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Abstract

Identification of a linear time-invariant dynamical system from partial observations is a fundamental
problem in control theory. Particularly challenging are systems exhibiting long-term memory. A
natural question is how to learn such systems with non-asymptotic statistical rates depending on the
inherent dimensionality (order) d of the system, rather than on the possibly much larger memory
length. We propose an algorithm that given a single trajectory of length 7" with gaussian observation

noise, learns the system with a near-optimal rate of 0] (\/? in Hy error, with only logarithmic,

rather than polynomial dependence on memory length. We also give bounds under process noise
and improved bounds for learning a realization of the system. Our algorithm is based on multi-
scale low-rank approximation: SVD applied to Hankel matrices of geometrically increasing sizes.
Our analysis relies on careful application of concentration bounds on the Fourier domain—we
give sharper concentration bounds for sample covariance of correlated inputs and for H., norm
estimation, which may be of independent interest.

Keywords: system identification, Hankel matrix, SVD, linear dynamical system

1. Introduction

We consider the problem of prediction and identification of an unknown partially-observed linear
time-invariant (LTT) dynamical system with stochastic noise,

x(t) = Az(t — 1) + Bu(t — 1) + £(¢t) (1)
Cx(t) + Du(t) + n(t), 2)

<
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with a single trajectory of length 7', given access only to input and output data. Here, u(t) € R% are
inputs, z(t) € R? are the hidden states, y(t) € R% are observations (or outputs), £(t) ~ N(0,%,)
and 7)(t) ~ N(0,%,) are iid gaussian noise, and A € R¥*4 B € R¥*du ' € RWw*d D ¢ RIv*du
are matrices. Partial observability refers to the fact that we do not observe the state x(¢), but rather
a noisy linear observation y(t).

As a simple and tractable family of dynamical systems, LTI systems are a central object of
study for control theory and time series analysis. The problem of prediction and filtering for a
known system dates back to Kalman (1960). However, in many machine learning applications, the
system is unknown and must be learned from input and output data. Identification of an unknown
system is often a necessary first step for robust control (Dean et al., 2019; Boczar et al., 2018). In
a long line of recent work, the interplay between machine learning and control theory has borne
fruit in an improved understanding of the statistical and online learning guarantees for prediction,
identification, and control for unknown systems. In machine learning, LTI systems also serve as
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a simple model problem for learning from correlated data in stateful environments, and can give
insight into understanding the successes of reinforcement learning (Recht, 2019; Tu and Recht,
2019) and recurrent neural networks (Hardt et al., 2018).

Partial observability poses a significant challenge to system identification: In the fully observed
setting, given access to x(¢), there is no obstacle to learning the matrices directly through linear
regression. However, in the partially observed setting, the most natural form of the optimization
problem is non-convex.

Systems exhibiting long-term memory are particularly challenging to learn. Restricting to
marginally stable systems, this occurs when the spectral radius of A, p(A), is close to 1, and it im-
plies that the output at a particular time cannot be accurately estimated without taking into account

inputs over many previous time-steps—on the order of O (#(Aﬁ) times steps. Such systems often

arise in practice. A particular class of such systems are those exhibiting multiscale behavior, with
different state variables that change on vastly different timescales (Chatterjee and Russell, 2010).
For example, the body’s pH level is affected both by long-term changes on a timescale of days or
weeks, as well as breathing rate which changes over a timescale of seconds. For such systems, it
makes sense to discretize at the scale of the fastest changing variable, which leads to a long memory
for the slowest-changing variable. With few exceptions, existing guarantees for learning partially
observed LTI systems degrade as the memory length increases. However, counting the number of
parameters in the model (1)—(2) suggests that the right measure of statistical complexity is the in-
trinsic dimensionality of the system, not the memory length. This leads to the following natural
question.

Question: How can we learn partially observed LTI systems with (non-asymptotic) statistical
rates that depend on the intrinsic dimensionality of the system, rather than the memory length?

Despite the simplicity of the question, little in the way of theoretical results are known. We focus
on the particular problem of learning the impulse response (IR) function of the system—which fully
determines its input-output behavior—in H norm. This is a natural norm for prediction problems
as it measures the expected prediction error under random input. Known guarantees for learning the
IR depend on the memory length. One particularly undesirable consequence is that for a continuous
system with time discretization A going to 0, the memory scales as 1/A (while the system order
stays constant), leading to suboptimal estimation by an arbitrarily large factor.

