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Abstract
Multi-agent reinforcement learning (MARL) problems are challenging due to information asymme-
try. To overcome this challenge, existing methods often require high level of coordination or com-
munication between the agents. We consider two-agent multi-armed bandits (MABs) and Markov
decision processes (MDPs) with a hierarchical information structure arising in applications, which
we exploit to propose simpler and more efficient algorithms that require no coordination or commu-
nication. In the structure, in each step the “leader” chooses her action first, and then the “follower”
decides his action after observing the leader’s action. The two agents observe the same reward
(and the same state transition in the MDP setting) that depends on their joint action. For the bandit
setting, we propose a hierarchical bandit algorithm that achieves a near-optimal gap-independent
regret of Õ(

√
ABT ) and a near-optimal gap-dependent regret of O(log(T )), where A and B are

the numbers of actions of the leader and the follower, respectively, and T is the number of steps.
We further extend to the case of multiple followers and the case with a deep hierarchy, where we
both obtain near-optimal regret bounds. For the MDP setting, we obtain Õ(

√
H7S2ABT ) regret,

where H is the number of steps per episode, S is the number of states, T is the number of episodes.
This matches the existing lower bound in terms of A,B, and T .
Keywords: hierarchical information structure, multi-agent online learning, multi-armed bandit,
Markov decision process

1. Introduction

Multi-agent reinforcement learning (MARL) has received great attention due to its wide variety
of applications and the tremendous advances in single-agent RL techniques (Zhang et al., 2020a).
In a multi-agent environment, each agent has different observations and may have different sets
of information. This is referred to as the information asymmetry property (Chang et al., 2021).
One straightforward method used with information asymmetry is to let every agent concurrently
learn based on its own information using single-agent algorithms. However, this creates the non-
stationarity issue since the effective environment observed by each agent is time-varying, which
sometimes causes non-convergence of the algorithms. Another line of solutions is to enforce coor-
dination among agents, essentially transforming a multi-agent system back to (or making it more
similar to) a single-agent one. One way to achieve this is through communication (Shahrampour
et al., 2017; Zhang et al., 2021a), which introduces extra costs that may be intolerable in some
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cases. A more broadly applicable scheme is through the common information (CI) approach (Nay-
yar et al., 2013; Chang et al., 2021; Dibangoye and Buffet, 2018). The CI approach relies on a set
of CI shared by all agents, and all agents need to agree on a protocol that specifies the joint policy
updates of all agents upon receiving a certain piece of CI. With this protocol, an agent may be able
to infer the actions taken by other agents without observing them. However, this approach has sev-
eral shortcomings, making it hard to apply in practice: it has high computational complexity (since
every agent has to perform policy updates for all the other agents), and it requires all agents to have
very tight coordination (e.g., sharing randomization seeds in each round and knowing all details in
the algorithms of other agents), which may be infeasible if synchronization among agents or agent
privacy is an issue.

In this paper, we address the aforementioned issues in a special but widely applicable MARL
setting. We consider MARL team problems1 with a particular hierarchical information structure
between agents under the settings of multi-agent multi-armed bandits (MAMABs) and multi-agent
Markov decision processes (MDPs). In this structure, decisions are made sequentially, and a de-
cision maker has all the decisions from decision makers that act before it in the sequence. In the
two-agent case, one of the agents (the “leader”) chooses her action first, while the other agent (the
“follower”) chooses his action after observing the leader’s action. This setting is similar to the
Stackelberg game but with the players cooperating to achieve the same objective. Such hierar-
chical information structure arises in many applications. For example, in a cognitive radio (CR)
wireless network, the primary user (PU) first decides its resource allocation scheme; then based on
this scheme the secondary user (SU) chooses its own resource allocation scheme that minimally
interferes with the PU’s transmission (Ning et al., 2020). While this problem can also be solved
using the CI approach or other MAMAB algorithms (Kalathil et al., 2014; Chang et al., 2021), as
discussed earlier, they are intensive either in computation or in communication. In this work, we
exploit the hierarchical information structure, and propose simpler and more efficient MARL algo-
rithms that require neither communication nor explicit coordination, while achieving near-optimal
regret bounds. Such algorithms could be much easier to deploy in practice.

In more detail, we first consider the two-agent bandit setting, where both agents observe the
same reward determined by their joint action, but only the follower observes the leader’s action but
not vice versa. For this setting, we propose a decentralized algorithm that achieves a near-optimal
gap-independent regret bound of Õ(

√
ABT )2 and a gap-dependent bound of O(log(T )), where A

and B are the numbers of actions of the leader and the follower, respectively, and T is the number
of time-steps. In our method, the leader performs an Upper Confidence Bound (UCB)-based algo-
rithm (Auer et al., 2002a) with a modified bonus term related to the follower’s regret bound, while
the follower can use any algorithm that achieves sub-linear regret. Without explicit coordination, the
agents perform joint exploration over the action space and learn with low regret. Interestingly, our
hierarchical bandit setting mathematically coincides with the bandit-over-bandit framework consid-
ered in model selection (Agarwal et al., 2017; Arora et al., 2021; Cutkosky et al., 2021), although
the two problems are motivated by very different applications. Our algorithm can be readily used
for model selection, and our gap-dependent bound (Theorem 2) answers the open question in (Arora
et al., 2021) by improving their regret bound by a factor of log(T ) (to our knowledge, (Arora et al.,

1. We consider the agents share the same utility, with reward samples commonly observed. This reward structure is a
special case of potential games (Leonardos et al., 2021), where there exists a global potential function that reflects
the change in any agent’s utility from any unilateral deviation.

2. We use Õ(·) to hide poly-logarithmic factors.
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2021) is the only work on model selection that achieves a logarithmic gap-dependent bound). We
further extend our idea to two more complicated settings. The first is the case of multiple followers,
where each follower only observes its own reward while the leader only observes the sum of the
rewards of all followers. The other is the case with a deep hierarchy, where more than two agents
make decisions sequentially based on the decisions made by prior agents, and all agents observe the
same reward. In both extensions, our algorithms also achieve near-optimal regret bounds.

Next, we generalize the above idea to the two-agent MDP setting. In this setting, the state
evolution and reward observable by both agents are sampled from distributions depending on the
current state and the joint action of the agents; as before, the follower observes the leader’s action
but not vice versa. Similar to the bandit case, we propose a decentralized learning method that
enables the agents to perform joint exploration without communication or explicit coordination.
Our algorithm is based on an intriguing combination of two exploration strategies developed for
single-agent reinforcement learning: UCB-H (Jin et al., 2018) and UCBVI (Azar et al., 2017). By
letting the leader execute a UCB-H-styled algorithm and the follower use a UCBVI-styled one, the
agents jointly achieve a regret upper bound of Õ(

√
H7S2ABT ) (H is the horizon length, and T

is the number of episodes), while the regret lower bound is Ω(
√
H2SABT ), inherited from the

single-agent MDP setting (Azar et al., 2017). Tightening our bound without sacrificing the benefit
of decentralized learning is left as an open question.

Related work. Algorithms for various MAMAB settings have gained increasing interest recently,
but there is only a limited literature that investigates the effects and challenges caused by informa-
tion asymmetry in the setting where agents jointly interact with the environment as is common in
MARL applications, with the corresponding MDP setting receiving even less attention. Chang et al.
(2021) study the MAMAB setting where the reward is determined by the joint action with three
types of information asymmetry: unobserved actions and common rewards, observed actions and
independent rewards, and unobserved actions and independent rewards; the first two settings can be
solved by the notion of the CI approach3, while in the last setting they propose an “explore then com-
mit” type algorithm that achieves an O (log(T )) regret. Bai et al. (2021) consider sample-efficient
learning in bandit games and bandit-RL games. Their bandit game corresponds to our hierarchical
bandits, but under a general reward setup (i.e., in their setting, the rewards of the two agents have
different means, unlike the common-reward setting we consider here). They consider centralized
and offline learning assuming access to a sample generator, while we consider decentralized and
online learning through interactions with the environment. While their results imply a worst case
information-theoretic gap to the Stackelberg game value that cannot be closed, it is not the case in
our team problem. On the other hand, our hierarchical MDP has a more general transition structure
than their bandit-RL game (in their setting, only the follower is involved in an MDP). Arora et al.
(2021) study meta-learning over bandit algorithms, which exhibits a similar mathematical structure
to our hierarchical bandit problem, though from a very different perspective. Our hierarchical ban-
dit algorithm can be readily used as an algorithm for their setting, and our gap-dependent bound
improves theirO(log2(T )) bound by a factor of log(T ), resolving their question on the tightness of
their result.

Most papers on MAMAB consider a set of agents pulling the same set of arms simultaneously,
and in most of them the agents coordinate through real-time communications to collaboratively find
the optimal policy, with a few exceptions (Bistritz and Leshem, 2021; Bistritz et al., 2021; Bubeck

3. Their mUCB algorithm for the first setting is equivalently the CI approach in combination with the UCB1 algorithm.
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et al., 2021). In the former, the communication resource is either costly (Madhushani and Leonard,
2020), limited by budget (Lalitha and Goldsmith, 2021; Vial et al., 2021; Sankararaman et al.,
2019; Chawla et al., 2020), or constrained through communication networks (Landgren et al., 2021;
Shahrampour et al., 2017), so the main focus is on designing communication efficient schemes
that achieve the same performance as if there were no information asymmetry. In another related
thread, referred to as the matching bandits problem, agents choosing the same arm collide and obtain
zero rewards (Kalathil et al., 2014; Bistritz and Leshem, 2021; Bistritz et al., 2021); here and in a
few other works (Shahrampour et al., 2017), different agents get different distribution of rewards
from the same arm, while in other referenced work they get independent and identically distributed
samples from the same arm.

Regret minimization in MARL for Markov games is in general challenging due to the fact that
every agent faces a non-stationary environment. It has been shown in (Abbasi-Yadkori et al., 2013;
Radanovic et al., 2019; Tian et al., 2021) that for single-agent non-stationary MDP problems, to
have a sub-linear-in-T regret bound against the best policy is both computationally and statistically
hard. Therefore, to establish meaningful guarantees in MARL while keeping the algorithm effi-
cient, special properties of the game have to be considered. Radanovic et al. (2019) consider the
same two-agent collaborative setting as ours, but requires that the agents exchange their policies
after each episode. Tian et al. (2021) study another two-agent setting where each agent is agnostic
about the actions of the other; however, their algorithm is conservative (with the goal of guard-
ing against an adversarial opponent) and does not exploit the cooperative setting of our problem.
Leonardos et al. (2021); Zhang et al. (2021b); Fox et al. (2021); Ding et al. (2022); Zhang et al.
(2022) study multi-agent Markov potential games (more general than the team problem) and estab-
lish finite convergence bounds; however, their algorithm does not handle the state-space exploration
issue (which is a key element in our work) so their regret bound has an extra problem-dependent
factor; besides, only convergence to local Nash equilibria is shown, and there is no guarantee about
attaining global optima. Another line of research studies efficient learning in general-sum Markov
games with state-space exploration (Song et al., 2021; Jin et al., 2021; Mao and Başar, 2022; Mao
et al., 2021). However, they consider convergence to (coarse) correlated equilibrium, which is again
a weaker equilibrium concept than the global optimum when specialized to the common-payoff
setting we consider.

