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Abstract

This work provides an online learning rule that is universally consistent under processes on (X,Y")
pairs, under conditions only on the X process. As a special case, the conditions admit all processes
on (X,Y) such that the process on X is stationary. This generalizes past results which required
stationarity for the joint process on (X,Y"), and additionally required this process to be ergodic. In
particular, this means that ergodicity is superfluous for the purpose of universally consistent online
learning.
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1. Introduction

The task of achieving low expected regret in online learning is a classic topic in learning theory.
Specifically, we consider a sequential setting, where at each time ¢, a learner observes a point X,
makes a prediction Y;, and then observes a true response Y;: that is, Y; = Je(Xi:—1)> Yi:=1)» Xt)
for some function f; (possibly randomized). We are then interested in the rate of growth of the
long-run cumulative loss of the learner: i.e., Zle ((Y;,Y;), for a given loss function ¢. However,
as it may sometimes be impossible to achieve low cumulative loss in an absolute sense, we are
often interested in understanding the excess loss compared to some particular fixed predictor f:
ie., Z;le E(Yt, Y:) — thl 0(fo(X¢),Y:), known as the regret (relative to f).

Several different formulations of the subject have been proposed, leading to different algorith-
mic approaches and theoretical analyses of regret. For instance, there is a rich theory of online
learning with arbitrary sequences { (X3, Y;)}72,, but where the reference function fj is restricted
to belong to some particular function class F (see e.g., Cesa-Bianchi and Lugosi, 2006; Ben-David,
Pal, and Shalev-Shwartz, 2009; Rakhlin, Sridharan, and Tewari, 2015).

On the other hand, there has also been significant work on theories that allow any reference
function fy, while restricting the sequence {(X¢, Y;) }72,. This is the subject of the present work. A
classic starting point for this line of work is the theory of universally consistent predictors under i.i.d.
sequences. In particular, for binary classification and bounded regression, under mild conditions on
the value space X’ of the X, variables, there are simple learning rules ft satisfying a guarantee that,
for any i.i.d. sequence {(X¢,Y:)}:2,, for every measurable function fy : X — Y, it holds that
Zthl oYy, Y;) — Zle 0(fo(X:),Y:) = o(T) almost surely (e.g., Stone, 1977; Devroye, Gyorfi,
and Lugosi, 1996; Gyorfi, Kohler, Krzyzak, and Walk, 2002; Hanneke, Kontorovich, Sabato, and
Weiss, 2021). This result has since been extended to various non-i.i.d. conditions on {(X¢, Y;)}72,,
including the case where {(X¢, Y:)}{2, is any stationary ergodic process (e.g., Morvai, Yakowitz,
and Gyorfi, 1996; Gyorfi, Lugosi, and Morvai, 1999; Gyorfi, Kohler, Krzyzak, and Walk, 2002),
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or generally satisfies a law of large numbers (Morvai, Kulkarni, and Nobel, 1999; Steinwart, Hush,
and Scovel, 2009).

In the present work, we are interested in exploring weakened assumptions on {(X¢, )},
such that there still exist learners that are consistent for all {(X;, Y;)}¢°, satisfying the assumption.

The recent work of (Hanneke, 2021a) focuses on the input sequence { X;}7°,, investigating the
minimal assumption for this sequence to admit consistent learners under the restriction that Y; =
f*(X3) for an arbitrary fixed function f* (or in some cases, more generally with random variables
Y:, where E[¢(f*(X}), Y:)|X;] is minimal, and the Y; sequence is conditionally independent given
the respective X; variables). While that work identifies such provably-minimal assumptions for
related settings (namely, inductive and self-adaptive learning), for the setting of online learning it
only establishes a necessary condition and a sufficient condition which are provably distinct, leaving
open the problem of exactly identifying the precise minimal condition admitting consistent learners
(Hanneke, 2021Db).

Nevertheless, the sufficient condition (Condition 1 below) established by (Hanneke, 2021a)
is quite general, encompassing all previously-studied conditions on {X;};°; admitting universal
consistency. It is therefore interesting to investigate whether this condition remains sufficient for
universal consistency without restricting to deterministic responses Y; = f*(X;) (or conditional
independence of Y; values). In particular, it is most interesting to understand whether there is a
family of processes {(X¢,Y;)}7°, admitting universally consistent learners, and encompassing all
previously-studied families admitting such consistent learners.

In this work, we propose such a family. Specifically, the family consists of all {(X¢, Y)}72,
where {X;}?°, satisfies the condition suggested by (Hanneke, 2021a) (Condition 1 below). In
particular, within this family, the sequence {Y;}?°, is completely unrestricted. We establish this
result for all bounded separable metric losses £.