Our key contribution is an algorithm and analysis that gives statistical rates that are optimal up
to logarithmic factors, in the absence of process noise. Unlike previous works, our rates depend
on the system order d—the natural dimensionality of the problem—and only logarithmically on the
memory length of the system. Our algorithm is based on taking a low-rank approximation (SVD)
of the Hankel matrix, which is a widely used technique in system identification. We consider a
multiscale version of this algorithm, where we repeat this process for a geometric sequence of sizes
of the Hankel matrix. This is essential for obtaining a stronger theoretical guarantee. In the setting

. . . . ~ d(dy+d .
of zero process noise, we prove that our algorithm achieves near-optimal O < (TJ”’)> rates in

‘Ho error for the learned system.

Our analysis relies on careful application of concentration bounds on the Fourier domain to give
sharper concentration bounds for sample covariance and H, norm estimation, which may be of
independent interest. While we consider our algorithm in a simple setting, we hope that this is a
first step to understanding and improving more complex subspace identification algorithms. Indeed,
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SVD and related spectral methods are a standard step used in subspace identification algorithms
such as N4SID; our analysis suggests that SVD has an important “de-noising effect”.
We also give improved bounds for system identification, that is, learning the matrices A, B, C, D

using the Ho-Kalman algorithm (Ho and Kalman, 1966), with 9] (\/ W) rates.

1.1. Notation

Norms. We use [-|| to denote the 2-norm of a vector. For a matrix A, let ||A]| = ||A]|, de-
note its operator norm, p(A) denote its spectral radius (maximum absolute value of eigenvalue),
and || A||¢ denote its Frobenius norm. For a matrix-valued function M (t) € Ch*% || M||¢ :=

A/ Do IM() ||7. Let o,.(A) denote the rth singular value of A.

Fourier transform. Given a matrix-valued function F' : Z — C™*", define the (discrete-time)
Fourier transform as the function F' : R/Z — C™*™ given by

[e.9]

Flw)= Y F(t)e 2!,

t=—00

Matrices. Given a sequence (F(t))%?~! where each F(t) € C"™*", define Hankel,;,(F') as the
am x bn block matrix such that the (¢, j)th block is [Hankel,;(F')];; = F(i +j — 1). Given a
sequence (F(t))?—, where each F(t) € C™*™, define the Toeplitz matrix as the block matrix such
that the (4, 7)th block is [Toep, ,(F)]i; = F(i — 7)1;>;. For a matrix A, let AT, A¥ AT denote
its transpose, Hermitian (conjugate transpose), and pseudoinverse, respectively. For a vector-valued
function v : {a,...,b} — R let v,y € RUa=bl+1n denote the the vertical concatenation of
v(a),...,v(b). Let (Ay;...; A,) denote the vertical concantenation of matrices A1, ..., A,. Let *
denote convolution; we define convolutions between matrix and vector-valued functions by matrix-
vector multiplication: (F' x u)(t) = Y ., F(s)u(t — s).

Control theory. For a matrix A € C?*?, define its resolvent as ®4(z) = (2I — A)~!. For a
linear dynamical system D given by (1)—(2), let ®p = ®,,_,, denote the transfer function from u to
y (response to input). Then

Dp(2) = Oyyy(2) = CPA(2)B+ D =C(21 — A 'B+ D

Let T := {z € C: |z| = 1} be the unit circle in the complex plane. For a matrix-valued function
F: T — C%*%_define the Ho and H, norms by

1
1@, = \/27T /T e ()7 d= 1913, = sup @)

For a function F' : Ny — C%*%_ define its Z-transform to be Z[F](z) = >0, F(n)z~". Con-
sidered as a function T — C, we can take its Ho and H, norms. Overloading notation, we will
let [|F'l|y, = [|ZFl, for p = 2,00. The H3 and Ho, norms can be interpreted as the Frobenius
and operator norms of the linear operator from input to output, i.e., they measure the average power
of the output signal under random or worst-case input, respectively. (Note however that there an
implicit factor of d scaling between Hy and H..) For background on control theory, see e.g., Zhou
et al. (1996).
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Constants. In proofs, K may represent different constants from line to line.

2. Main results

We consider the problem of prediction and identification for an unknown linear dynamical sys-
tem (1)—(2). Our main goal is to obtain error guarantees in Ho norm, which determines prediction
error under random input (Oymak and Ozay, 2019, Lemma 3.3).

Problem 2.1 Consider the partially-observed LTI system D (1)—(2) with gaussian inputs u(t) ~
N(0,14,) for 0 <t < T. Suppose that the system is stable, that is, p(A) < 1, and that we observe
a single trajectory of length T started with x(0) = 0, that is, we observe u(t) ~ N (0, 1, ) and y(t)
for0 <t < T. Suppose also that D has rank at most d.

