Proceedings of Machine Learning Research vol 167:1-17, 2022 33rd International Conference on Algorithmic Learning Theory

Distinguishing Relational Pattern Languages With a Small Number of

Short Strings
Robert C. Holte RHOLTE@UALBERTA.CA
University of Alberta, Amii
S. Mahmoud Mousawi MOUSAWI.S.M@GMAIL.COM
University of Regina
Sandra Zilles ZILLES @CS.UREGINA.CA

University of Regina

Editors: Sanjoy Dasgupta and Nika Haghtalab

Abstract

This paper studies the equivalence problem for relational pattern languages, where a relation im-
poses dependencies between the two strings with which two variables in a pattern can be replaced
simultaneously. Our focus is on the question whether the non-equivalence of two relational pat-
terns is witnessed by short strings, namely those generated by replacing variables in the patterns by
strings of length bounded by some (small) number z.

After establishing a close connection between this problem and the study of the notions of
teaching dimension and no-clash teaching dimension, we investigate specific classes of relational
pattern languages. We show that the smallest number z that serves as a bound for testing equiv-
alence is 2 when the relation between variable substitutions is that of equal string length, and the
alphabet size it at least 3. This has interesting implications on the size and form of non-clashing
teaching sets for the corresponding languages. By contrast, not even z = 3 is sufficient when the
constraints require two substituted strings to be the reversal of one another, for alphabets of size 2.
We conclude with a negative result on erasing pattern languages.

Keywords: pattern languages, equivalence problem, teaching dimension

1. Introduction

Pattern languages (Angluin, 1980a) have been studied in computational learning theory for over 40
years, due to their appealingly simple definition, their interesting language-theoretic properties, as
well as their applications in areas such as bioinformatics (Arikawa et al., 1993), program synthe-
sis (Nix, 1985), database theory (Barcel6 et al., 2012), and pattern matching (Clifford et al., 2009).

In the original definition (Angluin, 1980a), a pattern is a non-empty finite string of terminal
symbols and variables, and the language it generates consists of all strings obtained when substitut-
ing variables with non-empty finite strings of terminal symbols. If a variable occurs more than once,
all its occurrences have to be replaced by the same string. Various extensions to this model have
been studied, for instance erasing pattern languages (Shinohara, 1982) (in which variables may be
replaced by the empty string) and typed pattern languages (Geilke and Zilles, 2012; Koshiba, 1995;
Wright, 1990) (in which each variable has its own fype, i.e., set of strings permitted in substitutions).

Repetitions of variables in a pattern can be viewed as a constraint imposed by setting variable
positions in equality relation, in the sense that the strings to be substituted for these variable posi-
tions must be in equality relation. In principle, one could allow any other relation between variables
x and 2’ as well, e.g., x must be substituted by the reversal of the string substituted for 2/, or by a

© 2022 R. C. Holte, S. Mousawi & S. Zilles.

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

string shorter than that substituted for 2/, or by a string containing more occurrences of the terminal
symbol a than that substituted for 2/, etc. This motivated the study of relational pattern languages
(Geilke and Zilles, 2011), in which any set of variables in a pattern can impose any kind of relation
on the strings to be substituted for those variables.

The learnability of pattern languages and some of their variants has been studied extensively
in the literature; this includes studies on learning in the limit, e.g., (Angluin, 1980a; Reidenbach,
2008), learning from queries, e.g., (Angluin, 1988; Lange and Zilles, 2003), and learning from
helpful teachers, e.g., (Bayeh et al., 2020; Gao et al., 2017).

A problem that is of relevance to the design and analysis of learning algorithms in this context
is the so-called equivalence problem: given two patterns, decide whether or not they are equivalent,
i.e., whether or not they generate the same language. For Angluin’s pattern languages, this problem
is decidable in linear time (Angluin, 1980a), while for erasing pattern languages it is not yet known
whether the equivalence problem is decidable at all (Freydenberger and Reidenbach, 2010).

This paper studies the equivalence problem for relational pattern languages, with a focus on
standardizing the procedure for testing equivalence. In particular, we ask whether it is sufficient to
test the membership of (a small number of) short strings generated by either of two patterns in order
to decide their equivalence. For any pattern 7 and any z € N, denote by L(?) (m) the set of all strings
generated from 7 by replacing each variable in 7 by a string of length < z. Given z, we ask if

two patterns 7 and 7’ are equivalent as soon as all strings in L) (m) are generated by
7' and all strings in L(*) (7" are generated by 7. (*)

This question is of interest for multiple reasons. For example, testing equivalence with a small
number of short (i.e., “simple”) strings has implications on the computational complexity of decid-
ing equivalence and could also be of relevance for applications in program synthesis, where testing
a program against a specification of a few simple strings could result in highly efficient systems.
From a formal language point of view, the success of a standardized test of the form (*) sheds light
on structural properties of various classes of pattern languages. From a learning-theoretic point of
view, our question is closely related to the study of machine teaching, as we will see below.

Our contributions are as follows. Firstly, Section 3 demonstrates that the existence of an integer
z such that (*) is fulfilled is equivalent to the existence of so-called non-clashing teaching sets, made
up out of “simple” strings, for the underlying class of (relational) pattern languages. Non-clashing
teaching was shown by Kirkpatrick et al. (2019) to be the optimal model of machine teaching
that satisfies the widely accepted notion of collusion-freeness proposed by Goldman and Mathias
(1996). We also prove implications of property (*) on the classical teaching dimension (Goldman
and Kearns, 1995; Shinohara and Miyano, 1991).

Secondly, noting that Angluin’s pattern languages satisfy (*) already for z = 1, Section 4 shows
that (*) is not fulfilled with z = 1 for two natural classes of relational pattern languages, namely
those generated by patterns for which two related variables are replaced (i) by strings of equal
length; (ii) by strings w, w’ such that w is the reversal of w’.

The main contribution of Section 5 is to prove that patterns with the equal-length relation fulfill
(*) with z = 2 when the alphabet over which the languages are defined has size at least 3. Moreover,
we show that not all strings generated by substituting variables with strings of length 2 have to be
considered for testing equivalence; a set of size linear in the length of the underlying pattern suffices.
This yields non-clashing teaching sets consisting of only linearly many strings, where each string
has length at most twice the length of the pattern to be taught.

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

By contrast, Section 6 shows that (*) does not even hold with z = 3 for the reversal relation,
assuming the alphabet is of size 2. We conjecture though that (*) holds with z = 2 for the reversal
relation for alphabets of size at least 5.

Finally, Section 7 shows that no constant value of z has property (*) for Shinohara’s class of
erasing pattern languages (Shinohara, 1982) (with equality relation), for alphabets of size 2, 3, or 4.

2. Preliminaries

In what follows, the term “string” refers to a finite string, exclusively. For any string s, |s| denotes
the length of s. Let X be a fixed finite alphabet of size at least 2. The elements of X are usually
denoted by o, a, or b. A word is a string over ¥. ©* denotes the set of all words over X, while X+
denotes its subset of all non-empty words and X' the set of all words of length ¢, for ¢ € N.