As an interesting implication, while past works established that there are universally consistent
learners for the family of all stationary ergodic processes (Morvai, Yakowitz, and Gyorfi, 1996;
Gyorfi, Lugosi, and Morvai, 1999; Gyorfi, Kohler, Krzyzak, and Walk, 2002), here we find that the
requirement of ergodicity is completely superfluous: that is, stationarity alone is already sufficient
for universally consistent online learning. Indeed, it even suffices if only the inpur sequence { X},
is stationary, while the response sequence {Y; }$°, can be essentially arbitrary. As discussed below,
the proposed family of processes also encompasses interesting families of non-stationary processes
previously studied in the literature (e.g., Ryabko, 2006).

The algorithm achieving this result essentially uses an infinite variant of the Hedge algorithm for
learning with expert advice, applied to a countable set of functions, which were shown by (Hanneke,
2021a) to be dense, in an appropriate sense defined relative to long-run averages observed in any
process X satisfying a key condition (Condition 1 below). A related approach has previously been
shown to be consistent under stationary ergodic processes (Gyorfi, Lugosi, and Morvai, 1999).

2. Formal Setup and Main Result

Following the setup from (Hanneke, 2021a), we suppose X is a non-empty set, equipped with a
separable metrizable topology 7, and B denotes the Borel o-algebra generated by 7, defining the
measurable subsets of X'. We allow (), ) to be any non-empty bounded separable metric space,
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where for simplicity we suppose sup,, ¢y ¢ (y,y") < 1. For instance, this covers the classification
setting, where ) is any non-empty set and ¢(y,y’) = 1[y # /], as well as regression on ) = [0, 1]
with the absolute loss £(y, ') = |y — v/|.

We will be interested in stochastic processes (X,Y) := {(X;,Y:)}i2, where each (X, Y;)
takes values in X x ). Following (Hanneke, 2021a), for any measurable A C X, define fix(A) =
limsup % > t—1 La(X}). Then we consider the following condition from (Hanneke, 2021a).

n—oo

Condition 1 (Hanneke, 2021a) For every monotone sequence { A, }7° | of measurable subsets of
X with A, | 0,

lim E[ax(Ag)] = 0.

k—o0

As discussed by (Hanneke, 2021a), this condition stipulates that E[fix(-)] should behave as a

continuous submeasure. For instance, (Hanneke, 2021a) shows that every process X with con-
vergent relative frequencies satisfies Condition 1, which includes all stationary processes, or even
asymptotically mean stationary processes; indeed, in these cases, Birkhoft’s ergodic theorem im-
plies that E[/ix(-)] behaves as a probability measure, and hence is always continuous in the above
sense. (Hanneke, 2021a) also argues that many interesting completely non-stationary processes sat-
sify the condition as well. Moreover, note that ergodicity is not needed for this to hold. Condition 1
will arise in our analysis as supplying the existence of a countable set F of functions which are
dense in an appropriate sense.

We consider online learning rules: that is, sequences of measurable functions f; : X~! x
V=1 x X — Y, which in general may be randomized (where the internal randomness should be
independent from the data sequence). In this general setting, for any measurable fo : X — ),
for any process (X,Y) = {(X¢,Y;)}22, on X x ), for any online learning rule f;, we define the
long-run average excess loss

Lxyy(f; fo) = limsup % Z (C(fe(Xaae—1), Yise—1), X0), i) — £(fo(Xy), V7)) -
=1

T—o0

We are then interested in online learning rules f; satisfying the guarantee that, for all measurable
functions fy : X — ), it holds that ﬁ(x’y)( £ fo) < 0 almost surely, for every (X,Y) in some
specific family of processes C. Such an online learning rule f; is said to be strongly universally
consistent for C. The main result is the following.

Theorem 1 There is an online learning rule that is strongly universally consistent for the set of all
processes (X,Y) such that X satisfies Condition 1.

In particular, this has the following immediate corollary.

