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Abstract

We consider distributed online learning for joint regret with communication constraints. In this
setting, there are multiple agents that are connected in a graph. Each round, an adversary first
activates one of the agents to issue a prediction and provides a corresponding gradient, and then the
agents are allowed to send a b-bit message to their neighbors in the graph. All agents cooperate
to control the joint regret, which is the sum of the losses of the activated agents minus the losses
evaluated at the best fixed common comparator parameters u. We observe that it is suboptimal for
agents to wait for gradients that take too long to arrive. Instead, the graph should be partitioned
into local clusters that communicate among themselves. Our main result is a new method that
can adapt to the optimal graph partition for the adversarial activations and gradients, where the
graph partition is selected from a set of candidate partitions. A crucial building block along the
way is a new algorithm for online convex optimization with delayed gradient information that is
comparator-adaptive, meaning that its joint regret scales with the norm of the comparator ||u||. We
further provide near-optimal gradient compression schemes depending on the ratio of b and the
dimension times the diameter of the graph.

Keywords: Online convex optimization, distributed algorithms

1. Introduction

We consider decentralized online convex optimization (OCO) with multiple agents that share infor-
mation across a network to improve the prediction quality of the network as a whole. Our motivation
comes from cases where local computation is cheap, but communication is relatively expensive. This
is the case, for instance, in sensor networks, where the energy cost of wireless communication is
typically the main bottleneck, and long-distance communication requires much more energy than
communication between nearby sensors (Rabbat and Nowak, 2004). It also applies to cases where
communication is relatively slow compared to the volume of prediction requests that each agent must
serve. For instance, in climate informatics communication may be slow because agents are geograph-
ically spread out (McQuade and Monteleoni, 2012, 2017), and in finance or online advertising the
rate of prediction requests may be so high that communication is slow by comparison. To model such
scenarios, we limit communication in two ways: first, agents can only directly communicate to their
neighbors in a graph G and, second, the messages that the agents can send are limited to contain at
most b bits. We further assume that learning is fully decentralized, so there is no central coordinating
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agent as in federated learning (Kairouz et al., 2019), and no single agent that dictates the predictions
for all other agents as in distributed online optimization for consensus problems (Hosseini et al.,
2013; Yan et al., 2013).

To fix the setting, assume there are N agents, which are cooperating to make sequential predictions
over the course of 7" rounds. In every round ¢, first one of the agents I; is activated by an adversary
to select a prediction w; from a closed and convex domain YW C R?. Then this agent receives
feedback from the adversary in the form of the (sub)gradient g; = V/;(w;) of a convex loss function
¢; over W, with bounded Euclidean norm ||g:|| < G. Finally, all agents are allowed to communicate
by sending a b-bit message to their neighbors in G, and the round ends. The common goal of the
agents is to control the joint regret with respect to comparator parameters © € WV:
T
Ro(u) = (l(wy) — b(u)) .

t=1

We refer to this setting, as distributed online convex optimization for joint regret with communication
constraints (DOCO-JC). Apart from the communication limit b, the crucial distinction between
DOCO-JC and standard OCO (Shalev-Shwartz, 2011; Hazan, 2016) is that information about the
gradients g; takes time to travel through the graph, so the agents suffer from delayed feedback
(McMahan and Streeter, 2014; Joulani et al., 2016; Hsieh et al., 2020). This observation has
prompted Hsieh et al. (2020) to consider a more abstract framework, in which there is no explicit
graph, but only assumptions about the delays. For instance, if 7 is the maximum delay before g; is
known by every agent, then Corollary 2 of Hsieh et al. implies a joint regret bound of

Rir(w) = O(max || V7T). (1)

In our setting, 7 corresponds to the maximum graph distance between any two agents that are ever
active, i.e. the diameter D(G) of G if all agents are activated at least once.

Although modeling only delays is an elegant abstraction, we argue that it is ultimately insufficient
and that the graph structure should be explicitly taken into account. To see this, consider the graph G
from Figure 1(a). In this graph, there are two clusters of agents that are very far apart. For simplicity,
suppose that only agents from the two clusters are ever active, while the agents that connect the
clusters only serve to pass on information. Then the maximum delay 7 can be made arbitrarily large
by extending the line that connects the two clusters. There exists a much better strategy, however,
which is to have the two clusters operate independently with a maximum delay of 7; = 2 within each
cluster 5 = 1, 2, leading to joint regret

Ro(u) = O(lrtneawx u|\/7T + max |ully/7T) = o(ume% ul|VT). 2)

Comparing (2) to (1) for arbitrarily large 7, we see that explicitly taking the graph structure into
account can lead to an arbitrarily large improvement over modeling only delays. The takeaway from
this example is that it is better for an agent to ignore information when it has to wait too long to
receive it. The same conclusion still holds even if we replace T by more refined measures of delay.

Unfortunately, partitioning G into subgraphs that exchange information is not always as easy as in
Figure 1(a), because the clusters may be hidden in a larger graph (see Figure 1(b)) and the optimal
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cluster 1 cluster 2 ;
@ active agent

O inactive agent

(a) Two clusters that can be made arbitrarily
far apart by extending the line that connects (b) Two distant clusters of activated agents hid-
them den in a larger graph

Figure 1: Two clusters far apart

partition may depend on the adversarial activations [;, and also on the gradients g; and the number
of bits b that are allowed for communication. We therefore introduce a method that can learn the
optimal partition from a set of candidate partitions. Formally, let O be a collection of subgraphs of G,
which will be the building blocks for the candidate partitions. Then by a Q-partition of the active
agents we mean a disjoint collection {7, ..., F,} of elements F; € Q such that every node in G
that is ever activated during any of the 7" rounds, is contained in one of the ;. The size r may vary
between Q-partitions. We show, in Theorem 9, that we can adapt to the best partition of the active
agents at a cost that scales logarithmically with the size of Q:

ZR]_-], (u;) = (’)(Z [l <\/D(]-'j)Tj In(1+ ]Q\D(}"J)HUJHT])) + communication cost)
j=1 j=1
for any Q-partition {7, ..., F,} and any uq,...,u, € W, (3)

where Rz, (u;) = Ztlltej:j (¢¢(wy) — £(uy) is the joint regret measured for the 7); rounds in which
the active agent I; is a node in ;. Up to the logarithmic factor, this bound implies (2) with the
maximum delays 7; replaced by the diameters D(F;) of the partition cells F;, as is natural in our
setting. In fact, there are two further improvements: first, the comparators u; may differ between
subgraphs F;, which makes the procedure more robust against heterogeneous environments and
sensor malfunctions. And, second, we do not place any restriction on the size of the domain W,
but instead we automatically adapt to the unknown comparator norms ||u;||. In fact, comparator-
adaptivity is crucial to our approach: it allows aggregating over different delays in receiving the
gradients using the iterate addition trick by Cutkosky (2019b). This would not be possible using
existing aggregation methods for prediction with expert advice with delayed gradients, which would
all incur an overhead growing with the largest possible gradient delay. Regarding the logarithmic
factors, it is known that a factor In(1 + ||u;||7}) is unavoidable for comparator-adaptive algorithms
(Orabona, 2013). We discuss the logarithmic dependence on |Q| further below.

Our approach is based on having the agents communicate compressed approximations g; of the
gradients g;, which are forwarded through the network for at most Dg = maxrco D(F) < D(G)
rounds. This means that nodes may need to forward up to Dg compressed gradients at the same time,
leaving | b/ Do | bits per gradient, and thus the communication cost grows with Do. Approximations



DISTRIBUTED ONLINE LEARNING FOR JOINT REGRET WITH COMMUNICATION CONSTRAINTS

g: may either be deterministic or stochastic, depending on whether the encoder that produces them is
allowed to randomize. The method that achieves (3) uses a deterministic encoding scheme, for which

,
communication cost = O(Q_b/(dDQ) Z HuJHTJ> 4)
j=1

We see that we need roughly b = Q(dDg InT') bits to be sure that the communication cost is under
control. In contrast, if we allow for stochastic encodings, then the expected communication cost can
be reduced further. As shown in Theorem 20, it is possible to obtain the following bound, provided
that b > Do (3[logy(d)] + 2):

E[iRﬁ (ugﬂ - O(i HujHG(\/<1 + M%)D(]:j)Tj n (1 + ‘Q‘D(]:j)uuj”TjG)D

for any Q-partition {F7,...,F,.} and any uq,...,u, € W. (5)

Comparing (5) to (3)+(4), we now obtain the same rate as soon as b = ©(dDyg), gaining an In T’
factor. And, more importantly, whereas the deterministic communication cost in (4) can be linear
in T for b = o(dDg InT), the stochastic encoding result in (5) allows for a number of bits b that is
sublinear in dD g, at the cost of (only) a worse constant factor in the bound. This makes it possible
to choose a trade-off between communication cost and joint regret performance.

Approach and Organization of the Paper As mentioned, our approach aggregates multiple
comparator-adaptive subalgorithms that each incur their own maximum delay. Since existing
comparator-adaptive algorithms are not suited for compressed or delayed gradients, we introduce
a new comparator-adaptive algorithm for the DOCO-JC setting in Section 2. As discussed below
Lemma 3, the key to its development is a novel inequality that generalizes the so-called prod bound
(Cesa-Bianchi and Lugosi, 2006, Lemma 2.4). Since the prod bound is at the core of many adaptive
algorithms in the literature, for example the algorithms in (Koolen and Van Erven, 2015; Van Erven
and Koolen, 2017; Cutkosky and Orabona, 2018; Wang et al., 2019; Van Erven et al., 2021), our
new inequality may also be useful to develop other adaptive algorithms for settings with delayed
gradients. For compressed gradients such that ||g; — g¢|| < &, the new comparator-adaptive algorithm
satisfies the following regret bound:

R () = O (Jjull /Ar in([fal[ Az + 1) + [l 7<)

where Ar = ST (HgtHQ +2/lgell > ety ][ng> is a standard measure of the effect of gradient
delays called the lag (Hsieh et al., 2020; Joulani et al., 2016; McMahan and Streeter, 2014), with
v(t) € {1,...,t — 1} denoting the set of indices of past gradients that are unavailable to the active
agent ;. As the maximum delay in G is D(G), there can be at most |y(¢)| < D(G) gradients that
are unavailable at any time, and consequently the lag satisfies A7 < G?(1 +2D(G))T. In Section 3
we combine the algorithm from Section 2 with both deterministic and stochastic encodings for the
gradients. Our encodings are based on simple combinations of standard covering arguments, but we
prove matching lower bounds showing that they yield guarantees that are worst-case optimal (up to
log factors), and they have the appeal of being straightforward to analyse and implement. Finally, in
Section 4, we obtain (3) and (5) by aggregating multiple instances of the methods from Section 3,
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instantiated for different maximum delays. Even though the algorithms from Section 3 are worst-case
optimal, it is not clear whether the logarithmic dependence on |Q] in (3) and (5) that results when
combining them, is also optimal. We leave this as an open question for future work.