Let X be an infinite set of variables such that N X = (). The elements of X are usually denoted
by z; (: > 1), z, or y. A pattern is then a non-empty string over > U X, in which no variable occurs
twice and the variables occurring in p are z1, s, ..., TN, for some N, read from left to right. For
example, p = baxixsaxsbbryrsxe is a pattern over ¥ = {a, b}, but baxixsaxsbbrorsze is not
since the variable x5 is repeated.

A relational pattern is a pair (p, R), where p is a pattern and R is a binary relation over the set
of variables in p. A substitution of p is any mapping 6 that assigns to each variable occurring in p
a non-empty word.! Then 6(p) is the word obtained from p after replacing each variable z in p by
0(x), in particular, 6 can be seen as a homomorphism wrt concatenation over symbols from ¥ U X
that leaves symbols in X unchanged.

A word relation, usually denoted r, is any decidable subset of £+ x ¥+.2 Word relations now
define which substitutions are “legal” by giving semantics to the relation R C X x X.

Definition 1 Let r be a word relation and (p, R) a relational pattern. A substitution 0 for p is legal
for (p, R) wrt r, if R(z,y) implies r(0(x),0(y)) for all variables x, y occurring in p. The language
generated by (p, R) under r, denoted L.(p, R), is the set of words obtained from p by applying
substitutions to p that are legal for (p, R) wrt r, i.e.,

L.(p,R) = {0(p) | 0 is a legal substitution for (p, R) wrtr} .

Definition 2 Ler 6 be any substitution of a pattern p and z € N. If |0(z)| < z for all variables x

in p, then 0 is called an ¢ ,-substitution (of p). The (finite) language L,(«z) (p, R) is the set of all the
words 0(p) produced by {,-substitutions 0 that are legal for (p, R) wrt r.

For example, Ly (p, R) is the set of all and only the words in L, (p, R) of length |p|.

In Angluin’s original work (Angluin, 1980a), as well as in most subsequent studies of pattern
languages, the only word relation that was considered was equality, i.e., r(w,w') iff w = w’. For
example, the pattern ¢ = aaz1bxraaabxrsxy could be constrained by “equating” variables x3 and x4,
resulting in the relational pattern (¢, R) with ¢ = aaxibraaabrszy and R = {(x3,24)}. L(q, R)
would then consist of all words of the form aawbw’aabw”w"”, where w, w’, w"” € ¥F. Geilke and

1. The erasing case, when variables can be substituted by the empty string, has also been studied (Shinohara, 1982).
We focus on non-empty substitutions here, i.e., the non-erasing case.

2. For the purpose of this paper, it suffices to consider only binary word relations, but our formal framework could easily
be extended to relations of any arity.

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Zilles (2011) loosened Angluin’s definition by allowing any kind of word relation, not just equality.
One of the word relations we consider in this paper is the equal-length relation, which requires that
two variables x; and z; in relation must be substituted by words of equal length, i.e., r(w,w’) iff
|w| = |w'|. If the pattern ¢ above is constrained by setting x3 and x4 in equal-length relation, it
generates all words of the form aawbw’aabw”, where w, w’,w” € ¥ and w” has even length.

If (p, R) is a relational pattern, then the set of variables in p is partitioned into groups. Two
distinct variables x, y in p are in the same group if [R](x, y), where [R] is the transitive closure of the
symmetric and reflexive closure of R (note here that the domain of R is the set of variables occurring
in p). Intuitively, in any legal substitution for (p, R), the words substituted for the variables in a
single group are dependent on one another. The group of a variable x in the relational pattern (p, R)
is then the set {y € X | [R](z,y)}. Note that is always a member of the group of x.

Any pair (II,7) where II is a class of relational patterns is associated with a class £(II, r) of
relational pattern languages via £(II,7) = {L, () | = € II}. In this paper, we will always assume
II to be the class of all relational patterns over a fixed alphabet X, but we will vary the word relation
over which to interpret such patterns. In particular, we will study

1. the equality relation r, with req(w,w’) iff w = w’, which induces the class of Angluin’s
pattern languages;

2. the equal length relation e, With 7, (w, w') iff |w| = |w'];
3. the reversal relation 7.c,, With 7.¢,, (w, w’) iff w is the reversal of w’'.

Wilog, let IT be indexed in a way that membership of any word w in any language L(w), m € II
can be decided effectively (such indexing obviously exists). Let r be any word relation. Clearly, for
any word w € ¥, there are only finitely many languages in £(II,) that contain w. This is because
the length of p, for any pattern (p, R) € II generating w, is bounded from above by the length of
w. Moreover, since word relations are decidable, one can effectively construct all relational patterns
(p, R) € II for which w € L,(p, R). Thus, L(II,) is a uniformly recursive family with recursive
finite thickness. The latter property was introduced by Koshiba (1995). According to his definition,
a uniformly recursive family (L;);cn of languages has recursive finite thickness, if there exists an
effective procedure that, given any word w € X*, produces a set I C N of indices such that (i)
w € L; forall i € I, and (ii) for each j with w € L; there exists an ¢ € I such that L; = L;.

3. Learning-theoretic Implications of the Decidability of the Equivalence Problem

In this paper, we focus on the question whether the equivalence problem is decidable for specific
word relations r, i.e., whether there is an effective procedure that, given any two relational patterns
(p, R), (p', R") € 11, decides whether or not L, (p, R) = L,(p', R'). Answering this question has
several learning-theoretic implications, some of which are due to the fact that (II,r) induces a
uniformly recursive family of non-empty languages that has the recursive finite thickness property.
Firstly, being able to decide the equivalence between two hypotheses in learning can be of
practical interest, for example in program synthesis, in situations when one wants to assess the
correctness of a synthesized program on the spot, or generally in similar situations where a learner
formulates an equivalence query between a proposed hypothesis and the target hypothesis.
Secondly, it was shown by Koshiba (1995) that any uniformly recursive family of languages that
has both (i) recursive finite thickness, and (ii) a decidable equivalence problem, is conservatively

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

learnable in the limit from positive data in Gold’s model of learning in the limit (Gold, 1967). Con-
servativeness is the intuitively desirable, yet non-trivial property that a learner, which sequentially
reads words belonging to the unknown target language, does not change its current hypothesis as
long as the latter is consistent with the words observed.

Thirdly, decidability of the equivalence problem has implications for the effective construction
of so-called teaching sets for relational pattern languages in £(II,), due to our first formal result
(Theorem 3 below). This result connects our study to the study of the notion of teaching sets as
introduced by Goldman and Kearns (1995); Shinohara and Miyano (1991). A teaching set for a
hypothesis H in a hypothesis class # over a universe U> is a set T C U x {0, 1} of labelled
examples such that H is the only hypothesis in H that is consistent with 7. Consistency of a
hypothesis H' with a set 7/ C U x {0, 1} means that, for all (u,l) € T, we have | = 1 if u € H',
while | = 0 if u ¢ H'. One then writes H'(u) = [and calls [the label of w in H'.

