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Abstract

In this work, we revisit the problem of estimating the mean and covariance of an unknown d-
dimensional Gaussian distribution in the presence of an e-fraction of adversarial outliers. The work
of Diakonikolas et al. (2016) gave a polynomial time algorithm for this task with optimal O(s) error
using n = poly(d, 1/¢) samples.

On the other hand, Kothari and Steurer (2017) introduced a general framework for robust moment
estimation via a canonical sum-of-squares relaxation that succeeds for the more general class of
certifiably subgaussian and certifiably hypercontractive (Bakshi and Kothari, 2020) distributions.
When specialized to Gaussians, this algorithm obtains the same O(e) error guarantee as Diakonikolas
et al. (2016) but incurs a super-polynomial sample complexity (n = d°(°¢1/2)) and running time
(n©@(°8(1/2))) " This cost appears inherent to their analysis as it relies only on sum-of-squares
certificates of upper bounds on directional moments while the analysis in Diakonikolas et al. (2016)
relies on lower bounds on directional moments inferred from algebraic relationships between
moments of Gaussian distributions.

We give a new, simple analysis of the same canonical sum-of-squares relaxation used in Kothari
and Steurer (2017) and Bakshi and Kothari (2020) and show that for Gaussian distributions, their
algorithm achieves the same error, sample complexity and running time guarantees as of the
specialized algorithm in Diakonikolas et al. (2016). Our key innovation is a new argument that
allows using moment lower bounds without having sum-of-squares certificates for them. We believe
that our proof technique will likely be useful in designing new robust estimation algorithms.
Keywords: Robust estimation, sum-of-squares, mean estimation
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1. Introduction

Designing estimation algorithms for estimating basic parameters of probability distributions from
samples is a foundational computational problem in machine learning. However, natural estimation
algorithms, such as taking the sample mean for population mean, can be brittle — even a single outlier
in the data can lead to an arbitrarily large estimation error. In the 1960s, Tukey and Huber began
systematic efforts to build robust estimators that can tolerate minor deviations of the input from
the chosen model, such as the injection of a small constant fraction of adversarially chosen outliers
into the sample. While this effort has led to a burgeoning body of work called robust statistics, the
algorithms from this line of work typically require exponential time in the underlying dimension to
succeed and are thus inefficient in high-dimensional settings.

In 2016, two papers (Diakonikolas et al., 2016; Lai et al., 2016) pioneered a systematic effort to
build computationally efficient robust estimators. Since their work, the study of algorithmic robust
statistics has evolved into an active area, that, in addition to yielding concrete solutions to basic
robust estimation problems, has led to the synthesis of truly new algorithmic ideas (often improving
even the classical, non-robust algorithms) that identify and clarify general principles for efficient
robust estimation.

A key insight from this line of work has been a general blueprint for robust estimation using
the sum-of-squares (SoS) method. A sequence of works in 2018 gave a canonical sum-of-squares
relaxation and a rounding algorithm that gives the nearly statistically optimal outlier-robust estimation
of moments (Kothari and Steurer, 2017) and robust clustering (Kothari and Steinhardt, 2017; Hopkins
and Li, 2018) of spherical mixtures of a broad class of probability distributions. Since then, this
framework has been refined and expanded to obtain state-of-the-art robust estimation algorithms
for problems such as outlier-robust regression (Klivans et al., 2018; Bakshi and Prasad, 2021),
clustering of non-spherical mixtures (Bakshi and Kothari, 2020; Bakshi et al., 2020a), heavy tailed
estimation (Hopkins, 2018; Cherapanamjeri et al., 2020), list-decodable regression and subspace
recovery (Karmalkar et al., 2019; Bakshi and Kothari, 2020; Raghavendra and Yau, 2020a,b) and
robust learning of a mixture of arbitrary Gaussians (Liu and Moitra, 2021; Bakshi et al., 2020b).

In addition, algorithms from the SoS-based robust estimation framework have the advantage of
abstracting out natural analytic properties of the statistical model in question and yielding robust
estimators for all distributions that satisfy such properties in a blackbox way. For example, the
algorithms for robust estimation of moments (Kothari and Steurer, 2017) and clustering (Hopkins
and Li, 2018; Kothari and Steinhardt, 2017) apply to all certifiably subgaussian distributions, that,
informally speaking, are distributions that admit “sum-of-squares certificates” of the property of
having subgaussian low order moments. As another example, the covariance estimation algorithm of
Bakshi and Kothari (2020) applies to all distributions that admit sum-of-squares certificates of bounds
on moments of degree-2 polynomials (certifiable hypercontractivity). Such properties are already
known to hold for a broad class of distributions and verifying them for a new family immediately
generalizes such results. In fact, one can interpret the analysis in the sum-of-squares framework as
identifying structural properties (certificates of appropriate analytic properties) of the distribution
families that can be exploited for the design of efficient robust estimation algorithms. !

Robust Mean Estimation for Gaussians. While the SoS-based framework above typically
achieves the best known recovery guarantees (among polynomial time algorithms), a striking excep-

1. See this recent talk for this perspective and its applications to weakening distributional assumptions in robust estimation.
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tion so far has been the task of robustly estimating the mean and covariance of an unknown Gaussian
distribution. In this problem, the algorithm is given input data Y = {y1, 42, ..., yn} C R? that is ob-
tained by arbitrarily and adversarially corrupting en points in an i.i.d. sample X = {z1,z2,..., 2}
from an unknown Gaussian distribution A/(p1, ). The algorithm of Diakonikolas et al. (2016) ob-
tains estimates /i, 3 so that the total variation distance dzy (N (11, ), N (fi, ) < O(e). This is
optimal up to logarithmic factors in € in the bound (and there is evidence (Diakonikolas et al., 2017)
that such a loss might be necessary for polynomial time algorithms). Their algorithm requires
n = poly(d, 1/¢) samples and poly(n) running time. On the other hand, the best known SoS-based
algorithm for the problem is obtained by specializing the analysis in Bakshi and Kothari (2020) for
mean and covariance estimation of certifiably hypercontractive distributions to the case of Gaus-
sians. This analysis yields the same error bound of 0(5) on the total variation error but requires
super-polynomially many d®(°81/¢) samples and n©(°81/¢) running time.

There is an important technical bottleneck in the analysis of the canonical SoS algorithm for
obtaining the stronger guarantees in Diakonikolas et al. (2016). The analysis in Kothari and Steurer
(2017) (and extensions in Bakshi and Kothari (2020)) only uses upper bounds on the higher moments
of distributions. On the other hand, the stronger analysis in Diakonikolas et al. (2016) implicitly
relies on a non-trivial lower bound on moments of arbitrary subsets of the original sample of size
(1 — &)n. The best known sum-of-squares certificates for such a lower bound property appear to
require an exponential cost in O(log 1/¢) in both sample complexity and running time. And, it is
plausible (though, still unproven) that such a cost is necessary! This state of affairs leads us to the
main motivating question of this work:

Can the canonical SoS based algorithm give a robust estimate with O(s) total variation error for
the mean and covariance of Gaussian distributions in polynomial time and samples? Or is the SoS
[framework for moment estimation weaker, when specialized to Gaussian distributions?

In this work, we give a new analysis of the canonical sum-of-squares-based algorithm for robust
mean estimation for Gaussians (that only has subgaussian upper bounds on 4th moment as constraints)
that recovers the polynomial running time and sample complexity guarantees of Diakonikolas et al.
(2016) and same error up to poly log 1 /e factors. Our key innovation (that we explain later in this
section) is a new argument that works around the issue of finding efficient sum-of-squares certificates
for moment lower bounds and yet manages to prove the stronger guarantee. We believe that this new
technique will likely find further applications in efficient robust estimation.

1.1. Our results

Formally, our algorithms work in the following strong contamination model for corrupted samples
used in several prior works on robust estimation, beginning with Diakonikolas et al. (2016) and Lai
et al. (2016).

Definition 1 (Strong contamination model) Let D be a distribution on R? and let X =
{x1,29,...,2,} be an i.i.d. sample from D. In the strong contamination model, an e-corrupted
sample is obtained by replacing any adversarially chosen en points from X with arbitrary outliers

to obtainY = {y1,y2,...,Yn}

Our main result is an analysis of the following canonical SoS relaxation for mean and covariance
estimation along with a simple rounding (used in Kothari and Steurer (2017) and Bakshi and Kothari
(2020)) for estimating the mean and covariance of an unknown distribution.



Algorithm 2 (Mean and spectral norm covariance estimation)
Input: Parameter € € (0, 1), and corrupted samples y1, ..., y, € RY.

Operation: Find a degree-12 pseudo-expectation I (solution to the SoS semidefinite pro-
gramming relaxation) in variables #/,..., 2, € R%, wi,...,w, € R, = E;zl,
Y= Ei(ah — p/) (2} — i) T satistying the following set of constraints:

(1) Booleanity of intersection Variables: w? = w; for every i € [n],
(2) Size of intersection: > , w; = (1 —e)n,
(3) Intersection constraints: w;z; = w;y; for every i € [n],
(4) Certifiable Subgaussianity of 4th moments:
Ly (@)= 0)2 =0 T50)? < (24 O(e)) (v £/v)? for every v € R,

Output: /1 = E[/], % = E[Y].

