉

+ PhV k,h+1(s, a, b)− PhV ∗,ν
k

h+1 (s)

≥ β(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
−
∥∥∥[Σ(0)

k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

+ PhV k,h+1(s)− PhV ∗,ν
k

h+1 (s)

≥ PhV k,h+1(s)− PhV ∗,ν
k

h+1 (s)

≥ −(H − h+ 1)ε, (C.6)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds since
the assumption that θ∗h ∈ C

(0)
k,h on event E , the third inequality holds by the induction assumption.

Finally, let br(νkh(·|s)) denote the best response to νkh(·|s) with respect to Q∗,ν
k

h (s, ·, ·) such that

br(νkh(·|s)) = argmax
σ∈∆Amax

Ea∼σ,b∼νk(·|s)Q
∗,νk
h (s, a, b).

Then we have that

V k,h(s) = E(a,b)∼µkh(·,·|s)
[
Qk,h(s, a, b)

]
≥ Ea′∼br(vkh(·|s)),b∼νkh(·|s)

[
Qk,h(s, a′, b)

]
− ε

≥ Ea′∼br(vkh(·|s)),b∼νkh(·|s)
[
Q∗,ν

k

h (s, a′, b)
]
− (H − h+ 2)ε

= V ∗,ν
k

h (s)− (H − h+ 2)ε,

where the the first equality is by the property of ε-CCE in Lemma C.2, the second inequality is by
(C.6), the last inequality is due to the Bellman equation.Therefore, our proof ends.

C.4. Proof of Lemma B.5

Proof [Proof of Lemma B.5]

V k,h(skh)− V k,h(skh)

= 〈θ(0)
k,h,φV k,h+1

〉+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
− 〈θ(0)

k,h,φV k,h+1
〉+ β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

= 〈θ∗h,φV k,h+1
〉+ 〈θ(0)

k,h − θ∗h,φV k,h+1
〉+ β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

− 〈θ∗h,φV k,h+1
〉 − 〈θ(0)

k,h − θ
∗
h,φV k,h+1

〉+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

≤ 〈θ∗h,φV k,h+1
〉+

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

− 〈θ∗h,φV k,h+1
〉+

∥∥∥[Σ(0)
k,h

]1/2
(θ

(0)
k,h − θ

∗
h)
∥∥∥

2

∥∥∥[Σ(0)
k,h
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φV k,h+1

∥∥∥
2

+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

≤ [PhV k,h+1](skh, a
k
h, b

k
h) + 2β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
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∥∥∥
2
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− [PhV k,h+1](skh, a
k
h, b

k
h) + 2β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
,

where the first equation is by the definition of V k,h(skh), V k,h(skh) and the second inequality is due

to Cauchy-Schwarz inequality, the last inequality is by θ∗h ∈ C
(0)
k,h ∩ C

(0)
k,h on the event E .

Meanwhile, since V k,h(skh)− V k,h(skh) ≤ 2H , we have that

V k,h(skh)− V k,h(skh) ≤ min
{

2H, [PhV k,h+1](skh, a
k
h, b

k
h) + 2β

(0)
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2

}
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{
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(0)
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k,h
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2

+ 2β
(0)
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k,h
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∥∥∥
2

}
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k
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k
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h, b
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h)
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k,h
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2

}
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2

}
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k
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≤ 2β
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k,h
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φV k,h+1

/σk,h
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2

}
+ 2β

(0)
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{
1,
∥∥∥[Σ(0)

k,h
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φV k,h+1

/σk,h

∥∥∥
2

}
+ [PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h),

where the second inequality holds because [PhV k,h+1](skh, a
k
h, b

k
h) − [PhV k,h+1](skh, a

k
h, b

k
h) ≥

−2H , the last inequality holds since β(0)
k σk,h ≥ 2H , β(0)

k σk,h ≥ 2H . Subtracting V k,h+1(skh+1)−
V k,h+1(skh+1) from the both side, we can further get,

V k,h(skh)− V k,h(skh)− [V k,h+1(skh)− V k,h+1(skh)]

≤ 2β
(0)
k σk,h min
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1,
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/σk,h

∥∥∥
2

}
+ 2β

(0)
k σk,h min

{
1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥
2

}
+ [PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h)