One variation of teaching sets that was introduced recently, namely non-clashing teaching sets,
will also play a role in our paper. Non-clashing teaching uses less stringent conditions on teaching
sets so as to allow smaller teaching set sizes without making teacher and learner succumb to “col-
lusion”. Collusion-freeness, as defined by Goldman and Mathias (1996), stipulates that the learner,
when correctly identifying H from a set T" of examples labelled consistently with H, will also iden-
tify H from any superset of T that is consistent with H. This condition is used to prevent teacher
and learner from using unfair coding tricks. Kirkpatrick et al. (2019) showed that the smallest worst-
case “teaching set” size that can be obtained in collusion-free teaching is the size of what they call
non-clashing teaching sets. Suppose each hypothesis H is assigned a consistent set Ty of labelled
examples. The system of these sets is non-clashing iff there are no two distinct hypotheses H and
H' in H such that both H is consistent with T, and H' is consistent with Tp. The non-clashing
property was also used by de la Higuera (1997) in the notion of characteristic sets.

Conditions under which small teaching sets exist, and how they make machine learning more
data-efficient, are the subject of many recent studies in various subfields of machine learning and
Al for example (Alanazi et al., 2020; Cicalese et al., 2020; Dasgupta et al., 2019; Kirkpatrick et al.,
2019; Mansouri et al., 2019); see also (Zhu et al., 2018) for a partial overview. Specifically, in the
context of pattern languages with equality relation, the existence of small teaching sets has been
studied both for the non-erasing case (Gao et al., 2017) and for the erasing case (Bayeh et al., 2020).

Theorem 3 Let (L;);cn be any uniformly recursive family of non-empty languages, with the recur-
sive finite thickness property. Then the following two statements are equivalent.

1. The equivalence problem for (L;);cn is decidable.

2. There is an algorithm that, given j € N, constructs a finite teaching set for L; wrt (L;)en.

Proof 2 implies 1, since one can trivially test equivalence of L; and L; by checking whether the
teaching set for L; is consistent with L; (or vice versa.)

To see that 1 implies 2, note that a teaching set for Ly wrt (L;);cn can be constructed as follows.
First, one finds a word w € Ly, which is possible since Ly # () and Ly, has decidable membership.
Second, one exploits recursive finite thickness to construct a set I of indices such that (i) w € L;
for all 7 € I, and (ii) for each j with w € L; there exists an ¢ € I such that L; = L;. Using
decidable equivalence, one can remove all indices for L from I; let us denote the resulting subset

3. In our context, a hypothesis is a language, a hypothesis class a class of languages, and U the set of words over .

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

of I by I'. For each i € I’, one can determine a word w; in the symmetric difference of L; and
Ly, since membership is uniformly decidable. The set of these words w;, each paired with its label
Ly (w;) € {0, 1}, now forms a teaching set for Ly wrt (L;);eN. [|

As a consequence, decidability of the equivalence problem for a set II of relational patterns
is equivalent to the existence of an effective procedure for constructing finite teaching sets for the
language family £(II,r), where r is any word relation according to our definition. For practical
reasons, the size of teaching sets as well as the complexity of constructing them are of interest. To
this end, we consider the following three questions, which turn out to be closely connected:

1. In order to decide whether L,(p, R) = L.(p', R'), is it enough to test a small set of short
strings in these two languages, specifically those obtained by legal /,-substitutions, for some
small z? In other words, does the following condition hold for some fixed z?

Condition EQ. L,(p,R) = L.(p,R') iff (LY (p,R) € L,(v,R') and LP(p/,R) C
L.(p,R)), forall (p, R), (p/, R') € 1L

2. For some fixed z, can the set ng) (p, R) for L,(p, R), equipped with positive labels (label 1),
always be used to form a system of non-clashing teaching sets wrt £(I1,r)?
Condition NCTS. Mapping L, (p, R) to the set {(w,1) | w € L (p,R)} forall (p,R) € II
yields a system of non-clashing teaching sets for £(IL, r).

3. For some fixed z, is the set of words generated from p by unconstrained £-substitutions,
equipped with the appropriate labels, always a teaching set for L, (p, R) wrt £(II,r)?
Condition TS. For all (p, R) € II, the set {(w, L.(p, R)(w)) | w € L, ()} is a teaching
set for L, (p, R) wrt L(TI, r).*

Theorem 4 Let r be a word relation and z € N. Then v,z fulfill Condition EQ iff r, z fulfill
Condition NCTS. Moreover, if v, z fulfill Condition EQ then r, z fulfill Condition TS.

Proof First suppose that r, z fulfill Condition EQ. Then r, z obviously fulfill Condition NCTS. To
see that r, 2 fulfill Condition TS, suppose (p’, R') € I is consistent with ' = {(w, L, (p, R)(w)) |
we L (p,0)} for some (p, R) € II. Then all legal £, -substitutions for (p’, R') generate strings
we LY (p, D) that are also contained in L,(p, R). Likewise, all legal ¢,-substitutions for (p, R),
which must have the label 1 in 7', are contained in L, (p’, R') due to consistency of the latter with
T. By Condition EQ then L, (p, R) = L.(p/, R'), i.e., T is a teaching set for L, (p, R) wrt L(II,r).

Finally, suppose r, z fulfill Condition NCTS. Let (p, R) € II. Obviously, L, (p, R) = L,(p', R')
implies (Lfnz) (p,R) C L.(p/,R) and L (p',R") C Ly(p,R)). The opposite direction follows
immediately from Condition NCTS. Thus, Condition EQ is satisfied for r, 2. |

Due to the close relation between Condition EQ and the existence of finite (non-clashing) teach-
ing sets consisting of short (and thus “simple”) strings, we devote the remainder of this paper to the
study of Condition EQ for relational pattern languages. Importantly though, it will turn out that the
(non-clashing) teaching sets that are implied by the constructions in our proofs of Condition EQ are
typically smaller than the bounds implied by Conditions NCTS/TS suggest.

4. Recall that H(w) denotes the label of w in H, so here, using H = L,(p, R), the term L, (p, R)(w) equals 1 if
w € Ly(p, R), and 0 otherwise.

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

4. ¢,-Substitutions

We begin by analyzing a few examples of relations 7 concerning the question whether r and z =
1 fulfill Condition EQ, i.e., we investigate for these relations whether L,.(p, R) = L,.(p/, R') is
equivalent to (Lﬁl)(p, R) C L.(p/,R’) and L&l)(p’, R') C L,(p, R)).

Angluin’s pattern languages, with equality as the only allowed relation between variables, are a
prominent case in which Condition EQ is fulfilled for z = 1.

Proposition 5 (Angluin (1980a)) The word relation r.q fulfills Condition EQ with z = 1, i.e., for
any two relational patterns (p, R), (p', R'), we have L, (p,R) = Ly (p', R') iff (LQZ (p,R) C
Ly, 0/, R) and Lity (0. R) € Ly, (p, R)).

Angluin’s argument does not require testing the full sets Lfnig (p, R) and ng (p’, R") in order to
decide equivalence of (p, R) and (p/, R'). Instead, it suffices to consider legal ¢;-substitutions that
replace one variable x in the respective pattern (as well as all variables in the group of x) with a,
while replacing all other variables with b, for some a,b € ¥, a # b. Using the same argument as in
the proof of Theorem 4, one therefore immediately obtains non-clashing teaching sets of size at most
linear in the length of the underlying pattern (for the class of all non-erasing pattern languages).

