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Abstract
Unlike nonconvex optimization, where gradient descent is guaranteed to converge to a local opti-
mizer, algorithms for nonconvex-nonconcave minimax optimization can have topologically different
solution paths: sometimes converging to a solution, sometimes never converging and instead follow-
ing a limit cycle, and sometimes diverging. In this paper, we study the limiting behaviors of three
classic minimax algorithms: gradient descent ascent (GDA), alternating gradient descent ascent
(AGDA), and the extragradient method (EGM). Numerically, we observe that all of these limiting
behaviors can arise in Generative Adversarial Networks (GAN) training and are easily demonstrated
even in simple GAN models. To explain these different behaviors, we study the high-order resolution
continuous-time dynamics that correspond to each algorithm, which results in sufficient (and almost
necessary) conditions for the local convergence by each method. Moreover, this ODE perspective
allows us to characterize the phase transition between these potentially nonconvergent limiting
behaviors caused by introducing regularization in the problem instance.
Keywords: Minimax Optimization, ODE Dynamics, First-Order Methods, Cycling, Divergence,
Convergence

1. Introduction

In this paper, we are interested in the limiting behavior of optimizing nonconvex-nonconcave
problems

min
x∈Rn

max
y∈Rm

L(x, y), (1)

for any differentiable objective function L(x, y). Minimax optimization has found wide usage in
robust optimization (Verdu and Poor, 1984; Ben-Tal et al., 2009; Bertsimas et al., 2011) and many
machine learning tasks. One notable application is in GAN training (Goodfellow et al., 2014) where
a generator G tries to produce new data samples from a latent distribution and a discriminator D
tries to distinguish these from true data, defined by the following minimax problem

min
G

max
D

Es∼pdata [logD(s)] + Ee∼platent
[log(1−D(G(e)))] . (2)
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(a) GDA (b) AGDA (c) EGM

Figure 1: Sample trajectories of GDA, AGDA, and EGM with batch size10applied to the GAN(2)
showing the �rst coordinates(g1; d1) of g andd which diverge, cycle, and converge,
respectively.

We consider �rst-order methods for solving(1) givenF (x; y) = ( r xL(x; y); �r yL(x; y)) as a
gradient oracle or an unbiased estimator of these gradients. Given such an oracle, three of the most
classic �rst-order minimax optimization methods can be de�ned as follows, producing a sequence of
solution pairszk = ( xk ; yk ): Gradient Descent Ascent (GDA)

zk+1 = zk � sF (zk ); (3)

Alternating Gradient Descent Ascent (AGDA)

xk+1 = xk � sFx (xk ; yk )

yk+1 = yk � sFy(xk+1 ; yk ); (4)

and the Extragradient Method (EGM)

zk+1 =2 = zk � sF (zk )

zk+1 = zk � sF (zk+1 =2): (5)

Stochastic versions of these algorithms all follow by replacingF (x; y) with an unbiased estimator.
In the case of GAN training, an unbiased gradient estimate is given by using a �nite batch of samples
from pdata andplatent to approximate the expectations in (2).

We begin by considering the limiting behavior of these three methods on a GAN training example
over CIFAR-10 data (with full experiment details given in Section 2). We take simple models for the
discriminator controlling weightsd 2 Rn in the logistic function

D(s) =
1

1 + edT (s� �s)
(6)

where�s = Es� pdata [s] is the average image over the dataset and the generator controlling a translation
of a normal latent distributiong 2 Rn giving G(e) = g+ e. Figure 1 shows that even in this simpli�ed
setting the trajectories of GDA, AGDA, and EGM vary greatly, diverging, cycling, and converging
respectively.

There has been a recent surge in using continuous-time ODE models to understand the behavior
of iterative optimization methods, initiated by Su et al. (2016). A typical focus is on the ODE arising
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from taking the stepsizes ! 0 to zero. However, under this limit, all three of these methods have
their solution paths converge to thegradient �ow (GF) given by the ODE

_z = � F (z): (7)

To understand the differences in limiting behavior we have observed between GDA, AGDA, and
EGM, we need to consider theO(s)-resolution ODEs proposed by Shi et al. (2018) and Lu (2020),
which capture differences between these methods when the stepsizes is nonzero.