1.1. Related Work

There has been much work on distributed architectures. However, the majority of the literature is
about federated or parallel computation (see Kairouz et al. (2019) for an extensive review of the
federated setting), where multiple workers are under the supervision of a central coordinator. In
contrast, we study a decentralized setting, in which no central authority coordinates the learning. We
also study the impact of delays and communication limits. We therefore focus our literature review
on decentralized learning and on other works with communication limits.

Decentralized Online Convex Optimization Most directly related to our setting are decentralized
OCO settings, in which a set of agents in a network collectively try to optimize an objective that is
revealed sequentially. This includes the work of Hsieh et al. (2020) on delay-tolerant algorithms.
The main technical difficulty they encounter is to tune the learning rates for a dual-averaging/follow-
the-regularized-leader type approach, which is especially challenging because of the requirement
of maintaining a non-decreasing learning rate. Cesa-Bianchi et al. (2020) consider a setting where
multiple nodes can be active per round. In each round all active nodes make a prediction and suffer
the same loss. The most important difference with our setting is that information is not forwarded
through the network, so agents only hear about the gradients of their direct neighbors in G. The
authors show that it is possible to obtain Ry(u) = O(\/A(G)T') and Rr(u) = O(/Q(G)T) for
stochastic and adversarial activations respectively, where A(G) is the independence number of G and
Q(G) is the clique covering number. Finally, in (Cao and Basar, 2021), a setting with event-triggered
communication is introduced.

Distributed Online Optimization Distributed Online Optimization is inspired by (offline) dis-
tributed optimization (Duchi et al., 2010; Scaman et al., 2018) and developed in (Hosseini et al.,
2013; Yan et al., 2013). The difference with the setting we consider is the notion of regret. In
Distributed Online Optimization, the collective regret is analysed, in which the global loss per round
is a sum of local losses per agent, but this global loss is always evaluated at the prediction of one
of the agents. This collective regret is closer to the distributed optimization objective used, e.g.,
for wireless sensor networks (Rabbat and Nowak, 2004). There exist extensions for time-varying
networks with a specific structure, (Mateos-Nuiiez and Cortés, 2014; Akbari et al., 2015), and there
is a version of collective regret where the comparator changes between rounds (Shahrampour and
Jadbabaie, 2018; Zhang et al., 2019). Hsieh et al. (2020) provide an extensive review of Distributed
Online Optimization and a reduction from collective regret to joint regret.

Communication-Limited Settings Communication can be a performance bottleneck in distributed
systems (see, e.g., a discussion of performance in the context of parallel training of deep neural
networks in (Seide et al., 2014)). This has generated much interest in diverse fields for communication-
constrained distributed tasks, including in optimization (Alistarh et al., 2017), for mean-estimation
(Suresh et al., 2017), for hypothesis testing (Szabo et al., 2020), and for inference (Acharya et al.,
2020). Two lines of research are closest to our work. The first, in (Tang et al., 2018; Koloskova et al.,
2019; Vogels et al., 2020) and references therein, studies variants of Stochastic Gradient Descent
(SGD) used in decentralized optimization under bandwidth-limited gossip communication, often
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with the aim of training deep neural networks. Another line of work is devoted to online learning with
communication constraints, with lower bounds for online learning problems with communication
constraints (Shamir, 2014), and online learning in a serial multi-agent framework (Acharya et al.,
2019). Most of these works focus on cases where the number of bits per message is at least linear in
d with the exceptions of (Acharya et al., 2019; Mayekar and Tyagi, 2020b). To our knowledge, we
are the first to incorporate communication constraints into a decentralized online learning framework.

Comparator-Adaptive Algorithms Recently a series of work has developed comparator-adaptive
algorithms for various settings. For example, for standard OCO (McMahan and Orabona, 2014;
Orabona and Pal, 2016; Foster et al., 2017; Cutkosky and Boahen, 2017; Cutkosky and Orabona,
2018), scale-free comparator-adaptive algorithms (Kottowski, 2017; Kempka et al., 2019), comparator-
adaptive algorithms with unbounded stochastic gradients (Jun and Orabona, 2019; Van der Hoeven,
2019), for convex bandits (Van der Hoeven et al., 2020), for dynamic and strongly adaptive OCO
(Cutkosky, 2020), or with an unknown bound on the gradients (Cutkosky, 2019a; Mhammedi and
Koolen, 2020).

1.2. Further Assumptions and Notation

A network is an (undirected) graph G = (N, £), consisting of a set of nodes A and edges £ between
them. Throughout the paper norms are always the Euclidean norm. We assume that the (sub)gradients
are bounded by ||g:|| < G, and that G and the time horizon 7" are known to the agents in advance.
We do not need to assume an oblivious adversary, because the agents only randomize when choosing
g, which happens after the adversary has already revealed g;.

Encoding the Gradients Since a b-bit message may contain at most D(G) gradients, we reserve
k = |b/D(G)] bits per gradient. After the active node I; observes the gradient g, it builds a
k-bit compressed gradient C(g;) € {0,1}* and sends it to other nodes. These then decode to
g: = F(C(g:)) € R?, which is used as an approximation of the true gradient. We assume that it is
common knowledge among the agents at which time ¢ each compressed gradient g; was produced,
and that agents also do not need to explicitly encode how many gradients they are forwarding at any
given time. These assumptions can always be satisfied by adding a few extra bits of meta-information.

2. Comparator-Adaptive Algorithm for DOCO-JC

As announced in Section 1, here we introduce the main building block for our approach: a comparator-
adaptive algorithm that can handle both missing and approximate gradients. With some minor
modifications the algorithms in this section can also be used in the OCO with delays setting, where
one only needs to track which gradients are available for prediction, and not the node that made
the prediction. Without loss of generality, we only consider W = R?, because it is straightforward
to reduce constrained domains to this case using a reduction by Cutkosky and Orabona (2018,
Theorem 3). As observed by Cutkosky and Orabona (2018) comparator-adaptive algorithms can be
constructed by separately learning the direction w/||u|| and scale ||u||, where learning the direction
is a standard constrained learning task on the unit ball and most of the difficulty lies in solving
the unconstrained 1-dimensional scale problem while being adaptive to ||u||. Suppose agent I;
predicts z; for the direction, satisfying ||z;|| < 1, according to an algorithm Az, and it predicts
v € Ry for the scale following an algorithm Ay. Then its joint prediction is w; = vz;. The
corresponding notions of joint regret are ﬁ% (m) = ZtT:1 (z¢ — H—zH, g;) for the direction, and

6
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ﬁ%(HuH) = ST (v — |Ju||){zt, g¢) for the scale. Then, by the black-box reduction in Algorithm 2
in Appendix B.1, due to Cutkosky and Orabona (2018), the total joint regret of the algorithm is

bounded by
~ u ~
Re(w) < [ull RF () + REC)

It follows that, as long as Ay is comparator-adaptive, our entire algorithm is comparator-adaptive.

Controlling 7%% is an online linear optimization (OLO) task. For Az, it suffices to use any OLO
algorithm on the unit ball that is delay-tolerant, by which we mean that it satisfies Rr(u) =
O(v/Ar). If such an algorithm is used with approximate gradients such that ||g; — g|| < e, then
it enjoys the bound Rr(u) = (’)(\//TT + TE) . In the remainder of this section, we will present a
one-dimensional algorithm for learning the range, such that, when combined with a delay-tolerant
algorithm for learning the direction, we obtain the following comparator-adaptive guarantee. In
Appendix B.1, we state and prove Theorem 18, a version of the result with an explicit finite-time
bound.

Theorem 1 Suppose Az is a delay-tolerant algorithm, and Ay, is Algorithm 1, defined below and
tuned with any v > 0 and error parameter € > ||g; — g||. Then the combination of Az and Ay by
the black-box reduction described above (i.e. Algorithm 2 in Appendix B.1) satisfies

Rr(uw) < v+ ||u||B(T), where B(T) = O(eT + \/AT In (1 + Hu”TGD(g))).

14

As shown by Proposition 15 in the Appendix, the Ada-Delay-Dist algorithm of Hsieh et al. (2020)
is delay-tolerant and can therefore be used for Az. It remains to adapt to scale, which requires
designing a suitable one-dimensional algorithm A,,.

Learning the scale is actually a special case of the general problem of designing a comparator-
adaptive algorithm, in which the gradients are projected down to one dimension via h; = (z, g;)
and approximate gradients correspond to h; = (zt,g1). If ||g: — g¢|| < e, then we also have
‘?Lt — he| < ||zell|lge — 9]l < e. 1t therefore inherits all the difficulties of dealing with approximate
and delayed gradients.

Let us first sketch the main difficulties. The obvious approach to handling approximate gradients,
which would work well if we did not aim for comparator-adaptivity, is to observe that

T T T

D (wi—u,g) =D (wi—u,g)+ Y _(w —u,gi —Gr). ©6)

t=1 t=1 t=1

Then use a standard algorithm to control Zle (w; — u, g¢), and attempt to bound (w; — u, g — gi).
While this is possible in expectation for stochastic encodings by making g; an unbiased approximation
of g, for deterministic encodings it is not clear how (w; — u, g; — g;) can be bounded by a term that
scales with ||u||. Scaling with ||u|| is crucial, as we will exploit the comparator-adaptive property of
our algorithms to learn a Q-partition. We therefore cannot use this approach.

The second difficulty is due to the fact that gradients may be unavailable at prediction time due to
the delayed feedback. Considerable work has been done in the delayed feedback setting to tune
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Algorithm 1 Comparator-Adaptive Algorithm on a Graph ford = 1

Input: v > 0, upper bound G on max; ||g;||, error parameter ¢ > 0
Initialize: S, (1) = @ and 7, (t) = @ for all time-steps ¢ and all nodes n € N, set distribution
dp(n) = exp(—n?)/Zdn over n € [0,a], where a = ((G + £)20(1 + 2D(G)))~! and define
Z = f()a eXp(—n2)d77‘
fort=1...Tdo

Play v, = E,, [1/ exp (— Zsesft(t) (n(hs + ) + 12 (hs + €)% + 27]2C1t(5))) 77} , where

Giu(5) = (e + €l Sy, o i + )
For all n € A: send messages, receive messages, update S, (¢ 4+ 1), and update v, (s) for all
seSy(t+1).
end

the learning rate of standard OCO algorithms to deal with missing gradients (Joulani et al., 2016;
Hsieh et al., 2020). Unfortunately, these existing approaches do not work for comparator-adaptive
algorithms. For a more in-depth discussion of the difficulties faced in designing a comparator-adaptive
algorithm which can handle missing gradients we refer the reader to Appendix A. To resolve the
aforementioned difficulties simultaneously, we provide a new one-dimensional comparator-adaptive
algorithm given in Algorithm 1, which can be used to select v;. It turns out that these predictions v;
can be computed in linear time (see (12) in Appendix B). In the algorithm and the discussion below,
S1,(t) C {1,...,t— 1} denotes the set of indices of gradients that are available at node I in round t.
Similarly, y(s) = {1,...,s—1}\ Sz, (s) is the set of indices of gradients that were missing in round
s at node I, and vy, (s) = v(s) N Sy, () is the set indices of gradients that were missing at node
I in round s, but are available at node I; in round ¢. The regret of Algorithm 1 is bounded by the
following result, whose proof can be found in Appendix B.