The constraints of the program encode the task of finding a set of points X’ that intersects the
input sample Y in (1 — &)n points (encoded by the first 3 sets of constraints) such that the empirical
4-th moments of X’ are bounded above by at most ~ 2 times the square of the 2nd moments (the
last set of constraints). The last set of constraints, though apparently infinitely many (one for every
v € R%) admit a succinct representation via techniques of Kothari and Steurer (2017) and Hopkins
and Li (2018) (see Appendix B, or Fleming et al. (2019), Chapter 4 for an exposition). The intended
solution for this polynomial system is X’ = X — the unknown, true i.i.d. sample. (And then setting
w; = 1(z; = y;), and 1/, ¥/ to be the empirical mean/covariance of X.) It is easy to check that X
satisfies the last set of constraints — the only property of i.i.d. Gaussian samples that we enforce.

We prove the following formal guarantees on Algorithm 2.

Theorem 3 (Mean and spectral norm covariance estimation)  Algorithm 2 takes as input an
e-corrupted sample of size n from a Gaussian distribution with mean | and covariance ¥ and in
poly(n)-time, outputs estimates i € RY, S € R¥ \pith the following guarantee. If ¥ = 2~ PoW(d) [,
andn > O(d?1og®(1/5)/e?), with probability at least 1 —8 over the draw of the original uncorrupted

A

sample X, the estimates [i,Y satisfy:
(1) (Mean estimation) HE_l/Q(ﬂ — ,u)H2 < O(e), and
(2) (Covariance estimation in spectral norm) (1 — O(e))X < % < (1 + O(e))%.

Remark 4 (Computational Model and Numerical Issues) Our algorithm succeeds in the stan-
dard word RAM model of computation. In this model, the input sample Y is given to the algorithm
after “truncating” the real numbers to rational numbers with poly(d) bits of precision. The running
time of our algorithm is polynomial in the size of the bit representation of the input. The assumption
on the smallest eigenvalue of 3 in the statement above is entirely an artefact of the numerical issues
as the truncation of Y to rational numbers, in general, does not allow recovering eigenvalues of 3.
that are not representable in polynomially many bits of precision. Such an assumption is required
(but sometimes not stated explicitly) by all prior works on robust estimation when implemented in the
standard word RAM model of computation.



We note that it is possible (though, requires additional steps in the algorithm) to remove the
assumption on the smallest eigenvalue of 3. if we instead assume that the unknown X has rational
entries. Such an assumption is clearly necessary as algorithms in the word RAM model can only
output S with rational entries. We omit the description of such a method and instead choose to make
an assumption that the smallest eigenvalue of . can be written down in poly(d) bits.

Theorem 3 shows that the algorithm of Kothari and Steurer (2017), when analyzed for Gaus-
sian distributions, achieves the information-theoretically optimal O(s) error guarantee using
n = poly(d, 1/e) samples and poly(n) running time. This shows that the analysis of Kothari
and Steurer (2017), which is tight for the more general class of certifiable subgaussian and certifiable
hypercontractive distributions, can be improved in the specific case of Gaussians.

The guarantees achieved by Theorem 3 are weaker than the guarantees of the algorithm in
Diakonikolas et al. (2016), whose estimate S s additionally close to X in relative Frobenius error.
We show that by analyzing the degree-12 SoS relaxation of the following program (that replaces
the certifiable subgaussianity constraints by certifiable hypercontractivity constraints on degree-2
polynomials), we can upgrade the guarantees of Theorem 3 to achieve the stronger Frobenius norm
guarantee of Diakonikolas et al. (2016). We note that this program (with additional higher-degree
certifiable hypercontractivity constraints) was analyzed in Bakshi and Kothari (2020) to obtain
similar guarantees on the mean and covariance estimation of the more general class of all certifiably
hypercontractive distributions, but needed n = d°(°81/2) samples and n?(°21/¢) running time.
Our contribution is obtaining a sharper analysis of the same program for the case of Gaussian
distributions.

Algorithm 5 (Frobenius norm covariance estimation)
Input: Parameter € € (0, 1), and corrupted samples y1, ..., y, € R%.

Operation: Find a degree-12 pseudo-expectation E in the variables o, ..z € RY,

wi, ..., wy, € R,y = E;jxh, ¥ = Ei(z} — p/) (o — i) " satisfying the following
set of constraints:

(1) w? = w; for every i € [n],
Q) Y wi=(1-¢e)n,
(3) w;x} = w;y; for every i € [n],

@) Ei{(z)—p') (2 —p/)T =%, P)?2 < (240(¢)) || P||% for every symmetric P € R?*<.

3 3

Output: ¥ := E[>].

Theorem 6 (Frobenius norm covariance estimation with > ~ )  Algorithm 5 takes as input an
e-corrupted sample of size n from a Gaussian distribution with mean | and covariance % with
(1—=0ENI = % =< (14 0(e)), and in poly(n)-time, outputs an estimate 3 € R¥*¢ with the
following guarantee. If n. > O(d?1og®(1/8)/e2), then with probability at least 1 — & over the draw
of the original uncorrupted sample X, the estimate . satisfies |~ ~/?52 12 —1||p < O(e).

We note that Theorem 6 requires that the input distribution has covariance that is close to I in
spectral norm. This is easily achieved by first running Algorithm 2 to derive an estimate > g that is



close to X in spectral norm, and then running Algorithm 5 on inputs that are linearly transformed

1/22251/2

as y — fla 1 2y. After this linear transformation, the new, “true” covariance X, satisfies

(1= 0@ = 5,288, < (14 0(e))L
We thus obtain the final corollary:

Corollary 7 (Mean and Frobenius norm covariance estimation) There is an SoS-based algo-
rithm that takes as input an e-corrupted sample of size n from a Gaussian distribution with mean
w and covariance ¥ and in poly(n)-time, outputs estimates i € R?, S € R4 with the following
guarantee. If ¥ = 2~ PY (] and n > O(d?log®(1/6)/e?), with probability at least 1 — § over the
draw of the original uncorrupted sample X, the estimates [i, )y satisfy:

(1) (Mean estimation) HE_l/Z([L - ,u)H2 < O(e), and

(2) (Covariance estimation in Frobenius norm) |S~1/25571/2 — 1|z < O(e).

In particular, Apy(N (1, 2), N(j1, %)) < O(e).

Thus, we obtain the same guarantee2 on the total variation distance as in Diakonikolas et al. (2016).
Lastly, we note that if we are also given (an estimate of) the covariance as input, then we can
estimate the mean using fewer samples.

Corollary 8 Let S € R4, Consider the following modification of Algorithm 2, where we replace
the SoS variable Y’ with the additional input S. This algorithm takes as input an e-corrupted sample
of size n from a Gaussian distribution with mean . and covariance Y. and in poly(n)-time, outputs
an estimate i € R? with the following guarantee. If (1 — O(¢))X < 3 < (1 4+ O(¢))%, and
n = O((d+1log(1/6))/e?), with probability at least 1 — & over the draw of the original uncorrupted
sample X, the estimate [i satisfies HE*UQ([L — M)H2 < O(e).

1.2. A brief overview of our key idea

We now give a high level sketch of the key idea used in our proof. First, let’s briefly recap the style of
analysis in Kothari and Steurer (2017) and Bakshi and Kothari (2020) by focusing on the guarantee
for mean estimation. The analysis in these works utilizes the “proofs to algorithms” framework of
algorithm design via the sum-of-squares method. The polynomial constraints in the our program
(Algorithm 2) encodes finding a set X’ of samples that intersects the input corrupted sample Y in
(1 — )n points and has 4th moments upper bounded in terms of the squared 2nd moments in every
direction. The analysis proceeds by using the constraints to derive, via a O(1)-degree SoS proof
that the error in the so called Mahalanobis norm, ||S~1/2(1’ — 11)||, < O(e3/4). Such an inequality

implies that any degree O(1)-pseudo-expectation E that satisfies the constraints of our program
must also satisfy all consequences obtainable via O(1)-degree SoS proofs. As a result, the rounded
estimate [ = IE[,u’ | also satisfies the inequality above giving us the required guarantee.

The Mahalanobis error bound of £3/4 here comes from the upper bound on the 4th moments (in
general, we can obtain ~ v/t~ 1/t error bounds by working with upper bounds on ¢-th moments)

2. Our formal guarantees are not explicit about polylog(1/e) factors in the error, and as a result, formally speaking our
error bounds only match that of Diakonikolas et al. (2016) up to polylog(1/¢) factors. We believe that our argument
in fact gets the same polylog(1/e) dependence, as we rely on the same concentration bounds as in Diakonikolas et al.
(2016), which is where the polylog(1/¢) factors arise. But, our proofs currently do not explicitly show this.



encoded in our constraints and is polynomially off from the optimal O(e) bound we intend to achieve
when the unknown distribution is Gaussian. In fact, the analysis and the bounds obtained by Kothari
and Steurer (2017) and Bakshi and Kothari (2020) are information-theoretically optimal: for any t,
there are two distributions with means that are v/t /¢ far, satisfy the 2¢-th moment upper bound
condition, and are ~ e-different in total variation distance. In particular, one can take such a pair of
distributions and produce corrupted samples that are statistically indistinguishable!