By contrast with Proposition 5, one does not obtain Condition EQ for z = 1 when the word
relation is e, OT rey. The intuitive reason is that (i) for r.,, all £1-substitutions are legal and thus
they give no insight about which variables are related; (ii) for r,.¢,, £1-substitutions help to identify
groups of related variables, but if the group size is 3 or larger, they cannot help identify which pairs
of variables in a group are in reversal relation. For example, consider the pattern p = x1x2x3. Us-
ing r1en, clearly (Liy), (p.0) € Lu,, (b, {(1,22), (21,23)}) and L), (p, {(21,22). (a1, 23)})
L,,. (p,0)). However, L, (p,0) # Ly,., (p,{(x1,x2), (z1,x3)}), since the length of each word in

)

LTlen (p7 {(ZL’l, 552)7 (:Ela $3)} isa mlﬂtiple of 3. For ryey, Clearly (ngv (p7 {(:L'lv :UZ)» (:E2a :Eg)}) -

Lyyeo (0, {(21,22), (w1,23)}) and L, (p, {(21,22), (21,25)}) C L, (b, {(x1,22), (w2, 73)}).
But L, (p,{(z1,22), (z2,23)}) # Ly, (p,{(z1,22), (x1,23)}), since abbaba is a word con-
tained in L, _, (p, {(x1,x2), (x1,23)}, but notin L, (p,{(z1,z2), (x2,x3)}.

Condition EQ does not hold for z = 1 for the word relations 7., and r,.,, only because ¢1-
substitutions cannot distinguish between different relation sets R, R’ over the same pattern string
p. It is not hard to see that /;-substitutions suffice to reveal differences in the pattern string itself,
when the word relation is either 7., Or 7r¢y:

Proposition 6 Let r € {rien, Trev}. Let (p, R), (p/, R') € 11 with Lgl)(p, R) C L,(p',R) and
L (9, R') C Ly(p, R). Thenp = .

The proof is identical to that of Angluin’s analogous result for r., (Angluin, 1980a).

5. The Equal-Length Relation

Motivated by the fact that ¢;-substitutions do not suffice to test the equivalence of relational patterns
over the equal-length relation, we want to determine the smallest integer z for which r.,,, z fulfill
Condition EQ. It turns out that this integer is 2, if the alphabet 3. is of size at least 3.

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Theorem 7 Let |X| > 3. Then the word relation 1.y, fulfills Condition EQ with z = 2, i.e., for any
two relational patterns (p, R) and (p', R'), we have L,,, (p,R) = Ly, (p/,R') iﬁ”(ngn (p,R) C
L (p/7RI) and L7("l2e)n (p/7 R/) g Lrlen <p7 R))

Tlen

The remainder of this section is dedicated to the proof of Theorem 7. To this end, we will first
introduce some more notation and state some simple facts.

A block of variables in pattern p is any sequence x;T;+1 . ..Z;+m (m > 0) such that p is of
the form q1 ;241 . .. Titm@e for some q1, g2 € (X U X)* where g; does not end in a variable and
g2 does not begin with a variable. That means, a block of variables in p is any maximal substring
of p that consists only of variables. Adjacent variables within a block are interchangeable when it
comes to satisfying equal-length relations. This obvious fact is useful when applied repeatedly, for
example to show that L,, (azizoz3abry, {(x3,24)}) = Ly, (ax120230bT4, {(21,24)}).

Lemma8 Let (p, R) € II, where p = qix;xit1q2 with q1,q2 € (XU X)*. Then L,,, (p,R) =
L,,. (p,R'), where R’ is obtained from R by swapping x; with ;1 in all relations.

In the remainder of this section, we always use Lemma 8 implicitly, i.e., without mentioning
we make use of the fact that the order of variables inside a block plays no role when testing the
equivalence of two relational patterns when 7y, is the underlying word relation.

Note that any pattern is of the form woBjwy ... Byw, where wo, w, € X%, w, € U7 (k €
{1,...,b—1}), and each By, is a block of variables.

Definition 9 Let (p, R) be a relational pattern with p having b blocks, By ... By, and 0 a legal
substitution (Wrt ryey,). The length tuple corresponding to 0 is the b-tuple (|6(B1)], ..., |0(Bp)|).

Awordw € L(p, R) matches length tuple (m1, ma, . .. my) if there exists a substitution 0 that is
legal for (p, R) (Wrt Tey,) such that 0(p) = w and 0’s length tuple is (my,ma,...mp).> LT (p, R)
is the set of length tuples that correspond to legal substitutions (wrt 1), and LT(2)(p, R) is the
set of length tuples that correspond to legal Us substitutions (Wrt Tiep,).

Let n be the number of variable groups induced by R. We impose a fixed, but arbitrary or-
der on the groups of variables in p so that the multi-set of group sizes becomes a vector G =
(g1, 92, - - - gn). If p contains k variables then > | g; = k.

R also specifies how many variables (zero or more) from block By, there are in group 7. This is
called the “decomposition” of By, and it too will be written as a vector of length n ordered in the
same way as G. If the decomposition of B is (a1, as, . ..,ay) then > | a; = [B|.

Example 1 Let p = zix9bbrsxsxsbbrexrasry and R = {(x1,x3), (x1,24), (22, 29), (v5,26),
(z5,27)}. R defines four groups — {x1,x3, x4}, {2, 29}, {x5, 26,27}, and {xs}. Ordered in that
way, G = (3,2,3,1) and the decomposition of the three blocks is as follows: (i) Bi(z122) has
decomposition (1,1,0,0); (ii) Bo(z3zaxs5) has (2,0,1,0); and (iii) B3(zex7x819) has (0,1,2,1).

The sum of the values in By,’s decomposition is |By,| and the sum of the values in the i'" position
of the decomposition vectors is g;, the size of group i. If the set of block decompositions is regarded
as a matrix, then multiplying it by a vector (y1...,7n) produces a length tuple. For example,
multiplying the decompositions in this example by (2,2,2,1) produces the length tuple (4,6,7).
This represents the form of words that are produced when words of length ~; are substituted for all
the variables in group i, which here is 011, ... 014bboa 1, ... 026bb03 1, . .. 037, for some o; ; € X.

5. A word can match more than one length tuple, e.g., if p = z10z2 then w = cooo matches (2, 1) and (1, 2).

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Lemma 10 Let (p, R) € II with p having b blocks, B ...By, n the number of variable groups
induced by R, and (a1, ak2, . .., akn) the decomposition of block By. Then (my, ma, ..., my) €
LT (p, R) iff for each i € {1,...,n} there exists v; > 0 such that for all k € {1,...,b},my =
Be| + > i1 ik,

Proof Immediate from the definitions of length tuple and decomposition of a block. |

Our argument for the proof of Theorem 7 can be summarized as follows. First, due to Propo-
sition 6, we only need to prove the statement of Theorem 7 for the case p = p’. In particular,

we only need to prove that (L7(~l26)n (p,R) C L, (p,R')and ngn (p,R") C L, (p,R)) implies
L, (p,R)= Ly, (p,R'). It turns out that we can prove a stronger statement, namely:

(2) (p7 R) g L"'len (p’ R/) = Lrlen (p7 R) g LTlen (p7 R,) . (1)

rlen

Second, to obtain statement (1), we will prove the following two claims:

LIS >3and L (p,R) C L

Tlen

(p, R'), then LT®) (p, R) C LT(p, R'). (Theorem 15.)