The goal is to learn a LTI system D with the aim of minimizing H<I>5 — <IJDH o' Equivalently,

letting
. D, t=20
F@:LM“Rt>1

denote the impulse response function (also called the Markov parameters) of the system, the goal is
=}~ 7,
Ho F

to learn an impulse response F minimizing HF *_F ’

Note that learning F™* is sufficient to fully understand the input-output behavior of the system, but
we may also ask to recover the system parameters A, B, C, D up to similarity transformation (see
Theorem 2.3). Note that we require rank(D) to be at most the system order so that it does not take
more samples to learn than A, B, C.

Previous results (Oymak and Ozay, 2019; Sarkar et al., 2019) roughly depend polynomially on

the “memory” %(14‘), which blows up as the spectral norm of A approaches 1. In the setting of

p
: . : ~ [ poly(d,du,d
zero process noise, our goal is to obtain rates that are O (L\ﬁy))

dependence on #(AU' See Figure 1 for a comparison.

, with only poly-logarithmic

We assume that p(A) < 1 because if D is not stable, it is in general impossible to learn D with
finite Ho error, as a system with infinite response can have arbitrarily small response on any finite
time interval. However, it may still be possible to learn the response up to time L < 7 in this
case (Simchowitz et al., 2019), or achieve other reasonable guarantees. The marginally stable case
(p(A) = 1) is an important case we leave to future work.

In our Algorithm 10, we first use linear regression to obtain a noisy estimate F’' of the impulse
response. Next, following standard system identification procedures, we form the Hankel matrix
Hankely 1, (F') with the entries of F' on its diagonals. Because the true Hankel matrix

CB CAB --- CAY 1B
2
HankeleL(F*) = CAB CA°B
CAL-1RB .. CA2L-1B

has rank d, we take a low-rank SVD R}, of the Hankel matrix to “de-noise” the impulse response.
We can then read off the estimated impulse response by averaging over the corresponding diagonal
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Method ‘ Rollout type Min # samples ‘ IR error
Least squares (IR) Tu et al. (2017) Multi L a\/%
Least squares (IR) Oymak and Ozay | Single L 0\/%
(2019)

Nuclear norm minimization Multi min{d?, L} a\/%
Sun et al. (2020) Multi d o\/%
rank-d SVD (Theorem 2.2) Single L a\/g

Figure 1: Here, L is the memory length for the system, which is 9] (#(A)) for well-conditioned
systems. Rollout type refers to whether we have access to a single trajectory or multiple
trajectories. Min # samples refers to the minimum number of samples (up to log factors)
before the bounds are operational. IR error refers to the error in the impulse response in
Frobenius/Ho norm. Logarithmic factors are omitted.

of Ry. For technical reasons, we need to repeat this process for a geometric sequence of sizes of
the Hankel matrix: L x L, L/2 x L/2, L/4 x L/4, and so forth. This is because the low-rank
approximation objective for a ¢ x ¢ Hankel matrix H encourages the skew-diagonals that are ©(¢)
(consisting of entries H;; with K1 < i+ j < caf) to be close—as those are the diagonals with the
most entries—and hence estimates £ (t) well when ¢t = ©O(¢). In other words, low-rank estimation
for Hankelyy,(F') is only sensitive to the portion of the signal that is at timescale ¢. Repeating this
process ensures that we cover all scales.
Our main theorem is the following.

Theorem 2.2 There is a constant Ky such that following holds. In the setting of Problem 2.1,

suppose that F* is the impulse response function, G* is the impulse response for the process
noise (G*(t) = CA", T is such that T > KiLdylog (5), trunc = [|[F*Laz.00) 5, Vu +

16" Uzz.00) [ Hz},/? Land My, = (0,C,CA,... ,CAF)T € RSV, Ler0 < 6 <}

and o = \/HEyH + ||Zz|| L log (%) Hansz- Then with probability at least 1 — 9, Algorithm 10

learns an impulse response function F such that

d (dy + dy, + log (£)) log L
F:O<O_\/ (y+ +0g(5)) og +5trunc\/g+HF*]1(L,oo)HF>‘

-

T

In the absence of process noise (when >, = O), when L and T’ are chosen large enough, the first

d(dy+du)
T

term dominates, and ignoring log factors, the dependence is O ( ) . We expect this to be

the optimal sample complexity up to logarithmic factors. However, in the presence of process noise,
there is an undesirable factor of v/L | Mgy ||, which (for well-conditioned matrices) is expected to

be O (%) or O(L). We leave it an open problem to improve the guarantees in this setting.
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Algorithm 1: Learning impulse response through multi-scale low-rank Hankel SVD
Input: Length L (power of 2), time 7.
Part 1: Linear regression to recover noisy impulse response