1.1. Our Contributions

The main contribution of this work is understanding and characterizing different possible (potentially
nonconvergent) limiting behaviors and limit points of minimax algorithms, which enables us to
explain the differing trajectories observed in our one-layer GAN example.

1. Divergence, cycling and limit points. We derive necessary and suf�cient conditions for
stationary points to be attractive for each of GDA, AGDA, and EGM of the generic minimax
problem(1). These conditions apply broadly to any suf�ciently differentiable nonconvex-
nonconcave minimax problems and explain the differences in convergence and divergence
found in our GAN experiments. Our conditions are based on understanding the underlying
ODEs but apply directly to each discrete-time algorithm.

2. Regularization induced phase transitions.Adding regularization to our one-layer CIFAR
example eventually leads GDA and AGDA to converge. Figure 2 shows GDA transitions
from divergence to having an attractive limit cycle, which then shrinks eventually collapsing
into an attractive stationary point. In Theorem 1, we show this transition from a repulsive
stationary point to attraction happens broadly. Finally, Section 4 presents several examples of
Hopf bifurcations occurring in minimax optimization, explaining the observed transitions.

1.2. Related Works

Divergence and cycling.GDA is well known to diverge even for convex-concave problems while
EGM still converges, the simplest example beingminx2 R maxy2 R xy. This behavior was described
by Mokhtari et al. (2020) by relating it to the proximal point method. Cycling behaviors arising in
nonconvex-nonconcave problems have been observed in a variety of settings (Letcher, 2020; Hsieh
et al., 2020; Grimmer et al., 2020). We differ from these works in that our focus is on developing
tools for characterizing attractive limit points and the transitions between different limiting behaviors
for a wide range of minimax algorithms.

GAN equilibria. Arora et al. (2017) showed under moderate size requirements, GAN training
will have an approximately pure equilibrium but that equilibrium point may be far from target true
data distribution. These results however do not guarantee that an equilibrium point will be found,
leaving the potential for cycling and divergence as seen in Figure 1.

Nonconvex-nonconcave limit points.Quantifying limit points as local Nash equilibrium with
measures like stationarityr L (x; y) � 0 (which is the �rst-order necessary condition for a Nash
equilibrium) has been done for a variety of different �rst-order methods (Cherukuri et al., 2016;
Daskalakis and Panageas, 2018; Adolphs et al., 2019; Mazumdar et al., 2020; Liang and Stokes,
2019). We follow in this vein as the limit points of GDA and AGDA necessarily haver L (x; y) = 0 .
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Alternative measures of local optimality are discussed in Jin et al. (2020), where a notion of local
minimax points is presented capturing the sequential nature of minimax problems and relating to
GDA's limit points.

Continuous-time analysis of these limit points based on the related gradient �ow has been
previously considered (Ratliff et al., 2014; Nagarajan and Kolter, 2017; Mazumdar and Ratliff, 2019;
Vlatakis-Gkaragkounis et al., 2019) but such an approach cannot distinguish between the behavior of
GDA, PPM, AGDA, and EGM as these all share the same limiting �ow.

Stability of limit points. Recently Lu (2020) presented an ODE approach to analyzing a broad
class of discrete-time algorithms. Their analysis is non-trivial and requires high-order smoothness
(�ve times differentiability) globally or on a large set. Our results build upon and improve this
machinery as they require strong global conditions, whereas we just need similar conditions to
hold only at the stationary pointz� . We achieve this by looking at different energy functions (i.e.,
kz � z� k2

P vs kF (z)k2). In doing so, we obtain the �exibility of changing norms, and indeed we
�nd a non-standard norm is the natural one for describing AGDA's convergence (an algorithm not
addressed in Lu (2020)). We present more detailed comparisons with Lu (2020) in Section 3.

As an alternative to this ODE approach, Zhang et al. (2020) study discrete-time algorithms
directly, and present conditions of stability that involve the complex eigenvalues of the non-symmetric
Jacobian matrix, which cannot be easily veri�ed even for simple problems. In contrast, our approach
leads to much more transparent conditions on a p.s.d. matrix which facilitates our study on the role
of the stepsize and derivatives in convergence. For example, our result shows that having a larger
interaction termr 2

xy L(z) helps EGM's convergence while hurting GDA.
Nonconvex-nonconcave convergence rates.Beyond characterizing the limit points, there has

also been a recent push to establish �nite-time convergence guarantees for nonconvex-nonconcave
minimax problems. Many of these approaches rely on forms of convex-concave-like assumptions,
such as Minty's Variational Inequality (Lin et al., 2018) and Polyak-Lojasiewicz conditions (Nouiehed
et al., 2019; Yang et al., 2020). Convergence guarantees for the proximal point method on quite
general nonconvex-nonconcave problems are given in (Grimmer et al., 2020) when the interaction
block of the Hessian is suf�ciently strong or suf�ciently weak.