At this point, one might wonder — how can one hope the same set of constraints to yield a
tighter guarantee for Gaussians? Indeed, our analysis follows a substantially different path to use the
Gaussianity of the underlying input distribution.

Enter Resilience. At a high-level, in retrospect, the key property of Gaussians that Diakonikolas
et al. (2016) exploit (which is not satisfied by distributions that constitute the “hard examples” above)
is a certain mild anti-concentration property (that we call resilience, following Steinhardt et al.
(2017)) inferred from lower bounds on moments of subsamples. Specifically, if X is a typical i.i.d.
sample from a d-dimensional, 0-mean Gaussian distribution of size n > d/e, and S C X is any
subset of size (1—e&)n, then the empirical covariance Xg of points in S satisfies ©g > (1—O0(e))Ex

Or, equivalently, that for S = X \ S, it holds that ¥g < polylog(1/¢)¥x. The analysis of Kothari
and Steurer (2017) can only infer (via Cauchy-Schwarz inequality) the exponentially worse bound of
Y5 < O(1/Ve)Ex.

Crucially, resilience of the covariance cannot be inferred from 4th moment upper bounds,
such as those encoded by our constraints. It can indeed be inferred from an argument that relies
on boundedness of O(log1/c) moments, but if we wanted our sample X to have all of its <
O(log 1/¢) moments close to that of the true distribution, we would need d°(°¢1/2) (in particular,
superpolynomially many) samples.

A key insight of Diakonikolas et al. (2016) is the observation that one can prove the resilience
of covariance by a simple Hoeffding + union bound for a sample of size n ~ d/e. Notice that
Hoeffding’s inequality itself relies on subgaussianity of all moments of the distribution but the
relevant consequence of it — namely resilience — can be “seen” in typical samples of size ~ d/e.

Resilience is likely not efficiently certifiable. While this is encouraging, using this property
within the sum-of-squares framework poses a major issue. Notice that, a priori, verifying that a
sample X satisfies resilience requires an exponential search since we need to verify some property
for every subset S of size (1 — €)n. Indeed, given a sample of size n — as far as we know, there is no
known polynomial time algorithm to output a certificate (whether via sum-of-squares or otherwise)
of such a property. On the other hand, since the analysis style in Kothari and Steurer (2017) involves
deriving a bound on the Mahalanobis distance between p’ and the true mean p, we would need a
low-degree sum-of-squares certificate of resilience in order to plug it into the SoS framework. This is
the key technical issue that prevented prior attempts to “SoSize” the argument of Diakonikolas et al.
(2016) for mean (and more generally, covariance estimation) for Gaussians.

Circumventing certificates by proving “only in pseudo-expectation''. Our main contribution is
an argument that allows us to use resilience without requiring an SoS certificate. Notice that, though
powerful and elegant, obtaining a low-degree sum-of-squares proof of a bound on the Mahalanobis
distance HE‘l/ 24— H2 is overkill for our purpose! We only need the inequality after taking

pseudo-expectations. Our key idea, thus, is to directly prove a bound on HZ 1/ 2(E H

without going through low-degree sum-of-squares proofs.



If, for a second, we pretend that pseudo-expectations are in fact actual probability distributions
over solutions X', then this is akin to proving an inequality on the expectation of the solution
X' without establishing (the considerably stronger claim) that it holds “pointwise” in the support
of the distribution. Thus, our idea above can be summarized as attempting to prove a fact “in
pseudo-expectation” without establishing it pointwise in the support of the “pseudo-distribution”.

We show that for the purpose of arguing “after taking pseudo-expectations”, we can in fact
leverage the resilience bound discussed above. Our final argument thus derives some facts “within
low-degree sum-of-squares proof system” — with some technical choices that make the composition
with facts “after taking expectations” possible. Making this work and extending to covariance
estimation in spectral and then Frobenius norms requires some more technical work which, for the
purpose of this overview, we omit.

To the best of our knowledge, this is the first example in the SoS proofs to algorithms framework
for robust statistics where the difference between facts “derived via low-degree SoS proofs” vs
“proved only in pseudo-expectations” appears to make a significant material difference to the results
so obtained. We believe that this style of analysis might come in handy in future applications of the
SoS method to robust statistics and more generally, problems in statistical estimation.

2. Preliminaries

In this section, we give an overview of the sum-of-squares algorithm and state the concentration
properties of Gaussians that we need for our results.

2.1. A crash course in sum-of-squares

We give a brief overview of the sum-of-squares (SoS) algorithm. For a more in-depth survey, see
Fleming et al. (2019).

The sum-of-squares algorithm works in the standard word RAM model of computation. We
assume that all numerical inputs are rational numbers represented as a pair of integers describing the
numerator and the denominator. In order to measure the running time of algorithms, we will need
to account for the length of the numbers that arise during the run of the algorithm. The following
definition captures the size of the representations of the rational numbers:

Definition 9 (Bit complexity) The bit complexity of an integer p € Z is 1 + [logy p|. The bit
complexity of a rational number p/q where p, q € 7 is the sum of the bit complexities of p and q.

We now move to discussing the SoS algorithm. Consider a generic polynomial feasibility problem
of the form

find xe€R™ st fi(x) >0 Vi, gj(r)=0Vj (2.1)

where f; and g; are arbitrary polynomial functions of = with rational coefficients of bit complexity
B, and the total number of constraints is poly(m). Let P, j, denote the set of polynomials p in
m variables with degree at most k. A degree-k pseudo-expectation is an object that mimics a real
expectation E for low-degree polynomials, and is defined as follows.

Definition 10 (Degree-« pseudo-expectation) A degree-k pseudo-expectation (k even) over m vari-
ables is a linear operator E: Py, . — R satisfying:



(1) (Normalization) I~E[1] =1, and
(2) (PSDness) I~E[p2] 2 0 forall p € Pp, /o

We say that the PSDness condition is satisfied with error 7 if E[p?] > —||p||3 for each p € P /s
where [|pl|2 is the £2-norm of the vector of coefficients of p.
We now define what it means for [E to (approximately) satisfy constraints.

Definition 11 (Satisfying constraints) For a polynomial g, we say that a degree-k E satisfies the
constraint {g = 0} exactly if for every polynomial p of degree < k — deg(g), E[pg]] = 0 and
T-approximately if | E[pg]]\ < 7||pll2. We say that E satisfies the constraint {g > 0} exactly if for
every polynomial p of degree < k/2 — deg(g)/2, it holds that E[p*g] > 0 and T-approximately if

Elp*g) = —7pl3

We note that in the above two definitions, the requirements on the degree of the polynomial is such
that E is well-defined, e.g., [pgj] is only well-defined when deg(pg;) < k.

For intuition, it is helpful to observe that a pseudo-expectation is a relaxation of the familiar notion
of expectations: it may be useful to think of pseudo-expectation as satisfying E[p] = E.p[p(z)] for
some distribution D over R™. Clearly, if D is a distribution over feasible solutions of the constraints
in (2.1), then E satisfies all constraints.

We are now ready to define the sum-of-squares algorithm.

Fact 12 (Sum-of-Squares algorithm, Shor (1987), Parrilo (2000), Nesterov (2000), and Lasserre (2001))
There is an algorithm, the degree-k sum-of-squares algorithm, with the following properties:

The algorithm takes as input B € N, 7 > 0, k € N, and a problem of the form (2.1) with
poly(m) constraints, each with rational coefficients of bit complexity B. If there is a degree-k
pseudo-distribution satisfying (2.1), then the algorithm outputs in poly (B, log %) -mOP®) a degree-k
pseudo-expectation E that T-approximately satisfies all the constraints in (2.1), and otherwise

outputs “infeasible”.

For the purposes of this paper, we can set 7 = 2~™ and B = poly(m). The “total error” that we
will incur will be O(poly(m, B)2™™) = O(poly(m)2~™) which is negligible.
We state some basic known facts about the pseudo-expectations that we use below.

Propositign 13 (see for e.g., Barak and Steurer (2016) and Fleming et al. (2019)) For any
degree-k E, the following Cauchy-Schwarz inequalities hold:

(1) Forany p,q € Py, 12, we have E[pq)? < E[p? E[¢?].

(2) Foranypi,...,pn,q1,---,Aqn € P k2 and distribution D over [n], E satisfies the polynomial
inequality Bip[piqi]* < Ei~p|[p]] Binplg7]. In particular, (p1+pa+p3)? < 3(pT+p3+D3)-

Definition 14 (SoS proofs of non-negativity) Let h : RY — R be a polynomial. We say that h has
a degree-¢ SoS proof of nonnegativity if h = >_\_, h? for some polynomials h; € Pa,e/2-



2.2. Resilience and certifiable subgaussianity of Gaussian moments

We now give a brief overview of the key properties of Gaussian moments that we use.

Our algorithm relies on concentration bounds of Gaussians from Diakonikolas et al. (2016),
which prove resilience of the first 4 moments of the Gaussian distribution. We state the bounds for
the first two moments below.