2. Preliminaries

We first define some notation. For a positive integer n, we denote [n] = {1, 2, . . . , n}. For an
integer n, we define n+ = max{n, 1}.

Two-agent hierarchical bandits. Consider a two-agent MAB where the rewards are decided by
the joint action of the two agents U1 (leader) and U2 (follower). Let A and B be the numbers of
actions (which are arms in the context) of U1 and U2, respectively, and T be the number of time
steps. Without loss of generality, we assume that A,B ≤ T . Under the hierarchical information
structure, in round t ∈ [T ], U1 first chooses an action at ∈ [A]; after observing U1’s action at,
U2 then chooses another action bt ∈ [B]. However, U1 cannot observe U2’s action bt. These two
actions jointly generate a noisy reward rt ∈ [0, 1] with expectation µat,bt , and both agents observe4

4. Our analysis can straightforwardly handle a more general case where U1 and U2 receive different (independent)
noisy copies of the reward with the same mean. For simplicity, we assume that they receive the same copy.
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rt. For ease of presentation, we assume without loss of generality that the best action of U2 given
any choice of U1 is indexed by 1, i.e., µa,1 ≥ µa,b for all a, b; similarly, the best action of U1 is
indexed by 1, i.e., µ1,1 ≥ µa,1 for all a. Then the (common) goal of the agents is to minimize the
pseudo-regret defined as follows:

Reg(T ) =
T∑
t=1

(µ1,1 − µat,bt).

Two-agent hierarchical MDPs. Consider a two-agent H-step finite-horizon MDP where the re-
wards and state transitions depend on the joint action of the two agents U1 and U2, with the process
run over T episodes. This generalizes the previous two-agent bandit setting. The state space is
S, with a number of S = |S| states. In each state, U1 and U2 choose actions from [A] and [B],
respectively. We assume that S,A,B,H are all upper bounded by T . Every episode t starts with an
initial state st,1 ∈ S . In the h-th step of the t-th episode, the agents first observe st,h ∈ S . Under
the hierarchical information structure, U1 chooses an action at,h ∈ [A], followed by U2 choosing
another action bt,h ∈ [B] upon seeing at,h. After the actions are chosen, both agents receive a
reward rt,h ∈ [0, 1] with E[rt,h] = R(st,h, at,h, bt,h), and then the state transitions to the next state
st,h+1 ∼ P (·|st,h, at,h, bt,h). The episode ends right after the state transitions to st,H+1. In the
RL setting we consider, rewards are commonly observed by both agents, but they do not know the
reward function R or the transition probability P .

An H-step policy for U1 can be represented as π1 = {π1
1, . . . , π

1
H}, where π1

h : S → [A] spec-
ifies the choice of her action on each state when she is at step h; a policy for U2 can be represented
as π2 = {π2

1, . . . , π
2
H}, where π2

h : S × [A] → [B] specifies the choice of his action on each state
and under each possible choice of U1, when he is at step h. We define the state value function at
step h under a policy pair (π1, π2) as

V π1,π2

h (s) = E

[
H∑

k=h

R(sk, ak, bk)

∣∣∣∣ sh = s, ak = π1
k(sk), bk = π2

k(sk, ak), sk+1 ∼ P (·|sk, ak, bk),∀k ≥ h

]
.

with V π1,π2

H+1 (·) ≜ 0. Also, we define the state-action value function as

Qπ1,π2

h (s, a, b) = R(s, a, b) + E

[
V π1,π2

h+1 (sh+1)

∣∣∣∣sh+1 ∼ P (·|s, a, b)

]
.

The optimal value functions are then given by V∗,h(s) = maxπ1,π2 V π1,π2

h (s) and Q∗,h(s, a, b) =

maxπ1,π2 Qπ1,π2

h (s, a, b). By dynamic programming, we have the following for all h, s, a, b:

V∗,h(s) = max
a,b

Q∗,h(s, a, b) and Q∗,h(s, a, b) = R(s, a, b) + Es′∼P (·|s,a,b)
[
V∗,h+1(s

′)
]
,

with V∗,H+1(·) ≜ 0. We further define Q∗,h(s, a) = maxbQ∗,h(s, a, b). With this notation, we can
write the regret of the agents as

Reg(T ) =
T∑
t=1

(
V∗,1(st,1)− V

π1
t ,π

2
t

1 (st,1)
)
.
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Benchmark. In two-agent cases, there are three obvious types of information structure in terms
of action information asymmetry: the complete information setting, the no information setting, and
the hierarchical setting considered in this paper. Learning under the complete information setting is
equivalent to the case of single-agent with action space being the product space [A] × [B]; single-
agent results suggest lower regret bounds of Ω(

√
ABT ) for the bandit setting and Ω(

√
H2SABT )

for the MDP setting, which are achievable by the state-of-the-art algorithms (Auer et al., 2002a;
Azar et al., 2017). Since both the other two information structures, i.e. the no information set-
ting and the hierarchical setting, also involve exploring among the AB pairs of actions but with
less information, they inherit the lower bounds. Interestingly, with higher complexity and stronger
assumptions, one may achieve the lower regret bounds in these two settings as well using the CI
approach. For details see Appendix A.

3. Learning Hierarchical Bandits

Since U1 does not observe U2’s actions, it is unclear how U1 can utilize or interpret the samples
she receives. For example, if U1 receives a low reward, one possibility is that U1 has chosen a bad
action, so whatever action U2 chooses, the reward is going to be low; but it is also possible that the
action chosen by U1 is actually good (i.e., the reward would be high if U2 chose a good subsequent
action), but U2 has chosen a bad subsequent action. If the identity of U2’s action is not revealed,
in general, U1 cannot distinguish these two cases. As mentioned in Section 1, this issue can be
resolved by the CI approach, which enables U1 to infer the actions taken by U2, even if they are not
directly observable.

We show that providing U2 executes a no-regret algorithm (i.e., an algorithm that always guar-
antees a sub-linear-in-T regret), we can actually make the agents converge to playing optimal actions
while keeping U1 agnostic to U2’s actions during the whole process. The key observation is that
when U2 is a no-regret learning agent, his choices of action under a given action of U1 will converge
to the best one, hence avoiding the second possibility mentioned above in the long run.

The following Assumption 1 specifies the condition that U2’s algorithm should satisfy, for which
using an MAB algorithm with near-optimal, high-probability regret guarantee for each action a ∈
[A] is enough. Some existing algorithms satisfying this assumption are: UCB (Agrawal, 1995; Auer
et al., 2002a), KL-UCB (Garivier and Cappé, 2011), EXP3.P (Auer et al., 2002b), EXP3-IX (Neu,
2015). 5

Assumption 1 U2 guarantees the following for some universal constant κ ≥ 1 with probability at
least 1− δ:

∀t, a,
t∑

τ=1

I[aτ = a](µa,1 − µa,bτ ) ≤

√√√√κB
t∑

τ=1

I[aτ = a] log(T/δ).

With Assumption 1, our algorithm is presented in Algorithm 1. In Algorithm 1, U2 simply
executes the specified algorithm. On the other hand, U1 follows a selection rule that is very similar

5. While in Assumption 1 we assume that U2 uses a near-optimal algorithm for MAB for ease of presentation, our
framework can also handle the case where he uses some sub-optimal algorithm (the final regret bound will also be
sub-optimal though).
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Algorithm 1 UCB for Hierarchical Bandits
1 define: c > 0 is a universal constant.
2 U2 starts running algorithms satisfying Assumption 1 (or Assumption 2) with some κ ≥ 1 (we

denote the instance of algorithm under action a ∈ [A] as ALG(a)).
3 for t = 1, 2, . . . , T do
4 U1 chooses at ∈ argmax

a∈[A]
µ̂t(a)+

√
κB log(T/δ)

nt(a)+
+c
√

log(T/δ)
nt(a)+

. (µ̂t(a), nt(a) are defined in (1))

5 After observing at, U2 calls ALG(at), which outputs an action bt.
6 U2 chooses bt.
7 U1 and U2 observe rt, and U2 updates ALG(at) using rt.

end

to the UCB1 algorithm of Auer et al. (2002a). Specifically, in the beginning of each round t, U1
calculates the empirical mean of each of her actions:

µ̂t(a) =
1

nt(a)+

t−1∑
τ=1

I[aτ = a]rτ , where nt(a) =

t−1∑
τ=1

I[aτ = a] (1)

Also, U1 calculates the bonus for action a, which is simply the average regret upper bound of U2 on
action a up to time t− 1 (by Assumption 1, the regret on action a up to time t− 1 is upper bounded
by
√
κBnt(a) log(T/δ)), plus a term given by the Hoeffding bound (see Line 4 of Algorithm 1).

Then U1 simply chooses the arm with the largest empirical mean plus bonus. While appearing
similar, it is not the same as the standard UCB1 algorithm. First, the empirical mean µ̂t(a) is an
average over samples that are not identically distributed since each rt also depends on the action
chosen by U2. Second, the construction of the bonus term involves the regret upper bound of U2,
in addition to another term implied by concentration inequalities. However, our algorithm is indeed
inspired by the UCB1 algorithm — in UCB1, the bonus term is designed to fulfill the following
two properties: 1) for every arm a, the empirical mean of reward plus bonus should upper bound
the true mean of reward with high probability; 2) the sum of bonus of the chosen arms in rounds
t = 1, 2, . . . , T should be sub-linear in T . With both properties, the UCB1 algorithm is guaranteed
to have sub-linear regret.

In our case, we shall identify µa,1 as the “true mean of reward” of arm a. To satisfy the first
property above, we would like to add a bonus term that upper bounds µa,1 − µ̂t(a). Note that µ̂t(a)
is the mean of reward of U2 in the rounds when U1 chooses a, so µa,1− µ̂t(a) is simply the average
regret of U2 under U1’s action a. Therefore, adding the regret bound of U2 as the bonus of U1 gives
the first property above. The second property is also satisfied as long as U2 uses algorithms with
sub-linear regret guarantees.

We remark that it is important for U1 to use a slightly larger bonus (i.e., Õ
(√

B/nt(a)
)
) rather

than the standard one she would use when she plays alone (i.e., Õ
(√

1/nt(a)
)
). This extra

√
B

factor makes the bonus of U1 decrease at a slower rate, leading to more exploration on each of U1’s
actions, and allowing U2 to have enough time to find the best action under each of U1’s actions.