− [V k,h+1(skh+1)− V k,h+1(skh+1)], (C.7)

Taking summation of (C.7) from k = 1 . . .K and h = h′ . . . H , we have following inequality holds

K∑
k=1

[V k,h′(s
k
h′)− V k,h′(s

k
h′)]

≤ 2β
(0)
k

K∑
k=1

H∑
h=h′

σk,h min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥
2

}
+ 2β

(0)
k

K∑
k=1

H∑
h=h′

σk,h min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥
2

}

27



ALMOST OPTIMAL ALGORITHMS FOR TWO-PLAYER ZERO-SUM LINEAR MIXTURE MARKOV GAMES

+
K∑
k=1

H∑
h=h′

[
[PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h)

− [V k,h+1(skh+1)− V k,h+1(skh+1)]
]

≤ 2β
(0)
k

K∑
k=1

H∑
h=1

σk,h min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥
2

}
+ 2β

(0)
k

K∑
k=1

H∑
h=1

σk,h min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥
2

}
+ 8H

√
2T log(H/δ)

≤ 2β
(0)
k

√√√√ K∑
k=1

H∑
h=1

σ2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥2

2

}

+ 2β
(0)
k

√√√√ K∑
k=1

H∑
h=1

σ2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

/σk,h

∥∥∥2

2

}
+ 8H

√
2T log(H/δ)

≤ 2β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h

√
2Hd log(1 +K/λ)

+ 2β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h

√
2Hd log(1 +K/λ) + 8H

√
2T log(H/δ)

≤ 4β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2Hd log(1 +K/λ) + 8H

√
2T log(H/δ), (C.8)

where the first inequality holds since V k,H+1 = V k,H+1 = 0, the second inequality holds on event
E1, the third inequality holds due to Cauchy-Schwarz inequality, the fourth inequality holds due to
Azuma Hoeffding inequality with the fact that

∥∥∥φV k,h+1
(skh, a

k
h, b

k
h)/σk,h

∥∥∥
2
≤
∥∥∥φV k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2
·

√
d/H ≤

√
d,
∥∥∥φV k,h+1

(skh, a
k
h, b

k
h)/σk,h

∥∥∥
2
≤
∥∥∥φV k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2
·
√
d/H ≤

√
d, the last in-

equality is by the fact that
√
a +
√
b ≤ 2

√
a+ b. (C.8) holds for any h′, then we have following

inequality holds

K∑
k=1

H∑
h=1

Ph[V k,h+1 − V k,h+1](skh, a
k
h, b

k
h)

=

K∑
k=1

H∑
h=1

[V k,h − V k,h](skh) +

K∑
k=1

H∑
h=1

[
[PhV k,h+1](skh, a

k
h, b

k
h)− [PhV k,h+1](skh, a

k
h, b

k
h)

− [V k,h+1(skh+1)− V k,h+1(skh+1)]
]
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≤ 4β
(0)
K

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + σ2

k,h

√
2H3d log(1 +K/λ) + 8H2

√
2T log(H/δ),

where the inequality holds due to (C.8) and on event E1.

C.5. Proof of Lemma B.6

To estimate the variance in weighted ridge regression we need the following lemma, which is similar
to the Lemma B.4 but without tolerant error ε.

Lemma C.3 Suppose the event E hold. Then we have for any s, a, b, k, h, the following inequalities
hold,

Q
k,h

(s, a, b) ≤ Qµ
k

h (s, a, b) ≤ Qk,h(s, a, b),

and

V k,h(s) ≤ V µk

h (s) ≤ V k,h(s).

Proof For simplicity, we only prove the following UCB by induction,

Qµ
k

h (s, a, b) ≤ Qk,h(s, a, b), V µk

h (s) ≤ V k,h(s).

The base case h = H + 1 holds trivially since the terminal cost is zero. Now we assume that the
bounds (C.4) holds for step h+ 1. That is,

Qµ
k

h+1(s, a, b) ≤ Qk,h+1(s, a, b), V µk

h+1(s) ≤ V k,h+1(s).