Tlen

2. ¥ LT (p, R) C LT(p, R'), then L,,. (p,R) C L,,. (p, R). (Theorem 14.)

Let p = woBiwy ... wy_1Bywy be a pattern, where wg, w, € X*, wp € X7 for each k €
{1,...,b — 1}, and each By, is a block. Let (p, R), (p, R') € II, and n and n’ be the number of
variable groups induced by R and R’ respectively. The decomposition of block By by R is an
n-tuple (a1, ... ,ak,y) and its decomposition by R’ is an n’-tuple (ay, ;, .- ., aj /).

With b blocks, length tuples are b-tuples, and LT3 (p, R) will contain tuple (my, ..., my) if
and only if there exist vy1,...,7, (75 € {0,1}) such that for all & € {1...b}, my = |Bg| +
S | yiak; (Lemma 10). In particular, for each i € {1...n}, LT®)(p, R) contains length tuple
(IB1]| + a1, - -, | Bg| + aki, - - ., [Bp| + ap;) (obtained by setting «; = 1 and 7, = 0 for all h #).
We refer to this subset of LT (p, R) as LTb(age(,R).

Lemma 11 Let (p, R), (p, R') € IL. IfLTb(jse(,R) C LT(p, R), then LT (p, R) C LT (p, R').

Proof If LT\2) (p, R) C LT(p, R') then for each i € {1...n} there exist 5.1, ..., 5; v € N such
that, for every k € {1...b}, [By| + ax,; = [By| + D7, 050y ;. ie. api = D0 5i,ja§€7j.6

If (mq,...,my) is any length tuple in LT (p, R) then by Lemma 10 there exist v, ...,7, € N
such that, for all k € {1,...,b}, my = |By| + >, viak;. When LTb(jze(,R) C LT(p,R),
we can substitute 27/:1
Doim1 21 Yidigay ;= >2i_y Bjay ;» where B = 37" %;6;; > 0. In other words, my, =
Be| + 3274 Bjaﬁc’j, and therefore (Lemma 10) (my, ..., my) € LT (p, R'), as required. [|

/ : : n/ / _
dijay, ; for ay; in the summation term to get 37y i (374 dijay, ;) =

The proof of the following lemma is detailed in Appendix A.

6. 1 + 6, ; is the length of the words substituted for the variables in R’’s group j in order to produce the length tuple
(IB1] + @16, - [Br| 4 ar,i, - - -, [Bo| + ap,e).

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Lemma 12 Let (p, R) € II, where p = woBrwiBows . . . Bywy, for some wo, w, € X*, wy, € B
(k € {1,...,b— 1}), and for some blocks By, of variables. Then

LT‘len (p, R) = U {onmllemeQ R Zmbwb} .
<m17m27~~'mb>€LT(p’R)

Corollary 13 Let (p, R), (p,R') € IL If LT (p, R) C LT (p, R') then L., (p, R) C L,,_ (p,R).

Proof Immediate from Lemma 12. |
The next result follows directly from the combination of Lemma 11 and Corollary 13.

Theorem 14 Let (p, R), (p, R) € T If LT,”) (p, R) C LT(p, R') then Ly, (p, R) C Ly, (p, R').
The only step that remains to establish Theorem 7 is proving the following theorem.

Theorem 15 Suppose |X| > 3, and let (p, R), (p, R) € IL IfL,(ﬂle)n (p,R) C Ly, (p,R') then
LT3, (0, R) € LT(p, R).

Proof Let p = woBiw1Bows . .. Bywy, for some wo, wy, € X*, wp € X1 (k € {1,...,b—1}),
and for some blocks By, of variables. Suppose ngﬂ (p,R) C Ly, (p,R') and (my,...,myp) €
LTb(jge(p, R). We need to show that (my,...,mp) € LT (p, R').

To this end, fix a legal ¢2-substitution 6 for (p, R) wrt .y, with the length tuple (mq, ..., mp).
Specifically, choose in a way that, for all &, the block By, is replaced with azn’“, where a;, € X is
any symbol different from the first symbol in wy, as well as from the last symbol in wy_1. This is
possible since |X| > 3. Let w = 0(p). Since w € Lﬁfjn (p, R), we have w € L,,_ (p,R’). Hence,
there is a substitution 6’ that is legal for (p, R") wrt 7., and satisfies 6'(p) = w.

First, note that woaTl must be a prefix of 6’ (woB;). This is because a4 is different from the first
symbol in wy, which is the symbol following 6’(woB1) in w. Second, we argue that woa;" wias"
is a prefix of 6'(woBjw;B2). To see this, note that woa|" w; is a prefix of 6'(woBjwi). So, the
replacement 6’ makes for By begins somewhere after woay" w1 in w. Then it cannot end before the
end of woa|" wyay'? in w, since otherwise wy would start with aa. We apply the same argument in-
ductively to obtain that woa] ' wia3™? ... wy_1a; " is a prefix of §'(woBwiBs . . . wy_1By) for all

k € {1,...,b}. Analogously, one can argue that a, *wy, . .. a, w is a suffix of ¢'(Bywy, . .. Byws)
forall k € {1,...,b}. Together, these statements imply that §'(By) = 0(By) forall k € {1,...,b}.
Therefore (mq,...,myp) is also the length tuple associated with €', and thus (mg,...,m;) €
LT (p, R') as required. [|

A closer inspection of our proofs shows that not all legal ¢5-substitutions for two relational
patterns (p, R), (p, R') are relevant for testing their equivalence wrt 7;.,,. In fact, one can associate
with each group of variables a word of length 2 and a word of length 1. Then one only ever needs to
check legal substitutions that replace (i) variables inside a group with its associated word of length
2, and (ii) variables outside that group with its associated word of length 1. The number of such
substitutions is only linear in the number of groups in p, and thus linear in the length of p. If all the
resulting words for (p, R) belong to L, (p, R'), then L,,, (p, R) C Ly, (p, R’). To sum up:

10

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Corollary 16 Let |X| > 3. Then there is a computable mapping that assigns every relational
pattern (p, R) a set S(p, R) C ? (p, R) such that the following properties hold.

Tlen

1. Forany (p, R) € 11, the cardinality |S(p, R)| is linear in |p|.

2. Forany (p, R), (p', R') € 11, we have L,, (p,R) = Ly, (o', R")iff S(p,R) C Ly, (p',R)
and S(p',R') C L,,,, (p, R).

Using the same argument as in the proof of Theorem 4, we obtain the following corollary, which
states intuitively that relational pattern languages over the equal-length relation can be learned in
the non-clashing teaching model using linear-size teaching sets consisting of “short” words.