The analysis of this algorithm is straightforward given the above intuition, which we show in
the following theorem.
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Theorem 1 Suppose that U2 uses algorithms that satisfy Assumption 1. Then Algorithm 1 guar-
antees that with probability at least 1−O(δ), Reg(T ) = O

(√
ABT log(T/δ)

)
.

Proof

T∑
t=1

(µ1,1 − µat,bt)

≤
T∑
t=1

(
1

nt(1)+

t−1∑
τ=1

I[aτ = 1]µ1,bτ +

√
κB log(T/δ)

nt(1)+
− µat,bt

)
(by Assumption 1 with a = 1)

≤
T∑
t=1

(
µ̂t(1) + c

√
log(T/δ)

nt(1)+
+

√
κB log(T/δ)

nt(1)+
− µat,bt

)
(by Lemma 10)

≤
T∑
t=1

(
µ̂t(at) + c

√
log(T/δ)

nt(at)+
+

√
κB log(T/δ)

nt(at)+
− µat,bt

)
(by the selection rule of at)

=

T∑
t=1

(µ̂t(at)− µat,bt) +O
(√

ABT log(T/δ)
)

=
∑
a∈[A]

T∑
t=1

I[at = a] (µ̂t(a)− µa,1)︸ ︷︷ ︸
term1

+
∑
a∈[A]

T∑
t=1

I[at = a] (µa,1 − µat,bt)︸ ︷︷ ︸
term2

+O
(√

ABT log(T/δ)
)

Notice that term2 = O
(∑

a∈[A]

√
nT+1(a) log(T/δ)

)
= O

(√
ABT log(T/δ)

)
due to Assump-

tion 1. Besides, by Azuma’s inequality, with probability at least 1−O(δ), for all t and a,

µ̂t(a) =

∑t−1
τ=1 I[aτ = a]rτ

nt(a)+
≤
∑t−1

τ=1 I[aτ = a]µa,bτ

nt(a)+
+O

(√
log(T/δ)

nt(a)+

)
≤ µa,1 +O

(√
log(T/δ)

nt(a)+

)
.

Therefore, term1 ≤ O
(∑

a∈[A]

∑T
t=1 I[at = a]

√
log(T/δ)
nt(a)+

)
= O

(√
AT log(T/δ)

)
. Combining

everything finishes the proof.

For MAB, there are also algorithms with refined gap-dependent regret bounds with onlyO(log(T ))
dependence on T (e.g., the UCB1 algorithm of Auer et al. (2002a)). Below we show that if U2 ex-
ecutes such algorithms, the overall regret can also be of order O(log(T )). Such algorithms satisfy
the following assumption:

Assumption 2 U2 guarantees the following for some universal constant κ ≥ 1 with probability at
least 1− δ:

∀t, a,
t∑

τ=1

I[aτ = a](µa,1 − µa,bτ ) ≤ min

κ
∑
b∈B×

a

log(T/δ)

µa,1 − µa,b
,

√√√√κB

t∑
τ=1

I[aτ = a] log(T/δ)

 ,

where B×a ≜ {b ∈ [B] : µa,1 − µa,b > 0} is the set of sub-optimal arms of U2 under U1’s action a.

8
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With Assumption 2, Algorithm 1 has the following guarantee:

Theorem 2 Suppose that U2 uses algorithms that satisfy Assumption 2. Then Algorithm 1 guar-
antees that with probability at least 1−O(δ),

Reg(T ) = O

∑
a∈A×

B log(T/δ)

µ1,1 − µa,1
+
∑
a∈A◦

∑
b∈B×

a

log(T/δ)

µa,1 − µa,b

 ,

where A◦ ≜ {a ∈ [A] : µ1,1 = µa,1}, A× ≜ {a ∈ [A] : µ1,1 − µa,1 > 0} = [A]\A◦, and B×a is as
defined in Assumption 2.

The proof is deferred to Appendix B. In Theorem 2, the regret consists of two parts. For an action
a ∈ [A] that is sub-optimal (i.e., µ1,1 > µa,1), the regret scales with B

µ1,1−µa,1
; for optimal ones

(i.e., µ1,1 = µa,1), the regret scales with
∑

b∈B×
a

1
µa,1−µa,b

, i.e., the sum of inverse gaps of all U2’s
sub-optimal actions under a.

Our hierarchical bandit setting coincides with the model selection problem studied in Arora
et al. (2021). Our result in Theorem 2 improves their results in two ways. First, when using UCB-
based algorithms as the base algorithm, our regret bound scales with log(T ), while theirs scales with
log2(T ). This answers their open question regarding whether log2(T ) is tight (see the discussion in
their Section 4.1). Second, while they assume that U1’s optimal action is unique (i.e., for all a ̸= 1,
µ1,1 > µa,1), we do not make such an assumption.

3.1. Extensions

Multiple Followers Case Our framework can be easily extended to the case when there is a leader
and multiple followers where each of the followers’ rewards is only a function of the choice of the
leader and the individual follower as well as independent across others, and the reward of the leader
is an average/sum of that of all the followers. This is particularly useful in modeling networks with
a star topology, e.g., federated learning systems (with leader being the server and followers being
the clients), mobile networks (with leader being the base station/access point and followers being
the mobile users), etc. In these networks, it is usually the case that the followers are heterogeneous
and move into or out of the networks dynamically. Since our proposed method does not require
per-round coordination and treats the algorithms of the followers as black boxes, the coordination
overhead for the leader can be relatively low. Besides, our algorithm largely preserves privacy for
the followers, which is also much more preferable than other schemes where the leader is required
to know the algorithm of the followers. In Appendix C, we show that near-optimal regret bounds
can also be obtained in this case with an idea similar to that presented in Section 3.

Deep Hierarchy Case While in Section 3 we consider a two-layer model which only involves U1
and U2, the idea can be generalized to the case where there are D > 2 layers. In other words, in
each round, the decision is made jointly by D agents with a fixed ordering, where agents making
decision earlier cannot observe the actions taken by agents making decisions later. Such a protocol
may be useful in modeling networks with deeper hierarchy, e.g., mobile networks where macro-,
micro-, pico-, and femto- base stations are overlaid to serve user equipments (Jain et al., 2011; Wei
and Liao, 2017; Sigwele et al., 2020). In Appendix D, we design a multi-layer UCB algorithm for
this setting, and show near-optimal regret bounds for it.

9
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4. Learning Hierarchical MDPs

This setting is much more challenging than the hierarchical bandit setting. First, notice that in this
setting, both agents are facing non-stationary transition and reward because of the dependence of
these quantities on the policy of the other agent, which varies with time. Obtaining regret bounds
in such time-varying MDPs is in general hard (Abbasi-Yadkori et al., 2013; Radanovic et al., 2019;
Tian et al., 2021), except for problems with special structures or extra assumptions (Radanovic et al.,
2019; Tian et al., 2021; Leonardos et al., 2021) like our case here. Second, notice that in the bandit
case, given any choice of U1, U2 is essentially facing a stationary MAB problem, and thus we can
directly apply existing theorems for standard MAB; however, in the MDP case, the world that U2
sees on a certain step is still affected by the non-stationarity of U1’s policies in future steps. In this
case, standard analysis for stationary MDPs cannot be directly applied.

An initial idea to deal with this setting is to let both agents run existing UCB-based algorithms
(e.g., UCBVI (Azar et al., 2017), UCB-H (Jin et al., 2018)) with an increased bonus term for U1 to
compensate for the regret of U2, imitating our hierarchical bandit solution. However, as we point
out above, U2’s world is also affected by the policies of U1 in future steps. Therefore, a natural
solution is to do the following: besides letting U1 add extra bonus to compensate the regret of U2,
we also let U2 add extra bonus to compensate the regret of U1 in future steps. Unfortunately, for
this hypothetical algorithm, it is unclear to us how to obtain a regret bound that is polynomial in
the number of steps H . This is because by recursively adding extra bonus in each layer, we end
up with a factor of (AB)H/2 in the regret bound, similar to the “Deep Hierarchy Case” discussed in
Section 3.1 and Appendix D.

To address this issue, instead of trying to let U2 best respond to the non-stationary world created
by U1, we exploit the fact that U2 has full knowledge about the joint action space, and let U2 find
the best joint policy of U1 and U2. Then U2 will execute his part of this joint policy even though
U1 may not follow it. Although this brings other issues (discussed later), it avoids the need of U2
to compensate for the regret of U1 in later steps, and prevents the exponential blowup in the regret
bound.

Our algorithm for hierarchical MDPs is presented in Algorithm 2. To avoid cluttered notation,
we drop the episode index t when presenting the algorithm. Unlike Algorithm 1 where we can
plug in any algorithm for U2 with the desired regret bound, in Algorithm 2 we specify both agents’
algorithms. We leave as an open problem how to design a black-box-reduction-styled algorithm for
the MDP setting similar to Algorithm 1.

In Algorithm 2, U1 maintains optimistic value function estimators V 1
h (s), Q

1
h(s, a), and U2

maintains V 2
h (s), Q

2
h(s, a, b) for every h = 1, . . . ,H . Their constructions are based on two standard

UCB-based algorithms. Specifically, the constructions of V 1
h (s) and Q1

h(s, a) (Line 17-Line 18) are
similar to those of UCB Q-learning (Jin et al., 2018), with the bonus term bns1τ enlarged by a factor
of
√
SB. Like in the bandit setting from Section 3, U1 faces a non-stationary environment, and

the extra
√
B factor is used to compensate for the regret of U2 in future steps6. On the other hand,

the constructions of V 2
h (s) and Q2

h(s, a, b) (Line 26-Line 27) are similar to those of UCBVI (Azar
et al., 2017). In particular, V 2

h (s) is obtained by jointly optimizing over the actions of U1 and U2
(Line 27), conforming to our previous discussions.

Perhaps the most intriguing is why we use UCB-H for U1 but UCBVI for U2. From a high
level, this is because UCB-H shrinks its confidence set of value functions at a slower rate, while

6. The extra
√
S factor arises from a technical difficulty, and we are unsure whether it is necessary.

10
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Algorithm 2 UCB-H/UCBVI for Hierarchical MDP

1 define: ατ = H+1
H+τ , bns1τ = c′

√
H3SB log(T/δ)

τ+
, bns2τ = c

√
H2S log(T/δ)

τ+
where c, c′ ≥ 1 are

universal constants.
2 initialize: Q1

h(s, a), Q
2
h(s, a, b)← H ∀h, s, a, b,

3 nh(s, a), nh(s, a, b), nh(s, a, b, s
′), θh(s, a, b)← 0 ∀h, s, a, b, s′.

4 for t = 1, . . . , T do
5 U1 and U2 observes s1.
6 for h = 1, . . . ,H do
7 U1 chooses ah ∈ argmaxaQ

1
h(sh, a).