Theorem 2 Let A% = Zthl (h% + 20| X ey |h1|) Algorithm 1, tuned with any v > 0 and

e > 0 such that |hy — hy| < €, satisfies for any u > 0,

T
Z(vt —w)hy < v+ uBY(T) where BM(T) = O<€T + \/Ag In (1 + %TGD(Q)) >

t=1
The fact that the regret of Algorithm 1 scales with u is a crucial property that we will use to a
Q-partition, in particular the property that for v = 0 the regret is v will be repeatedly used.

We proceed to discuss the main ideas behind Algorithm 1 and Theorem 2. One of the essential parts
in deriving any comparator-adaptive algorithm is designing a potential function ®7. To see how the

potential function is used, suppose that we could get a sequence of predictions vy, . . ., v that satisfy
T T
v — 2 vihy > <I>T( — Z(ht + 5)) for some v > 0. @)
t=1 t=1

Then these predictions would satisfy the regret bound ZtT:l (vt —u)hy < v+ PF (u) 4+ 2ueT’, where
®7. is the convex conjugate of ®7. To see this, recall Fenchel’s inequality ®7(z) + ®7(u) > zu,
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which implies @T(fzle(ﬁﬁg)) > 0% () —u X" (hite) > — % (u)—2ueT—u 3L by,
and combine with (7) to obtain the bound on the regret. We therefore require a potential 7 for
which we can satisfy (7) and for which ®7.(u) is small enough. Now, suppose that we could bound
the increase in potential per round by

c1>t<—§t:(ﬁs+s)> < q>t1<—§(ﬁs+e)> — uhy. (8)

s=1 s=1

Then summing over ¢ would lead to the desired inequality (7) with v = ®((0). But herein lies exactly
the technical challenge caused by the missing gradients. To guarantee (8), existing comparator-
adaptive algorithms base their prediction for round ¢ on knowledge of ®;_1, but the missing gradients
prevent us from doing the same. Instead, we have to use whatever gradients are available at prediction
time.

To account for the missing gradients, our predictions include a correction term
(1, (3) = |hs +.€|.Zi€7[ 5 1hi + '5\), which we incorpqrate in the pre.dictions K deﬁnefi in
Algorithm 1. Similar to the correction for approximate gradients, the correction for missing gradients
decreases the effective learning rate of our algorithm. The corrections play a crucial role in our
potential function:

o -

where C (s) = |ﬁs + &l Xiens) |ﬁz + £|. The potential function includes a similar correction term as
our predictions, with the difference that the potential corrects for all missing gradients, not just the
ones available at the active node. Together, these corrections allow us to establish (8):

(ie+9)) =Epe,

t

v exp (— Z (77(/]“;5 +e)+ 772@5 +e)? + 27726(8))>] , 9

s=1 s=1

Lemma 3 Suppose ||z:|| < 1, ||g:|| < G, and ||g: — g:|| < € for all t. Then the predictions v,

defined in Algorithm 1 satisfy (8).

The proof of Lemma 3 (see Appendix B) involves carefully tracking which gradients are missing.
Whereas the analysis of standard comparator-adaptive algorithms relies on an inequality called
the prod bound (Cesa-Bianchi and Lugosi, 2006, Lemma 2.4) to obtain an analogue of (8), the
standard prod bound fails in the presence of missing gradients. The key to our proof is therefore a
novel inequality given in Lemma 11 in Appendix B, which substantially generalizes the prod bound.
Finally, it remains to show that ®4.(u) is small enough, which we do in Lemma 13 in Appendix B.
Together, the above provides a comparator adaptive algorithm which can handle approximate and
missing gradients.

3. Limited Communication and Optimality

We proceed to construct both deterministic and stochastic communication strategies for the gradients,
which can be used to apply Algorithm 1 in the DOCO-JC setting. We will restrict attention to com-
munication strategies in which nodes send and receive messages containing approximate gradients.
We say an algorithm uses the standard forwarding strategy if every node, upon receiving a gradient
that it has not seen yet, immediately forwards the gradient to all its neighbors. To enable this strategy,
we assume that the messages containing the gradients include meta-data with a unique identifier, e.g.,
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the time-step at which they were first sent. We do not account for this meta-data in the discussion
below, because it may already be naturally present in the network protocol or otherwise it can be
encoded at a minor overhead of O(log T") additional bits.

Under the standard forwarding strategy, a single node sends at most D(G) distinct messages at a
time. Conversely, there exists an activation sequence under which a node will forward D(G) — 1
messages at the same time. Indeed, on a path of length D(G) in the graph, consider an activation
sequence selecting adjacent nodes, going from one end of the path to the other. Using the standard
forwarding strategy, the penultimate node forwards the D(G) — 1 previous messages at the same
time. Accordingly, under a total b-bit constraint on the bandwidth, we assume that the b bits are
divided into D(G) slots of k = [b/D(G)] bits, each slot corresponding to a message.

Deterministic encodings We first provide upper (Theorem 4) and lower (Theorem 5) bounds on
the regret for deterministic encodings. A possible encoding is to fix a cover of the set of possible
gradients, and communicate the element of the cover to which the gradient belongs; see Appendix D.1
for more details. The approximate gradients g; obtained from this encoding are then given as inputs
to the black-box reduction, with AdaDelay-dist (from Hsieh et al. (2020)]) as Az and Algorithm 1 as
Ay; we tune Algorithm 1 with e = 3 - 27 */1¥/P(@)] G and the upper bound 4G on ||g||. As detailed
in Appendix D.1, these values are valid upper bounds on the error and the norm of the encodings,
and allow us to apply Theorem 1, and obtain the following guarantee:

Theorem 4 (Regret Bound with Deterministic Coding) Using k = |b/D(G)]| bits per gradient,
the algorithm described above satisfies

Rr(u) <v+||u||B(T), where B(T)= 5<\/AT + T2_b/(dD(g))G> .

In Section D.1, we also propose a simpler per-coordinate encoding. This more practical encoding
comes at the cost of an extra v/d factor in the second term of the regret bound, which is acceptable
when b is very large. We further provide the following matching lower bound for a natural class of
algorithms we call gradient-oblivious; see Appendix E for a detailed discussion.

Theorem 5 (Lower Bound I: Deterministic Encoding) There exists an activation sequence such
that for any gradient-oblivious algorithm using a deterministic encoding with |b/D(G)| bits per
gradient, with R7(0) < v, and for any comparator norm U > 0, for T' large enough, there exists a
comparator u € R? such that ||u|| = U and

[T b/(dD(@)
R > 0.15 ||u||G4/D(G) Tn ( =2 == |, T2 a) .
G-Lipsillzliglosses T(U) ax ( Hu” \/ (g) n (721/2D(g)) ||’LLH )

Since A7 < 3G2D(G)T, the upper bound in Theorem 4 matches this lower bound up to multiplicative
constants and lower order terms. A notable feature of both the upper and lower bounds is the term
containing 7'2%/(4P(9) | which shows that we need roughly b = ©(dD(G) log,(T)) bits to get
non-trivial regret. This means that, for large dimensions d, the number of bits b must also be large.
The proof of Theorem 5 is in Appendix E.2.1. It consists of two parts: we obtain the first term in the
maximum by modifying a lower bound for norm-adaptive OCO from Orabona (2013) to incorporate
the effect of the graph structure, which adds a \/D(G) multiplicative factor compared to the original
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lower bound. The second term in the maximum, which is linear in 7, is new and arises from the
communication limit k£ on the number of bits that can be transmitted per gradient.

Stochastic Encodings As discussed above, deterministic encodings require a large number of
bits, which grows at least linearly with dD(G). In the regime where b < dD(G), a better solution
is to inject randomness into the encodings, which bypasses the lower bound from Theorem 5. It
turns out that near-optimal guarantees can be obtained along with a straightforward analysis and
implementation by combining two known techniques. The first technique may be called sparsification
and consists of sampling (uniformly at random) a single coordinate of the gradient vector to be
communicated. Encoding the index of this coordinate requires [log, d] bits. The second technique
may be called p-level stochastic quantization. It consists of truncating the gradient coordinate to
be transmitted to the first p digits in its binary expansion. We use this with p = [log,(d)]. Finally,
to reduce the variance, we repeat this construction m = ©(k/log, d) times, sending less than k
bits per vector in total. We refer to the joint construction as sparsified quantization with precision p
and number of repetitions m. See Appendix D.2 for a detailed account of the scheme. Very similar
constructions have previously been used by Mayekar and Tyagi (2020a) and Acharya et al. (2019)
in related contexts; Appendix D.2 contains a detailed comparison. In spite of the simplicity of the
construction, we show that sparsified quantization gives near-optimal theoretical guarantees:

Theorem 6 For any vector x € By(G), sparsified quantization with precision p = [logy(d)]| and
m = |k/(3[logy(d)] + 2)] repetitions produces a (randomized) approximation X that satisfies
||| < 2dG and E[||Z — z||?] < (2d/m)|z|?* + G*/m = O((logd)d/k), provided that the
number of bits per vector is at least k > 3[logs(d)| + 2.

The approximate gradients g; obtained from sparsified quantization (Theorem 6) are then used
as inputs to the black-box reduction, with AdaDelay-dist (from Hsieh et al. (2020)) as Az and
Algorithm 1 as Ay; we tune Algorithm 1 with ¢ = 0 and the upper bound 2dG on ||g;||. Using this
algorithm, we obtain the following result (see Appendix B.2 for a full proof).

Theorem 7 (Regret bound with Stochastic Encoding) Using k = |b/D(G)| bits per gradient,
the algorithm described above satisfies

E[Rr(uw)] < v+ |Jul| BT) where B(T)= 6(G\/(1 + dDb(g))D(g)T> .