Corollary 17 Let |X| > 3. Then the class {L,, (p,R) | (p,R) is a relational pattern} has a
system of non-clashing teaching sets such that the non-clashing teaching set assigned to a language
L(p, R) is of size O(|p|) and contains only words of length at most 2|p|.

6. The Reversal Relation

As explained in Section 4, the word relation 7., does not satisfy Condition EQ with z = 1. The
question for the smallest z such that r,¢,, z fulfill Condition EQ is not resolved in our paper. We
conjecture that z = 2 suffices when the underlying alphabet 3 has at least 5 symbols. By contrast,
if [¥| = 2, not even z = 3 is sufficient, as the next theorem shows.

Theorem 18 Suppose |X| = 2. Then there exists a pattern p and relations R, R’ such that
LS’EZ@ (p7 R) g erev (p’ R/) and L£§2v (p7 R,) g LTTEv (p7 R)’ yet LTreu (p’ R) # LTTE’U (p7 R,)

Proof Let ¥ = {a,b} and let p = vj aaxaavyaayavszvy, where z,y,z,v; € X, a € X,
R ={(z,2),(z,y)},and R' = {(x,y), (z,v)}. Legal substitutions for (p, R) replace x and y with
the same word and z with its reversal, while those for (p, R') replace x and z with the same word and
y with its reversal. It remains to verify that (i) L,(EZU (p,R) C Ly, (p, R, and (ii) L&‘E)ev (p,R') C
L,,.,(p, R), while (iii) L,.., (p, R) # Ly,.,(p, R"). The details are given in Appendix B. [

By Proposition 6, two relational patterns (p, R), (p/, R') are non-equivalent under 7., if p #
p'; and this is already verified by testing ¢;-substitutions for (p, R) and (p’, R'). So, as in the
case of the equal-length relation, also for the reversal relation the only non-trivial cases of the
equivalence problem are those with two relational patterns using the same pattern string p but two
different relation sets R and R’. The two relational patterns (p, R) and (p, R’) used in the proof
of Theorem 18 have the interesting property that the relation sets R and R’ have exactly the same
groups of variables: both have the group {z,y, z} as well as singleton groups for the remaining
variables. It turns out that cases in which the two relational patterns have identical groups are the
only ones that will require more than ¢;-substitutions to decide equivalence wrt 7.,. In particular,
under the relation r,.,, two relational patterns (p, R) and (p, R") induce exactly the same groups of
variables unless their semantic difference is already witnessed by legal ¢;-substitutions:

Proposition 19 Ler (p, R) and (p, R') be two relational patterns. Let 7y, be the underlying word
relation. Then (Lg()w (p,R) C Ly, (p',R) and S (p',R) C Ly, (p, R)) implies that every

Trev

group of variables in (p, R) is a group of variables in (p, R') and vice versa.

The proof is straightforward and given in Appendix C.

11

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

7. A Note on Erasing Pattern Languages

In this paper, we studied only non-erasing relational pattern languages, i.e., substitutions that replace
some variables with the empty string are forbidden. When loosening this constraint, one obtains a
negative result on the analog of Condition EQ for the erasing case. This is observed already when
using equality as the underlying word relation r. For this purpose, we extend the definition of
substitution to map to X* instead of just ¥, and we denote the corresponding (erasing) language of
a relational pattern (p, R) over word relation r by L, ,(p, R). Likewise the notion of ¢, -substitution
is extended to that of an ¢}-substitution. The latter replaces each variable by a word whose length
is in {0,1,..., z} rather than just {1,...,z}. The set of words generated from (p, R) by legal

¢*-substitutions (wrt r) is denoted LSFZ,Z (p, R).

Condition EQ*. L,,.(p,R) = L..(p/,R') iff (L) (p,R) C L., (¢/,R) and LE)(p/,R") C
L, ,(p,R)), forall (p, R), (p,R') € IL

Theorem 20 Let |X| € {2,3,4}. Then there is no z € N such that ¢, z fulfill Condition EQ*.

Proof Note that the class of all languages { L« ., (p, R) | (p, R) is a relational pattern} is exactly
the class of erasing pattern languages as introduced by Shinohara (1982). For |X| € {2,3,4},
Reidenbach (2008) showed that this class does not possess a system of tell-tales.” That means,
assuming any enumeration (L;);cn of the class of erasing pattern languages, there is no family
(T3)ien such that, for all i € N, (i) T; C L;, and (ii) there isno j € Nwith 7; C L; C L;.

Now suppose there were a z € N such that r.y, z fulfill Condition EQ*. We claim that mapping
each L. ., (p, R) to the finite set T{,, r) = L) (p, R) would then yield a system of tell-tales for the

yTeq

class of erasing pattern languages. Clearly, (i) T(, gy € L., (p,). To show (ii), suppose there
is some (p', R') such that T(,, gy € Luy,,(p'; R') C Lsy,,(p, R). This implies Liﬁleq (p,R) =

Tiw iy € Luye,(p, R), s that we have both L), (p, R) C L., (v, R') and L), (', R) C
L, ., (p, R). By Condition EQ*, we obtain L, . (p, R) = Ls,. (¢, R'), so that (ii) is fulfilled.
Thus, there is a system of tell-tales for the class of erasing pattern languages, in contradiction to
Reidenbach’s result. Therefore, there is no z € N such that r.4, 2 fulfill Condition EQ*. |

8. Conclusions

With Condition EQ, we formulated a property that is of relevance for the design of efficient stan-
dardized tests for the equivalence of relational pattern languages, for the construction of tell-tale sets
in learning in the limit (see Theorem 20), as well as for the design of small teaching sets consisting
of simple examples. It was shown that substitutions replacing variables with at most two characters
suffice for testing the equivalence of patterns under the equal-length relation, for alphabets of size at
least 3, while not even three characters are enough under the reversal relation when the alphabet is
binary. The connection to tell-tales further provided a negative result on erasing pattern languages.
We conjecture that the reversal relation satisfies Condition EQ with z = 2 when the alphabet has at
least 5 symbols. That the alphabet size is critical for statements on pattern languages or for the sim-
plicity of their proofs is not uncommon (Bayeh et al., 2020; Reidenbach, 2008; Nessel and Lange,
2005); our results suggest similar issues for relational patterns.

7. The notion of tell-tale was introduced by Angluin (1980b) in the context of characterizing classes of languages that
are learnable in Gold’s model of identification in the limit from positive data.

12

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Acknowledgments

This research was supported through the Alberta Machine Intelligence Institute (Amii), through the
NSERC Discovery Grants program, through the NSERC Canada Research Chairs program, as well
as through the Canada CIFAR AI Chairs program. Moreover, the authors thank the anonymous
reviewers for comments that helped improve the presentation of this paper.

References

E. Alanazi, M. Mouhoub, and S. Zilles. The complexity of exact learning of acyclic conditional
preference networks from swap examples. Artif. Intell., 278, 2020.

D. Angluin. Finding patterns common to a set of strings. J. Comput. Syst. Sci., 21:46-62, 1980a.

D. Angluin. Inductive inference of formal languages from positive data. Inform. Control, 45:117-
135, 1980b.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, and T. Shinohara. A machine
discovery from amino acid sequences by decision trees over regular patterns. New Generation
Comput., 11:361-375, 1993.