2 Letu(t) ~ N(0,1y,) for 0 < t < T, and observe the outputs y(t) € R%,0 <t < T.
3 Solve the least squares problem

e N S s

10

T-1
. (F 2
F:Supp(rf%lg[o,ZLfl] ; Hy(t) ( * u) (t>|| 3)

to obtain the noisy impulse response F : [0,2L — 1] N Z — R%*du,

Part 2: Low-rank Hankel SVD to de-noise impulse response

Let F(0) be the rank-d SVD of F(0)

for £ = 0 tolog, L do
Let £ = 2F.
Let % be the rank-d SVD of Hankelyy o(F) (i.e., argmin, i gy<q [[ R — Hankelpy o (F) ).
For g <t <4, let F(t) be the dy x d, matrix given by F(t) = 1 > itjet(Be)ij, where

(+)ij denotes the (¢, j)th block of the matrix.
end

Output: Estimate of impulse response F.

Remark 1 The L-factor dependence on the process noise is unavoidable with the current algo-
rithm: when the process noise has covariance Y., = I and decays after L steps, it can cause
perturbations of size O(\/L) compared to the noiseless system. Even in the case d = 1, when the
impulse response function is ae Kt/ L for a known k, the noise will cause the estimate of a to be off
by O(V/L), and hence the Ha norm of the impulse response to be off by O(L). Our algorithm only
regresses on previous inputs, but in the presence of process noise, a better approach is to regress on
both the previous inputs u(t) and outputs y(t) and then take a (weighted) SVD, as in N4SID (Qin,
2006).

Remark 2 Note that the burn-in time—the minimum trajectory length under which our error guar-
antees hold—is Q(L). A burn-in time of Q(L) is information-theoretically required to get poly(d)
rates. Attempting to extrapolate an impulse response function from time o(L) to time L can magnify
errors by exp(d), because the finite impulse response of a system of order d can approximate a
polynomial of degree d — 1 on [0, L].

Remark 3 Commonly, one assumes that HC’AtBH < Mpt for some M and p (greater than or

equal to the spectral radius of A). Then in the noiseless case, €yypc < M P i:)l \/dy. The algorithm
and theorem is stated known €y for simplicity. Knowing cgune allows choosing an appropriate
memory length L.

A standard technique to convert the algorithm to one that achieves the correct rates as T' — oo
without knowing the memory length is to use the “doubling trick”: increase the memory length
by a constant every time the number of timesteps doubles, so that the memory length scales as
logy(T). See e.g., Tsiamis and Pappas (2020). This works because the impulse response decays

exponentially.
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We also show the following improved rates for learning the system matrices, by combining H
bounds for the learned impulse response with stability results for the Ho-Kalman algorithm (Oy-
mak and Ozay, 2019). Because the input-output behavior is unchanged under a similarity trans-
formation (A, B, C) <+ (WLAW, W 1B, CW), we can only learn the parameters up to similar-
ity transformation. We will make the standard control-theoretic assumptions that D is observable
((C;CA;...;CAY1) s full-rank) and controllable (B, AB, ..., A%~!B) is full-rank).

Theorem 2.3 Keep the assumptions and notation of Theorem 2.2, suppose D is observable and
controllable, and let

+ Etrunc-

L Ly d s (2)
T

Let H™ = Hankely, (1—1)(F*). Suppose that ' = O(omin(H~)). Then with probability at least

1—9, the Ho-Kalman algorithm (Algorithm 9) with T\ = L,T5 = L—1 applied to the least squares

solution F of (3) returns A, B, C such that there exists a unitary matrix W satisfying

max{‘ o C*WHF, B— W’léHF} —0(d-¢)
Ja-wodw], <o (oG v (e +1))

Algorithm 2: Ho-Kalman algorithm (from Oymak and Ozay (2019))
Input: Length 7', Markov parameter matrix estimate I, system order d, Hankel shape
(T, o+ 1) with T, + T + 1 =T.
Form the Hankel matrix H = Hankelp, 7,11 (F").
Let H— € RvT1xduTs be the first dyT5 columns of H.
Let L = USV | € R&T1xduT2 pe the rank-n SVD of H™.
Let O € RWTixd — y1/2,
Let Q € RIxduTz = 221/2y T,
Let C be the first m rows of O.
Let B be the first p columns of @
Let H+ € R%T1xduT2 e the last dy 5 columns of H.
Let A= OTH*QT.
Output: A € R4 B ¢ Rixdu O ¢ Rdvxd,

As L can be chosen to make e¢ync negligible, this gives O < W) rates, however, with fac-

tors depending on the minimum eigenvalue of . This is an improvement over the O (Vd \/ L(d“Tery)>

rates in Oymak and Ozay (2019). Note that our rates still a square-root dependence on the mem-
ory L; and leave it an open question whether one can obtain logarithmic dependence similar to
Theorem 2.2.