8 U2 observes ah.
9 U2 chooses bh ∈ argmaxbQ

2
h(sh, ah, b).

10 U1 and U2 observe rh and sh+1.

11 U1 updates counts of visits: nh(sh, ah)
+← 1. (“ +← 1” means to increase the number by 1.)

12 U2 updates counts of visits: nh(sh, ah, bh)
+← 1, nh(sh, ah, bh, sh+1)

+← 1.

13 U2 updates cumulative reward: θh(sh, ah, bh)
+← rh.

end

14 U1 updates Q/V functions (≈ UCB-H update rule):
15 V 1

H+1(·)← 0.
16 for h = 1, . . . ,H do
17 Q1

h(sh, ah)← (1− ατ )Q
1
h(sh, ah) + ατ

(
rh + V 1

h+1(sh+1) + bns1τ
)

18 V 1
h (sh)← min{maxaQ

1
h(sh, a), H}

19 where τ = nh(sh, ah).
end

20 U2 updates Q/V functions (≈ UCBVI update rule):

21 Let P̂h(s
′|s, a, b) = nh(s,a,b,s

′)
nh(s,a,b)

and R̂h(s, a, b) =
θh(s,a,b)
nh(s,a,b)

∀h, s, a, b, s′.
22 (if nh(s, a, b) = 0, set P̂h(s

′|s, a, b) = 1
|S| and R̂h(s, a, b) = 0).

23 V 2
H+1(·)← 0.

24 for h = H, . . . , 1 do
25 for all s, a, b do
26 Q2

h(s, a, b)← min
{
R̂h(s, a, b) + Es′∼P̂h(·|s,a,b)

[
V 2
h+1(s

′)
]
+ bns2τ , Q2

h(s, a, b)
}

27 V 2
h (s)← maxa,bQ

2
h(s, a, b)

28 where τ = nh(s, a, b).
end

end
end

UCBVI is faster, which fulfills our need that U1 has to explore more in the early stages, for U2
to have enough time to find his optimal policy. Recall that the value iteration performed by U2 is
through V 2

h (s) ← maxa,bQ
2
h(s, a, b) (Line 27). By the optimism principle, ideally we would like

11
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the agents to take actions (ah, bh) = argmaxa,bQ
2
h(sh, a, b) to facilitate exploration. However,

since U2 cannot control the actions taken by U1, and there is no communication between U1 and
U2, it is unclear whether the optimism principle on Q2

h can be successfully carried out (the best
U2 can do is to take bh = argmaxbQ

2
h(sh, ah, b) for some ah taken by U1, as done in Line 9).

Our key finding is that if Q1
h(s, a) always upper bounds maxbQ

2
h(s, a, b), then the agents can still

perform adequate joint exploration without explicit coordination. This key property can be shown
straightforwardly if we use UCB-H for U1 and UCBVI for U2 (see the proof of Lemma 5).

Below, we establish some lemmas to be used in the regret bound analysis. The detailed proofs
are deferred to Appendix B. We first define new notation with the episode indices.

Definition 3 Let Q1
t,h(·, ·), Q2

t,h(·, ·, ·) be the Q1
h(·, ·), Q2

h(·, ·, ·) at the beginning of episode t in
Algorithm 2. Let st,h, at,h, bt,h, rt,h be the sh, ah, bh, rh within episode t in Algorithm 2.

Lemma 4 below shows the optimism of U2’s Q-function estimator, and relates the cumulative
sum of Q2

t,h(st,h, at,h, bt,h) − Q∗,h(st,h, at,h, bt,h) to that of V 2
t,h+1(st,h+1) − V∗,h+1(st,h+1). The

proof is standard and we provide it in Appendix B for completeness.

Lemma 4 With probability at least 1−O(δ), Q2
t,h(s, a, b) ≥ Q∗,h(s, a, b) for all t, h, s, a, b, and

T∑
t=1

(
Q2

t,h(st,h, at,h, bt,h)−Q∗,h(st,h, at,h, bt,h)
)

≤
T∑
t=1

(
V 2
t,h+1(st,h+1)− V∗,h+1(st,h+1)

)
+ Õ

(√
H2S2ABT

)
, ∀h.

We remark that it is possible to improve the bound in Lemma 4 by a factor of
√
S by using the more

refined analysis in Azar et al. (2017) and defining bns2τ to be a
√
S-factor smaller. However, as we

will see below, this improvement will not lead to a better final regret bound, so in Lemma 4 we opt
to use a simpler analysis with a looser bound.

Next, we establish our key lemma, Lemma 5, which states that U1 has more optimism than U2.
In this lemma we have to make bns1τ a

√
SB-factor larger than that in Jin et al. (2018). While the√

B factor is necessary for the same reasons as in the bandit case, it is unclear whether the
√
S

factor is necessary. We leave the improvement of this factor as a future direction.

Lemma 5 With probability at least 1−O(δ), Q1
t,h(s, a) ≥ maxbQ

2
t,h(s, a, b) for all t, h, s, a, b.

Finally, in Lemma 6, we relate the cumulative sum of Q1
t,h(st,h, at,h) − Q1

∗,h(st,h, at,h) to that of
V 1
t,h+1(st,h+1)− V 1

∗,h+1(st,h+1). The proof is similar to that of Jin et al. (2018), but the bound is a√
SB-factor larger than theirs due to the use of a larger bonus bns1τ .

Lemma 6 With probability at least 1−O(δ),

T∑
t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)

≤
(
1 +

1

H

) T∑
t=1

(
V 1
t,h+1(st,h+1)− V∗,h+1(st,h+1)

)
+ Õ

(√
H3S2ABT +HSA

)
, ∀h.
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Thanks to the fact that V 1
t,h(st,h) = Q1

t,h(st,h, at,h), Lemma 6 leads to the following simple corol-
lary. Note that we do not have a similar corollary for Lemma 4 because V 2

t,h(st,h) ̸= Q2
t,h(st,h, at,h, bt,h)

(as discussed earlier, (at,h, bt,h) is not necessarily equal to argmaxa,bQ
2
t,h(st,h, a, b)). The proof of

the corollary is also in Appendix B.

Corollary 3
∑T

t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)
= Õ

(√
H5S2ABT +H2SA

)
.

Finally, we are able to show our main theorem:

Theorem 7 With probability 1−O(δ), Algorithm 2 guarantees Reg(T ) = Õ
(
H3.5S

√
ABT +H3SA

)
.

Proof We perform regret decomposition as follows:

Reg(T ) =
T∑
t=1

(
V∗,1(st,1)− V

π1
t ,π

2
t

1 (st,1)
)

=

T∑
t=1

H∑
h=1

∑
s,a,b

P
[
(st,h, at,h, bt,h) = (s, a, b)

∣∣ st,1, π1
t , π

2
t

]
(V∗,h(s)−Q∗,h(s, a, b))

(by the performance difference lemma (Kakade and Langford, 2002))

=

T∑
t=1

H∑
h=1

(V∗,h(st,h)−Q∗,h(st,h, at,h, bt,h)) + Õ
(
H
√
HT

)
(by Lemma 10)

=
T∑
t=1

H∑
h=1

(V∗,h(st,h)−Q∗,h(st,h, at,h)) +
T∑
t=1

H∑
h=1

(Q∗,h(st,h, at,h)−Q∗,h(st,h, at,h, bt,h)) + Õ
(√

H3T
)
.

(2)

Note that

Reg1h ≜
T∑
t=1

(V∗,h(st,h)−Q∗,h(st,h, at,h)) ≤
T∑
t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)

≤ Õ
(√

H5S2ABT +H2SA
)
, (by Corollary 3)

where the first inequality is because Lemma 4, Lemma 5, and the way U1 chooses at,h yield
V∗,h(st,h) = maxa,bQ∗,h(st,h, a, b) ≤ maxa,bQ

2
t,h(st,h, a, b) ≤ maxaQ

1
t,h(st,h, a) = Q1

t,h(st,h, at,h).
On the other hand,

Reg2h ≜
T∑
t=1

(Q∗,h(st,h, at,h)−Q∗,h(st,h, at,h, bt,h))

≤
T∑
t=1

(
Q2

t,h(st,h, at,h, bt,h)−Q∗,h(st,h, at,h, bt,h)
)

≤
T∑
t=1

(
V 2
t,h+1(st,h+1)− V∗,h+1(st,h+1)

)
+ Õ

(√
H2S2ABT +H2SA

)
(by Lemma 4)
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≤
T∑
t=1

(
V 1
t,h+1(st,h+1)− V∗,h+1(st,h+1)

)
+ Õ

(√
H5S2ABT +H2SA

)
(by Lemma 5 and the definitions of V 1

t,h(s) and V 2
t,h(s))

≤
T∑
t=1

(
Q1

t,h+1(st,h+1, at,h+1)−Q∗,h+1(st,h+1, at,h+1)
)
+ Õ

(√
H5S2ABT +H2SA

)
(by the way U1 chooses at,h+1)

≤ Õ
(√

H5S2ABT +H2SA
)
, (by Corollary 3)

where the first inequality follows from Lemma 4 and the way U2 chooses actions, resulting in
Q∗,h(st,h, at,h) = maxbQ∗,h(st,h, at,h, b) ≤ maxbQ

2
t,h(st,h, at,h, b) = Q2

t,h(st,h, at,h, bt,h).
Combining the bounds on Reg1h and Reg2h with (2) proves the theorem.

5. Conclusion and Future Directions

In this work, we exploit the hierarchical information structure in hierarchical bandits/MDPs, and
propose efficient and near-optimal algorithms that require no coordination or communication be-
tween the agents. A key feature of our algorithms is that the leader, i.e., the less-informed upper
level agent, performs single-agent-like near-optimal subroutines with specially designed bonuses
without the need of knowing or tracking the learning procedure of the lower level agent(s). One
future direction is to explore other information structures that may allow simplification when more
than two agents and reward information asymmetry come in. Extending the results to bandit prob-
lems with structural relationships between the payoffs of the arms and to general-sum games are
also interesting directions.
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Appendix A. The CI Approach

In two-agent cases, there are three obvious types of information structure in terms of action infor-
mation asymmetry.

• Sequential decision making: U1 first chooses at ∈ [A]; after observing at, U2 then chooses
bt ∈ [B]. This is the hierarchical information structure considered in this paper.
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• Simultaneous decision making: U1 and U2 choose at ∈ [A] and bt ∈ [B] simultaneously,
respectively. Depending on their respective feedback afterwards, the setting can be further
divided as follows:

– Complete information sharing: both agents observe (at, bt) directly after they make
their choices.

– No information sharing: both agents do not observe (at, bt). This setting is considered
in Chang et al. (2021).

In the setting of sequential decision making, U1 also does not observe bt. Otherwise, it will
be identical to the setting of complete information sharing in the learning context since after the
time-step ends both agents will know (at, bt).