The following theorem is a matching lower bound, up to log factors, for the natural class of gradient-
oblivious algorithms; Appendix E.2.2 contains a definition, as well as a proof of the theorem.

Theorem 8 (Lower bound II: Stochastic Encodings) For any gradient-oblivious algorithm using
|b/D(G)| bits per gradient, there exists an activation sequence such that, for any U > 0 there exists
a sequence of losses and a comparator u € R? such that ||u|| = U and

E[Rr(u)] > ¢ HuHG\/<1 + dDb(g)) D(G)T .

To summarize the proof, the lower bound for OCO is ||u|G+/T, the encodings add a factor of
1+ dD(G)/b, and the delays add another \/D(G) factor on top. In Appendix E.2.2, we analyze
in detail how each characteristic of the setting (graph and encoding) affects the hardness.

11
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4. Learning a Q-Partition

As discussed in the introduction, it can be highly suboptimal for agents to wait for gradients that take
too long to arrive. Instead, the graph should be partitioned according to a Q-partition. In this section
we show how to exploit the comparator-adaptive property of our algorithms to learn a Q-partition.

For a fixed subgraph F C G, consider the DOCO-JC problem restricted to that subgraph, that
is, discarding all gradients and communications coming from nodes outside /. Given a general
algorithm for the DOCO-JC setting, we denote by w; the iterate generated by the algorithm restricted
o F. We define ACF) = Y1 (lgel12 + 2llgell S o lgill). with 7=(t) = [£(F) = 1]\
S1,(t, F), and t(F) = {s : Iy € F}, and where Sy, (¢, F) is the set of indices of gradients that
have been observed by I; before round ¢. Using the typical bounds we obtain in this article, e.g., in
Theorem 4, we upper bound its regret as Rx(w) = Y. c 7 (€(wy) — L(u”)) = O(||ull\/A(F)).
(We neglect the encoding costs here for the sake of simplicity.) Then, using this approach, we could
fix an oracle partition P = {7, ..., F,} of the graph into disjoint subgraphs and apply this strategy
on each subgraph. This splits the DOCO-JC task into r independent subtasks, and the total joint
regret is simply the sum of joint regrets of the subtasks:

Rr(u) = Y Rr(w) = 3 O (lullv/AF)).

FeP FeP

(There is even some extra flexibility, which is that each subtask F could have different comparator
parameters u”.) An apparent drawback of this strategy is that each node gets access to less
information. Whether partitioning is worth it depends on the activation sequence. This raises an
issue of adaptation, as the activation sequence is not known in advance.

Iterate Addition To adapt to the activation sequence we exploit the following special property
of comparator-adaptive algorithms, observed by Cutkosky (2019b). For an algorithm A, denote by
wy its predictions and by R4} (u) = Z?zl (wf* — u, g;) its linearised regret. Then consider two
algorithms .4 and B that both have constant regret at most v against the null comparator: R%(O) <v
and R2(0) < v. Then simply playing w; = w;* + w? ensures that
T
Rr(u) <Y (w; —u,g)) = min Ri{(z) + RE(y) < in Rf(u),
r(u) < _{we —w,gr) = min R7(@)+REQ) <v+ min Re(u)
t=1 z+y=u
where the second inequality comes from minimizing over (x = 0,y = u) and (x = u,y = 0). We
can choose an arbitrary collection of subgraphs Q, play

wy =Y wll{L, € F} (10)
FeQ

and exploit the property that R 7(0) < v to learn how to partition the graph to minimize the regret.
The aforementioned predictions combined with ignoring messages older than Dg rounds, using
k = |b/Dg]| bits per gradient, and our new comparator-adaptive algorithm with deterministic
encoding yields the following result, proved in Appendix C:

Theorem 9 (Learning a Q-Partition, deterministic encoding) Let O be a collection of subgraphs
of G. Suppose the learner uses the algorithm of Theorem 4 with deterministic encodings for each

12
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subgraph F € Q, discarding any message coming from outside of F. Then, setting v = 1/|Q| and
k = |b/Dg], and playing w; as specified in equation (10) guarantees that

SR (u)) = 0(2 sy (Wmln (1 +QID(F) [y | 75C) + 2_6/(dDQ)TjG)>
j=1 j=1

for any Q-partition {Fi,...,F,} and any u; . .., u, € R%

An analogous result holds in expectation for stochastic encodings by using the algorithm from
Theorem 7 for each subgraph (see Theorem 20 in Appendix C). An alternative for tuning v = 1/|Q)
is to set v = 1, in which case we obtain a bound of order O (|Q| +2 i ||uJ||A(]-"])> In
Appendix C.1 we provide an example collection of subgraphs Q with which the learner can adapt to
the activation sequences from Figures 1(a) and 1(b). In case the full graph is included in Q-partition,
i.e. G € Q, we have Dg = D(G). However, notice that the learner may choose not to include G in
O to increase the number of bits available to encode each gradient. This in turn allows the learner to
improve the regret in some cases, as using more bits per gradient improves the regret bound for the
subgraphs.

5. Conclusion

We provided a comparator-adaptive algorithm for the DOCO-JC setting. We provided upper and
lower bounds for deterministic and stochastic encoded gradients and we demonstrated how to exploit
the comparator-adaptive property of our algorithm to learn the best partition in a subset of partitions
of the graph. An interesting direction to improve the communication strategy would be to send
information chosen more efficiently, instead of systematically forwarding every gradient. This might
be achieved by implementing other protocols, or error-feedback approaches; see the recent work
by Cao and Basar (2021); Wen et al. (2020). Another limitation is the assumption in the protocol
that all agents communicate in each round, which may be slow because it requires synchronization.
However, as long as the maximum delay before each gradient is observed is bounded, this issue can
be overcome by simply changing the D(G) in the parameter settings of Algorithm 1 to the maximum
delay. If no such bound is known beforehand, the problem becomes more complex, but a related
problem for comparator-adaptive algorithms is learning G, rather than providing G up front. This
problem has been studied in (Cutkosky, 2019a; Mhammedi and Koolen, 2020) and perhaps their
techniques transfer to learning the maximum delay.
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Appendix A. Analysis of Unprojected Online Gradient Descent in One Dimension in
the DOCO-JC Setting

The role of this section is to provide context for the one-dimensional algorithm in Section 2. To do
so, we analyse an unprojected version of Online Gradient Descent (OGD) in a simplified setting: in
one dimension with a constant learning rate 1 on each node, and with no communication limits. We
denote the gradient (a real number) at time ¢ by h;, and use the notation defined in the introduction.

As mentioned in Section 2, one of the principal technical challenges that Algorithm 1 overcomes
is that at prediction time, some gradients are not available to the agents. Let us see how missing
gradients influence the regret of OGD. Denote by H;(I;) = > . s, hs the sum of the gradients
available at prediction time on the active node I; in round ¢, and denote by H; = ) <t hs the sum
of all gradients before round t.

For comparison, define w; to be the sequence of predictions that OGD would output if all gradients

were immediately available, that is, wy = —nH;. These predictions enjoy the standard regret bound
- |u|2 LN P
; wy — u)hy < +5 Z_: Iy (11)
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against any comparator v € R. To bound the regret of OGD with only the available gradients,
wy(Iy) = —nH(I;), observe that

T T T
Z (wt(It) — U) ht = Z(wt — u)ht + Z(wt(It) — 'LUt)ht
t=1 t=1 t=1
Jul? -
< o + g Z |he|® + Z (wt(It) - wt)ht,
t=1 t=1

where we used (11). Recall that y(t) is the set of indices of the missing gradients at the active agent
in round ¢. We have that (wq(I;) — we)ge = nhe 3 gery ) s < nlhe| 3o g4y [hs], which is roughly

the term Z (s) that appears in the definition of our potential function in (9). The regret can then be
bounded by

T T
|u|? 1
Sttt — < B0 Y (G0 hd 3 )
t=1

t=1 s€v(t)

An ideal tuning of the learning rate would be to optimize the expression above over 1 and set

UZIUI<ZT:<h?+2htI 3 |hs|))_2,

t=1 sev(t)

to obtain

T
> (wi(I) — w)hy < |ul 22<\ht|2+2]ht| Z |hs \)
t=1

sev(t

This is exactly the type of regret bound that would be suitable to learn a Q-partition. However, this

ideal tuning is not possible for two reasons: we know neither |u| nor Z?zl (|ht 12+ 2|he| 3 e ) [P |) :

Let us define \; = |h¢|? + 2|he| D se~(t) [Tes| in the following discussion to reduce clutter. Note
that the active node I; at round ¢ may not be able to compute A, for some s < t. Indeed, gradients
missing at past rounds might not have reached I; yet, making it impossible to compute some gradient
in v(s). Even with knowledge of |u|, this rules out natural ideas using learning rate schemes such as

= VIulP/ et As.

As discussed in the introduction, a considerable amount of effort has been made in the literature
to obtain approximations of the optimal learning rate in the delayed OCO setting. However, to
our knowledge, none of these existing approaches apply to comparator-adaptive algorithms. Sim-
ilarly, although adapting to |u/| is relatively well understood in the standard setting, there are no
straightforward extensions to deal with missing gradients.

Algorithm 1 solves these challenges simultaneously. As illustrated above, a crucial part of the
difficulty lies in trying to adapt the unknown quantity |f| > .. , which appears in the ideal
learning rate. We accomplish this by showing that only knowing an approxAimation of this quantity is
sufficient: our prediction v; in Algorithm 1 contains the approximation (z,, which plays a similar
role as |h| > ) [hs|, in the sense that it reduces the learning rate of the algorithm to account for

sey(t
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the extra uncertainty due to the missing gradients. Our analysis reveals that this approximation does
not hurt the regret bound of the algorithm significantly, and that we can still recover the optimal
comparator-adaptive regret bound.

Appendix B. Details of Section 2

The predictions v; in Algorithm 1 can be computed as follows. Let Ly, = 3~ s, 1) (hs +€) and
t
Vi, =1+ Zsesft(t) ((hs + 5)2 + 2772C1t(s)). Then

L3 2aVi, + Ly, Ly,
— /Texp (4%) <erf <2Vu —erf m (22\/%) (12)

We refer the reader to Appendix B of Koolen and Van Erven (2015) for numerically stable evaluation.