Corollary 2 There is an online learning rule that is strongly universally consistent for the set of
all processes (X,Y) such that X is stationary.
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Relation to prior results As discussed above, past works have established universal consistency
for the set of all processes (X, Y) that are stationary and ergodic (e.g., Morvai, Kulkarni, and Nobel,
1999; Gyorfi, Lugosi, and Morvai, 1999; Gyorfi, Kohler, Krzyzak, and Walk, 2002), or otherwise
satisfy a law of large numbers (Morvai, Kulkarni, and Nobel, 1999; Steinwart, Hush, and Scovel,
2009). The work of Ryabko (2006) established universal consistency of certain learning rules for
classification, under a family of processes that allow the Y; sequence to be arbitrary, but restrict
the X; sequence to be conditionally i.i.d. given a Y; value, and respecting that Y; is determined
by X;. (Hanneke, 2021a) has shown that any process X = {X;}{°; satisfying the condition from
Ryabko (20006) also satisfies Condition 1. (Hanneke, 2021a) established universal consistency for
X satisfying Condition 1, when Y; = f*(X,) for a fixed (arbitrary, unknown) measurable function
f*: X — Y (or more-generally, when E[¢(f*(X}),Y?)|X;] is minimal, and the Y; variables are
conditionally independent given their respective X; variables). We note that Theorem 1 unifies
and generalizes all of these prior results on families of processes admitting universally consistent
learners. Another interesting work is that of Kulkarni, Posner, and Sandilya (2002), which restricts
the Y; sequence to be conditionally independent with continuous conditional mean f*(X;), but
allows the X; sequence to be arbitrary. They establish consistency of certain learning rules under
these conditions. That work is, in a certain sense, dual to the present work, as we seek restrictions
on the X; sequence while allowing the Y; sequence to be arbitrary. As such, the results cannot
be directly compared. See (Hanneke, 2021a) for a thorough summary of past work on universal
consistency for general families of stochastic processes.

3. Proof of the Theorem

The essential approach is to apply an infinite variant of the Hedge algorithm for learning with expert
advice, where the experts are given by a well-chosen countable set of measurable functions which
are “dense” in an appropriate sense. This is similar in spirit to certain existing strategies known to
be consistent under stationary ergodic processes (Gyorfi, Lugosi, and Morvai, 1999).

Before proving Theorem 1, we introduce some useful results from the literature. We first state
a well-known result from the literature on prediction with expert advice (Cesa-Bianchi and Lugosi,
2006; Hannan, 1957; Vovk, 1990, 1992; Littlestone and Warmuth, 1994; Freund and Schapire, 1997;
Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997; Kivinen and Warmuth,
1999; Singer and Feder, 1999; Gyorfi and Lugosi, 2002). See Corollary 4.2 of (Cesa-Bianchi and
Lugosi, 2006) for this specific result.

Lemma3 Fix N,n € N. Let y1,vs, ... be a sequence in Y. Foreacht € {1,...,n}, let {z;}},
be a sequence of values in Y. Let n = \/(8/n)In(N). Foreacht € Nandi € {1,..., N}, define

t
L; = % > Uzs,i,ys). Then for each i € {1,...,N}, define wy; = v1,; = 1/N, and for each
s=1

N

t € {2,...,n}, define w; = (1/N)e_’7(t_1)L(t—1>’i, and ve; = wy;/ Y wej. Finally, let {2 }ien
j=1

be independent Y-valued random variables, with P(2; = 2;;) = vy, foreachi € {1,..., N} and

t € N: that is, % is a random sample from the v; ;-weighted distribution on z; ; values. Then, for



UNIVERSAL CONSISTENCY WITH DEPENDENT RESPONSES

any fixed § € (0, 1), with probability at least 1 — ¢, it holds that

> UGow) < min nLy;+/(1/2)nn(N) + (1/2)nln(1>.
= ie{l,...,N} 1)

In particular, this has the following implication for learning with an infinite number of experts.

Corollary 4 Let y1,ys, ... be a sequence in Y (possibly stochastic). For eacht € N, let {z;;}°,

be a sequence of values in' ) (possibly stochastic). Let t1 = 1 and Ty = {1}, and inductively define

tiv1 =t;+jand Tjp1 = {tj41,...,tj41 + j} for each j € N. Also for each j € N, define n; =
¢

V/ (8/4)In(j). Foreach j € Nandt € T}, fori € {1,...,j} define L; = ﬁ > U250, Ys)-
s=t;
For each i € {1,...,j}, define wy,; = vy;; = 1/j, and for each t € Tj; \ {t;}, define wy; =

J

(1/]’)6*’71(“”)%*“, and vy; = wy i/ Y wy . Finally, let {2 }1en be Y-valued random variables
=1

such that % is conditionally independent of {Zy }y 2 given {yy }v <4 and {zy ;}ieny <t and for

eachj € Nandt € Tj, P(% = zi[{ye }vr<t, {2 i bienpy<t) = veiforeachi € {1,..., j}: thatis,