In the complete information sharing setting, it is evident that the agents may treat the joint action
space [A]× [B] as the new action space and learns as if a single agent (the fictitious coordinator) is
learning the policy of choosing the joint actions. The learning is centralized as there is no informa-
tion asymmetry and the non-stationarity issue will not happen. Interestingly, the same approach can
be carried through in the other two information structures as well. Suppose U1 learns with algo-
rithm ALG1 (which should also include any possible tie-breaking rule) and randomization seed R1,
and U2 learns with ALG2 and randomization seed R2. Suppose both agents have the information
of (ALG1,R1,ALG2,R2). In step 1, U2 can generate a1 from (ALG1,R1), and U1 can generate b1,
so that (a1, b1) becomes CI. Going forward, in step t, since It−1 = (a1:t−1, b1:t−1, r1:t−1) (where
a1:t−1 = (a1, . . . , at−1), etc.) is CI, U2 can reproduce at from ALG1(It−1,R

1), and U1 can re-
produce bt from ALG2(It−1,R

2), so that (at, bt) is again CI. We can see that with this approach
there will be no information asymmetry. Clearly, if U1 and U2 treat [A] × [B] from the coordina-
tor’s perspective and adopt the same single-agent algorithm ALG1 = ALG2 with near-optimal regret
guarantee and the same randomization device R1 = R2, the problem is equivalent to learning in
the standard single-agent AB-armed bandit or standard single-agent MDP with action space being
[A] × [B]. Using the state of the art algorithms, i.e., UCB1 (Auer et al., 2002a) for the bandit set-
ting, and UCBVI algorithm (with a Bernstein bonus design) (Azar et al., 2017) (model-based) or
the UCB-Advantage algorithm (Zhang et al., 2020b) (model-free), one may achieve the lower regret
bounds of Õ(

√
ABT ) for the bandit setting and Õ(

√
H2SABT ) for the MDP setting.

Both agents knowing (ALG1,R1,ALG2,R2) and being able to reproduce each other’s compu-
tation is a strong assumption. In the case of hierarchical information structure, simpler and more
efficient alternatives presented in this paper are possible.

Appendix B. Omitted Proofs

Proof of Theorem 2 We first bound the number of times a sub-optimal arm a ∈ A× can be drawn
by U1. Notice that with probability at least 1−O(δ), for any t, a ∈ A×,

µ̂t(a) + c

√
log(T/δ)

nt(a)+
+

√
κB log(T/δ)

nt(a)+

≤ 1

nt(a)+

t−1∑
τ=1

µa,bτ + 2c

√
log(T/δ)

nt(a)+
+

√
κB log(T/δ)

nt(a)+
(by Lemma 10)
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≤ µa,1 + 2c

√
log(T/δ)

nt(a)+
+

√
κB log(T/δ)

nt(a)+
. (3)

If nt(a) > (16κB+64c2) log(T/δ)
(µ1,1−µa,1)2

, then the last expression can further be upper bounded by µa,1 +
(µ1,1−µa,1)

4 +
(µ1,1−µa,1)

4 < µ1,1.
On the other hand, by Assumption 2 (which implies Assumption 1), with high probability we

have

µ̂t(1) + c

√
log(T/δ)

nt(1)+
+

√
κB log(T/δ)

nt(1)+

≥ 1

nt(1)+

t−1∑
τ=1

µ1,bτ +

√
κB log(T/δ)

nt(1)+
(by Lemma 10)

≥ µ1,1.

Combining them, we see that if nt(a) >
(16κB+64c2) log(T/δ)

(µ1,1−µa,1)2
, then

µ̂t(1) + c

√
log(T/δ)

nt(1)+
+

√
κB log(T/δ)

nt(1)+
> µ̂t(a) + c

√
log(T/δ)

nt(a)+
+

√
κB log(T/δ)

nt(a)+
.

By the way U1 selects arms, with high probability, she will not draw arm a at round t. In other
words, the number of draws for any a ∈ A× is upper bounded by O

(
B log(T/δ)

(µ1,1−µa,1)2

)
.

Then we bound the overall regret. Define nt(a, b) ≜
∑t−1

τ=1 1[(aτ , bτ ) = (a, b)]. We have

Reg(T ) =
∑

(a,b)∈[A]×[B]

(µ1,1 − µa,b) · nT+1(a, b)

=
∑

(a,b)∈[A]×[B]

(µ1,1 − µa,1 + µa,1 − µa,b) · nT+1(a, b)

=
∑
a∈[A]

(µ1,1 − µa,1) ·
∑
b∈[B]

nT+1(a, b) +
∑
a∈[A]

∑
b∈[B]

(µa,1 − µa,b) · nT+1(a, b)

≤
∑
a∈[A]

(µ1,1 − µa,1) · nT+1(a) +
∑
a∈A◦

∑
b∈B×

a

O
(

log(T/δ)

µa,1 − µa,b

)
+
∑
a∈A×

O
(√

BnT+1(a) log(T/δ)
)
, (by Assumption 2)

≤
∑
a∈A×

O
(
B log(T/δ)

µ1,1 − µa,1

)
+
∑
a∈A◦

∑
b∈B×

a

O
(

log(T/δ)

µa,1 − µa,b

)
.

(because nT+1(a) = O
(

B log(T/δ)
(µ1,1−µa,1)2

)
for a ∈ A×)

Proof of Lemma 4 First, we use induction to prove the following inequalities:

0 ≤ Q2
t,h(s, a, b)−Q∗,h(s, a, b) ≤ Es′∼P (·|s,a,b)

[
V 2
t,h+1(s

′)− V∗,h+1(s
′)
]
+ 2bns2τ , (4)
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where τ = nt,h(s, a, b), for all s, a, b. The order of induction is from t = 1 to t = T , and (within
each t) from h = H to h = 1.

For t = 1, we have Q2
1,h(s, a, b)−Q∗,h(s, a, b) = H−Q∗,h(s, a, b) ≥ 0 and that Q2

1,h(s, a, b)−
Q∗,h(s, a, b) ≤ H ≤ 2bns20. Suppose that the inequality holds for all (t′, h′) with either t′ < t, or
t′ = t and h′ > h. Fix a (s, a, b) and let τ = nt,h(s, a, b). By the update rule of Q2

t,h(s, a, b), we
have Q2

t,h(s, a, b) = min
{
Q̂2

t,h(s, a, b), Q
2
t−1,h(s, a, b)

}
where

Q̂2
t,h(s, a, b) = R̂t,h(s, a, b) + Es′∼P̂t,h(·|s,a,b)

[
V 2
t,h+1(s

′)
]
+ bns2τ . (τ = nt,h(s, a, b))

Besides,

Q∗,h(s, a, b) = R(s, a, b) + Es′∼P (·|s,a,b)
[
V∗,h(s

′)
]
.

Taking their difference, we get

Q̂2
t,h(s, a, b)−Q∗,h(s, a, b)

=
(
R̂t,h(s, a, b)−R(s, a, b)

)
+ Es′∼P (·|s,a,b)

[
V 2
t,h+1(s

′)− V∗,h+1(s
′)
]︸ ︷︷ ︸

term1

+
(
Es′∼P̂t,h(·|s,a,b)

[
V 2
t,h+1(s

′)
]
− Es′∼P (·|s,a,b)

[
V 2
t,h+1(s

′)
])

︸ ︷︷ ︸
term2

+bns2τ . (5)

By Lemma 10 and Lemma 11, for some universal constant c > 0,

∣∣∣R̂t,h(s, a, b)−R(s, a, b)
∣∣∣ ≤ 1

2
c

√
log(T/δ)

τ+
, (6)

|term2| ≤
∥∥∥P̂t,h(·|s, a, b)− P (·|s, a, b)

∥∥∥
1
∥V 2

t,h+1∥∞ ≤
1

2
cH

√
S log(T/δ)

τ+
, (7)

and therefore
∣∣∣R̂t,h(s, a, b)−R(s, a, b)

∣∣∣+ |term2| ≤ bns2τ . Combining this with (5), we get

term1 ≤ Q̂2
t,h(s, a, b)−Q∗,h(s, a, b) ≤ term1 + 2bns2τ . (8)

Using Q2
t,h(s, a, b) ≤ Q̂2

t,h(s, a, b), (8) implies the right inequality in (4).
To prove the left inequality in (4), notice that if h = H , then term1 = 0; if h < H ,

term1 ≥ min
s′

V 2
t,h+1(s

′)− V∗,h+1(s
′)

= min
s′

(
min

{
max
a′,b′

Q2
t,h+1(s

′, a′, b′), H

}
−max

a′,b′
Q∗,h+1(s

′, a′, b′)

)
= min

s′

(
min

{
max
a′,b′

Q2
t,h+1(s

′, a′, b′)−max
a′,b′

Q∗,h+1(s
′, a′, b′), H −max

a′,b′
Q∗,h+1(s

′, a′, b′)

})
≥ 0.

where the last inequality is by the induction hypothesis.
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Thus, term1 ≥ 0. Together with (8), we get Q̂2
t,h(s, a, b) − Q∗,h(s, a, b) ≥ 0. By the

induction hypothesis, we also have Q2
t−1,h(s, a, b) ≥ Q∗,h(s, a, b). Therefore, Q2

t,h(s, a, b) =

min
{
Q̂2

t,h(s, a, b), Q
2
t−1,h(s, a, b)

}
≥ Q∗,h(s, a, b), proving the left inequality in (4).

Based on (4), we can write

T∑
t=1

(
Q2

t,h(st,h, at,h, bt,h)−Q∗,h(st,h, at,h, bt,h)
)

≤
T∑
t=1

Es′∼P (·|st,h,at,h,bt,h)
[
V 2
t,h+1(s

′)− V∗,h+1(s
′)
]
+

T∑
t=1

2bns2τt,h

(define τt,h = nt,h(st,h, at,h, bt,h))

≜
T∑
t=1

(
V 2
t,h+1(st,h+1)− V∗,h+1(st,h+1) + εt,h

)
+

T∑
t=1

2bns2τt,h (define εt,h to be the difference)

Since εt,h is zero-mean, by Lemma 10,

T∑
t=1

εt,h = O
(
H
√
T log(T/δ)

)
.

Besides,

T∑
t=1

bns2τt,h = O

(
T∑
t=1

H

√
S log(T/δ)

nt,h(st,h, at,h, bt,h)+

)
= O

(
HS

√
ABT log(T/δ)

)
.

Combining the three bounds above proves the second conclusion in the lemma.

Proof of Lemma 5 We use induction to show the desired inequality. Again, the order of induction
is from t = 1 to t = T , and (within each t) from h = H to h = 1. When t = 1, Q1

1,h(s, a) = H =

maxbQ
2
1,h(s, a, b).