Lemma 3 Suppose ||z]| < 1
defined in Algorithm 1 satisfy (8).

| < G, and ||g: — g¢|| < € for all t. Then the predictions vy

Proof As a first step, observe that by the Cauchy-Schwarz inequality and the condition on z; we
have that

|he = hel = [(26,90) — (20, 90| < |zellllge — gell < €
Next, we replace wy with its definition,

t—1
E |vexp | =D | n(hs+e) +n*(hs+e)> + 207 Y |(hs+e)(hi+2)] — vihy
e s=1 i€y(s)
t—1
_ 2
= v exp n(hs + ) + 02 (hs + €)% + 21 Z|h +e)(hi +¢)| —
n~p

»

=1 i€ (s)

~

L |vexp | - S A0t +nP(ha+ ) +20* > N(hs+e)(hi+o)| | | 0| b
sEST iE’yIt(S)

Denote by QT the sum, which is the central part of the update wy,

~

Q= Y (1hs+e) 40P+ +20° 3 [y +e)hi+2)])

s€ST, (t) €1, (s)
We factor this exp(—ﬁt) term in the expression above, so that it is equal to

~

E v exp (—Qt)

n~p

x<exp(— > (n@s+s>+n2<ﬁs+s>2+2n22|@s+s><ﬁi+e>|))
[

s€[t—1\Sy, (t) i€y(s)

XGXP(— Z 2n? Z ’(ﬁs+5)(ﬁi+€)\)—ﬁht)]-

s€Sr, () i€y(s)\1,(s)
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Consider the double sum in this last term, right above,

SN s te)(hito)l.

s€81, (1) i€v(s)\ 71, (s)

Let us switch the order of summation here. To do so, note that if a gradient /ﬁz is available to node I;
at time ¢, and if it was unavailable when g5 appeared, then it would be used in vy, (s). In other words,
ifi € y(s) \ v1,(s) then, i ¢ Sy, (t). Therefore, when s varies in S7,(t), the set of values taken by
i€ 7v(s)\ v, (s)isin fact [t — 1]\ S7,(¢). When switching the sums, we may thus restrict the values
taken by i to [t — 1] \ Sy, () and write

Yoo > et a+e)l= > Yoo s+t (13)

s€ST, (t) i€v(s)\ 1, (5) i€[t—1)\S;, sE€Sy, () st.
i€y(s)\ v, (s)

Finally, we also switch the notation for 7 and s in the indices, factor out the common kg + € term,
and incorporate this sum with the preceding term, obtaining

> (n(ﬁs+s)+n2(ﬁs+s)2+2n2lﬁs+e!(Z(ﬁi+s)+ 3 |ﬁ1;+e|>.>

s€t—1\Sr, (1) 1€y(s) ie‘?ﬁgt) s(t)
s€v()\ v, (¢

=07, (s)

Furthermore, since a new gradient takes less than D(G) rounds to reach all nodes, there can be only
at most D(G) new gradients for which vz, (s) # ~(s). Thus the last sum has at most D(G) terms,
and the freshly defined ©7, (s) involves at most 2D(G) terms.

We may now apply Lemma 11, with z = ng;, to see that for any 7,
o < = 2 () (et 9"+ 2l + s|®1t(s))> — nhy
se€[t—1]\Sr, (t)

ow( = X (et aet o + 27+ 00 () )
s€[t—1\Sr, (4)

X exp < - (nht +0°h; + 217 Z | (hi + 5)‘)) :

i€[t—1]\Sr, (t)
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Thus, upon multiplying by exp(—@t), and after integrating over ) ~ p, we obtain

t—1
Ep~p |vexp | =) | n(hs+e) +nP(hs + )% + 207 Y |(hs +2)(hi +2)] — vty
s=1 i€y(s)
2By [vew (= X (o) 4Gt ) w2 3 [+ )
seSr, (t) i€vr, (s)
coxp (= X (et o) bt o2+ PR el 0n () )
s€[t—1\Sr, (4)

Xexp(— <nht+n2h?+2n2 Z |ht(ﬁ,+€)|>>}
i€lt—1\Sr, (t)
Define f(z) = —x — 2% — 2|z|y, where y = > ien(t) In(hi + €)| > 0. We have that f’(z) < 0 for
x> —Landy €0, 1] Since Dien(t) In(hi +€)| < 1/4 by the restriction on 7, the function f(z) is
non-increasing for z > —1/4. Since —+ < nh; < n(hy + ) we have that f(nhy) > f(n(ﬁt +¢)),

which gives us

t—1
Epp |vexp [ =Y [ nhs+2) + 72 (hs+2)> + 207 D |(hs+2)(hi+2)| | || — vehu
s=1 i€v(s)

> Epey [vexp = > (0o +nPh+2)?) 207 Y (o +2) (i +e)]
sE€Sy, (t) i€, (s)

= Y () (s + ) + 2% + 2O (5))
Se[t_l]\sit (])

X exp ( n(ﬁt +¢)+ 772(%'5 +¢)% + 212 Z \(ﬁt + s)(ﬁi +¢)| ]
i€y(t)
t

=Epep |vexp | =D [ n(hs + &) + 12 (hs + )2+ 22 D [(hs +€)(hi +¢)] ,
s=1 i€7(s)
which completes the proof. |

Theorem 10 Suppose that ||g:|| < G and ||g: — g¢|| < e forallt. Forallu € Ry and v > 0,
Algorithm 1 satisfies the following regret bound:

T T
thht — Z uhy < v+ 2uTe+
t=1 t=1

| max { 264 Gr I (312|V“|GT) , \/8 (AfJ + 24T Ge + 1) In, (w) }

2
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where In () = In(max(e, x)) and

T
N =7 (nE 2] Y 1) -
t=1

s€y(t)

Proof First, by repeatedly applying Lemma 3 we find that

T

UV — thht 2 E'ﬂ"’ﬂ
t=1

T
v exp ( >~ (1 +2)+ o (e 42+ 2n2C(t))>] a4

t=1

Now, consider the case in which — Zthl(ﬁt +e) < \/2 S ((ﬁt +¢e)? + 2§(t)). In this case
we have:
T

T T
thht — Zuht < — P <—
t=1 t=1 t

T
<v — Z Uht
t=1

T
gy—i—uTs—Zuﬁt (u > 0)
t=1
T o~
=v + 2uTe — Zu(ht +¢)
t=1

T
(he +€)> +v— Zuht
=1

1

T
<v+2uTe+u, |2 Z ((Bt +e)2+ 2C(t)),
t—1

which implies the result.

Next, we consider the case in which — Zthl(/ﬁt +e) > \/2 ST ((ﬁt +e)2+ 2C(t)>. By

Fenchel’s inequality we have

T T N
— thht >(I)T (— Z(ht + 6)) — UV

=1 t=1
T A~
>—u) (h+e)—Pp(u) —v
t=1
T
> —uth—2uTa—<I>1}(u) -v,

t=1
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where @7, is the convex conjugate of ®. Using the upper bound on ®*(u) from Lemma 13 we get,

T

T
thht — ZUht <v+ 2uTe+
t=1 t=1

max {u44(G +¢)(2D(G) + 1) (m (lul44(G +e)(D(9) + 1)) — 1 + 1n% (;)) )

8ui2 (zT: ((ﬁt +e)%+ 25(15)) + 1) In <24u2 (i ((ﬁt +e)? 4 25(15)) + 1) ~ 4+ 1) }

14
t=1 t=1

Simplifying the bound Since |ﬁt — hy| < e, wehave,usinge < Gand 1 < 7,

(he + €)% +20(t) <(he +26)2 +2 > |(he + 2€) (hs + 2¢)]
s€y(t)
<hi +4Ge + 4% + 87(Ge + %) + 2/hy| Y Il
s€(t)

(15)
<hi +20h| Y |hal + 24G7e .
s€y(t)

Therefore, by summing over ¢ € [T7:

T
3 ((ﬁt +e)? + 22@)) S AP+ 24eGT < 27G*T .
t=1

We shall use the first inequality to bound the main term inside the square root, and the second cruder
bound to bound the term inside the logarithm.

Crudely bounding the other terms with ¢ < G and 1 < 7 we get that:

T

T
thht — Zuht <v+ 2ule+
t=1 t=1

| max { 264 G In (312|V“’GT) , \/8 (A? 24T Ge + 1) In. (W) }

Lemma 11 Forx,yi,...,yr € [-1/20(1 + 7),1/20(1 4 7)] and a; € [0,1/20], we have

exp (—yi — v — 2a;lys| — 2lzyi|) — 2 — 2 | <exp (—yi — v —2alys]) | — .
>

i=1 i=1
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Proof In the case where x = 0 the inequality holds trivially. Define the function f(x) = = + 2+
S Yi + 2 + 2|z||yi|. We have that

T
exp (=i — vF = 2ailyil — 2Jayi|) — = — 22
>

=1

= exp (Z (—2a;|y;|) — f(@)

=1

<o (3 -2adul) = 10)) -0 (3 -2alu) - 10)) 010D

i=1 =1

= e ( (3 -2aul) ~ 1)) —ex0 (Z (v - mm-r)) (@5(0)) .

i=1 i=1

where Of(z) denotes a subdifferential of f evaluated at x and we used that exp(—f(z)) <
exp(—f(0)) — exp(—£(0))(0f(0))(z — 0) since exp(—f) is concave by Lemma 12. If z > 0
then we set 9f(0) = >_7_; 2|y;| + 1 and

— exp (ET: (—yi — v — 2az|yzl)> (;ﬂyil + 1) x

=1
T T 9
< —exp < (2\%\ T 2ai\yi\) — 4<Z \yz\) >at (prod bound)
i—1 i=1
T T 2
< e (32 (il =2 — 2adul) — () )
i=1 i=1
" 4
< —exp (Z <|in — 5y? — 2(a@' + 20)\%\) )x (1] < s075)
=1
/1
<—exp<2(2!yi!—5y?>>x (Jai| < 35)
i=1
< —x

where the prod bound is 1 + v > exp(v — v?) for v > —1/2 (see Lemma 2.4 by Cesa-Bianchi
and Lugosi (2006)) and the last inequality follows because %]v| — 502 is non-negative for when
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|v] <1/10.Ifx < O then weset 9f(0) =1 — >/, 2|y;| and

—exp (i (—yi — 1112 - 2a|yi|)) (1 - iZyl> T

i=1

< —exp <§T: (—vi — y?)) (1 - ;2%) @

i=1

T T
< - (H(l - yz)) (1 - Z 2!%!) x (repeated prod bound)
i=1 i=1
<~ (10 ) (1= 320}
i=1 i=1
T T
< - (H(l + |yz|)> (H(l - 2!%!)) x (Weierstrass inequality)
i=1 i=1
T
= - (H(l + lwil)(1 - 2Iyz|)> x
i=1
< —x, (14 |Jy)(1 —=2]y|) < 1land z < 0)
which completes the proof. |

Lemma 12 Define f : x — z + 22 + Y1, (yz + 92 + 2|x|\yl\) , the function g = exp(—f) is
concave on the interval [—1/10, 1/10], as soon as yi, . . ., y, satisfy |y;| < 1/(107).