If Qk,h(s, a, b) ≥ H , then it is obvious to have Qµ
k

h (s, a, b) ≤ Qk,h(s, a, b), otherwise we have that

Qk,h(s, a, b)−Qµ
k

h (s, a, b)

= 〈θ(0)
k,h,φV k,h+1

〉+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
− 〈θ∗h,φV k,h+1

〉

+ PhV k,h+1(s, a, b)− PhV ∗,ν
k

h+1 (s)

≥ β(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2
−
∥∥∥[Σ(0)

k,h

]1/2
(θ

(0)
k,h − θ∗h)

∥∥∥
2

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

∥∥∥
2

+ PhV k,h+1(s)− PhV µk

h+1(s)

≥ PhV k,h+1(s)− PhV µk

h+1(s)

≥ 0, (C.9)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds since
the assumption that θ∗h ∈ C

(0)
k,h in event E , the third inequality holds by the induction assumption.

Then we have that

V k,h(s) = E(a,b)∼µkh(·,·|s)
[
Qk,h(s, a, b)

]
29



ALMOST OPTIMAL ALGORITHMS FOR TWO-PLAYER ZERO-SUM LINEAR MIXTURE MARKOV GAMES

≥ E(a,b)∼µkh(·,·|s)
[
Qµ

k

h (s, a′, b)
]

= V µk

h (s),

where the inequality is by (C.9), the last inequality is due to the Bellman equation. Therefore, our
proof is completed.

Lemma C.4 (Lemma 11, Abbasi-Yadkori et al. 2011). For any {xt}Tt=1 ⊂ Rd satisfying that
‖xt‖2 ≤ L, let A0 = λI and At = A0 +

∑t
i=1 xix

>
i , then we have

T∑
t=1

min{1, ‖xt‖2A−1
t−1
} ≤ 2d log

dλ+ TL2

dλ
.

Proof [Proof of Lemma B.6] Suppose the event in Lemma 9.1 holds, we have the following results:

K∑
k=1

H∑
h=1

σ2
k,h =

K∑
k=1

H∑
h=1

[
H2/d+ Vest

k,hV k,h+1(skh, a
k
h, b

k
h) + Ek,h

]
= H2T/d+

K∑
k=1

H∑
h=1

[
VhV k,h+1(skh, a

k
h, b

k
h)− VhV µk

h+1(skh, a
k
h, b

k
h)
]

︸ ︷︷ ︸
I1

+ 2
K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2

+
K∑
k=1

H∑
h=1

VhV µk

h+1(skh, a
k
h, b

k
h)︸ ︷︷ ︸

I3

+
K∑
k=1

H∑
h=1

[
Vest
h V k,h+1(skh, a

k
h, b

k
h)− VhV k,h+1(skh, a

k
h, b

k
h)− Ek,h

]
︸ ︷︷ ︸

I4

, (C.10)

where the first equation is by the definition of σk,h. To bound I1, we have

I1 =
K∑
k=1

H∑
h=1

[
PhV

2
k,h+1(skh, a

k
h, b

k
h)− Ph[V µk

h+1]2(skh, a
k
h, b

k
h)
]

−
K∑
k=1

H∑
h=1

[
[PhV k,h+1]2(skh, a

k
h, b

k
h)− [PhV µk

h+1]2(skh, a
k
h, b

k
h)
]

≤
K∑
k=1

H∑
h=1

Ph[(V k,h+1 − V µk

h+1)(V k,h+1 + V µk

h+1)](skh, a
k
h, b

k
h)

−
K∑
k=1

H∑
h=1

[(PhV k,h+1 − PhV µk

h+1)(PhV k,h+1 + PhV µk

h+1)](skh, a
k
h, b

k
h)

≤ 4H
K∑
k=1

H∑
h=1

Ph[V k,h+1 − V µk

h+1](skh, a
k
h, b

k
h)
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= 4H
K∑
k=1

H∑
h=1

Ph[V k,h+1 − V µk

h+1](skh, a
k
h, b

k
h),

where the first inequality is by |V k,h+1|, |V µk

h+1| ≤ H , and the second inequality is by V k,h+1 −
V µk

h+1 ≥ 0 due to Lemma C.3. To bound I2, we have

I2 ≤ 2

K∑
k=1

H∑
h=1

β
(1)
k min

{
1,
∥∥∥[Σ(1)

k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

}
+ 4H

K∑
k=1

H∑
h=1

β
(2)
k σ̄k,h min

{
1,
∥∥∥[Σ(0)