Suppose that the inequality holds for all (t′, h′) with t′ < t, or t′ = t and h′ > h. Let τ =
nt,h(s, a), and let 1 ≤ t1 < t2 < · · · < tτ < t be the episodes in which (s, a) is visited at step h.
By the update rule of Q1

t,h(·, ·), we have

Q1
t,h(s, a)

= α0
τH +

τ∑
i=1

αi
τ

(
rti,h + V 1

ti,h+1(sti,h+1) + bns1i
)

(define αi
τ = αiΠ

τ
j=i+1(1− αj) for 1 ≤ i ≤ τ and α0

τ = Πτ
j=1(1− αj))

≥ α0
τH +

τ∑
i=1

αi
τ

(
R(s, a, bti,h) +

∑
s′

P (·|s, a, bti,h)V
1
ti,h+1(s

′)

)
+

1

2
bns1τ

(see the explanation below indexed ⋆)

≥ α0
τH +

τ∑
i=1

αi
τ

(
R(s, a, bti,h) +

∑
s′

P (·|s, a, bti,h)V
2
ti,h+1(s

′)

)
+

1

2
bns1τ

(by the induction hypothesis)
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≥ α0
τH +

τ∑
i=1

αi
τ

(
R̂ti,h(s, a, bti,h) +

∑
s′

P̂ti,h(·|s, a, bti,h)V
2
ti,h+1(s

′)− bns2ξi

)
+

1

2
bns1τ

(define ξi = nti,h(s, a, bti,h) and use (6) and (7))

≥ α0
τH +

τ∑
i=1

αi
τQ

2
ti,h

(s, a, bti,h)− 2

τ∑
i=1

αi
τbns2ξi +

1

2
bns1τ (by the definition of Q2

t,h(s, a, b))

≥ α0
τH +

τ∑
i=1

αi
τ max

b
Q2

ti,h
(s, a, b) (see the explanation below indexed ⋆⋆)

≥ max
b

Q2
t,h(s, a, b) (because Q2

t,h is non-increasing in t and
∑τ

i=0 α
i
τ = 1)

In the first inequality (⋆), we use the fact that
∑τ

i=1 α
i
τbns1i ≥ bns1τ by the first item in Lemma 12,

and that ∣∣∣∣∣
τ∑

i=1

αi
τ

(
R(s, a, bti,h) +

∑
s′

P (s′|s, a, bti,h)V
1
ti,h+1(s

′)− rti,h − V 1
ti,h+1(sti,h+1)

)∣∣∣∣∣
≤ 1

2
c′H

√
HS log(T/δ)

τ+
≤ 1

2
bns1τ (9)

for some universal constant c′ > 0 by Lemma 13.
In the penultimate inequality (⋆⋆), we first use the selection rule of bt,h = argmaxbQ

2
t,h(st,h, at,h, b),

and then use the following Lemma 8 to bound

2
τ∑

i=1

αi
τbns2ξi = 2cH

√
S log(T/δ)

τ∑
i=1

αi
τ

1√
nti,h(s, a, bti,h)

+

≤ 2cH
√
S log(T/δ)× 4

√
BH

nt,h(s, a)+

≤ 1

2
c′H

√
HSB log(T/δ)

nt,h(s, a)+
=

1

2
bns1τ .

Lemma 8 Let {τ1, . . . , τB} be non-negative integers such that
∑B

b=1 τb = τ . Define for all b =
1, . . . , B:

Ybi =
1√

(i− 1)+
, for i = 1, 2, . . . , τb.

Let {Z1, Z2, . . . , Zτ} be any permutation of

{Y11, Y12, . . . , Y1τ1 , Y21, Y22, . . . , Y2τ2 , . . . . . . YB1, YB2, . . . , YBτB}

Then
τ∑

i=1

αi
τZi ≤ 4

√
BH

τ+
.
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Proof We write i = ϕ(b, j) if Ybj is mapped to Zi. Also, define Φ(b) = {ϕ(b, j) : j ∈ [τb]} as the
set of indices in {Zi} that are mapped from {Yb1, . . . , Ybτb}.

We first show the following claim: for all b,∑
i∈Φ(b)

αi
τZi ≤ 2

√
2ατ

∑
i∈Φ(b)

αi
τ . (10)

To show (10), observe that the left-hand side is equal to

∑
i∈Φ(b)

αi
τZi =

τb∑
j=1

αϕ(b,j)
τ Ybj =

τb∑
j=1

αϕ(b,j)
τ

1√
(j − 1)+

≤
τb∑
j=1

αϕ(b,j)
τ

√
2

j
. (11)

By the definition of αi
τ , we have αi

τ ≤ ατ for any i. We see that the last expression in (11) is upper
bounded by the optimal solution of the following programming:

max
βj

τb∑
j=1

βj

√
2

j

s.t.
τb∑
j=1

βj ≤
∑

i∈Φ(b)

αi
τ

0 ≤ βj ≤ ατ ∀j

This programming exhibits a greedy solution that sets βj = ατ for j ≤ j⋆ ≜
⌊

1
ατ

∑
i∈Φ(b) α

i
τ

⌋
,

βj =
∑

i∈Φ(b) α
i
τ − ατ j

⋆ for j = j⋆ + 1, and βj = 0 otherwise. The optimal value of this solution
is upper bounded by

ατ

j⋆∑
j=1

√
2

j
+

 ∑
i∈Φ(b)

αi
τ − ατ j

⋆

√ 2

j⋆ + 1
≤ ατ

∫ 1
ατ

∑
i∈Φ(b) α

i
τ

0

√
2

x
dx = 2

√
2ατ

∑
i∈Φ(b)

αi
τ ,

showing (10). To get the final bound, we sum this bound over b and use the definition of ατ :

τ∑
i=1

αi
τZi =

B∑
b=1

∑
i∈Φ(b)

αi
τZi ≤

B∑
b=1

2

√
2ατ

∑
i∈Φ(b)

αi
τ

≤ 2

√√√√2Bατ

τ∑
i=1

αi
τ = 2

√
2B(H + 1)

H + τ
≤ 4

√
BH

τ+
,

where in the second inequality we use the AM-GM inequality and in the last equality we use∑τ
i=1 α

i
τ = 1 for τ ≥ 1.

Proof of Lemma 6
Fix t, h, s, a. Let τ = nt,h(s, a), and let 1 ≤ t1 < t2 < · · · < tτ < t be the episodes in which

(s, a) is visited at layer h. By the update rule of Q1
t,h(·, ·), we have
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Q1
t,h(s, a)

= α0
τH +

τ∑
i=1

αi
τ

(
rti,h + V 1

ti,h+1(sti,h+1) + bns1i
)

≤ α0
τH +

τ∑
i=1

αi
τ

(
R(s, a, bti,h) + Es′∼P (·|s,a,bti,h)

[
V 1
ti,h+1(s

′)
])

+O(bns1τ )

(by Lemma 13 and that
∑τ

i=1 α
i
τbns1i ≤ 2bns1τ by the first item in Lemma 12)

= α0
τH +

τ∑
i=1

αi
τ

(
R(s, a, bti,h) + Es′∼P (·|s,a,bti,h)

[
V∗,h+1(s

′)
])

+
τ∑

i=1

αi
τ

(
Es′∼P (·|s,a,bti,h)

[
V 1
ti,h+1(s

′)− V∗,h+1(s
′)
])

+O(bns1τ )

= α0
τH +

τ∑
i=1

αi
τQ∗,h(s, a, bti,h) +

τ∑
i=1

αi
τ

(
Es′∼P (·|s,a,bti,h)

[
V 1
ti,h+1(s

′)− V∗,h+1(s
′)
])

+O(bns1τ )

≤ α0
τH +

τ∑
i=1

αi
τQ∗,h(s, a, bti,h) +

τ∑
i=1

αi
τ

(
V 1
ti,h+1(sti,h+1)− V∗,h+1(sti,h+1)

)
+O(bns1τ )

(by Lemma 13)

Therefore,

Q1
t,h(s, a)−Q∗,h(s, a)

= α0
τ (H −Q∗,h(s, a)) +

τ∑
i=1

αi
τ (Q∗,h(s, a, bti,h)−Q∗,h(s, a))

+
τ∑

i=1

αi
τ

(
V 1
ti,h+1(sti,h+1)− V∗,h+1(sti,h+1)

)
+O(bns1τ )

≤ α0
τH +

τ∑
i=1

αi
τ

(
V 1
ti,h+1(sti,h+1)− V∗,h+1(sti,h+1)

)
+O(bns1τ ) (12)

Now consider the cumulative sum, and define ti(s, a) to be the index of the episode when it is the
i-th time (s, a) is visited at layer h.

T∑
t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)

=
∑
s,a

nT+1(s,a)∑
i=1

(
Q1

ti(s,a),h
(sti(s,a),h, ati(s,a),h)−Q∗,h(sti(s,a),h, ati(s,a),h)

)

≤
∑
s,a

nT+1(s,a)∑
i=1

α0
iH +

i−1∑
j=1

αj
i

(
V 1
tj(s,a),h+1(stj(s,a),h+1)− V∗,h+1(stj(s,a),h+1)

)
+ bns1i−1


(by (12))
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=
∑
s,a

nT+1(s,a)∑
i=1

α0
iH +

∑
s,a

nT+1(s,a)−1∑
j=1

nT+1(s,a)∑
i=j+1

αj
i

(
V 1
tj(s,a),h+1(stj(s,a),h+1)− V∗,h+1(stj(s,a),h+1)

)

+
∑
s,a

nT+1(s,a)∑
i=1

O

(√
H3SB log(T/δ)

max{i− 1, 1}

)

≤ HSA+
∑
s,a

nT+1(s,a)−1∑
j=1

(
1 +

1

H

)(
V 1
tj(s,a),h+1(stj(s,a),h+1)− V∗,h+1(stj(s,a),h+1)

)
+O

(√
H3S2ABT

)
(by the third item of Lemma 12)

≤
(
1 +

1

H

) T∑
t=1

(
V 1
t,h+1(st,h+1)− V 1

∗,h+1(st,h+1)
)
+O

(√
H3S2ABT +HSA

)
.

Proof of Corollary 3 By Lemma 6 and the fact that V 1
t,h(st,h) = Q1

t,h(st,h, at,h), we have

T∑
t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)

≤
(
1 +

1

H

) T∑
t=1

(
Q1

t,h+1(st,h+1, at,h+1)−Q∗,h+1(st,h+1, at,h+1)
)
+O

(√
H3S2ABT +HSA

)
,

which gives

T∑
t=1

(
Q1

t,h(st,h, at,h)−Q∗,h(st,h, at,h)
)
≤ H ×

(
1 +

1

H

)H

×O
(√

H3S2ABT +HSA
)

= O
(√

H5S2ABT +H2SA
)

by expanding the recursion.