We prove Theorem 2.2 in Section 4 and Theorem 2.3 in Appendix B. We give a lower bound in
Section C that shows that in the absence of process noise, the rate in Theorem 2.2 is optimal up to
logarithmic factors.
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3. Related work

We survey two classes of methods for learning partially observable LDS’s, subspace identification
and improper learning. With the exception of Rashidinejad et al. (2020), all guarantees have sample
complexity depending on the memory length L, which we wish to avoid.

3.1. Subspace identification

The basic idea of subspace identification (Ljung, 1998; Qin, 2006; Van Overschee and De Moor,
2012) is to learn a certain structured matrix (such as a Hankel matrix), take a best rank-k approxima-
tion (using SVD or another linear dimensionality reduction method), and learn the system matrices
A, B,C, D up to similarity transformation. Usage of spectral methods circumvents the fact that the
most natural optimization problem for A, B, C, D is non-convex. However, classical guarantees for
these methods are asymptotic.

Recently, various authors have given non-asymptotic guarantees for system identification algo-
rithms. Oymak and Ozay (2019) analyzed the Ho-Kalman algorithm (Ho and Kalman, 1966) in
this setting. Sarkar et al. (2019) consider the setting where system order is unknown and give an
end-to-end result for prediction, while Tsiamis et al. (2020) consider the problem of online filtering,
that is, recovering x(¢)’s up to some linear transformation. Simchowitz et al. (2019) give guarantees
under more general conditions of noise and marginal stability; however their main bound is for the
truncated Markov parameters, and to capture all but e of the impulse response, we would have to
truncate at the memory length L, which would incur dependence on L. Moreover, they require low
phase rank, a condition which we do not expect to hold generically for “random” linear dynamical
systems with eigenvalues close to 1. An advantage of their approach is that they are able to achieve
consistent recovery of system parameters without taking the truncation length to be as large as the
memory length.

An alternate, empirically successful approach is that of nuclear norm minimization or regular-
ization (Fazel et al., 2013). Sun et al. (2020) (building on Cai et al. (2016)) give explicit rates of
convergence, and show that the algorithm has a lower minimum sample complexity and is easier to
tune.

Our algorithm is based on the classical approach of taking a low-rank approximation of the
Hankel matrix, but we repeat this process with Hankel matrices of sizes L x L, L/2 x L/2, L /4 X
L/4, and so forth; this is key modification that allows us to obtain better statistical rates. Our
analysis builds on the analyses given in Oymak and Ozay (2019); Sun et al. (2020). As essential
part of the analysis is analyzing linear regression for correlated inputs, where we extend the work
of Djehiche et al. (2019) to MIMO (multiple input multiple output) systems, as explained below.

3.1.1. LINEAR REGRESSION WITH CORRELATED INPUTS

An important step in obtaining non-asymptotic rates for system identification is analyzing linear
regression for correlated inputs. The most challenging step is to lower-bound the sample covari-
ance matrix of inputs to the linear regression. A lower bound, rather than a matrix concentration
result, is sufficient (Mendelson, 2014; Simchowitz et al., 2018; Matni and Tu, 2019); however, a
concentration result is obtainable in our setting.

Tu et al. (2017) give non-asymptotic bounds for learning the finite impulse response for a SISO
(single input single output) system in £°° Fourier norm; however, they require L rollouts of size
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O(L) and hence Q(L?) timesteps. Addressing the more challenging single-rollout setting, Oy-
mak and Ozay (2019) obtain bounds for a single rollout of (L) timesteps, by using concentration
bounds for random circulant matrices Krahmer et al. (2014) to derive concentration inequalities for
the covariance matrix. These concentration inequalities for the covariance matrix were improved
(by logarithmic factors) by Djehiche et al. (2019). Although Djehiche et al. (2019) give an analysis
in the SISO case, as we show in Theorem A.2, the results can be extended to the MIMO case with
an e-net argument.