Lemma 15 (Resilience of first and second moments; Lemmas 4.4, 4.3 in Diakonikolas et al. (2016))
Letx1,...,0n ~ N(0,I4xq), and n > O((d + log(1/6))/e2). Then with probability 1 — §, for all
v € R% and vectors a € [0,1]" such that B; a; > 1 — ¢, we have

|Eai(zi,v)] < O(e)||vlla , and

|E ail(xi,v)* = [|[v]5]] < OE)IIvll3 -

To see the importance of Lemma 15, we note that, when combined with Proposition 2 in Steinhardt
et al. (2018), Lemma 15 immediately yields an exponential time algorithm to robustly estimate the
mean 4 of a Gaussian A (i, X3) with known covariance 2, i.e., output /i satisfying (1) in Theorem 3.

The second resilience property we need is an upgrade of the resilience property of the second
moment in Lemma 15, as well as the resilience of the fourth moment.

Lemma 16 (Stronger~resilience of second and resilience of fourth moments) Lerzy,...,z, ~
N(0,T45q), and n > O(d?1og®(1/5)/€?). Then with probability 1 — 6, for all symmetric P € R?¥*?
and vectors a € [0,1]" such that E; a; > 1 — ¢, we have

’Ea&xlu’c;r -1, P>’ < é(s) “|\|P|lr , and
7
[Ea;[(wiz] —1,P)* = 2||P|%]| < Oe) - |IPII% -
Lemma 16 follows from Corollary 4.8, Lemma 5.17 and Lemma 5.21 of Diakonikolas et al. (2016);
we include a short proof for completeness in Appendix C.
We will also need slightly different forms of the above resilience results. We now state the results

in the form that we need, and postpone the proof to Appendix C. The proofs are a straightforward
(but somewhat tedious) consequence of the above results from Diakonikolas et al. (2016).

Lemma 17 Letxy,...,z, ~ N (i, %) for p € R? and ¥ € R¥4 positive definite. Let n be as in

Lemma 16, and jig = E; z; and Xo = By(x; — po)(z; — po) | be the sample mean and covariance

respectively. Let X;; = (x; — z;)(z; — ;) ", and let a;; € [0,1] fori,j € [n] and a; fori € [n]

be such that
(1) ai; = aj; foralli,j,
(2) Eijaij =1 —4e, and
(3) Ejaij = a;(1 — 2¢) forall i, and a;; < a; for all i and j.
Then, with probability 1 — O(6), for all v € R? and symmetric P € R, we have

(1) (i = po,v)| < O(e)VoTSu



(2) ‘Eaz@l — MO,U>‘ < O(a) VLD I
(3) [Eail(zi — po,v)* — 0" Sov]| < O(e) - v Sov

(4) [(S = 2, P)| < O@)|IZ'2PE 2
(5) [E [((z: — o) (@: — o) = To, P)* =2 S2PEV2|}]| < O(e) - [£V2PE23
(6) \%GMXU — %0, P)| < O(e) - |I£V2PEY?|p , and
(7) [Bay[(Xi5 = To, P)* = 2 S/2PE2|7]| < Ofe) - |[S2PR2
The final property we will need of Gaussians is certifiable subgaussianity, which says that certain

moment inequalities have low-degree SoS proofs.

Lemma 18 (Certifiable four!h moments of Gaussian samples, Section 5 in Kothari and Steurer (2017))
Let £,6 > 0, and n > O((dlog(1/6)/e)?). Let x1,...,1, ~ N(0,3) be samples from a
d-dimensional Gaussian. Then with probability 1 — 6,

h(z,v) = (3+¢)(v,v)? — E (z;,0)!

has a degree-4 SoS proof of nonnegativity in v (Definition 14).

3. Mean and Covariance Estimation of Gaussians via SoS

In this section, we prove ?? 32?? 6. First, we prove Theorem 3. Then, we prove Theorem 6 in
Section 3.2. We combine ?? 3?? 6 to prove Corollary 7 in Appendix A.

3.1. Analyzing the canonical SoS program: proof of Theorem 3

We now prove Theorem 3, restated below.

Theorem [Restatement of Theorem 3] Algorithm 2 takes as input an e-corrupted sample of size n
from a Gaussian distribution with mean p and covariance Y. and in poly (n)-time, outputs estimates
fi € R% S € R with the following guarantee. If ¥ = 2~ PN and n > O(d?1og®(1/0)/e?),
with probability at least 1 — 0 over the draw of the original uncorrupted sample X, the estimates
i, ) satisfy:

(1) (Mean estimation) HZ_1/2(,& — ,u)H2 < O(e), and
(2) (Covariance estimation in spectral norm) (1 — O(e))% < % < (1 + O(e)).

For convenience, we shall assume without loss of generality that en is an integer; this can be done by
changing ¢ by at most a constant factor.

The canonical degree-12 SoS relaxation of Algorithm 2 outputs a degree-12 pseudo-expectation
E in the variables =/, ..., z/, € R% wy, ..., w, € R, satisfying the constraints of Algorithm 2, if
such a [ exists. The estimates produced by the algorithm are /i := E[/] and 3 := E[¥].
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Let 21, ..., 2y ~ N(u,X). Let ug = E; x; be the sample mean, and let Xg = E;(x; — uo)(x; —
o) be the sample covariance. Fix ¢ € (0,1), and let y1, . . ., y,, be an e-corruption of 1, ... , .

By Lemma 17, with probability 1 — 4, the following inequalities hold for any ay, ..., a, € [0, 1]
with >, a; > (1 — 2¢)n and v € R%:

[ — po,v)] < O(e)VuTXv | (3.1)
‘E%(%‘ — Jo, v ‘ <O0(e) - VuTSgu (3.2)
‘IE ail(xi — po,v)? — UTEOUH <O(e) - v Sv . (3.3)

Next, we let X;; := $(z; — x;)(2; — x;) ", forany 4, j € [n]. Let T C [0, 1]"* denote the set of
(aij)i,je[n] such that:

(1) ai; = aj; forall i, j,
(2) =1 aij = (1 —4¢)n, and
(3) there exist ay,...,a, € [0,1] such that a; > E; a;; > a;(1 — 2¢) forall i € [n].

By Lemma 17 (setting P = vv "), with probability 1 — &, the following inequalities hold for any
(aij)ijem) € T:

!vT(EO - )| € Oe)v' Bgv (3.4)
{H:E[((acz — po, v>2 — ’UTE()U)Q — 2(UTEOU)2H < O(e) . (UTE()U)Q , (3.5)
|E Qi [’UT(XZ']' — Eo)UH < O~(€)UT20’U s (36)
ij
|E aij[(v" (Xij — Bo)v)? — Q(UTEO’U)ZH <O(e) (v Zgv)? . 3.7)
ij

We proceed with the rest of the proof, assuming that the above resilience conditions hold. From this
point on, we will no longer need to use the randomness of the x;’s.

3.1.1. FEASIBILITY

Let us now argue that the constraints in Algorithm 2 are feasible. Set 2 = z; for each ¢ € [n], and
let w; = 1if y; = x; and 0 otherwise. Constraints (1), (2), (3) of Algorithm 2 are clearly satisfied, so
it remains to argue that constraint (4) is satisfied. By Eq. (3.5) (with a; = 1 for all ¢) constraint (4) is
satisfied. Hence, the constraints in Algorithm 2 are feasible. In particular, Algorithm 2 will output in
poly(n) time a degree-12 pseudo-expectation E in the variables .., xl, wi, ..., wy, satisfying
the constraints of Algorithm 2. From this point on, we shall think of the pseudo-expectation | as
fixed.

In light of the above, we summarize our notation in the box below.

Notation:
* 1, Y, the true mean/covariance of the Gaussian N (u, X2)
* Lg, 20, the sample mean/covariance of the true samples x1, ..., x,

e 1,3, the SoS variables for the mean/covariance

11



« i =E[],% = E[Y], the estimates for the mean/covariance
* Y1,...,%Yn, the e-corruption of the true samples x1, ..., x,

e 2),..., 2}, the SoS variables for the samples

* wi,...,wy, the SoS variables for the indicators 1(z, = y;)

3.1.2. GUARANTEES FOR THE MEAN

We now analyze the estimate /i := E[i/] = E[E; 2] for the mean u, where E is a degree-12
pseudo-expectation satisfying the constraints in Algorithm 2. We need to show that /i satisfies
(A = o, v)| < O(e)VvT S,

The key ingredient in the proof is the following lemma, which we prove in Section 4.

Lemma 19 Let z1,...,x, € R% Suppose that there is some ¥ € R¥? such that for all v € R?
and a € [0, 1% with 37" a; > (1 — 2¢)n, we have

IE a;(z; — po,v)| < O(e) - VuTXov  and |Ea;[(z; — po,v)2 — v Bov]] < Oe)v Sov .
7 7

Let y1,...,yn be any e-corruption of x1,...,Ty, let E be a degree-6 pseudo-expectation in the
variables ©, . .. 2!, € R* and wy, ..., w, € R. Let i’ = E; x!. Suppose that

(1) E satisfies w? = w; for every i € [n),

(2) E satisfies 31 w; = (1 —e)n,

(3) E satisfies w;x; = w;y; for every i € [n],

(4) E[Ei(z) — 1/, v)?] < v S for every v € R

Then, for every v € RY, it holds that:

(it — o, v)| < O(e) Vo T Sov + \/0(5) 0T (3 = To)v + 0T (S + Zo)v .