k,h

]−1/2
φV k,h+1

(skh, a
k
h, b

k
h)/σ̄k,h

∥∥∥
2

}

≤ 2β
(1)
K

√
T

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥[Σ(1)

k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥2

2

}

+ 7β
(1)
K H2

√
T

√√√√ K∑
k=1

H∑
h=1

min
{

1,
∥∥∥[Σ(1)

k,h

]−1/2
φV k,h+1

(skh, a
k
h, b

k
h)
∥∥∥2

2
/σ̄
}

≤ 2β
(2)
K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β
(1)
K H2

√
T
√

2dH log(1 +K/λ),

where the first inequality holds due to β(1)
k ≥ H2 and β(2)

k σ̄k,h ≥
√
d · H/

√
d = H , the second

inequality holds due to Cauchy-Schwartz inequality, β(1)
k ≤ β

(1)
K , β(2)

k ≤ β
(2)
K ,

σ2
k,h = max{H2/d,VestV k,h+1(skh, a

k
h, b

k
h) + Ek,h} ≤ max{H2/d,H2 + 2H2} = 3H2,

the third inequality holds due to Lemma C.4. Next we bound I3, since event E2 holds , we have

I3 ≤ 3(HT +H3 log(1/δ)).

Finally, due to on event E , we have I4 ≤ 0. We finish the proof by substituting I1, I2, I3, I4 into
(C.10).

Appendix D. Full Version of Algorithm 1

In this section, we present the full version of Algorithm 1 in Algorithm 2.
Update of optimistic action-value function:

Qk,h(·, ·, ·)←
[
rh(·, ·, ·) + 〈θ(0)

k,h,φV k,h+1
(·, ·, ·)〉+ β

(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

(·, ·, ·)
∥∥∥

2

]
[−H,H]

Q
k,h

(·, ·, ·)←
[
rh(·, ·, ·) + 〈θ(0)

k,h,φV k,h+1
(·, ·, ·)〉 − β(0)

k

∥∥∥[Σ(0)
k,h

]−1/2
φV k,h+1

(·, ·, ·)
∥∥∥

2

]
[−H,H]

.

(D.1)

Update of variance estimation:

VestV k,h+1(skh, a
k
h, b

k
h)←

[
〈φ

V
2
k,h+1

(skh, a
k
h, b

k
h),θ

(1)
k,h〉
]
[0,H2]

−
[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]2
[−H,H]

,
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Algorithm 2 Nash-UCRL
1: Input: Regularization parameter λ, Number of episode K, number of horizon H .
2: For any h, Σ

(i)
1,h ← Σ

(i)
1,h ← λI; b

(i)
1,h ← b

(i)
1,h ← 0; θ

(i)
1,h ← θ

(i)
1,h ← 0, for i ∈ {0, 1}.

3: for k = 1, . . . ,K do
4: V k,H+1(·)← 0, V k,H+1(·)← 0
5: for h = H, . . . , 1 do
6: Set Qk,h(·, ·, ·) and Q

k,h
(·, ·, ·) as in (D.1).

7: for s ∈ S do
8: Let µkh(·, ·|s) = ε-CCE(Qk,h(s, ·, ·), Q

k,h
(s, ·, ·)).

9: V k,h(s) = E(a,b)∼µkh(·,·|s)Qk,h(s, a, b), V k,h(s) = E(a,b)∼µkh(·,·|s)Qk,h(s, a, b)

10: πkh(·|s) = Pmaxµ
k
h(·, ·|s), νkh(·|s) = Pminµ

k
h(·, ·|s)

11: end for
12: end for
13: receives sk1
14: for h = 1, . . . ,H do
15: Take action akh ∼ πkh(skh) and bkh ∼ νkh(skh) and receives skh+1 ∼ P(·|skh, akh, bkh).
16: Set VestV k,h+1(skh, a

k
h, b

k
h) and VestV k,h+1(skh, a

k
h, b

k
h) as in (D.2).