3.2. Improper learning using autoregressive methods

Instead of solving the statistical problem of identifying parameters, another line of work develops
algorithms for regret minimization in online learning. The goal is simply to do well in predicting
future observations, with small loss (regret) compared to the best predictor in hindsight; the learned
predictor is allowed to be improper, that is, take a different functional form. In the stochastic case,
this allows prediction almost as well as if the actual system parameters were known; however, the
framework also allows for adversarial noise.

One popular strategy for improperly learning the system is to learn a linear autoregressive filter
over previous inputs and observations, or ARMA model. Naturally, because we are optimizing over
a larger hypothesis class, the statistical rates depend on L rather than the system order d.

(Ghai et al., 2020, Theorem 4.7) consider the problem of online prediction for a fully or partially
observed LDS, and give a regret bound that depends polynomially on the memory length L. Their
approach works even for marginally stable systems, that is, systems with p(4) < 1. See also
Anava et al. (2013); Hazan et al. (2017, 2018); Kozdoba et al. (2019); Tsiamis and Pappas (2020);
Rashidinejad et al. (2020) for previous work using autoregressive methods.

Of particular interest to us is Rashidinejad et al. (2020), which gives rates independent of spec-
tral radius. Building on Hazan et al. (2017), they observe that it suffices to regress on previous
inputs and outputs projected to a lower-dimensional space. Their algorithm works in the setting of
process noise and competes with the Kalman filter, but only when A — K C' has real eigenvalues,
where K is the Kalman gain.

4. Proof of main theorem

In this section, we prove Theorem 2.2. The proof hinges on the following lemma, which shows
that if we observe a low-rank matrix plus noise, then taking a low-rank SVD can have a de-noising
effect, producing a matrix that is closer to the true matrix.

Lemma 4.1 (De-noising effect of SVD) There exists a constant K such that the following holds.
Suppose that A € C™*" is a rank-r matrix, A=A+E, and A is the rank-r SVD of A. Then

HXT—AHF < KF|E|l. )

Compare this with the original error HA\ - AHF = ||E||g, which can only be bounded by

vmin{m,n} ||E|. It is an interesting question what the best constant K is. When applied to
the d-SVD of the Hankel matrix, this gives a factor of \/3 rather than \E for the error.
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Proof We have
fi.- o, < i,
<Var (|4 -4+ |4 4] ) ©
<2v2r | E| 7

where (5) follows from A, — A having rank at most 2r, (6) follows from the triangle inequality,
and (7) follows from Weyl’s Theorem: Hflr — AH2 < o,41(A) < op1(A) + ||E|| = ||E||. [

To prove Theorem 2.2, we will need to obtain bounds for F : {0,1,...,2L — 1} — Ré*du
learned from linear regression in H, norm. The following is our main technical result.

Lemma 4.2  There are K1, Ko such that the following hold. Suppose y = F* x u + G* %
€ + n where u(t) ~ N(0,1g,), £(t) ~ N(0,3;), n(t) ~ N(0,X )forO <t < T, and

Supp(F*), Supp(G*) C [0,00). Let F' = argminpe g 1y gy Do [y(t) = (F % w)(),
Mg+ = (G*(0),...,G*(L)) " € RV and eqpune = || F* Lz 11 005, VAANG L1100 |15, HE}EMHF.
For0<§ <1 T>KLddog (X&), 1<L'<L -1<a<L-L,

[(F = F)dar1a0 |y,

<\/||z % <d +d, +10g \/||z | L'Ld, log<

with probability at least 1 — 9.

< K>

dy,
) IIMG*H) +]

In the case ¥; = O, this roughly says that the error in the learned impulse response, F'—F™*, over
any interval of length L', has all Fourier coefficients bounded in spectral norm by 9] A/ W) ,

what we expect if the error from linear regression is uniformly distributed over all frequencies.

A complete proof is in Appendix A; we give a brief sketch. First, because the errors are
Gaussian, the error from linear regression, F' — F*, follows a Gaussian distribution. To bound
its covariance, we lower-bound the smallest singular value of the sample covariance of the inputs
(Lemma A.1, Appendix A.1). Here, the difficulty is that the inputs are correlated—the input at time
t is ug4— 1. Fortunately, the translation structure means it is close to a submatrix of an infinite block
Toeplitz matrix, which becomes block diagonal in the Fourier domain. This “decoupling” allows us
to show concentration. Compared to the SISO setting in Djehiche et al. (2019), we require an extra

e-net argument. Once we have a bound on the covariance, we can bound any H (F/—\F*)(w) H by

matrix concentration (Appendix A.2); to bound the H ., norm it suffices to bound this over a grid of
w’s (Lemma A.4).