Proof The function g : x — exp(—f(z)) is continuous on R, and twice differentiable on (—oc, 0)
and on (0, +-00) with,

o) = —1—-2x+2>7 |yl ) exp(—f(z)) if <O
TN (C1-20—257 ) exp(—f(@)) if @ >0.
and )
(—1—21:4—222-7:1]%]) —2 | exp(—f(z)) if <0
g"(x) =

2
(—1—23:—22;1;%]) —2) exp(—f(z)) if z>0.
Note that ¢’ (z) < 0 for all z, as
1+2x+2i|yi|<1+3+3<\/§.
g 10 10

Finally, lim,_,o- ¢'(x) > lim,_,o+ ¢'(z), concluding the proof of the concavity. |
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Lemma 13 Suppose L > +/2(V +1). Let ®(L) = vE,,[exp(nL — n*V)] with dp(n) o

exp(—n?)dn, where 1 € [0, 5o m—i)- If L < (V + 1) then for u = 0

1
' 20(G+e)(27+1) 20(Gte)(7+1)

% (u) < \/8u2(v +1)In <24u2(V + 1)% 4 1>.
IfL> W(V—i— 1) then

O*(u) < 44u(G +&)(r + 1) (m (44u(G +&)(r + 1)) — 1 + %m (;“2))

Proof The proof of this lemma is a slight variation of the proof of Lemma 8 of Van der Hoeven (2019)

and a similar result has been obtained by Jun and Orabona (2019). The initial part of the analysis is

parallel to the analysis of Theorem 3 by Koolen and Van Erven (2015). Denote by B =V + 1 and
S S

by Z = fOQO(G“)(QT“) exp(—n?). Forn <7 = %, the function 1 — nL — 1?B is non-decreasing.

Therefore, for [v, 12 C [0, (20(G + €)(27 + 1))71] such that p < 7:

1
( e)(2T 1
B(L) = vt /20 G+e)(2m+1) exp(nL — 772B)d77 > Eexp(vL _ ’U2B).
0

First suppose that 77 < m. Takev =1 — \/%, which yields

v 2
®(z) > o (15~ 3 ) —9m(L)

where g(z) = exp (z —1/2—1In(Z/v) ) and m(z) = 2* /4B. By Hiriart-Urruty (2006, Theorem 2)
we have

®*(u) < g" om*(u) = inf g*(v) +ym” <u>
720 v
Z 1 1
= inf yIn(y) + ’y(ln (;) - 5) + ;4uzB.

v=0

(16)

Denote by S = In(Z/v) — § and H = 4u?B. Setting the derivative to 0, we find that the value

~N = \/ me minimizes (16), where W is the Lambert function. Plugging 7 in (16) and
simplifying by using In(W (z)) = In(z) — W (z) for x > 0 gives

2H
xp(25 + 2))

< V/2HW (2H exp(2S + 2)).

®*(u) < \/2HW(2H exp(25 +2)) — \/W(2He

Using W (z) < In(x + 1) (Orabona and Pal, 2016, Lemma 17) we obtain

&*(u) < /2H In(2H exp(25 + 2) + 1) < \/8u2B In (24@3% + 1),
where we used that Z < /7.
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Now suppose that 77 > W, which is equivalent to 10(G + ¢)(27 + 1)L > B . Then

27+1)
1%

O(L) > — eXP ((v—2%10(G +¢)(27 + 1)) L).

The convex conjugate of f(L) = ¢ exp(caL), where c1, ca > 0, can be computed using standard

properties of convex conjugates and is given by f*(y) = % In <01y02> - % for y > 0 (see for

example Boyd and Vandenberghe (2004, section 3.3)), which can be use to upper bound ®*(u) for
u 2 0 by the order reversing property of convex conjugates:

(W) < e T T <ln (v — T I 1)> ~1+50 () >

where we used that Z < /7. Picking v = W‘ﬁ% gives us:

O*(u) < udd(G + ) (27 + 1) <1n (udd(G +e)(2r +1)) — 1+ %m (%) )

which completes the proof. |

B.1. Black-Box Reduction

Algorithm 2 Black-Box Reduction
Input: “Direction” algorithm Az and “scaling” algorithm Ay,

fort=1...T do
Get z; € Z from Az

Get v; € R from algorithm Ay,
Play w; = v;z; and receive g;

Send g; to algorithm Az

Send (z¢, g;) to algorithm Ay,

end

To derive a d-dimensional comparator-adaptive algorithm for a graph we will use the black-box
reduction in Algorithm 2. As an alternative to the black-box reduction one could also run a variation
of Algorithm 1 for v € R in each dimension, which would result in a regret bound similar to that
of AdaGrad (Duchi et al., 2011). One could also generalize Algorithm 1 to a higher dimensional
version by replacing the scalar  with a vector and adjusting the feedback accordingly, but then no
closed-form solution of the integral defining the predictions exists. The algorithm in this section is
the black-box reduction presented in Cutkosky and Orabona (2018). The guarantee of Algorithm 2
can be found in Lemma 14 below, whose short proof was originally given by Cutkosky and Orabona
(2018) and is repeated below for completeness.

Lemma 14 Let ﬁ}i(HuH) =L (v — ||ull)(zt, g¢) be the regret for learning ||u|| by Algorithm
Ay and let RZ (m) = Z;f:l (z— ﬁ, gt) be the regret for learning ”Z—” by Az. Then Algorithm2
satisfies

R(uw) < R lul) + [l RZ (HZ”) .
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Proof of Lemma 14 By definition we have

T T T
Rr(u) < Z<'wt —u,g) = Z<Zt7gt>(vt — Jlull) + Jlull Z <Zt - H%vat>
=1 =1 =1
= RY(Jul) + [l RF (7 )

Note that in the regret bound of Algorithm 2 the regret of Az scales with ||u/||. This means that we
can use (6) and upper bound (z; — H%H’ g+ — g:) < 2¢ by using Holder’s inequality. In turn this
allows us to use any multiagent algorithm for .4z with suitable guarantees.

For example, in Theorem 18, we detail the regret bound obtained when using the multiagent
algorithm of Hsieh et al. (2020), which is delay-tolerant. The following results lead up to the proof
of Theorem 18.

Proposition 15 (Proposition 9 from Hsieh et al. (2020)) The Ada-Delay-Dist algorithm for On-
line Learning with Delays bounded by D(G) on the unit sphere satisfies

Ry < 4/Ar + 6GD(G).

We account for the inexact gradients in an elementary way, by just adding up the error. This coarse
treatment of the error is sufficient for our purpose.

Corollary 16 (AdaDelay-Dist with approximate gradients) Under the assumptions of Proposi-
tion 15, when given approximate gradients as input g; such that ||g: — g¢|| < &, AdaDelay-Dist
enjoys the bound

Ry < 4v/Ar +9eGD(G)T + 2¢T + 12GD(G) .

Corollary 16 is proved directly thanks to the following lemma that bounds on the lag on the
approximate gradients, and using the fact that approximate gradients are bounded by G + ¢ < 2G.

Lemma 17 If approximate gradients are such that ||g; — g¢|| < €, then

~

Proof For any ¢ and s in [T,

gelllgsll < (llgell + ) (llgsll +€) < llgellllgsll +2Ge + 2 < llgellllgs| + 3Ge.

Thus, as there are less than D(G) terms in the sum,

1G>+ 2llgell D l1gsll < llgell® + 2llgell D llgsll + 3Ge + 6D(G)Ge
sey(t) s€y(t)

We get the claimed result by upper bounding 3Ge + 6D (G)Ge < 9GD(G)e and summing over
t e [T]. [ |
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Theorem 18 Suppose that ||g:|| < G and that ||g; — g¢|| < &, and Az is AdaDelay-dist. Using
Algorithm 1 as Ay guarantees that Algorithm 2 satisfies

Rr(u) <v+ |ul|B(T),

where

2036 ||u|y2D(g)G2T)

V2

B(T) = 4T + \/ 8 (AT +24eGD(G)T + 1) In, (

312 HuHGD(g)) .

1%

+4y/Ar + 9eGD(G)T + 276 GD(G) In, (

The proof is merely a combination of the decomposition of regret (Lemma 14), and algorithm
guarantees. More generally, similar bounds can be derived as long as the algorithm Az for learning
the direction is delay-tolerant, by adapting Proposition 15 with different numerical constants.

Proof of Theorem 18 By Lemma 14 and the guarantee of Az from Corollary 16, we have

Ra(u) <REful) + [l 77 ()

<RE(lull) + ull (4y/Ar + 9eGD(G)T + 26T +12GD(G) ).

Importing the bound for the scale learning (Theorem 10), we get

312 ||u||G D(g)> 7

1%

ﬁ%(“u”) < v+ 2||u||Te + ||ul max { 264 GD(G) ln+(

\/8 (Af; +24eGD(G)T + 1) In. <2036 HUIIZD(Q)G%’) }

Note finally that |h;| = |{z,g:)| < ||g¢|| so that A% < Ar. The claimed result follows through
standard boundings. |

B.2. Proof of Theorem 7

Our bound is actually stronger than stated in Theorem 7. As can be seen from the proof, the bound
could also be stated in terms of KT, which is At with g; instead of g;. This means that the bound
scales with the effective gradient range max; ||g;|| rather than the worst-case bound on the gradients.
Similarly, we have presented the bound as if the learner suffers the maximum delay D(G) each round,
but the bound could also be stated in terms of the effective delay |y(¢)|. For simplicity, we only
present the worst-case regret bound.

We recall that the algorithm used is the black-box reduction applied to the gradients encoded with
sparsified quantization, with AdaDelay-dist (from Hsieh et al. (2020)) as Az and Algorithm 1 as Ay,.
Algorithm 1 is tuned with ¢ = 0 and the upper bound 2dG on ||g¢||.
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Theorem 7 (Regret bound with Stochastic Encoding) Using k = |b/D(G)]| bits per gradient,
the algorithm described above satisfies

E[Rr(u)] < v+ |lul| BIT) where B(T):@(G\/(lJr ; )D(g)T>.

Proof First, by convexity of ¢; and using that E;[g;] = g; we have that

T
> (w; — u,§t>] :

t=1

ERr(u)] < E

We have that max; ||g;|| < 2dG by Theorem 6. Let us now call to the detailed regret bound for our
algorithm, that is, Theorem 18 used with the estimated losses {g;} and with € = 0. Note that in this
case, Theorem 18 is applied directly to the approximate gradients, which makes the choice € = 0
valid. We find

T
S (wp — i) < v+l BT,
t=1

where

l?(?) ::\/8<KT + 1) In, (2036 Hu’ff@dG)Q) X 4@
312 ||U||2dGD(g))
v
<\/47</A\T + 1) In, (8144 HuI/Esz Gg)
624 ||U||dGD(g)) |

v

+ 276 (2dG)D(G) ln+(

+552dGD(G) In, (

Now let us upper bound E [/AXT] . Define the short-hand notation

2d 1,

a=_— and (= EG with m = |k/(3[logy(d)] + 2)].