Z; is a random sample from the v, ;-weighted distribution on {21, . . ., zt,j}. Then, with probability

one, AN € N such that every n € N with n > n satisfies

n

Za;:«t,yt)g< min > Lz u) | + 19071/ In(n) + .
=1 1<i<nt/4 4—

Proof Applying Lemma 3 under the conditional distribution given {y:}+en and {z¢;}¢ en, for
every j € N, with conditional probability at least 1 — j%,

. . 1 —
Z C2y) < | min Z Uz, ye) | + <1 + \/§> VjIn(j).
teT; ] ""’]}teTj

By the law of total probability, this holds with (unconditional) probability at least 1 — ]% as well.
Since > | jEN J% < o0, the Borel-Cantelli lemma implies that, with probability one, 3j € N such that

the above inequality holds for every j € N with j > j. For the remainder of the proof, we suppose
this event occurs. Without loss of generality, we may supposej’ > 2.

For any n € N, let j, be the index such that n € Tj,: namely, j, = [3v/8n+ 1 — }|. Define
7 = max T5. Then for any n € N with n > 7, letting m(n) = [v/n], we have

D CGnu) <Y D G )
=1

Jj=1teTy
In

. . . 1 —

<+ m(n) + jmm) + Z foin_ U zeiyye) | + <1 + \/§> J1n(y)
j:jnl('rz)""l ’ { ..... J}teTj
Jn 1
<A+ m(n) + Jmm) + min Czisye) | + <1 + ) jIn(j)
m(n) ie{17,,,,jm(n)+l}j:jmzm)+l teZTj t \/§
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We may then note that

Jn+1 1

Z Zﬁzm,yt Z 0zt yt) <Jn+zﬁztuyt

J=Jm(n)t1tET]

and

i (1+¢1§> jln(j)§(1+\2>mgﬁ

3= dmn)F1
< (1+75) i |

Altogether we have that

Jjn+1

Vadz < (1 + é) lnun);(jn +1)%2.

Zg(étayt) <+ m(n) + Jmm) + ( min Zf(zm, yt))
t=1

16{17---7jm(n)+1} t=1

1 2
i+ 14+ — ) In(j,) = (jn+1)%2.
+]‘+< +»@> HO)3U +1)

Noting that j, < v/6n and n'/* — 1 < j,,,) < 4n!/4, we have
n

Zé(ztvyt) +1+n+4nt/t 4 ( min f(ztu?/t))
—1

1/4
i—1 1<i<n

+ﬂm+@+é9 upmwm<¢7+mﬂ

n
< ( min K(zm,yt)> +19n3/4 In(n) + n.
1<i<nl/4 P

We will also use the following result, which is Lemma 35 from (Hanneke, 2021a).

Lemma 5 (Hanneke, 2021a, Lemma 35) Suppose {Bk.n }knen is an array of values in [0, 00) such
that lim limsup B, = 0, and that {k, }nen is a sequence in N with k, — oo. Then there exists a

k—00 n—oo

sequence {jn }nen in N such that j, < k, for everyn € N, and li_>m Bjn.n = 0.
n o0

Finally, we will make use of one additional result. Following (Hanneke, 2021a), for a process

X = {X;}{2, and a measurable function g : X — R, define

fx(g) —hmsup—Zg Xt).

m—oo 1N

(Hanneke, 2021a) proves the following result.
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Lemma 6 (Hanneke, 2021a, Lemma 24) There exists a countable set F of measurable functions
X — Y such that, for every measurable function f : X — ), for every process X satisfying
Condition 1,
inf Eix (¢( (). /()| = 0.
feF
We are now ready for the proof of Theorem 1.
Proof of Theorem 1 Let F be as in Lemma 6, and enumerate F = { fi, fa, .. 3.

Define the online learning rule ft as follows. For any sequences z1.; € X and Y1:(¢-1) € yi-t,
let z5; = ﬁ(ms) for each s < tand ¢ € N, and let Z; be defined as in Corollary 4 (for these z ;
and y values). Note that 2, is defined purely in terms of these values and internal randomness of
the learner (i.e., the rest of the infinite sequence of y, values (s > t) and array of z,; values (s > t)
needn’t be defined for the purpose of defining 2;). Finally, define ft(mlz(tq), Y1:(t—1), Tt) = 2 in
this context.