Appendix C. Multiple Follower Extension

In this section, we consider the multiple follower case. Let A be the number of actions of the
leader, and let Bi be the number of actions of the i-th follower, for i = 1, 2, . . . , N . We define
B = 1

N

∑N
i=1B

i to be the average number of actions of all followers. In each round t, the leader
first selects an action at ∈ [A]. Then based on the information of at, each follower i selects an
action bit ∈ [Bi]. The reward that the i-th follower receives is rit, whose mean is µi

at,bit
; the reward

the leader receives is rt = 1
N

∑N
i=1 r

i
t, the average-reward over i. 7

Our algorithm is presented in Algorithm 3. On the follower side, the algorithm is identical to the
single-agent case (Algorithm 1) – for each arm of the leader, a simple empirical mean is maintained

7. Similar to the single-agent case, our framework also handles the case where the leader observes another fresh sample
with mean 1

N

∑N
i=1 µ

i
at,b

i
t

.
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Algorithm 3 UCB for Hierarchical Bandits with Multiple Followers
define: c > 0 is a universal constant.
Followers start running algorithms satisfying Assumption 4 with some κ ≥ 1 (we denote the in-
stance of the algorithm by Follower i under action a ∈ [A] as ALGi(a)).
for t = 1, 2, . . . , T do

Leader chooses at ∈ argmax
a∈[A]

µ̂t(a)+ c
√

log(T/δ)
nt(a)+

+
√

κB log(T/δ)
nt(a)+

. (µ̂t(a), nt(a) defined in (1))

for i = 1, . . . , N (in parallel) do
Follower i observes at and calls ALGi(at), which outputs an action bit.
Follower i chooses bit.
Follower i observes rit with E[rit] = µi

at,bit
.

end
Leader observes rt = 1

N

∑N
i=1 r

i
t .

end

as in (1). For the followers, similarly, we assume that all of them use a no-regret algorithm that
satisfies the following assumption:

Assumption 4 Every Follower i guarantees the following for some universal constant κ ≥ 1 with
probability at least 1− δ:

∀t, a,
t∑

τ=1

I[aτ = a]

(
max
bi

µi
a,bi − µi

a,biτ

)
≤

√√√√κBi

t∑
τ=1

I[aτ = a] log(T/δ).

With Assumption 4, the regret bound of Algorithm 3 can be shown as in the following theorem:

Theorem 9 With probability at least 1−O(δ), for all a and {bi}Ni=1,

T∑
t=1

(
1

N

N∑
i=1

µi
a,bi −

1

N

N∑
i=1

µi
at,bit

)
= O

(√
ABT log(T/δ)

)
.

Proof
T∑
t=1

(
1

N

N∑
i=1

µi
a,bi −

1

N

N∑
i=1

µi
at,bit

)

≤
T∑
t=1

(
1

N

N∑
i=1

(
1

nt(a)+
×

t−1∑
τ=1

µi
a,biτ

+

√
κBi log(T/δ)

nt(a)+

)
− 1

N

N∑
i=1

µi
at,bit

)
(Assumption 4)

≤
T∑
t=1

(
1

nt(a)+

(
1

N

N∑
i=1

t−1∑
τ=1

µi
a,biτ

)
+

√
κB log(T/δ)

nt(a)+
− 1

N

N∑
i=1

µi
at,bit

)
(Cauchy-Schwarz inequality)

≤
T∑
t=1

(
µ̂t(a) + c

√
log(T/δ)

nt(a)+
+

√
κB log(T/δ)

nt(a)+
− 1

N

N∑
i=1

µi
at,bit

)
(by Lemma 10)
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≤
T∑
t=1

(
µ̂t(at) + c

√
log(T/δ)

nt(at)+
+

√
κB log(T/δ)

nt(at)+
− 1

N

N∑
i=1

µi
at,bit

)
(by the algorithm)

=

T∑
t=1

(
µ̂t(at)−

1

N

N∑
i=1

µi
at,bit

)
+O

(√
ABT log(T/δ)

)
=
∑
a∈[A]

T∑
t=1

I[at = a]

(
µ̂t(a)−max

{bi}

1

N

N∑
i=1

µi
a,bi

)
︸ ︷︷ ︸

term1

+
∑
a∈[A]

T∑
t=1

I[at = a]

(
max
{bi}

1

N

N∑
i=1

(
µi
a,bi − µi

a,bit

))
︸ ︷︷ ︸

term2

+O
(√

ABT log(T/δ)
)

Under Assumption 4, we can upper bound term2 by

O

∑
a∈[A]

1

N

N∑
i=1

√
BinT+1(a) log(T/δ)

 = O

∑
a∈[A]

√
BnT+1(a) log(T/δ)


(Cauchy-Schwarz)

= O
(√

ABT log(T/δ)
)
.

Besides, for all t and a, we have with probability at least 1−O(δ),

µ̂t(a) =
1

nt(a)+

t−1∑
τ=1

I[aτ = a]rτ

≤ 1

nt(a)+

t−1∑
τ=1

I[aτ = a]

(
1

N

N∑
i=1

µa,biτ

)
+O

(√
log(T/δ)

nt(a)+

)
(Azuma’s inequality)

≤ 1

N
max
{bi}

N∑
i=1

µa,bi +O

(√
log(T/δ)

nt(a)+

)
.

Therefore,

term1 ≤ O

∑
a∈[A]

T∑
t=1

I[at = a]

√
log(T/δ)

nt(a)+

 = O
(√

AT log(T/δ)
)
.

Combining everything finishes the proof.

Appendix D. Deep Hierarchical Bandits Extension

In this subsection, we consider the deep hierarchical bandit setting. In this setting, there are D
agents making decisions in a fixed order: in each round t, Agent 1 first chooses an action a1t ∈ [A].
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Algorithm 4 UCB for Deep Hierarchical Bandits
define: CD ≥ 2 and Cd = 6Cd+1 + 8 for d = D − 1, . . . , 1.
for t = 1, . . . , T do

for d = 1, . . . , D do

Agent d chooses adt ∈ argmax
a∈[A]

µ̂d
t (a

1
t , . . . , a

d−1
t , a) + Cd

√
AD−d log(ADT/δ)

nd
t (a

1
t ,...,a

d−1
t ,a)+

,

end
end

For d = 2, . . . , D, after receiving (a1t , a
2
t , . . . , a

d−1
t ), Agent d chooses an action adt ∈ [A].8 After

all agents all choose an action, a reward rt ∈ [0, 1] is generated based on the joint action at ≜
(a1t , . . . , a

D
t ) with its mean equal to µat . As before, we assume that the first action is the best action

in all layers, and therefore the goal of the agents is to have sub-linear regret with respect to the joint
action 1 = (1, . . . , 1).

We propose Algorithm 4 to solve this problem, which is based on the similar idea as Algo-
rithm 3. At time t, Agent d maintains the number of times an arm a1:d = (a1, . . . , ad) ∈ [A]d has
been visited:

nd
t (a

1:d) =
t−1∑
s=1

I{a1:ds = a1:d} (13)

and the empirical mean of the same arm

µ̂d
t (a

1:d) =
1

nd
t (a

1:d)+

t−1∑
s=1

rsI{a1:ds = a1:d}. (14)

The bonus term of Agent d for the arm a1:d is of order
√

AD−d log(ADT/δ)

nd
t (a

1:d)+
, which is again the average

regret upper bound of its direct subordinate. As in Section 3, such a design is to ensure that agent
d’s optimistic value is not smaller than the value of the optimal arm (with high probability).

In the following, we show the regret bounds of Algorithm 4. Lemma 5 and Theorem 6 are
the gap-independent results, where Lemma 5 is a generalization of Assumption 1 and Theorem 6
is a generalization of Theorem 1. Lemma 7 and Theorem 8 are the gap-dependent results, where
Theorem 8 is a generalization of Theorem 2. In the bounds, the regret grows exponentially in the
depth D; however, this comes from the high model complexity and is unavoidable.

Lemma 5 For any t ∈ [T ], d ∈ [D − 1], a1:d = (a1, . . . , ad) ∈ [A]d,

t∑
s=1

I{a1:ds = a1:d}
[
µ(a1:d,1D−d)

− rs

]
≤ Cd

√
AD−dnd

t+1(a
1:d) log(ADT/δ) (15)

Furthermore,

t∑
s=1

(µ1 − rs) ≤ (6C1 + 8)
√
ADt log(ADT/δ). (16)

8. For simplicity, we assume that the number of actions on all layers are the same and equal to A.
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Proof of Lemma 5
Notice that (16) can be viewed as a case of d = 0 in (15) by defining I{a1:0s = a1:0} = 1 and
nt+1(a

1:d) = t. Therefore, below we prove by induction from d = D − 1 to d = 0.

Base d = D − 1:

t∑
s=1

I{a1:D−1
s = a1:D−1}

[
µ(a1:D−1,1) − rs

]
≤ CD−1

√
AnD−1

t+1 (a1:D−1) log(AnD−1
t+1 (a1:D−1)/δ) ≤ CD−1

√
AnD−1

t+1 (a1:D−1) log(AT/δ)

by the standard analysis of the UCB algorithm.
Induction step: assume the statement is true for d+ 1, we show that it holds for d as well. Dividing
both sides of the inequality in the induction hypothesis by nd+1

t+1 (a
1:d+1)+ to get

µ(a1:d+1,1D−d−1)
≤ µ̂d+1

t+1 (a
1:d+1) + Cd+1

√
AD−d−1 log(ADT/δ)

nd+1
t+1 (a

1:d+1)+
. (17)

Now for the left hand side of the inequality for d, we have

t∑
s=1

I{a1:ds = a1:d}
[
µ(a1:d,1D−d)

− rs

]
≤

t∑
s=1

I{a1:ds = a1:d}

{
max
ad+1

[
µ̂d+1
t+1 (a

1:d
s , ad+1) + Cd+1

√
AD−d−1 log(ADT/δ)

nd+1
t+1 (a

1:d
s , ad+1)+

]
− rs

}

≤
t∑

s=1

I{a1:ds = a1:d}

[
µ̂d+1
t+1 (a

1:d+1
s ) + Cd+1

√
AD−d−1 log(ADT/δ)

nd+1
t+1 (a

1:d+1
s )+

− µ(a1:d+1
s ,1D−d−1)

+ µ(a1:d+1
s ,1D−d−1)

− rs

]
,

(18)

where the first inequality follows from (17) and taking max, and the second inequality follows from
the way ad+1

s is selected.
For any s ∈ [T ], a1:d+1 ∈ [A]d+1, if nd+1

s (a1:d+1) ≥ 1, then we have

µ̂d+1
s (a1:d+1)− µ(a1:d+1,1D−d−1)

≤ 1

nd+1
s (a1:d+1)+

s−1∑
u=1

I{a1:d+1
u = a1:d+1}

[
ru − µ(a1:d+1,1D−d−1)

]
≤ 1

nd+1
s (a1:d+1)+

s−1∑
u=1

I{a1:d+1
u = a1:d+1} [ru − µau ]

≤ 2

nd+1
s (a1:d+1)+

√√√√s−1∑
u=1

I{a1:d+1
u = a1:d+1} log(1/δ) ≤ 2

√
log(1/δ)

nd+1
s (a1:d+1)+
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with probability 1− δ. This also trivially holds if nd+1
s (a1:d+1) = 0. Then, the inequality

µ̂d+1
s (a1:d+1)− µ(a1:d+1,1D−d−1)

≤ 2

√
log(Ad+1T/δ)

nd+1
s (a1:d+1)+

(19)

holds for all s ∈ [T ] and all a1:d+1 ∈ [A]d+1 simultaneously by the union bound. Hence, the sum
of the first three terms of (18) can be bounded by

t∑
s=1

I{a1:ds = a1:d}

[
µ̂d+1
t (a1:d+1

s ) + Cd+1

√
AD−d−1 log(ADT/δ)

nd+1
t+1 (a

1:d+1
s )+

− µ(a1:d+1
s ,1D−d−1)

]

≤
t∑

s=1

I{a1:ds = a1:d}

[
2

√
log(Ad+1T/δ)

nd+1
t+1 (a

1:d+1
s )+

+ Cd+1

√
AD−d−1 log(ADT/δ)

nd+1
t+1 (a

1:d+1
s )+

]

≤ (Cd+1 + 2)
√

AD−d−1 log(ADT/δ) ·
t∑

s=1

I{a1:ds = a1:d}
√

1

nd+1
s (a1:d+1

s )+

≤ 2(Cd+1 + 2)
√

AD−dnd
t+1(a

1:d) log(ADT/δ).