We now finish the proof, assuming Lemma 19. We first observe that the hypotheses of Lemma 19
hold. Indeed, the two resilience conditions of Lemma 19 follow by Egs. (3.2) and (3.3). Second,
Eis a degree-12 pseudo-expectation (and so is also degree-6) with the required properties: (1) —
(3) clearly hold, and (4) follows from the definition of ¥/, as 3 = fE[E’ ]. As the hypotheses of

Lemma 19 are satisfied, we thus conclude that

(i — po,v)] < O(e)VvT Sov + \/0(5) T (8= So)v+ 02T (£ + Zo)v . (3.8)

Suppose that the estimate for the covariance 3. satisfies the desired conclusion, i.e., that |vT(fJ —
Y)v| < O(e)v " T for all v € RY (we will prove this next). Then, Eqgs. (3.4) and (3.8) imply that

(2 — po,v)] < O(e)Vo Su
Finally, by Eq. (3.1), we conclude that

[ — i, 0)] < OEVoTSW |

12



assuming that 3 satisfies its desired property. By choosing v appropriately, this implies (1) in
Theorem 3.

We note here that this also proves Corollary 8. Indeed, this is because in Corollary 8 we are
already given a good estimate S of ¥ as input, and so the assumption that we have such an estimate
is satisfied. As we have only used the resilience of the first two moments (Lemma 15) in the analysis
above, the number of samples n that we need in Corollary 8 thus comes from Lemma 15, i.e., we
only need n > O((d + log(1/6))/€?).

3.1.3. SPECTRAL GUARANTEES ON THE COVARIANCE

We now analyze the estimate 3 := E[Z’ ] for the covariance, where E is a degree-12 pseudo-
expectation satisfying Algorithm 2. First, we observe that the polynomial ¥/ := E; (', — /) (2} — /) T
is equal to E;; X/; where X/ := 3 («} — «})(«} — 2;) T, and similarly we also have X = E;j X,

j J
where X;; = $(z; — 2;)(z; — ;).

Let T C [0, 1]"2 denote the set of (a;j); je[n such that:
(1) ai; = aj; forall 7, j,
(2) Zijl aij > (1 — 46)7’L, and

(3) there exist a1, ...,a, € [0,1] such that E; a;; > a;(1 — 2¢) for all 4, and a;; < a; for all ¢
and j.

The key ingredient here is the following lemma, which is very similar to Lemma 19 that appeared in
the case of mean estimation.

Lemma 20 Let X1,...,X,> € R and let X := E;; X;j. Let T C [0, 1}”2. Suppose that, for
allv € R? and a € T such that Do = (- 4e)n?, we have

\%aijvT(Xi' — ¥o)v| < O(e) v Yov  and \%aij[(vT(Xi,j — ZQ)U)Q — 2(UTZOU)2H < O(e)(vTEov)2 .
LetYy,...,Y,2 be any (2¢ — &2)-corruption of X1, . . ., X 2, let E be a degree-6 pseudo-expectation
in the variables X1, ..., X/, € R and w1, ..., w,2 € R. Let ¥ = E;; Xl{j. Suppose that

(1) E satisfies wfj = w;j for every i, j € [n],

(2) E satisfies Zz]‘?szl wij = (1 —¢)?n?,

(3) E satisfies w;j X;; = wi;Yij for every i, j € [n],

(4) E[Eij(vT(Xl(j — Y0)?] < (24 O(e)) E[(v T %/0)?] for every v € R%, and

(5) a € T, where a is the vector with a;;j := E[wij]l(Xij =Yj;) foreach i, j € [n].

Then, for every v € R%, the following hold:

E(w' (2 —20)v)2 < O@)(E(v )2 + (v Sov)?)

(5 = S0, 0)| < O(e)o Sov + \/IE:[E[u —wly) T (XY — So)l?]

ij
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where ng = w;j1(Xi; =Y5), 3= E[Z] and

E[E[(1 —wj;) v (X}; — Zo)v]*] < O(e) - (E(v'£v)% — (v Sov)?) + O(?) - (E(v £'v)* + (v Sov)?) .

1

As before, we postpone the proof of Lemma 20 to Section 4, and use it to finish the proof.

We apply Lemma 20 as follows. First, we note that >y defined in Lemma 20 is the same as
the sample mean Xo. Next, let 7" be the subset of vectors (a;;); je[n) defined earlier. We see that
Egs. (3.6) and (3.7) imply that the X;;’s defined satisfy the resilience conditions in Lemma 20.

Now, we let Yi; = 5(yi — y;)(yi — y;) ", and let X = (2} — ) (w) — x;)—r We note that ¥/
as defined in Lemma 20 is the same polynomial as ¥’ defined earlier. We observe that the Y;;’s must
be a (2 — £2)-corruption of the Xij’s. Moreover, if we let w;; := w;wj, then the pseudo-expectation
defined by E on the polynomials X/ ; and w;; is a degree-6 pseudo-expectation, and additionally
satisfies properties (1) — (3). To see that (4) holds, we observe the following polynomial equality:

BT (X - 20 = 5Bl — i, 0) + (07 T0)?) .

Combining with constraint (4) in Algorithm 2 and taking pseudo-expectations shows that property
(4) holds.
Finally, property (5) in Lemma 20 holds, as (aij)i,je[n] € T because it satisfies the required

properties with respect to the vector a; = E[w;]1(z; = ;) for each 7.
Thus, by Lemma 20, we have

(3 = o, 00T)| < O(e) v Sov+ VR

where

R = E[E[(1 — wj) v (Xij — Bo)v]’] < O(e) - (Bl(v £'0)%] = (v 20v)*) + O(e?) - (E[(v Z'v)?]

v

Write ¥’ = A + B, where B = E;;(1 — ng)X{j and A = E;; ngX{j = E;; w;X,;; the latter
equality holds because the following polynomial equalities are satisfied by E:

1 T
5l — ) — )
1 1

Q(yz' — )i —yi) " = wiw;L(z; = i) 1(z; = y;) -

Additionally, let A, := v Avand B, := v Bv, and ¥, = v 3gv. We have that

wi; X = wiw;1(z; = yi)1(z; = y;) -

= wyw;1(x; = y;)1(xj = yj;) -

[AZ] [(Ew U XZ]U) ] = zl}Ejl 12]%2 E[ Zl]l 7,42‘7'2] . ’UTXileU . UTX’L'Q]'Q/U
- P
< E E /Elw wi, 5 |E[w, . ]-v X“]lv v szv (as E[w! 1= E[wj;])

11,71 12,J2

E[I%,/E[ 0T Xiu]? < (14 0(e))E2 (by Bq. (3.6) applied to ai; = y/Ew),])

We now bound R. In this notation, we have

R=E[(B, — B[ — wy] - £0)%] < O(e) - (E[(Av + Bo)?] = 53) + O(e?) - (El(As + Bu)’] + %)

3.9

14

+ (v Zv)?) .



First, we have
E[(B, — E[1 - w}] - .)%) = BB + E[l - w}]? - 52— 2B, E[1 - wy] -] > E[BY] - 4%, E[B,] |

(3.10)

Z]

as X, = 0 and [ satisfies B, > 0 because B, is a sum-of-squares polynomial. As IE[AQ}
(14 O(£))%2 and E[A, B,]? < E[A2] E[B2] (by Proposition 13), it follows that

E[(A, + B,)? < E[B?] 4+ 24/E[A2]E[B2] + (14 O(¢))2? < E[B?] + 25,\/E[B2] + (1 + O(¢)) %2 .
(3.11)

Combining Egs. (3.9) to (3.11) thus yields
E[B}] — 4¢3, E[B,] < R < O(e)(E[B] + 25,\/ E[B2] 4+ O()7) + O(*) - X3 .

v

Rearranging, applying E[B,] < \/E[B2], and solving for E[B2] yields

R[B2] < O(?) - 52
— R < O0(e)(E[B?] 4 25,1/ O(2)2 + O(£)X2) = O(£%) %2
= [0 (Z—Zo)v| <O() - v Sov + VR =0(e) - v Zguv .

This is the desired spectral norm guarantee, only with >y in place of . Using Eq. (3.4) and the
triangle inequality, we have |v' (3 — X)v| < O(e)v" Zo, and so we thus have the desired spectral
norm guarantee. This finishes the proof, as we have shown that ji satisfies its desired property,
assuming that % has this property.

3.2. Relative Frobenius guarantees on the covariance: proof of Theorem 6
We now prove Theorem 6, restated below.

Theorem [Restatement of Theorem 6] Algorithm 5 takes as input an e-corrupted sample of size
n from a Gaussian distribution with mean 11 and covariance ¥ with (1 — O())I < ¥ < (1 +
O(e))L, and in poly( )-time, outputs an estimate S € R4 with the following guarantee. If n >
O(d?log®(1/6)/€2), then with probability at least 1 — § over the draw of the original uncorrupted
sample X, the estimate 3. satisfies |2 ~/25571/2 — 1| p < O(e).