Fix any process (X,Y) = {(X¢, Y2)}72, with X satisfying Condition 1, and fix any measurable
function fy : X — V. Let iy, be a sequence in N such that

E[ﬂx(g(ﬁk('%h(')))] <92

for all k& € N, guaranteed to exist by the defining property of F from Lemma 6. By Markov’s
inequality, for each k, with probability at least 1 — 2%,

i (0(F() o)) ) <27 M

Thus, since » | keN 27k < 0, by the Borel-Cantelli lemma, on an event Ej of probability one, there
exists x € N such that, for all kK > «, (1) holds. For each n € N, define

kyn = max{k : k < n,max{i1,...,ix} < n'/*},

and note that k,, — oo. R
By Corollary 4 and the definition of f;, there is an event F; of probability one, on which 37 € N
such that every n € N with n > 7 satisfies

%Zg(ft(Xlz(t—l)vYl:(t—l)aXt),Y;t> < < min Zﬁ(fl X;) Yt)>+19n‘1/4\/M+Z.
t=1

1<i<nl/4 N

Since 19~ /4, /log(n) — 0 and % — 0 as m — oo, it suffices to focus on the first term on the
right hand side. For this term, by the triangle inequality, we have

n

min lz (fZ(Xt )_ Zf (fo(X%),Y:) + min Zf(fz Xy), fo(Xt))

1<i<nl/4 M =1 1<i<nl/4 N

Thus, to complete the proof it suffices to argue that the second term on the right hand side approaches
zero almost surely as n — oo.

Foreach k,n € N, let By, = - Y1 | (fzk (X+), fo(Xt)> In particular, note that on the event

Ep, lim limsup B, < hm 2” k = 0. Therefore, Lemma 5 implies that, on the event Ey, there
k—00 n—oo

exists a sequence {jn}neN in N with j, <k, for all n € N, such that lim g;, , = 0.
n—ro0



UNIVERSAL CONSISTENCY WITH DEPENDENT RESPONSES

Thus, on the event Ej,

n n

limsup min EZB(ﬁ(Xt),fO(Xt)) < limsup min lz (ﬁ-k(Xt),fg(Xt))

n—oo 1<i<nl/4 M - n—oo 1<k<k, N pt

< limsup — Z€<fz]n (Xt), fo(Xt)> = hrfisélopﬁjn,n =0.

n—oo

Altogether, we have that on the event Fy N E of probability one (by the union bound),

limsup — Z( (ft (X1 (t—1)> Yi, (t—1)» Xt), )‘g(fO(Xt) )>

n—oo M

< limsup B, » + 1904 \/log(n) + = = 0.
n—o00 n

4. Open Problems

This result raises a number of further questions on the subject of universal consistency for online
learners with general families of processes (X, Y). One obvious question is whether the above result
can be extended beyond metric losses. For instance, it is clearly desirable to at least extend the
result to the problem of regression with the squared loss. Another obvious question is whether the
learning strategy itself can be simplified, or the result established for other more-familiar learning
strategies, such as partition-based learning rules, k-nearest neighbor predictors (when X’ is finite-
dimensional), or other local averaging predictors, with appropriate use of online regret arguments
only in the selection of model complexity (e.g., the partition resolution in partition estimates, or
choice of k in k-nearest neighbors), rather than in the selection of the entire function as in the
strategy used here. This would extend such results which have been established for these learning
rules under stationary ergodic processes (Gyorfi and Lugosi, 2002; Gyorfi and Ottucsdk, 2012).

A more formal question in this context is whether there is a largest set Cy of processes X
such that there exists an online learning rule that is strongly universally consistent for the family
{(X,Y) : X € Cx}. More concretely, (Hanneke, 2021a) defines a set SUOL (strong universal
online learning), the set of all processes X such that there exists an online learning rule that is
universally consistent for the set of all processes (X, Y) such that Y; is a deterministic function of
X;: that is, there exists a measurable f* : X — ) for which ¥; = f*(X;). Hanneke (2021a,b)
has posed the question of whether there exists an online learning rule that is strongly universally
consistent for the family of all (X,Y) with X € SUOL and Y; a deterministic function of X}
(Hanneke, 2021b), known as an optimistically universal online learning rule (Hanneke, 2021a,b).
Very recently, Blanchard (2022) has proposed a positive solution to this problem. In the context of
the present work, we may instead pose a stronger version of this question:

Open Problem 1 Does there exist an online learning rule that is strongly universally consistent
for the family {(X,Y) : X € SUOL}?
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We note that a positive resolution of this question would be strictly stronger than the open prob-
lem of (Hanneke, 2021b) regarding the question of the existence of optimistically universal online
learners, to which a solution has recently been proposed by Blanchard (2022). Moreover, if the
above question is answered positively, then it would identify the largest possible set of processes X
for which, without any restrictions on Y, there is an algorithm that is universally consistent for the
family.
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