Bounding the error in H, norm of the impulse response allows us to bound the error in operator
norm of the Hankel matrix, as the following lemma shows.

Lemma 4.3 Forany F': Z — C™*", we have |[Hankel,x,(F)|| < [|F|ly__

10
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Proof Note that when v : Z — C", Supp(v) C [0, b—1], we have (F'*v)p.p1q—1 = Hankelyyw, (F)vp—1.0.
Hence for any v set to 0 outside of [0, b — 1], using Parseval’s Theorem and the fact that the Fourier
transform of a convolution is the product of the Fourier transforms, we have

[Hankcloxo(F)on-vall < |1F xol, = |[F5], < sup [F@)[, 191l = £l ol

wel0,1

This shows that |[Hankelyx,(F)|| < [|F|ly_ - [

Remark 4 In fact, something stronger is true: we can bound ||Hankel,x,(F')| by the discrete
Fourier transform of F over Z/(a + b — 1) (Sun et al., 2020, Theorem 3). For consistency, we stick
to using the Fourier transform over 7Z; in light of Lemma A.4, this only affects the result by constant
factors.

Theorem 2.2 will follow from the following bound after an application of the triangle inequality.
Lemma 4.4 There are K1, Ko such that the following holds for the setting of Problem 2.1. Suppose
Lisapowerof2, andT > KiLd,log (Lgl“ ) Let HF*]l[LJrLOO) HHOO \/du_'_HG*]l[L—&-Loo) H”Hoo HZ{«”HF

and My, = (O,C,CA,...,CA:"HT ¢ REAVAXdy - Then with probability at least 1 — 8, the
output F' given by Algorithm 10 satisfies

- Y|l d (d, + dy + log (£)) log L Y. || Ldd, log (Ld=
H(F—F)lu,L]HFSKz< 12yl (dy . (5))log L [I%] 3 C2) | hoe | - eV

Proof We are in the situation of Lemma 4.2 with G*(t) = C A" '1;>;. Let Hy = Hankelyy o (F)
and H; = Hankelyy,(F™*). Suppose ¢ < L is even. Note that

H¢ = Hankelyy (F™*) + Hankelyy  (F — F*)
—_——
Hy

where Hj = Hankelyy;(F™*) is a rank-d matrix, with error term is bounded by

[Hankelywo(F — F*)|| < |[(F = Fiiune)1f1,20-1] HHN by Lemma 4.3
1 L
<[5 (e (a4 100 ()
Ld,
+ /122 ¢Ldy log 5 [ Mg+ + €trunc by Lemma 4.2 )
with probability at least 1 — 8. Let Ry be the rank-d SVD of H,. Then by Lemma 4.1,
|Re = Ml = O (Vd [Hankelp (F — F*)]) ©)
Now letting
=23 (R hen & <t < ¢
_ti+j=t 7 i o

11
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we have (using the fact that the mean minimizes the sum of squared errors)

1Re = HlIF > Z > (R — F* (D)7

t=£410+7=t

> t};l (t. Hﬁ(t) —F*(t)Hi) > (5 +1) }Zl (Hﬁ(t) —F*(t)Hi).

2

Note that we only get a lower bound with a factor of ¢ if we restrict to ¢ that is ©(¢), i.e., restrict to
diagonals that have many entries. This is the reason we will have to repeat this process for multiple
sizes. Hence

|- F) |Re —Hill7.

st ZJH - 5/2

Together with (9) and (8) this gives with probability > 1 — § that

= 13l d (du dy log L 3| Ldy log (de ) EtruncVd
F—F*1. H <K : ! 5 Mo
H( ) [£+1,0 F— ( T T || G || \/Z

Replacing 6 by ﬁ, using a union bound over powers of 2, and summing gives

[~ mal, -0

( IZlld (dy +du +10g (§))log L [|5% | Lddy log (£5+) log L
T T

| Mg~ || + emm\/&)

Proof [Proof of Theorem 2.2] We have the bound in Lemma 4.4, and also the same bound for
H (F — F*)(0) HF after applying Lemma 4.2 to (F' — F™*)dp and then applying Lemma 4.1. Finally,

note that H (F — F*) (1,0 HF = HF*H(L,OO) HF and use the triangle inequality. |

5. Experiments

We compared three algorithms for learning the impulse response function: least-squares, and low-
rank Hankel SVD with and without the multi-scale repetition. We include details of the experimental
setup in Appendix E. Note that to reduce the number of scales, we consider use a slight modification
of our Algorithm 10 which triples the size at each iteration instead.