Let 1,...,2, ~ N(i,%), where (1 — O(e))l < £ < (1 + O(¢))L. Fixe € (0,1), and let
Y1,--.,Yn be an e-corruption of x1,...,x,. Let ug = E; z; be the sample mean, and let > =
E;(2; — po) (s — o) | be the sample covariance.

We observe that for every symmetric P € R4*?, it holds that

I1P[|r = IZY2PEY2) p| < O(e) min(||Pllr, 12 PEY? £) (3.12)

as (1 — O(e))I = X =< (1 + O(e))LL, using the standard inequality | AB||r < ||Al|2|| B r-
For each i,j € [n], let X;; == 3(2; — a;)(x; —x;)". Let T C [0,1]" "* denote the set of
(aij)i jeln) such that:
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(1) aj; = aj; forall 4, 4,
(2) =1 aij = (1 —4e)n, and

(3) there exist a1, ...,a, € [0,1] such that E; a;; > a;(1 — 2¢) for all 4, and a;; < a; for all ¢
and j.

By Lemma 17, with probability 1 — § the following hold for any (a;;) € T and symmetric P € R?*%:

(S0 — %, P)| < Oe)| =Y PEY? p (3.13)
|E [((2i — po) (@i — po) T — To, P)* = 2B PEY2|3]| < O(e) - =2 PEY2|7 ,(3.14)
B ai[(Xij, P) — (20, P))| < O(e) - |[=2PEY?| (3.15)
ij
|Eai; [(Xij — o, P)? = 2||S2PSY2)2]| < O(e) - |22 PE?)% . (3.16)
ij

From the above, feasibility is simple: set x; = x; for all 4, w; = 1(z; = y;), and observe

that now p/ = pg, ¥’ = >0, and constraint (4) in Algorithm 5 is satisfied by Eq. (3.14) as
|=Y2PY2?||p < (1+ O(e))||P|| - Thus, Algorithm 5 will output in poly(n) time a degree-12
pseudo-expectation [ satisfying the constraints in Algorithm 5.

Covariance estimation in Frobenius norm. We now analyze the output ¥ := E[¥'] of the
algorithm. We observe that [E;; X;; is equal to the sample covariance Y. Let Y;; := %(yz —
y;)(yi —y;) ", and let X} = sz} — ) (w; — a:;)T Similarly, we have that the SoS variable

= By(f — ) (@) — p/) T is equal to Eyj X7

(2
The key ingredient in the proof is the following technical lemma, which we prove in Section 4.

This lemma is similar to Lemmas 19 and 20.

Lemma 2l Let X1,...,X,> € R and let X := E;; X;j. Let T C [0, 1}"2. Suppose that, for
all symmetric P € R*™% and a € T, we have

I aij{(Xij — 2o, P)| < OG) - |IP|r  and [ aii[{Xij — o, P)? = 2||PIIF]| < O@)|IP|% -

Let Y1,...,Y,2 be any (2¢ — £2)-corruption of X1, ..., X2, and let E be a degree-6 pseudo-
expectation in the variables X1, ..., X/, € R andwy, ..., wy2 € R Let ¥ = E;; Xj ;- Suppose
that

(1) E satisfies wfj = w;j for every i, j € [n],
(2) E satisfies doijmrwig = (1= £)%n?,
(3) E satisfies winzfj = w;;Y;j for every i,j € [n],

(4) IE[EU<XZ(J- — ¥ 0)?] < (24 O())||P||3 for every symmetric P € R¥%, and

(5) a € T, where a is the vector with a;; = Iﬁ[wij]l(Xij =Yj;) foreach i, j € [n].
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Then, for every symmetric P € R4, it holds that
(2 =20, P)| < O@)||P||F
where 3> = E[).

We now apply Lemma 21. We observe that by Egs. (3.15) and (3.16), and using Eq. (3.12), the
resilience condition in Lemma 21 is satisfied by the X;;’s. We also observe that the pseudo-
expectation [E, in the variables X /- and w;; with w;; := Wiw;, is a degree-6 pseudo-expectation, and

trivially satisfies properties (1) — (3). Property (4) follows as E satisfies constraint (4) in Algorithm 5
and the following polynomial equality holds:

1 1
%<Xz{j -3 0)’ = 2 B((ai = ) (i = W) P+ 5 (& v)?

Property (5) follows by using the vector a with a; = E[w;]1(x; = ;) to show membership of
(alj)z JEn] inT.
We thus have by Lemma 21 that |(X — 5o, P)| < O(¢)||P||p for all symmetric P € R4,
Using Eq. (3.13), it follows that | (¥ — %, P)| < O(e)||P|| r. Hence,
\<2*1/222*1/2 —LP) = |(S—%,571/2pn=1/2)
O(@E)I= /2P~ 2||p < O()||1P|r -

£o1/28n-1/2
|=-1/28n-1/2])|z°

Setting P = we conclude that

I==12887Y2 — 1) p < O(e) |

as required.

4. A Generic Estimation Lemma
Lemmas 19 to 21 are special cases of a generic technical result, which we now state and prove.

Lemma22 Letxy,...,2, € R% and let pg := E;x;. Let V(pg,v) for v € R? be a degree-2
polynomial in jig, and let S C RY be a set such that V (g, v) = 0 for all v € S and py € R%,
Let T C [0,1]™ Suppose that, for all v € R and a € T such that Y, a; > (1 — €)n, we have

B ai(w; — po, v)| < O(e) - V/V(po,v)  and  [Eaif{z; — p0,v)* = V(po,v)]] < O(e)V (1o, v) -
4.1)

Lety, . ..,yn be any e-corruption of x1, ..., Ty, let E be a degree-6 pseudo-expectation in the
variables ', . .. 2!, € R? and wy, ..., w, € R. Let i’ = E; x. Suppose that

(1) E satisfies w? = w; for every i € [n)],
(2) E satisfies 31, w; = (1 —e)n,

(3) E satisfies w;x, = w;y; for every i € [n,
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(4) E[E;(z; — 1/, v)?] < (14 O(e)) E[V (i, v)] for every v € S, and
(5) a € T, where a is the vector with a; := E[w;]|1(x; = y;) for each i € [n).
Then, for every v € S, the following hold:
E(y' — po,v)> < O()EV (', 0) + V (o, v))

[ = 0, )| < OV (jio,v) ﬁ[E[(l —wl){a] — o, v) 7] |

i
where i := E[i/], and

E[E[(1 — w)){z; — no,v)]*] < O(e) - (BV (', v) = V (o, v)) + O(e) - (EV (i, 0) + V (o, v)) -
One should think of V' as the variance of the distribution from which the z;’s are drawn, along the
direction v € R?. We now turn to the proof of Lemma 22.

Proof [Proof of Lemma 22] For each i € [n], let w, = w; - 1(z; = y;). One should think of w; as
indicating that the algorithm “thinks” that x; = y;; the variable wg then indicates that the algorithm
correctly “thinks” that x; = y;.

We now notice that the constraints w}”> = w/, wjx, = wix;, and 3, w) > (1 — 2¢)n are all
satisfied by E. Indeed, e.g., the fact that w/a, = wla; is satisfied is consistent with the logic that if
the algorithm thinks that z; = y;, then it chooses z, = y; = x;, and therefore z} = z;.

We then have

[ = 0,0} = [EE(x} — i, v)|
= [EEwi{x} — z5,v) + EE(1 — w){z} —a;,0)]
(2 (2
=0+ |EE(1 — w))(x; — puo 4 po — x5, v)|  (because E satisfies w)z} = w'x;)
(2
< BE(L — )] a0, )| + [EB[L — )z — po.v)]

One should notice that in the calculation above, we split the estimation error into the term when the
algorithm “thinks” correctly and the error term, and then we “center” the error term about the sample
mean L.

We now apply the robustness assumption (4.1) to the second error term. Let a; = E[w;] for
each i. We have that > | a; > (1 — 2¢)n and a; € [0, 1] because E[w.?] = E[w)], and a € T by
assumption. Hence, again by assumption, we have that

[E Efwi](x; — p0,v)| < O()v/V(po,v) and  [E{w; — po, v)| < O(e)V/V (po, v) -

Thus, |E; E[1 — w]){(x; — po, v)| < O()\/V (110, v). We note here that the robustness assumption
we apply is an inequality that holds “outside” the pseudo-expectation E.

It thus remains to bound the first error term: [EE;(1 — w})(z} — o, v)|. We do this by using
constraint (4) to control its second moments.