2. GAN Divergence, Cycling and Phase Transitions

As brie�y described in the introduction, we begin by surveying the types of solution paths that arise
numerically from GAN training(2). We �rst �x the true data distributionpdata as being uniformly
over the set of50; 000training images in the CIFAR-10 dataset, each represented as vectors of length
n = 32 � 32� 3 and the latent distributionplatent as a standard normal. We �nd that considering
one-layer networks already suf�ces to encounter a wide range of different solution path geometries
when solving(2). We consider a discriminator controlling weightsd 2 Rn in the logistic(6) and a
generator controlling a translationg 2 Rn giving G(e) = g + e.

For this setup, the origin(g; d) = (0 ; 0) hasF (0; 0) � (0; 0) and so it is an approximate
stationary point for all three of GDA, AGDA, and EGM. However, the solution paths of these
methods vary widely when initialized near the origin atg = (1 ; 0; :::; 0) andd = (1 ; 0; :::; 0) with
�xed s = 0 :2. Sample solution paths using batches of10samples to approximate the gradients are
shown in Figure 1, plotting the �rst coordinate ofg andd which had the only nonzero initializations.
Appendix A gives more sample trajectories using other batch sizes, showing the same general
dynamics hold.
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(a) � = 0 :0 (b) � = 0 :2 (c) � = 0 :4 (d) � = 0 :6 (d) � = 0 :8

Figure 2: GDA trajectory on a simple GAN with increasing quadratic regularization, plotting the
�rst coordinates(g1; d1) at each iteration.

This experiment shows three different limiting behaviors arising: GDA diverges spiraling outward
from the origin, AGDA falls into a stable cycle around the origin, and EGM converges into a stationary
point around the origin. In Section 3, we develop theory based on relatedO(s)-resolution ODE
models explaining these observed differences in convergence and divergence.

Since GDA and AGDA failed to converge, a typical recourse is to add regularization to the
objective to deter this behavior. Using L2 penalization, we have the modi�ed training problem
objective

Es� pdata [logD(s)] + Ee� platent [log(1 � D (G(e)))] +
�
2

kgk2 �
�
2

kdk2; (8)

for any level of regularization� � 0. Adding mild amounts of regularization� < 1 suf�ces to cause
the nonconvergent trajectories of GDA and AGDA to transition into convergent paths.

Figure 2 shows the trajectory of GDA(4) as the regularization parameter increases. We see that
as� grows larger, the stable limit cycle shrinks until it collapses to a point for some critical value
of � between� = 0 :4 and0:6. For all � larger than this critical point, the trajectory of GDA has
transitioned from nonconvergent cycling to convergence.

In the following theorem, we show this phenomenon is typical. Provided Gaussian data and latent
distributions, applying GDA to(8) has a repulsive �xed point that transitions to become attractive
with suf�cient regularization.

Theorem 1 For any covariance matrices� � � 0 in pdata � N (0; �) andplatent � N (0; � 0), the
origin is a stationary point of(8) which is repulsive to the GDA's dynamic for� = 0 and transitions
to be attractive whenever� � � max (� � � 0)=4 + O(s):

Proving this theorem relies on a careful understanding the dynamics of the relatedO(s) ODE,
developed in Section 3. Then in Section 4, we explain the observed phase transitions as Hopf
bifurcations occurring in the relatedO(s)-resolution ODE for each algorithm.

3. The Attractive Limit Points of the Four Dynamics

Our simple GAN experiments show the trajectories of GDA, AGDA, and EGM can be topologically
different. Here we explain such differences by studying theO(s)-resolution ODEs for the three
algorithms (which are formally de�ned in Section 3.1) as well as the simple gradient �ow dynamics.
From these, we arrive at our main theoretical result Theorem 5 in Section 3.2, giving necessary and
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