P. Barcelo, L. Libkin, A. Widjaja Lin, and P.T. Wood. Expressive languages for path queries over
graph-structured data. ACM Trans. Database Syst., 37(4):31, 2012.

F. Bayeh, Z. Gao, and S. Zilles. Finitely distinguishable erasing pattern languages. Theor. Comput.
Sci., 808:38-73, 2020.

F. Cicalese, S. Filho, E.S. Laber, and M. Molinaro. Teaching with limited information on the
learner’s behaviour. In Proc. 37th Intl. Conf. on Machine Learning (ICML), pages 2016-2026,
2020.

R. Clifford, A. Wettroth Harrow, A. Popa, and B. Sach. Generalised matching. In SPIRE, pages
295-301. Springer, 2009.

S. Dasgupta, D. Hsu, S. Poulis, and X. Zhu. Teaching a black-box learner. In Proc. 36th Intl. Conf.
on Machine Learning (ICML), pages 1547-1555, 2019.

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Mach. Learn., 27(2):
125-138, 1997.

D. Freydenberger and D. Reidenbach. Bad news on decision problems for patterns. Inf. Comput.,
208:83-96, 2010.

Z. Gao, Z. Mazadi, R. Meloche, H.U. Simon, and S. Zilles. Distinguishing pattern languages with
membership examples. Inf. Comput., 256:348-371, 2017.

M. Geilke and S. Zilles. Learning relational patterns. In ALT, pages 84-98, 2011.

13

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

M. Geilke and S. Zilles. Polynomial-time algorithms for learning typed pattern languages. In LATA,
pages 277-288, 2012.

E.M. Gold. Language identification in the limit. Inform. Control, 10:447-474, 1967.

S.A. Goldman and M.J. Kearns. On the complexity of teaching. J. Comput. Syst. Sci., 50:20-31,
1995.

S.A. Goldman and H.D. Mathias. Teaching a smarter learner. J. Comput. Syst. Sci., 52(2):255-267,
1996.

D.G. Kirkpatrick, H.U. Simon, and S. Zilles. Optimal collusion-free teaching. In Proceedings of
the Intl. Conf. on Algorithmic Learning Theory (ALT), pages 506-528, 2019.

T. Koshiba. Typed pattern languages and their learnability. In EuroCOLT, pages 367-379. Springer,
1995.

S. Lange and S. Zilles. On the learnability of erasing pattern languages in the query model. In
Proceedings of the 14th International Conference on Algorithmic Learning Theory, pages 129—
143, 2003.

F. Mansouri, Y. Chen, A. Vartanian, J. Zhu, and A. Singla. Preference-based batch and sequen-
tial teaching: Towards a unified view of models. In Proc. 32nd Conf. on Neural Information
Processing Systems (NeurlPS), pages 9199-9209, 2019.

J. Nessel and S. Lange. Learning erasing pattern languages with queries. Theor. Comput. Sci., 348
(1):41-57, 2005.

R.P. Nix. Editing by example. ACM Trans. Program. Lang. Syst., 7:600-621, 1985.
D. Reidenbach. Discontinuities in pattern inference. Theor. Comput. Sci., 397:166—-193, 2008.

A. Shinohara and S. Miyano. Teachability in computational learning. New Generation Comput., 8:
337-347, 1991.

T. Shinohara. Polynomial time inference of extended regular pattern languages. In RIMS Symposium
on Software Science and Engineering, pages 115-127, 1982.

K. Wright. Inductive identification of pattern languages with restricted substitutions. In COLT,
pages 111-121, 1990.

X. Zhu, A. Singla, S. Zilles, and A.N. Rafferty. An overview of machine teaching. ArXiv,
abs/1801.05927, 2018.

Appendix A. Proof of Lemma 12

Lemma 12 Let (p, R) € 11, where p = woBiwiBows . . . Bywy, for some wo, w, € X, wy, € BT
(k € {1,...,b— 1}), and for some blocks By, of variables. Then

LT’le’n (p, R) = U {wOEmllemwg ... Zmbwb} .
<m17m27"'mb>ELT(p7R)

14

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

Proof We first show that, if (mq1,mo,...my) € LT (p, R), then {woX" w1 X2 wgy ... X wy} C
L Tlen (p ’ R)

To this end, let w be any word in {weX" w1 X2 wsy ... X w,}. We need to show w €
L, (p,R),i.e. that there is a legal substitution 6 of (p, R) such that §(p) = w.

Let n be the number of variable groups induced by R. Consider any block of variables By, =

Tp1T2 - - Tp, B, and let (a1, ..,akyn) be R’s decomposition of By. In particular, R stipu-
lates for each legal substitution 6 under 7jc,, that [0(xy1)| = |0(zr2)] = ... 10(Tkq,,)|, that
10(zk,a ,+1)| = 10(Th,ap ,+2)| = - - |0(Tk 0y, , +ay,,)|> and s0 on. (Note that we here implicitly use

Lemma 8 in order to shuffle the variables in a block into homogeneous groups without affecting the
resulting language.)

Because (m1,ma,...my) € LT (p, R), there existy; > 1 (¢« € {1...n}) such that, for all k €
{1,...,b}, my = > " | viak,;. Any substitution 6 that, for all & € {1,..., b}, substitutes a word of
length ~; for variables xy, 1, ... Thay - @ word of length v, for variables Thyap 415 - - - Thyag 1 +ax.2
etc., will satisfy the constraints in R and have the length tuple (my,ma, ... mp).

All that remains to be shown is that there exists such a # that produces w when applied to p.
But this is obvious because there are no constraints on the # other than the length constraints just
described.

Because w matches length tuple (mq,ma,...my) the section of w that corresponds to B =
Tk1Th2 - - Ty |B,| Degins at position ay = (Zf;é lw;|) + (Zf;ll my;) + 1. The following mapping
0 therefore satisfies the constraints in R and will generate w:

* 9(1'/671) = Way,y Way+15 - - -y Wag+vy1—1

* 9(£k,2) = Wap+v1s Wag+y1+1s - -+ Wag+2y1—1

L]

° 9($k7akz,1) = w()ék‘f’(ak,l_l)'h) wak+(ak,1_1)’Yl+1’ e 7wak+ak’17171
* e(xk,ak,1+1) = Way+ak,171> Wog+ag171+1 - - - Wag+ag,1v1+72—1

The opposite inclusion (Ly,,,, (P, B) € U, mo...myyer(p,) {W0ET 01X 2w3 ... X0 wy })
follows from the fact that w € L, (p, Q) implies that w matches at least one length tuple in
LT(p, Q). u

Appendix B. Proof of Theorem 18

Theorem 18 Suppose |X| = 2. Then there exists a pattern p and relations R, R’ such that
L'géf)zv (p’ R) g erev (p’ R/) al’ld L7(EZ'U (p? R,) g ere'u (p7 R)’ yet erev (p’ R) # Lr're'u (p? R,)

Proof Let ¥ = {a, b} and let
P = V140X aav aaly av3zvy ,

where z,y,z,v; € X, a € ¥, R = {(x,2),(z,9)}, and R' = {(x,y), (z,y)}. Note that legal
substitutions for (p, R) replace x and y with the same word and z with its reversal, while legal
substitutions for (p, R') replace and z with the same word and y with its reversal.