First, by applying the Cauchy-Schwarz inequality, we have

BE(L i)} — i, )] < \JEIBKL ~ wl) (ot~ o, )]

)
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and that

E[(1 - w)){z} — o, )]

=h

< EE[(1 —w))?]-E[(1 — w))?(z} — po,v)?]]  (by Item (2) in Proposition 13)
(2 (2
= E[E[1 — w!] - E[(1 — w})(x} — po, v)?]] (as [ satisfies w/” = w))
7 (2
< 2 -EE[(1 — w) (2} — po, v)?] (as | satisfies E[1 — w/] < 2¢)
(2 7

Note that here we crucially need that IE is a degree-6 pseudo-expectation, as E;[(1 — w})?] - E;[(1 —
w})*(x; — po,v)?] is a degree-6 polynomial in the SoS variables ..., 2}, and wy, .. ., wy.
We thus need to control the second moments EE;[(1 — w}){(z} — po, v)?]. Using constraint (4),

we have that

EE[(1 — w;)(z} — o, v)’]

= EEE@C; — po, v)? — EIEJUJ;(H?; — o, v)?

= IEIIET(Q:; — o, )% — IEJINEw;(xZ — g, v)? (as I satisfies wlz, = wlz;)
SEE(] — ' + ' — po,0)? = (1= O(€)V (po, v) (by Eq. (4.1), setting a; = E[w})
= BE(w; — ') + B’ — po, v)* + EE(w} — 1", v}’ — po, v) = (1 = O(£)V (1o, )
<SE[1+0E )V, v)] + E(u — po, )2 +0 — (1 — O(e))V (o, v) (by constraint (4))
=EV(i',v) = V(no,v) + O()EV (1, 0) + V(po,v)) + E(u' — o, v)* .

Again, we remark that Eq. (4.1), used above to lower bound the second moment, is an inequality that
holds “outside” E.

Finally, we upper bound E{z/ — po, v)2. We compute

= R[E[(1 — w))(z} — z;,v)]?] (as [ satisfies w]z} = wix;)
< E[E[(1 - w))?] - Bl{e! — 2,,)?]) < 22 BE(] - z,.0)°

= 2e EEB((af — 1) + (' — o) + (1o — ), 0)?

< 651~EIZEZ<:E; — ' v)? + 6€IZEJ<:U¢ — 10, )2 4+ 6 E(i — pig, v)? (by Proposition 13)
< 6e(1+ OBV (1, v) + V (o, v)) + 6 B’ — o, v)*

and so it follows that E (/' — g, v)2 < O(e)(EV (1, v) + V (10, v)).
Putting everything together, we conclude that:

E[E[(1 - w){a} — po,0)]*] < O(e) - (EV (', v) = V(po,v)) + O(?) - (BV (1, 0) + V (110, v))

)
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and that

)

[ = 0, )| < OE)V/V{ri0,0) + \/IE[E[O —wl){a] — 0. 0) 7] |

for every v in S. |
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Appendix A. Proof of Corollary 7

We prove Corollary 7. Let z1, . . . , 9, be drawn from A (u, ), and let 1, . . . , y2,, be an e-corruption
of x1,...,x2,. Note that yy,...,¥y, is an e-corruption of x1,...,x,, and Yn41, ..., Y2, 1S an -
corruption of Ty 41, ..., Ton.

First, we run the algorithm in Theorem 3 on ¥, .. ., y,: this yields an estimate /i satisfying Item
(1) of Corollary 7, and an estimate X of ¥ satisfying |v" (X1 — £)v| < O(e)v" Sv for all v € R%,

Next, we run the algorithm in Theorem 6 on the transformed samples E;l/ 2yn+1, ey E;l/ 2ygn.

We observe that these samples are an e-corruption of E;l/ 2xn+1, ey Z;l/ 2x2n, which are drawn
from N (11, $2), where ¥, = $~1/25571/2, By our guarantee on X1, we must have (1 — O(e))I <
Y2 < (1 4+ O(e))L. Hence, the output of the algorithm in Theorem 6 is X3 where X3 satisfies
~1/2 —1/2 ~
1252853, ~ 1l < O(e).
Our final estimate for ¥ is ¥ := 21/22321/2. We have that

[B712ER Y2 0 = 2S00y 2 2 — 1 g
= (SR 12) T2y (07 2es ) T2 e = |5, P85, P TR < OCe)

where we use the following proposition. This finishes the proof of Corollary 7, as by Corollary 2.14
in Diakonikolas et al. (2016) we have the desired bound on the total variation distance.

Proposition 23 Let A, B € R4 be symmetric, PSD matrices, with B invertible. Then for any
invertible C' € R it holds that

|B~Y2AB~Y2 —1||p = |(CBCT) Y2cACT (CBCT) V2 — 1|

Proof Recall that for a symmetric matrix M € R%*? with eigenvalues \i,..., \g, |[M||r =
Z?Zl AZ. Tt thus suffices to show that B~Y/2AB~1/2 and (CBCT)~/2CACT(CBCT)~"/? are
equivalent up to an orthogonal change of basis.

Let D = (CBCT)"Y2CB'Y2.  We then have that DB~ Y2AB~'/2DT =
(CBCT)~12CACT(CBCT)~1/2, so it remains to show that D is orthogonal, i.e., DD =
DD =1. We have

2
DDT _ (CBcT)71/2031/2B1/20T(CBch)fl/Q — (CBcT)fl/Z ((CBcT)l/Z) (CBcT)fl/Z -1
DTD _ Bl/?cT(CBcT)—I/Q(CBcT)—1/2CB1/2 _ Bl/?cT(c—l)TB—lc—chl/Q =1,

which finishes the proof. n
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Appendix B. Quantifier Elimination in Sum-of-Squares

In this section we will justify why the SoS relaxations of ?? 2?? 5, which are written as a family of
infinitely many constraints, can be solved efficiently. The programs have the form

find z € R™

S.t. i =0 Vi
fi(z) i B
gi(x) =0 Vj

h(z,v) 20 Yve R,

with poly(m) constraints f;, g;. As such, we need a way to express constraints of the form “h(z, v) >
0 for all v € R?” within degree-k SoS. This will follow from the following result:

Lemma 24 (Quantifier elimination in SoS, e.g., Section 4.3.4 in Fleming et al. (2019)) Sup-
pose that there exists some x* € R™ such that f;(z*) > 0 for all i, gj(x*) = 0 for all j, and

h(z*,-) has a degree-k SoS proof of nonnegativity. Then a degree-k pseudoexpectation satisfying all

constraints in (B.1) can be found by solving a semidefinite program of size mOW%),

Intuitively, this is true because “h(z*, -) has a degree-k SoS proof of nonnegativity” is equivalent to
a particular moment matrix of size m©(*) being PSD, which can be expressed within SoS. We will
use this result in two forms.

Lemma 25 (Lemma 4.27 in Fleming et al. (2019)) If h is a quadratic form, then h has a degree-2
SoS proof of nonnegativity if and only if h(v) > 0 for every v.

In ?? 222 5, the constraint (4) is indeed a quadratic form in v (or P), so we are done. For
constraint (5) in Algorithm 2, we require the certifiable hypercontractivity of Gaussians (Lemma 18),
which we restate here:

Lemma [Restatement of Lemma 18] Lete,6 > 0, and n > O((dlog(1/6)/€)?). Let zy,. .., xp ~
N(0,3) be samples from a d-dimensional Gaussian. Then with probability 1 — 6,

h(z,v) :== (34&)(v,5v)° — E (z;,0v)4

has a degree-4 SoS proof of nonnegativity in v (Definition 14).

By rearranging, the constraint (5) in Algorithm 2 is exactly the condition that h(z’,v) > 0 for all
v in the above lemma, so the lemma states that a degree-4 SoS proof exists with high probability for
the frue samples x; = x;. Thus, the conditions of Lemma 24 are satisfied, and we are done.
Appendix C. Deferred Proofs from Section 2.2
C.1. Proof of Lemma 16

Proof The first statement is

H]]:Zaz[xzaclT - HH'F < O(e)
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which is Corollary 4.8 in Diakonikolas et al. (2016). The second statement is

[E a; (i) —1,P)* = 2||P|]] < O)]| Pl

By convexity, we may assume that a; € {0, 1} for all i. Let S be the set of indices ¢ for which a; > 0.
We have:

Eal(zal ~1P)? - 20PI3]| <| E (vl ~LP)=2|PI}|+el_E (wa] ~1P)|

We bound the two terms separately. Condition on the “good event” in Lemma 5.17 of Diakonikolas
et al. (2016). Then,

LE (@l ~LP) ~2|PI}| <O@)|PIF

i~[n]

follows from Item 3 of Definition 5.15 in Diakonikolas et al. (2016) with p(z) = (zz’ —
P)/(V2||P||r). The fact that

el E xixz——H,P2<OE
LE 2| < 0(e)

follows from Lemma 5.21 of Diakonikolas et al. (2016) with the same choice of p. Combining these
bounds completes the proof. |

C.2. Proof of Lemma 17

The statements in Lemma 17 are similar to those in Lemma 15 and Lemma 16, so it should be
reasonable to believe that they should hold. The proofs are tedious but ultimately mostly brute force.

All the statements are invariant to linear transformations, so assume WLOG that ;4 = 0 and
> = II. Condition on the conclusions of Lemmas 15 and 16, which hold with high probability for the
chosen n. Let z; = x; — g for notational simlpicity.