17: SetEk,h, Ek,h,σk,h,σk,h,Σ
(0)
k+1,h,Σ

(0)
k+1,h, b

(0)
k+1,h,b

(0)
k+1,h,Σ

(1)
k+1,h,Σ

(1)
k+1,h,b

(1)
k+1,h,b

(1)
k+1,h

as defined in (D.3).
18: Set θ

(i)
k+1,h ←

[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, θ(i)

k+1,h ←
[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, i = 0, 1

19: end for
20: end for

VestV k,h+1(skh, a
k
h, b

k
h)←

[
〈φV 2

k,h+1
(skh, a

k
h, b

k
h),θ

(1)
k,h〉
]
[0,H2]

−
[
〈φV k,h+1

(skh, a
k
h, b

k
h),θ

(0)
k,h〉
]2
[−H,H]

.

(D.2)

Update of other parameters:

Ek,h = min
{
H2, β

(1)
k

∥∥∥[Σ(1)
k,h

]−1/2
φ
V

2
k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

}
+ min

{
H2, 2Hβ

(2)
k

∥∥∥Σ(0)−1/2
k,h φV k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

}
Ek,h = min

{
H2, β

(1)
k

∥∥∥[Σ(1)
k,h

]−1/2
φV 2

k,h+1
(skh, a

k
h, b

k
h)
∥∥∥

2

}
+ min

{
H2, 2Hβ

(2)
k

∥∥∥Σ(0)−1/2
k,h φV k,h+1

(skh, a
k
h, b

k
h)
∥∥∥

2

}
,

σk,h =
√

max{H2/4d,VestV k,h+1(skh, a
k
h, b

k
h) + Ek,h},

σk,h =
√

max{H2/4d,VestV k,h+1(skh, a
k
h, b

k
h) + Ek,h},

Σ
(0)
k+1,h ← Σ

(0)
k,h + σ−2

k,hφV k,h+1
(skh, a

k
h, b

k
h)φV k,h+1

(skh, a
k
h, b

k
h)>,

Σ
(0)
k+1,h ← Σ

(0)
k,h + σ−2

k,hφV k,h+1
(skh, a

k
h, b

k
h)φV k,h+1

(skh, a
k
h, b

k
h)>,

b
(0)
k+1,h = b

(0)
k,h + σ−2

k,hφV k,h+1
(skh, a

k
h, b

k
h)V k,h+1(skh+1),
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b
(0)
k+1,h = b

(0)
k,h + σ−2

k,hφV k,h+1
(skh, a

k
h, b

k
h)V k,h+1(skh+1),

Σ
(1)
k+1,h ← Σ

(1)
k,h + φ

V
2
k,h+1

(skh, a
k
h, b

k
h)φ

V
2
k,h+1

(skh, a
k
h, b

k
h)>,

Σ
(1)
k+1,h ← Σ

(1)
k,h + φV 2

k,h+1
(skh, a

k
h, b

k
h)φV 2

k,h+1
(skh, a

k
h, b

k
h)>,

b
(1)
k+1,h = b

(1)
k,h + φ

V
2
k,h+1

(skh, a
k
h, b

k
h)V

2
k,h+1(skh+1),

b
(1)
k+1,h = b

(1)
k,h + φV 2

k,h+1
(skh, a

k
h, b

k
h)V 2

k,h+1(skh+1). (D.3)

In line 8 of Algorithm 2, we need to call the ε-CCE subroutine. In detail, for any fixed state s, and
two matrices Qk,h(s, ·, ·) and Q

k,h
(s, ·, ·) ∈ [0, 1]|Amax|×|Amin|, the subroutine ε-CCE(·, ·) returns a

distribution σ ∈ ∆|Amax|×|Amin| that satisfies

E(a,b)∼σQk,h(s, a, b) ≥ max
a′∈Amax

E(a,b)∼σQk,h(s, a′, b)− ε,

E(a,b)∼σQk,h(s, a, b) ≤ min
b′∈Amin

E(a,b)∼σQk,h(s, a, b′) + ε. (D.4)

(D.4) is a feasibility problem, where the constraints can be rewritten as |Amax| + |Amin| linear
constraints on σ ∈ ∆|Amax|×|Amin|. Thus it can be efficiently resolved by any linear programming
algorithms. See also Appendix B in Liu et al. (2020) and Xie et al. (2020) for more detailed discus-
sions.