Then
E [1g:1°] = E [llg: — g:l1*] + llgell* < (e + Dllgel* + 5

Using Jensen’s inequality and the guarantees of Theorem 6 we find

E[Iglg:1] <y/E[2) E[Ig.]2]

<V + Dlgdd? + BV (e +1)|gsl? + 8
<(a+1)G* + 5.

Now, replacing « and 3 by their values we see that

~ A d+1
E [lgillIg1] < &2 (1+=—).
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We sum these inequalities in the expression of A and use that |v(t)| < D(G) to get

A 1 1)(31
E [Ar] <G°T(1+ D(9)) (1 + d:; ) < G*T(1 + D(G)) (1 CLIC ZgQ(d) * 3)> .
which, after replacing A7 in B/(Y\’) and setting k = D(G)/b completes the proof. [ |

Appendix C. Details of Section 4
We denote by R (u) = > uner(w/ —u,gy) the linearised regret in graph F.

Lemma 19 Let Q be a collection of subgraphs of G and suppose for each subgraph F € Q
R; (0) < v, discarding any message older than Do = maxrco D(F) rounds. Then, playing

Z Feo Wi ]l{It € F} simultaneously guarantees for any Q-partition { Fi, ..., F,} and for
any up ..., u, € R that

Zﬁt(wt) Z Z 4y (uy) <|Q|1/—|—ZR; u;)
t=1

j=1t: ItE]'—J

Proof We start by upper bounding the regret by its linearized version:

T r
St - Y b =30 Y () ) Y Y (- upg0)
t=1

Jj=1t:I1eF; Jj=ltI;eF; Jj=1t:1icF;

<

Denote by P = {F1,...,F,} an arbitrary Q-partition. We rewrite the bound above, replacing w;
by its value, and doing some manipulations on the indices,

T r T r
Z<wtagt>_z Z <ujagt>zz Z <wtfagt>_z Z (uj, gt)

7j=1 t:Ite}‘j t=1 F.I,eF 7j=1 t‘[te]:'
SO RS o S0
FeQ\P

<|Qlv + Zﬁf]-(uj),

j=1
where we used that R 7(0) < v for all F. [ |
Theorem 9 (Learning a O-Partition, deterministic encoding) Let Q be a collection of subgraphs
of G. Suppose the learner uses the algorithm of Theorem 4 with deterministic encodings for each

subgraph F € Q, discarding any message coming from outside of F. Then, setting v = 1/|Q| and
k = |b/Dg], and playing wy as specified in equation (10) guarantees that

> Ry (u)) = ( \uJHWA )In (1 + QDY j>rujHTjG)+2‘b/<dDQ>TjG)>
Jj=1

for any Q-partition {Fy,...,F} and any u; ..., u, € R%
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Theorem 20 Suppose that b > Dg (3[logy(d)] + 2). Let Q be a collection of subgraphs of G.
Suppose the learner uses the algorithm of Theorem 18 with ¢ = 0, the upper bound 2dG on ||g;||,
and the stochastic encoding of Theorem 6, for each subgraph F € Q, discarding any message
older than Do = maxrcg D(F) rounds. Then, setting v = 1/|9Q|, k = |b/Dg|, and playing
wy = Y reowi 1{I; € F} guarantees that

E S Rs () :o(zyujua\/<1+‘“29) D(F;)T; 0 (1 +QID(F) )| T;G) ),
i=1 j=1

for any Q-partition {Fy, ..., F,} and for any uy ..., u, € R%

The proofs of Theorems 9 and 20 follow from applying Lemma 19, and a slight modification of the
proofs of Theorems 4 and 7, in which we can use that k = [b/Dg].

C.1. Example Collections of Subgraphs

In this section we provide an example collection of subgraphs. For each node n, take all nodes that
are with in distance a(n) = 0,1, ..., E(n), where E(n) is the eccentricity of node n, and form them
into a subgraph. The collection of this set of subgraphs is has cardinality |Q| = [N+, .\ E(n) <
IN](1 4 |N]). For the line graph, this collection of subgraphs includes all possible partitions of the
graph, meaning we compete with the best possible partition of the graph.

Alternatively, one may take o(n) = 2°(") for w(n) = 1,..., |logy(E(n))| to approach the regret
bounds of the previously defined Q within a factor 2. Both collections can be used to adapt to the
scenarios described in Figures 1(a) and 1(b) since the clusters may will be contained in one of the
subgraphs.

Appendix D. Details on the Encoding Schemes

In this section, we provide the detailed presentation and analysis of the encoding schemes referred to
in Section 3, eventually proving Theorem 6. We also discuss briefly some relevant literature.

D.1. (Two) Determinisitic encoding Schemes

We discuss two possible encoding schemes. The first encoding scheme is a non-constructive encoding
using covering numbers. Given well-known results on the covering number of the ball, there exists a
covering of the ball By(G) with 2¥ balls of radius 3 - 2~%/¢@G. Therefore, for any vector & € By(G),
one can transmit & the center of a ball of the covering it belongs to, using & bits. Doing so, we
have an encoding which ensures ||z — Z|| < 3 - 27%/¢G . Note that this implies in particular that
|2 < G(1+3-27%) <4G.

The drawback of this first encoding scheme is that it requires an explicit optimal covering of the ball.
The second encoding scheme we provide is slightly worse in terms of error, but is more practical due
to its simplicity.

In the second encoding scheme, the approach is to send each coordinate separately. Although this
encoding scheme is suboptimal in terms of error, it has the advantage of being straightforward
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to implement. Using |k/d| bits per coordinate (we assume here that k& > d), and sending each
coordinate separately yields for all coordinates 2,

2 — 3| < 27M92G, thus  |ja — 2| < Vd2TM2G

Compared to the theoretical bound from covering numbers, we lose a v/d factor in the error bound.
However, the practicality gain can make this choice worthwhile when & /d is sufficiently large.

D.2. Stochastic Encoding

To stochastically encode an arbitrary vector x € By(G) C R?, we will combine p-level quantization
with sparsification, which are defined as follows:

p-Level Quantization of a Single Coordinate Given a precision parameter p € N, the p-level
quantization of any coordinate x; of x is

2p$i

T = sign(:ri)2*pGL e

J 2 PG b

The first term in this expression is deterministic and essentially corresponds to the truncation of z; /G
to the first p digits in its binary expansion. The second term is random, with b; € {0, 1} a Bernoulli
variable with Pr(b; = 1) = (2P/G)(z; — sign(z;)27PG|2Px;/G|) chosen to make Z; an unbiased
estimate of x;. The essential properties of the z; are that

E[El] = and (ZL‘l — 551)2 < 2_2pG .

All in all, this randomized encoding requires 1 bit to encode the sign of x;, and p bits for the
deterministic part, and 1 bit for b;, so p + 2 bits in total.

Sparsification Instead of encoding all coordinates of «, we sample a single coordinate ¢ g uniformly
at random from {1, ..., d} and transmit only Z;,. At the decoder, this results in a sparse vector

T =dz;e;q,

where the factor d is an importance weight that ensures that E[z] = @. Encoding ig requires
[logy(d)] bits, so p-level quantization and sparsification together require [log,(d)] + p + 2 bits.

Sparsified Quantization To reduce the variance, we repeat the construction above m times and

average the resulting vectors Z1, . .., Z,, to obtain our final estimate
m
.1 ~
r=— g ;.
m “ !
J=1

We call z the sparsified quantization of & with precision p and number of repetitions m. It can be
communicated with m([logy(d)] + p + 2) bits, and satisfies the following property:

Proposition 21 For any € Bs(G), the sparsified quantization T of x with m = 1 repetition
satisfies
Elz] =2,  E[|lz—2|*] <2d|z|*+d*27*G?
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and
1Z]| < d(||lz]|l +27PG) < 2dG.

In particular, for p = [logs d|, the expected squared error is less than 2d||z||* + G? and the number
of bits communicated is less than 3[logy d| + 2.

Proof The unbiasedness is straightforward from the independence between z; and ig:

d d
= . ~ 1
E[Z] = dZIP’[z = ig| E[Zei] = dz ST =2,
=1 i=1
Let us compute the square-error for a fixed coordinate i € {1,...,d},

E [(z; — %)% = E [(2; — 2:)*1{i = is}] + 27 P[i # ig]

— E [(a; — di)2| Pli = ig] + 22 Pli # is] = E [(2; — d@)?}% +a}(1- é)
where we used the fact that z; is independent from ig. Moreover, using the unbiasedness of z;,
E[(zi—d7)?] = E [(zi—d zi+d(zi—7))°] = (d—1)%22+d?E [(2:—7:)%] < d*(27+272G?).
Finally, by summing over the coordinates,

d

d
51
E[l|lz — 2|?] gz a? +27%G?%) + (1-)295 2d||x||? + d? 272PG? |

=1

concluding the proof. |

Adding repetitions reduces the variance of any unbiased stochastic encoding:

Proposition 22 (Combining Encodings) If z1, ..., Z,, are independent unbiased encodings of a
vector x € By(G), then the error of the average encoding scheme is

E{Hw—;éx } mZZE[yx—xM

This is proved by developing the squared-norm.

In particular, sparsified quantization with precision p = [log, d| and m = |k/(3[logs(d)] + 2)]
repetitions satisfies the claim of Theorem 6.

Commonly used Stochastic Encodings. The popular schemes of Alistarh et al. (2017) and Wen
et al. (2017) use varying-length coding, and have results depending on the number of bits used to
represent a floating-point number. Moreover, these results essentially assume that the number of bits
per gradient is at least equal to the dimension b = €)(d); the same restrictions apply to Albasyoni
et al. (2020), Faghri et al. (2020). With a different formalism, Stich et al. (2018), Shi et al. (2019)
use sparsification with no quantization and do not impose a constraint on the number of bits sent.
Acharya et al. (2019) propose a sparsification scheme specific to encoding probability vectors, and
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Mayekar and Tyagi (2020a) generalize it to other norm balls. A number of schemes assume shared
randomness between the agents, e.g., Mayekar and Tyagi (2020b), Suresh et al. (2017). This is not
appropriate for our setting, because shared randomness can only be achieved without communication
by using pseudo-randomness based on a shared seed. But then the adversary might guess the seed or
otherwise exploit the lack of real randomness to predict the randomness in the stochastic encodings.