In the proof, instead of the stated conditions on a, we will use instead normalized vectors, namely,
we will assume that E;ja;; = E;ja; = 1, Eja;; = a; <14 O(¢), and a5 < a;(1 + O(e)). Since
this amounts to nothing but scaling the coefficients by 1 + O(¢), the conclusions of Lemmas 15
and 16 hold verbatim.

(1) [{po,v)| < O(E)|v]l2

Proof Set a; = 1 for all 7 in Lemma 15. |
(2) ‘IZECM(% — po,v)| < O(e) - VuTZgv

Proof By (1) above and Lemma 15, we have

\IZ;EaMxi — po,v)| < U?ai@uvﬂ + UZEGMMOWH < O(e)|[v]l2

But |[v]]2 = (1 £ O(g))y/vT Zov by (4) (with P = vv "), so we are done. [ |

The following intermediate results will be useful in the remaining proofs.
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Lemma26 | Ppuol2 < O(e)
O()|IP| .

Proof The first inequality is || Puoll2 < ||P|l2]lollz < O(e)||P||r by Lemma 15 and ||P|z <
1Pl

The second is [E; a;(zipig , P)| < O(€)|| Ppoll2 < O(?)||P|| , by Lemma 15 the first inequal-
ity.

The third is the second when a; = 1 for all 3. |

[Ei ai(wipg , P)| < O()| P

F, and |pg Ppo| <

(3) [Eai(ziz] —LP)| <O@)|Pr

(The statement in the lemma follows from setting P = vv " and applying (4) below, but we will need
this more generic statement later, so this is the one we prove.)
Proof We have

Ea;{(zi — po)(zi — po) ', P) = Ea;(z; ), P) + (nopg » P) — 2l§ai<ﬂ?iﬂg,f’>
The first term is E; ai{z;x] , P) = (I, P) = O(¢)||P||r by Lemma 16, and the other terms are
+0(¢e)||P||r by Lemma 26. [ |
@ (%0 —LP)| <O@)|P|F

Proof Set a; = 1 for all 7 in (3). |

(5) |Eziz| — o, P)? —2||P|%| < O(e) - | P||%

Proof We have:

Eaxzz — %0, P2 =Eai(ziz] —1,P)2 + (S0 —1,P)2 — 2B a;(zz] — 1, P)(So —1, P)
1 1

For the second term, we have (3o — I, P)2 < O(?)|| P||% by (4). For the third term, we have
[Eai(ziz —LP)(So ~ LP)| < O@)|Plr|Baitziz —L P)| < OE)|PI

by (4) and then (3). That only leaves the first term. We have:

2
I@EM(%—HO)(%—MO)T—LH Eaz<( wiw; — 1)+ popg — 2aipg , P)

—Eaz<9€z —1L,P)* + (Mougap>2+4Eaz‘<$mgaP>2
+ <M0:u0 7P>Eal<x2 -1 P> - 2</‘0M0 aP>IZEai<xiME)|—7P>
- QECLZ<$Z — 1, P)(x;pg , P)

We analyze each term separately. The first term is (2 + O(¢)) ||P|| % by Lemma 16, so it suffices to
show that all remaining terms are small. The second term is O(¢*)| P||% by Lemma 26. The third
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term is |E; az<x2,Pu0> | = (1£0(e))||Puoll3 < O(?)|| P|% by Lemmas 15 and 26. The fourth
term is O(¢%)|| P||% by Lemmas 16 and 26. The fifth term is O(c*)|| P||% by Lemma 26. For the
final term, we have

‘IZEal(xleT -1, P)(xm(—)r,PM < \/(Ea2<xz — 1, P)? )(IZEai<:cmg,P>2)

by Cauchy-Schwarz. The first term is E; a; (zz] 1, P)? = (240(¢))||P||%, and the second term is
O(&?)||P||% as argued above. Combining these yields |E; a;(z;z; —1I, P)(z;iug , P)| < O(e)||P||%,
as needed. |

The proofs of the remaining two bounds will make repeated use of the following generic technique,
roughly speaking. Suppose that resilience (Lemmas 15 and 16) gives us |E; a;z;| = O(g)B, and
we want to argue that |E;; a;;2;2j] = O( YB2. This is not immediate, because a;; # a;a; in
general. Instead, we write ;; a;;2;z; = E; 2; IE; a;;2;, and apply resilience to the inner expectation
(noting that the vector whose jth entry is a;;/a; is, by construction, a valid resilience vector) to find
|E; aij2;| < a;O(e) B for each i, so that |E;; aijzizj| < BIE; 2 O(e)|. In this expression, the O(e)
may depend on i. Let b; be the term hidden by the O( ) for each 4, and let @ := 1 — b; + Eb;. Note
that E; @, = 1 and a; = 1 & O(e) for all 4, so @’ is a valid input to the resilience condition. Thus, we
have

IEbizi| < (14+Eb)|E 2| + |Ea;2]
1 (3 1 1

Now applying resilience to each of the two terms separately gives |E;b;z;[ < O(¢)B, so
‘Eij aijzizj| < 0(8)32, as desired.
The following intermediate result will also be useful:

Lemma 27 Ea;;(X;;, P) = Ea;(z;2] , P) + O(¢)| P r
i %
Proof We have
1
Eaij(Xyj, P) = 5 Eay{(zi — 2;)(2i —a;)", P)
1] 2 ij
= IZECL1<JJZ$,T, P> - %aij(xix}, P>
where we use the symmetry of P and the a;;s. It thus remains to bound the last term. Write

P = Y, Mgy, for orthonormal vectors vg. Note that [|Y", Mgkl = 1/ x A2 = ||P||r by
Pythagorean theorem. Then:

Eayj(ria] P) = IZEZ)\k<Uk,:Ci>IJEaij<vk,a:J> Ea;(+0(c <Z)\kvk,xz> = 0(e)|P|lF
k

by applying Lemma 15 twice using the generic technique.

We now prove the last two results in Lemma 17.

(6) \gaij<Xij — 30, P)| < O(e) - |1 P|lr
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Proof By Lemma 27, we have:
%aij<Xij - 20,P> ECLACC, — Yo, > (EQ)HPHF

It thus only remains to bound the first term. We have

‘Eal ziw; — Yo, P)| < ‘Eaz ziv; — L P)|+ ]]Eaz — L P)| <O(@)|P|r
by applying Lemma 16 and (4). |
(7 \%GMXM — 0, P)? = 2||P|%] < O(e) - | PII%

Proof We follow the same structure as the proof of (5) above. We have:

Eaij<X,~j — 20,P>2 = Eaij<Xij - H, P>2 + <20 - H,P>2 - 2Eaij<Xij - I[, P><EO — ]I, P)
1) v )

For the second term, we have (X — I, P)2 < O(£2)|| P||% by (4). For the third term, we have

‘%aij<Xij —LP)(3 —1,P)| < 0(5)||P||F\Eaij(Xz’j —1,P)|

= 0()|IPllp|Eai(ziz] —1,P) £ O()| Plr|
<O@E)|PlE

by Lemmas 16 and 27. That only leaves the first term. We have

1
Eaij(Xi; —1,P)* = Eaij<*(93ix? — 1) +
ij ij 2

1 T T p\?
i(xjxj =) — zz; ,P>

1

9% ilgai](xi%;r—]I,P)((I}jx;-r—]l,P>

—2E a;; (xleT -1, P) (a:za:]T,
ij

1
= —Rai(z;z] — 1, P)? +Eaij<xix]-T,P>2 +
ij

P)

The first term is (1 + O(¢))|| P||% by Lemma 16. For the second term, we have
%aij@w;, P)? = EEaij$;erijPaci
=EEaqy (zjz], Pxix; P)
— IlEaz[ , Pz;z] P) £ O(e)||Px;x] Pl F]
i(1£0(e)) @iz , P?)

= (I, P*) = O(¢)[|P*||»
=(1£0E)IPIE

where we use Lemma 16 twice (the second time exploiting the fact that a;(1 = O(¢)) is still a valid
resilience vector), and the last line uses (I, P?) = || P||% and || P?||r < || P||%.

27



Thus, it only remains to show that the other two terms are small. For the third term, we have
\E%(% — I, P){z;z] —I,P)| = \E< —1 P>an(x] —1,P)|
< HPHFUE?% +0(e)){wix] —1,P)|
<O}
by the generic technique. For the final term, we have
‘%azj (z;z] —1,P) (xlx;r, P)| = }E aij(ziz] —1, P) (IE aij(z;, Pxy))|

= }Iglai £0(e))(ziz] — I, P)||Pas|2]

< WE ai(win] =1, P)?) (Ea;0(e2)| Pa;3)

The first term is E; a;(z;x] — I, P)2 = (24 O(¢))|| P||%. For the second term, we have

|I[:I',a20~(62)\|PxZH§| = 82 HE Tix P2>‘
< O(e?) {Eal ziz; — 1, P?)| + O(*)(1, P?)
<O@E)|PIE
where the last line applies Lemma 16 to the first term (noting again that (I, P2> = ||P||%), and the in-
equahty | P%||p < ||P||% to the second. Combining these yields |E;; a;; (ziz] —1, P)(x :ch, P)| <
O(¢)||P||%, which is what we needed. [
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