Appendix E. Extensions to Turn-based Games

In this section, we extend our algorithm and results to turn-based Markov games.
Turn-based MGs A two-player zero-sum turn-based episodic MG is denoted by a tuple
M(S,A, H, {rh}Hh=1, {Ph}Hh=1), where S = Smax ∪ Smin, Smax (Smin) are the states where the
max (min)-player plays, Smax ∩ Smin = ∅. Note that the partition of state space suggests that
at each step, only one player can play. A is the action space, H is the length of game/episode,
rh : S × A → [−1, 1] is the reward function, Ph(s′|s, a) denotes the transition probability for the
max (min)-player (s ∈ Smax or Smax) to take action a and transit to next state s′. Similar to the
linear mixture MGs, we can define linear mixture turn-based MGs as follows.

Definition E.1 M(S,A, H, {rh}Hh=1, {Ph}Hh=1) is called a time-inhomogeneous, episodicB-bounded
linear mixture turn-based Markov game if there exist {θh}Hh=1 ⊂ Rd and φ̃(s′|s, a) ∈ Rd satisfying

‖θh‖2 ≤ B, ∀V : S → [−1, 1],

∥∥∥∥∑
s′∈S

φ̃(s′|s, a)V (s′)

∥∥∥∥
2

≤ 1,

such that Ph(s′|s, a) = 〈φ(s′|s, a),θh〉 for any state-action-state triplet (s, a, s′) and any step h.

Based on above definition, we show that any turn-based linear mixture MG can be regarded as a
special case of linear mixture simultaneous-move MG. In fact, for any turn-based linear mixture MG
with feature mapping φ̃(·|·, ·) and reward r̃h(·, ·), we can define the corresponding linear mixture
simultaneous-move MG with feature mapping φ(·|·, ·, ·) and reward rh(·, ·, ·) as follows: for each
s ∈ Smax,

φ(s′|s, a, b) = φ̃h(s′|s, a), rh(s′|s, a, b) = r̃h(s′|s, a),
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and for each s ∈ Smin,

φ(s′|s, a, b) = φ̃h(s′|s, b), rh(s′|s, a, b) = r̃h(s′|s, b).

Therefore, we can still use Algorithm 1 to find the Nash equilibrium. Notice that for the turn-based
game, at each step only one player can take action. Thus, the ε-CCE routine in Line 8 of Algorithm
1 needs be replaced by two separate subroutines: taking πkh and νkh as greedy policies w.r.t. Qk,h
and Q

k,h
. For completeness, we present the turn-based version of Algorithm 1 as Algorithm 3.

Algorithm 3 Turn-based Nash-UCRL

1: For any h, Σ
(i)
1,h ← Σ

(i)
1,h ← λI; b

(i)
1,h ← b

(i)
1,h ← 0; θ

(i)
1,h ← θ

(i)
1,h ← 0, for i ∈ {0, 1}.

2: for k = 1, . . . ,K do
3: V k,H+1(·)← 0, V k,H+1(·)← 0
4: for h = H, . . . , 1 do
5: Set Qk,h(·, ·) and Q

k,h
(·, ·) as in (E.1).

6: for s ∈ Smax do
7: πkh(·|s) = maxa∈AQk,h(s, a), V k,h(s) = Ea∼πk

h(·|s)Qk,h(s, a).
8: end for
9: for s ∈ Smin do

10: νkh(·|s) = minb∈AQk,h(s, b), V k,h(s) = Eb∼νkh(·|s)Qk,h(s, b).
11: end for
12: end for
13: receives sk1
14: for h = 1, . . . ,H do
15: if skh ∈ Smax then
16: Take action akh ∼ πkh(·|skh) and receives skh+1 ∼ P(·|skh, akh).
17: else
18: Take action akh ∼ νkh(·|skh) and receives skh+1 ∼ P(·|skh, akh).
19: end if
20: Set VestV k,h+1(skh, a

k
h) and VestV k,h+1(skh, a

k
h) as in (E.2).

21: Set Ek,h, Ek,h,σk,h,σk,h, Σ
(0)
k+1,h, Σ

(0)
k+1,h, b

(0)
k+1,h, b

(0)
k+1,h, Σ

(1)
k+1,h, Σ

(1)
k+1,h, b

(1)
k+1,h,

b
(1)
k+1,h as defined in (E.3).