On the other hand, the last two terms sum up to

t∑
s=1

I{a1:ds = a1:d}
[
µ(a1:d+1

s ,1D−d−1)
− rs

]
=

∑
ad+1∈[A]

t∑
s=1

I{a1:d+1
s = a1:d+1}

[
µ(a1:d+1

s ,1D−d−1)
− rs

]
≤

∑
ad+1∈[A]

Cd+1

√
AD−d−1nd+1

t+1 (a
1:d) log(ADT/δ)

≤ Cd+1

√√√√√AD−d−1 ·

 ∑
ad+1∈[A]

nd+1
t+1 (a

1:d)

 log(ADT/δ)

≤ Cd+1

√
AD−dnd

t+1(a
1:d) log(ADT/δ).

Combining both parts, with probability 1− 3δ := 1− δ′, we have

t∑
s=1

I{a1:ds = a1:d}
[
µ(a1:d,1D−d)

− rs

]
≤ [2(Cd+1 + 2) + Cd+1]

√
AD−dnd

t+1(a
1:d) log(ADT/δ)

≤
√
3(3Cd+1 + 4)

√
AD−dnd

t+1(a
1:d) log(ADT/δ′)

≤ (6Cd+1 + 8)
√
AD−dnd

t+1(a
1:d) log(ADT/δ′)

≤ Cd

√
AD−dnd

t+1(a
1:d) log(ADT/δ′)
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whenever Cd ≥ 6Cd+1 + 8.
Notice that when d = 0, the same arguments follow except that I{a1:ds = a1:d} degenerates to

1, nd
t+1(a

1:d) degenerates to t, and the inequality will end with (6C1 + 8)
√

ADt log(ADT/δ′).

Theorem 6 For the deep hierarchical bandit problem, with probability of at least 1−δ, Algorithm 4
achieves the regret bound of

T∑
t=1

(µ1D − µat) ≤ O

(√
ADDT log(AT/δ)

)
. (20)

Proof By Lemma 5 we have
∑T

t=1 (µ1D − rt) = O
(√

ADDT log(AT/δ)
)
. Further using the fact

that
∑T

t=1 (rt − µat) = O
(√

T log(T/δ)
)

finishes the proof.

Lemma 7 For any d ∈ [D], let ad ∈ [A] be a sub-optimal arm of agent d given that a1:d−1 is
chosen by the first d− 1 agents, then with probability at least 1− 2δ,

T∑
t=1

I{a1:dt = a1:d} ≤ 4(Cd + 2)2AD−d log(ADT/δ)[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]2 . (21)

Proof of Lemma 7 Suppose at time t+ 1,

nd
t+1(a

1:d) ≥ 4(Cd + 2)2AD−d log(ADT/δ)[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]2 . (22)

Then with probability at least 1− δ,

µ̂d
t+1(a

1:d) + Cd

√
AD−d log(ADT/δ)

nd
t+1(a

1:d)+

≤ µ(a1:d,1D−d)
+ 2

√
log(AdT/δ)

nd
t+1(a

1:d)+
+ Cd

√
AD−d log(ADT/δ)

nd
t+1(a

1:d)+
(by (19))

≤ µ(a1:d,1D−d)
+ (Cd + 2)

√
AD−d log(ADT/δ)

nd
t+1(a

1:d)+

≤ µ(a1:d,1D−d)
+

µ(a1:d−1,1D−d+1)
− µ(a1:d,1D−d)

2
< µ(a1:d−1,1D−d+1)

On the other hand, by Lemma 5 with (t, d, (a1:d−1, 1)), with probability at least 1− δ,

µ(a1:d−1,1D−d+1)
≤ µ̂d

t (a
1:d−1, 1) + Cd

√
AD−d log(ADT/δ)

nd
t+1(a

1:d−1, 1)+
.

Hence, by the design of Algorithm 4, given that the first d − 1 agents choose a1:d−1, agent d will
not choose the sub-optimal arm ad ̸= 1 over the first arm before time T when the condition (22) is
satisfied.
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Theorem 8 For the deep hierarchical bandit problem, with probability of at least 1−δ, Algorithm 4
achieves the regret bound of

T∑
t=1

[µ1D − µat ] ≤
D∑

d=1

∑
a1:d ̸=1d

O

(
AD−dD log(ADT/δ)

µ(a1:d−1,1D−d+1)
− µ(a1:d,1D−d)

)
. (23)

Proof of Theorem 8 From Lemma 7 and the union bound, the inequality (23) will hold simultane-
ously for all d ∈ [D] and a1:d ∈ [A]d with probability at least 1− 2ADDδ. Hence, with probability
at least 1− 2ADDδ,

T∑
t=1

[µ1D − µat ] =
∑
a ̸=1D

(µ1D − µa) · nD
T+1(a)

=
∑
a̸=1D

D∑
d=1

{[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]
· nD

T+1(a)
}

=
D∑

d=1

∑
a1:d ̸=1d

{[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]
·

[ ∑
ad+1:D

nD
T+1(a)

]}

=
D∑

d=1

∑
a1:d ̸=1d

{[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]
·

[ ∑
ad+1:D

nD
T+1(a)

]}

=

D∑
d=1

∑
a1:d ̸=1d

{[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]
·

[
T∑
t=1

I{a1:dt = a1:d}

]}

≤
D∑

d=1

∑
a1:d ̸=1d


[
µ(a1:d−1,1D−d+1)

− µ(a1:d,1D−d)

]
· 4(Cd + 2)2AD−d log(ADT/δ)[

µ(a1:d−1,1D−d+1)
− µ(a1:d,1D−d)

]2


=
D∑

d=1

∑
a1:d ̸=1d

4(Cd + 2)2AD−d log(ADT/δ)

µ(a1:d−1,1D−d+1)
− µ(a1:d,1D−d)

.

Letting δ′ = 2ADDδ gives the claim.

Appendix E. Auxiliary Lemmas

Lemma 10 (Hoeffding-Azuma inequality) LetF0 ⊂ F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . , Xn

be real random variables such that Xi is Fi-measurable, E[Xi|Fi−1] = 0, |Xi| ≤ b for some fixed
b ≥ 0. Furthermore, let {yi}ni=1 be a fixed sequence. Then with probability at least 1− δ,

n∑
i=1

yiXi ≤ b

√√√√2

(
n∑

i=1

y2i

)
log(1/δ).
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Lemma 11 (Weissman et al. (2003); Jaksch et al. (2010)) Let p̂(·) ∈ Rd
+ be the empirical over d

distinct events from n samples, and let p(·) be the true underlying distribution. Then with probability
at least 1− δ,

∥p̂(·)− p(·)∥1 ≤
√

2d log(T/δ)

n
.

Lemma 12 (Lemma 4.1 of (Jin et al., 2018)) For a positive integer τ , define αi
τ = αiΠ

τ
j=i+1(1−

αj) for 1 ≤ i ≤ τ and α0
τ = Πτ

j=1(1− αj) where ατ = H+1
H+τ . Then the following hold:

1. 1√
τ
≤
∑τ

i=1
αi
τ√
i
≤ 2√

τ
for all τ ≥ 1.

2. maxi∈[τ ] α
i
τ ≤ 2H

τ and
∑τ

i=1(α
i
τ )

2 ≤ 2H
τ for all τ ≥ 1.

3.
∑∞

τ=i α
i
τ = 1 + 1

H for all i ≥ 1.

Lemma 13 Let αi
n be defined as in Lemma 12. Let F0 ⊂ F1 ⊂ · · · ⊂ Fn be a filtration, and

p1, . . . , pn be distribution over S where pi is deterministic given Fi−1. Suppose that si ∈ S is
drawn from pi. Then with probability at least 1− δ, for all V : S → [0, 1],∣∣∣∣∣

n∑
i=1

αi
nV (si)−

n∑
i=1

αi
n

∑
s

pi(s)V (s)

∣∣∣∣∣ ≤ 3

√
SH

n
log(4n/δ).

Proof Consider the following ϵ-cover for the space of V :

V = {V : S → {0, ϵ, 2ϵ, . . . , 1}}

For every fixed V ∈ V , we have with probability at least 1− δ′,∣∣∣∣∣
n∑

i=1

αi
nV (si)−

n∑
i=1

αi
n

∑
s

pi(s)V (s)

∣∣∣∣∣ ≤
√√√√2

(
n∑

i=1

(αi
n)

2

)
log(2/δ′) ≤ 2

√
H

n
log(2/δ′).

By an union bound, the above holds for all V ∈ V with probability at least 1− |V|δ′.
For any V : S → [0, 1], there is a Ṽ ∈ V such that |V (s) − Ṽ (s)| ≤ ϵ

2 for all s. Thus, with
probability 1− |V|δ′, we have∣∣∣∣∣

n∑
i=1

αi
nV (si)−

n∑
i=1

αi
n

∑
s

pi(s)V (s)

∣∣∣∣∣ ≤ 2

√
H

n
log(2/δ′) + ϵ.

Picking ϵ = 1
n (which implies |V| =

(
1
ϵ + 1

)S ≤ (2ϵ )S = (2n)S), and δ′ = δ
|V| , the right-hand side

above can be upper bounded by

2

√
H

n
log(2(2n)S/δ) +

1

n
≤ 3

√
SH

n
log(4n/δ).
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