Appendix E. Lower Bounds

We start by mapping out how each specific characteristic of our setting influences the regret, and how
we can import known lower bounds from other settings.

E.1. Overview

As discussed at the start of Section 3, we restrict attention to algorithms that send messages containing
approximate gradients, with a limit of k = [b/D(G) | bits per message.

Nodes only have access to approximations g; of the gradients g; that are computed at other nodes, but
they have full access to g; for the subset of rounds in which they are active themselves. To simplify
the treatment of lower bounds, we restrict attention to gradient-oblivious methods, which only use g;
at all the nodes, even if a node could have used g; instead. Although this assumption restricts the
class of algorithms, we believe it is a minor restriction. For instance, all algorithms considered in the
rest of the paper satisfy it, and for large networks, in which the same node is activated only a small
number of times, the difference seems minor.

Comparison with Memory-Limited OCO There are tight relations to the (k, 1, 1) distributed
online protocol defined by Shamir (2014). Under this protocol, an agent only has access to a
collection of k-bit messages stored in its memory, each message encoding one loss function it has
received. (The two ones in (k, 1, 1) correspond to other parameters in the reference.)

In fact, for gradient oblivious algorithms that use k bits per gradient, in the special case where the
same node is selected at every time step, our setting simplifies to the (k, 1, 1) setting. Therefore, for
any activation sequence, the game is at least as hard as (k, 1, 1), as the active agent only has less
information available. In particular, lower bounds for the (k, 1, 1) setting automatically hold in our
setting.

Deterministic vs. Stochastic Encodings We distinguish between deterministic and stochastic
encodings. Deterministic encodings only give non-trivial guarantees when k is at least of the same
order as the dimension d (Theorem 5). Stochastic encodings can still work in the regime that k£ < d,
as long as k > d/T (Theorem 8). We will prove the lower bound for stochastic encodings by
reduction from a previous lower bound by Mayekar and Tyagi (2020b).

The Network Causes Delays Because gradients take time to be transmitted through the network,
there is a direction connection to the lower bound for Online Learning with Delays Zinkevich et al.
(2009). This effect is combined with the memory limits described above. Informally, we can say that
if B(k,T) is a lower bound for the memory-limited setting, then, under the activation sequence that
maximizes delays, a lower bound of D(G)B(k,T/D(G)) holds for our setting. This statement is
made precise in Lemma 27.
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E.2. Proofs of Lower Bounds and Intermediate Results

In the remainder of this section, we prove Theorems 5 (deterministic encodings) and 8 (stochastic
encodings). We first establish lower bounds for the (&, 1, 1) protocol separately for the deterministic
and stochastic case, based on the connection to the memory-limited setting. We then exploit the
connection to the online learning with delays setting to turn these lower bounds for the (k,1,1)
protocol into the lower bounds of the theorems.

E.2.1. LIMITED MEMORY I: DETERMINISTIC ENCODINGS

As discussed earlier, the decentralized online learning setting for gradient-oblivious algorithms with
k bits per gradient is harder than the memory-limited (k, 1, 1) setting. In this section, we provide
lower bounds that are based on this connection.

The limiting factor with deterministic encodings is that there is finite resolution, making some
vectors indistinguishable from each other once encoded. Formally, let C : Bo(G) — {0, 1}* be any
deterministic encoding scheme. Then we define the resolution € of C to be the maximum distance
between two vectors encoded to the same message, i.e., e = sup {|[g — h|| : C(g) = C(h)}. We
can lower bound the resolution of C' using the covering numbers of B2(G) as follows:

Lemma 23 Any deterministic k-bit encoding scheme on Bo(G) has resolution at least ¢ > 2G 2%/¢,

Proof The family of sets C~!(m) for m € {0, 1}* forms a partition of B2(G), and each of these
sets is contained in a Euclidean ball of diameter € by definition of the resolution. Thus the balls form
an (/2)-cover of By(G). Since covering Bo(G) with balls of radius & /2 requires at least (2G/<)?
balls (Ghosal and van der Vaart, 2017, Appendix C)', it follows that 2% = |{0, 1}*| > (2G/¢)?,
from which the result follows. |

Knowing that two gradient values that are € apart are encoded the same way, an adversary can design
a hard loss sequence against which a player would suffer linear regret in the (k, 1, 1) setting.

Lemma 24 (Deterministic Encoding with Limited Memory) In the (k,1,1) protocol, for any
algorithm using a deterministic encoding with resolution ¢ > 0, for any U > 0

1
sup sup Rr(u) > ZETHU”.

G —Lipschitz losses w: ||u||=U

Proof Let g and h be two vectors with same the encoding such that ||g — h|| > <. In the following,
we consider exclusively linear losses ¢; : u +— (g, u), which are fully specified by their gradient g;.
Consider an i.i.d. sequence of losses where at every time step g; = g with probability 1/2 and
g+ = —(g + h)/2 with probability 1/2.

Then at all times ¢, since the loss g; is generated independently from w;,

1

Elg:] Z%g+§<

_g+h):gfh

2 4 22 >

and E [(gt,wt> | wt] = <T,wt

1. This can be shown by noting that the sum of the volumes of the balls in the cover must exceed the volume of Bz (G).
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Therefore, for any comparator u € W, the expected value of the regret against g;.7 is

B[Ry (ui g1)] = B [<g;hi )] = (978 [ ] 7).

t=1
where we explicitely wrote the dependence on g;.7 for the sake of clarity.

Now given a sequence g;.7 generated as above, define another sequence g,.7 swapping g and h; that
is, where g; = h if g; = g, and g; = g; otherwise. As above, we also have the identity

T
E[Rr(u; ir)] = <¥,E [Zwt] - Tu> .
t=1
Since the algorithm is gradient oblivious, and since the two loss sequences are encoded the same way,
the algorithm cannot distinguish between a sequence g1.7 and its switched version g;.7. Therefore
the distribution of w;.7 is the same in both cases. In particular the expected value of the sum of the
predictions B[S, wy] is the same under both loss distributions.

Therefore, by distinguishing cases on whether (E[Zthl wy], h — g) is non-negative or not, we
observe that at least one of the following statement holds: either

E[Rr(u;g1.7)] > —%(g —h,u) forallu e W,

or
~ T
]E[RT(u;gLT))] > Z(g —h,u) forallu e W.
Let us conclude, for example, in the first case; the second case is completely symmetric. Picking

u = Ah—g)/|h — g| for any A\ > 0, we get

T T
E[Rr(wigir)] > 7lg —hlllull > Zelull.

Since this holds in expectation for our distribution of losses, there exists a sequence g;.7 satisfying
the claimed inequality. n

We also recall the comparator-adaptive lower bound from Orabona (2013). This lower bound holds
in the standard OCO setting, and thus all the more so in the memory-limited setting. Together with
Lemma 24, these two results yield Theorem 5, up to the impact of the delays.

Theorem 25 (Theorem 2 in Orabona (2013)) In the standard OCO setting, fix an algorithm such
that R7(0) < B for some number B > 0. For any u € R, for T large enough,

sup Re(w) > 0.3 ul|G, | Tln (”“”ﬁ> .
G'—Lipschitz losses 6B

Note that at first sight our statement seems stronger than that of the reference, as we transformed the

“there exists" quantifier into “for any". In fact, looking at the proof in the reference, the comparator is

fixed to be (U, 0, ..., 0) and the sequence of (linear) losses takes values only in {+(G,0,...,0)}.

This same construction can be made in the direction of any vector u € R?.
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E.2.2. LIMITED MEMORY II: STOCHASTIC ENCODINGS

The main downside of the deterministic encoding, namely the finite resolution, can be avoided using
randomness, see Section 3. However, when there are less than d bits available, even stochastic
procedures have strong limitations. Indeed, Mayekar and Tyagi (2020b) show, via an optimization
problem, that in the (k, 1, 1) setting the limit on the number of bits appears as a constant in front of
the minimax regret.

Theorem 26 (Corollary of Theorem 2 in Mayekar and Tyagi (2020b)) In the (k, 1, 1) protocol,
for any algorithm, for any U > 0

d
sup sup E [RT(u)] > cUGY/max (—,I)T ,
G —Lipschitz losses w: ||u||=U k

for some numerical constant c, and where the expectation is taken with respect to the randomness in
the algorithm and the encoding.

In the mentioned reference, the setting refered to is Stochastic Optimization with access to a k-bit
estimate of the gradient through an oracle. This is in fact equivalent to the (k, 1, 1) setting, with
only the objective differing. This lower bound follows directly from their result via a standard
online-to-batch conversion; see e.g. Hazan (2016).

E.2.3. DELAYS

Let us now incorporate the impact of the delays induced by the transmission of information through
the network. It consists in implementing an instance of online learning with delays in our decentral-
ized setting.

Note also that the randomization cannot improve on the worst-case regret, as a randomized algorithm
can always be converted into a deterministic algorithm incurring the same regret against linear losses.
For example, such a conversion is obtained by considering the virtual algorithm playing the expected
prediction.

Lemma 27 (Reduction to Learning with Delays) For any network with diameter D = D(G),
there exists an activation sequence such that decentralized OCO for gradient-oblivious algorithms
with k bits per message is equivalent to online learning with delays of length | D /2| and with k-bit
memory.

In particular, for any U > 0, if B(k,t,U) is a lower bound on the minimax regret for the (k,1,1)
protocol in OCO against comparators u € Bo(U) for all t € N, then

D 2T
sup sup E[Rp(u 2[—JB(I<, [—J,U),
G—Lipschitz losses w: ||u||<U [ T( )] 9 D

where the expectation is taken with respect to the randomness in the algorithm and the encoding.

Proof Consider a maximal path through the graph of length D. Without loss of generality, we index
the sequence of nodes by {1, ..., D}, assuming that node n is connected to node m if and only if
|n —m|=1.
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Then consider the activation sequence that sequentially selects the nodes 1,3, ...,2[D/2] — 1 and
starts over to 1. The information available to the active node I is always | D /2] rounds old; we
denote this number by T to reduce clutter.

Under this worst-delay activation sequence, solving the decentralized online learning problem is
equivalent to solving an OCO instance with the same losses and delay t. Furthermore, the k-bit
memory constraint affects identically the OCO instance. Note also that the definition of regret
coincides under both settings.

The final claim is from Zinkevich et al. (2009, Lemma 3); see also Hsieh et al. (2020, Proposition 16)
for a more complete argument that accounts for non-deterministic algorithms. |

All the ingredients to conclude are now available. Plugging in the lower bounds from Lemma 24 with
Theorem 25, and Theorem 26 into Lemma 27, we obtain the results of Theorems 5 and Theorem 8§,
respectively.
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