22: Set θ
(i)
k+1,h ←

[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, θ(i)

k+1,h ←
[
Σ

(i)
k+1,h

]−1
b

(i)
k+1,h, i = 0, 1

23: end for
24: end for

Update of optimistic action-value function:

Qk,h(·, ·)← min{H, r̃h(·, ·) + 〈θ(0)
k,h, φ̃V k,h+1

(·, ·)〉+ β
(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φ̃V k,h+1

(·, ·)
∥∥∥

2
}

Q
k,h

(·, ·)← max{−H, r̃h(·, ·) + 〈θ(0)
k,h, φ̃V k,h+1

(·, ·)〉 − β(0)
k

∥∥∥[Σ(0)
k,h

]−1/2
φ̃V k,h+1

(·, ·)
∥∥∥

2
}. (E.1)

Update of variance estimation:

VestV k,h+1(skh, a
k
h)←

[
〈φ̃

V
2
k,h+1

(skh, a
k
h),θ

(1)
k,h〉
]
[0,H2]

−
[
〈φ̃V k,h+1

(skh, a
k
h),θ

(0)
k,h〉
]2
[−H,H]

,
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VestV k,h+1(skh, a
k
h)←

[
〈φ̃V 2

k,h+1
(skh, a

k
h),θ

(1)
k,h〉
]
[0,H2]

−
[
〈φ̃V k,h+1

(skh, a
k
h),θ

(0)
k,h〉
]2
[−H,H]

. (E.2)

Update of other parameters:

Ek,h = min
{
H2, β

(1)
k

∥∥∥[Σ(1)
k,h

]−1/2
φ̃
V

2
k,h+1

(skh, a
k
h)
∥∥∥

2

}
+ min

{
H2, 2Hβ

(2)
k

∥∥∥Σ(0)−1/2
k,h φ̃V k,h+1

(skh, a
k
h)
∥∥∥

2

}
,

Ek,h = min
{
H2, β

(1)
k

∥∥∥[Σ(1)
k,h

]−1/2
φ̃V 2

k,h+1
(skh, a

k
h)
∥∥∥

2

}
+ min

{
H2, 2Hβ

(2)
k

∥∥∥Σ(0)−1/2
k,h φ̃V k,h+1

(skh, a
k
h)
∥∥∥

2

}
,

σk,h =
√

max{H2/d,VestV k,h+1(skh, a
k
h) + Ek,h},

σk,h =
√

max{H2/d,VestV k,h+1(skh, a
k
h) + Ek,h},

Σ
(0)
k+1,h ← Σ

(0)
k,h + σ−2

k,hφ̃V k,h+1
(skh, a

k
h)φ̃V k,h+1

(skh, a
k
h)>

Σ
(0)
k+1,h ← Σ

(0)
k,h + σ−2

k,hφ̃V k,h+1
(skh, b

k
h)φ̃V k,h+1

(skh, a
k
h)>

b
(0)
k+1,h = b

(0)
k,h + σ−2

k,hφ̃V k,h+1
(skh, a

k
h)V k,h+1(sk,h+1)

b
(0)
k+1,h = b

(0)
k,h + σ−2

k,hφ̃V k,h+1
(skh, a

k
h)V k,h+1(sk,h+1)

Σ
(1)
k+1,h ← Σ

(1)
k,h + φ̃

V
2
k,h+1

(skh, a
k
h)φ̃

V
2
k,h+1

(skh, a
k
h)>

Σ
(1)
k+1,h ← Σ

(1)
k,h + φ̃V 2

k,h+1
(skh, a

k
h)φ̃V 2

k,h+1
(skh, a

k
h)>

b
(1)
k+1,h = b

(1)
k,h + φ̃

V
2
k,h+1

(skh, a
k
h)V

2
k,h+1(skh+1),

b
(1)
k+1,h = b

(1)
k,h + φ̃V 2

k,h+1
(skh, a

k
h)V 2

k,h+1(skh+1). (E.3)

By Theorem 5.2, we immediately have that the regret of our turn-based algorithm in Algorithm 3 is
also bounded by

Õ(
√
d2H2 + dH3

√
T + d2H3 + d3H2),

where T = KH . Similarly, we can show that if d ≥ H and T ≥ d4H2, our turn-based algorithm is
nearly minimax optimal.
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