15

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

It remains to verify that (i) Lﬁrlv(,R) C L,,_,(p,R'), and (ii) Lrwu (p,R) C L., (p, R),
while (iii) Ly, (p, R) # Ly,.,(p.).

We begin by showing part (i). Any legal ¢3-substitution 6 for (p, R) that replaces = with a
palindrome is clearly also legal for (p, R'), so the only non-trivial cases are (x) = abb, (x) = aab,
0(z) = baa, O(x) = bba, O(x) = ab, and O(x) = ba.

When 6(z) = abb, 0(p,R) = w = wlaaaawgaaaw3w4, where 0(v;) = w;,
and the boxes indicate the locations of 6(z), #(y), and 6(z) in w. A substitution #’ that is legal for
(p, R') and produces w is the following: 6'(vi) = wia, §'(x) = bb, 0'(v2) = waa, §'(y) = bb,
0’ (v3) = ws, 0'(z) = bb, and €' (v4) = awy.

When 6(z) = aab, O(p, R) = w = wlaaaawgaaaw3w4, where 6(v;) = w;. A
substitution 6’ that is legal for (p, R") and produces w is the following 0'(v1) = wraa, 0 (x) = b,
0’ (vy) = woaa, ' (y) = b, 0'(v3) = ws, '(2) = b, and €' (v4) = aawy.

When 6(z) = baa, 0(p, R) = w = wlaaaawgaaaw3w4, where 0(v;) = w;.
substitution ¢’ that is legal for (p, R') and produces w is the followmg 0'(v1) = wy, 0'(x) = b
0’ (v2) = aaws, ' (y) = b, 0'(v3) = aawsaa, 0'(2) = b, and &' (vy) = wy.

When 0(x) = bba, 0(p, R) = w = wlaaaanaaaw3w4, where 0(v;) = w;.
substitution 6’ that is legal for (p, R') and produces w is the followmg 0'(v1) = wy, 0'(x) = bb
0’ (v2) = aws, 0'(y) = bb, 0'(v3) = awsa, §'(z) = bb, and €' (v4) = wy.

When 0(z) = ab, (p,R) = w = wlaaaawgaaaw3w4, where 0(v;) = w;.
substitution @’ that is legal for (p, R") and produces w is the following: #'(v1) = wia, 0'(z)
0’ (v2) = waa, 0'(y) = b, 0'(v3) = ws, &' (2) = b, and 0’ (v4) = aws.

When 0(z) = ba, (p,R) = w = wlaaaawgaaaw3w4, where 0(v;) = w;.
substitution @’ that is legal for (p, R') and produces w is the following: 6'(v1) = w1, 0'(z)
0’ (v2) = aws, 0'(y) = b, 0 (v3) = awsa, '(z) = b, and €' (v4) = wy.

Part (ii) is verified in a similar way. Any legal /3-substitution 8’ for (p, R) that replaces x
with a palindrome is clearly also legal for (p, R), so the only non-trivial cases are 6'(x) = abb,
0'(z) = aab, §'(x) = baa, '(x) = bba, ' (x) = ab, and ' (x) = ba.

When 0'(z) = abb, &' (p,R') = w = wlaaaawgaaaw3w4, where 6’ (v;) = w;,
and the boxes indicate the locations of ' (x), 6'(y), and #’(z) in w. A substitution 6 that is legal
for (p, R) and produces w is the following: 0(vi) = wia, O(x) = bb, O(va) = wa, O(y) = bb,
0(v3) = awsa, 6(z) = bb, and O(v4) = wy.

When ' (x) = aab, ¢'(p,R') = w = wlaaaawgaaaw3w4, where 0'(v;) =
A substitution 6 that is legal for (p, R) and produces w is the following: 0(vi) = wiaa, 8(x) = b,
0(ve) = we, O(y) = b, B(v3) = aawsaa, (z) = b, and O(vs) = wy.

When ¢'(x) = baa, ¢'(p,R') = w = wlaaaanaaaw3w4, where 0'(v;) = w;.
A substitution 6 that is legal for (p, R) and produces w is the following: 6(vi) = w1, 6(z) = b,
0(ve) = aawqaa, 6(y) = b, 6(vs) = ws, 6(z) = b, and O(v4) = aawy.

When 0'(z) = bba, ' (p,R') = w = wlaaaawgaaaw3w4, where ¢ (v;) = w;.
A substitution 6 that is legal for (p, R) and produces w is the following: 6(vy) = w1, 6(x) = bb,
0(v2) = awsa, O(y) = bb, O(vs) = w3, 6(z) = bb, and O(vy) = awy.

When 0'(z) = ab, ¢'(p,R') = w = wlaaaawgaaaw3w4, where 0'(v;) = w;. A
substitution 6 that is legal for (p, R) and produces w is the following: 6(v1) = wia, 6(z) = b,
O(va) = we, O(y) = b, O(v3) = awsa, 8(z) = b, and O(vy) = wy.

S

16

DISTINGUISHING RELATIONAL PATTERN LANGUAGES WITH SHORT STRINGS

When 6'(z) = ba, ¢'(p,R') = w = wlaaaawgaaaw3w4, where 6/ (v;) = w;. A
substitution € that is legal for (p, R) and produces w is the following: 6(vi) = wi, 6(z) = b,
0(ve) = awsa, O(y) = b, O(vs) = ws, O(z) = b, and O(v4) = awy.

Part (iii) is witnessed by the word w = baa| babb jaabaal babb lab| bbabp € L,,., (p, R), created
by 6(v;) = b, 8(x) = 6(y) = babb, and §(z) = bbab. To see that there does not exist a §’ such that
0'(p) = w and ¢’ is legal for (p, R), note that both p and w contain exactly three occurrences of the
substring aa. Therefore, any substitution generating w from p must replace x with babb, but then
cannot replace y with the reversal bbab. |

Appendix C. Proof of Proposition 19

Proposition 19 Let (p, R) and (p, R') be two relational patterns. Let ye, be the underlying word
relation. Then (Lglv (p,R) C Ly, (p',R) and Lt (p',R) C Ly, (p, R)) implies that every

Trev

group of variables in (p, R) is a group of variables in (p, R') and vice versa.

Proof By contradiction. Wlog, suppose z,y are variables in p such that and y are in the same
group in R but not in R’. Then there is a legal ¢;-substitution 6 for (p, R) that replaces x with
a and y with b, for some a,b € ¥, a # b. Because the length of w = 6(p) is |p|, € is the only
substitution of variables in p that generates w from p. Since 6 is not legal for (p, R), we obtain that

w € L'E'}"Zv (p7 R/) \ Lro"ev (p7 R) .

17

	Introduction
	Preliminaries
	Learning-theoretic Implications of the Decidability of the Equivalence Problem
	1-Substitutions
	The Equal-Length Relation
	The Reversal Relation
	A Note on Erasing Pattern Languages
	Conclusions
	Proof of Lemma 12
	Proof of Theorem 18
	Proof of Proposition 19