The plots show the error HF* I1,z) — Fl|,, where F'is the estimated impulse response on 1, L],
averaged over 10 randomly generated LDS’s, as a function of the time 7" elapsed. We consider
systems of order d = 1, 3, 5, 10, and memory lengths L = 27, 81.

Using SVD significantly reduces the error, supporting our theory which shows that SVD has a
“de-noising” effect. Additionally, multiscale SVD has better performance than naive SVD when d
is moderate, L is large, and data is limited, but the performance is similar in a data-rich setting.

12
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d=1, L=27 d=5, L=81

0.6 — least squares 30k — least squares
SVD : SVD
05 multiscale SVD multiscale SVD

600 900 1200 1500 1800
time

6. Open problems

We conclude with some open problems. It would be interesting to obtain analogous rates (depending
on system order) for the nuclear norm regularized problem (Sun et al., 2020). Spectral methods also
suggest the possibility of obtaining regret bounds for adaptive control of partially-observed systems
with milder dependence on ﬁ(f\)' We give several other problems below.

Process noise. A natural open question is to obtain better guarantees in the presence of process
noise £(¢). Using the heuristic of parameter counting, we do not believe poly(L) memory depen-
dence is necessary in this setting, and that the maximum likelihood estimator, although computa-
tionally inefficient, will attain memory-independent rates. Thus, the crux of the problem is to give
a computationally efficient algorithm with mild memory dependence in this setting.

We note that in Theorem 2.2, the factor multiplying /||, | is V'L || My |5, which we expect
to be on the order of L when L is the minimal sufficient memory length. This term arises because
process noise can accumulate over L timesteps. In the case where £(¢) ~ N (0, ) is iid gaussian,
the Kalman filter shows that we can rewrite the system in the predictor form (Qin, 2006)

J}(t)i = Apr(t — 1)7 + Bkr (Zg : 1;) (10)

y(t) = Cx(t)” + Du(t) + e(t) (11)

where z(t)~ is the maximum likelihood and least squares estimator for x(t) given the values
of u(s) and y(s) for s < t; Agp and Bgp are matrices which can be calculated in terms of
A, B,C,X;,%,, e(t) ~ N(0,Xkr) for some covariance matrix Yxr that can be calculated in terms
of A, B,C,%,;,%,. This is now a filtering problem, where we have to regress the output on both
previous inputs u(t) and outputs y(¢). This is more challenging, because unlike previous u(t), the
previous y(t) are highly correlated. One can perhaps treat this as a low-rank approximation in a
different norm.

Hoo error bounds. How can we learn the system with H, error bounds, that is, obtain error
bounds under worst case input? This is particularly useful in control. We do not expect we can
achieve \/g rates under iid inputs u(t). However, it may be possible to take an active learning

approach, by maximally exciting the system at frequencies we wish to learn, as in (Wagenmaker
and Jamieson, 2020).

Improved rates for learning system matrices. Can we learning the system matrices with rates
depending logarithmically on the memory L, perhaps by incorporating the multi-scale idea into
system identification?

13
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Input design. In this work we choose iid random inputs, but can we estimate more efficiently with
well-designed deterministic inputs? Can we design inputs to respect constraints such as constraints
on frequencies? Sarker et al. (2020) suggests that efficient estimation is possible under general
conditions on the inputs.

More general noise. Do guarantees still hold if the noise satisfies weaker conditions such as sub-
gaussianity? A key difficulty is bounding the maximum Fourier coefficient (as in Lemma A.6).
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Appendix A. Linear regression for impulse response

In this section we prove Theorem 4.2: under iid gaussian inputs, we can obtain high-probability
error bounds for the transfer function of the learned impulse response in Ho, norm. Moreover,
these bounds kick in as soon as we have (L) samples from a single rollout. We note that analyzing
the multiple-rollout setting as in Sun et al. (2020) is more straightforward, so we will not consider
it here.

The main difficulty for analyzing linear regression is that the inputs are correlated. The most
challenging step is to lower-bound the sample covariance matrix of inputs to the linear regression.

In the SISO (single input single output) setting, Djehiche et al. (2019) give concentration bounds
for the covariance matrix with 7 = Q(L) timesteps. First, we extend this to the MIMO (multiple
input multiple output) setting in Theorem A.2 (Note that Oymak and Ozay (2019) consider the
MIMO case but have extra log factors.) Then, we use Gaussian suprema arguments as in Tu et al.
(2017) to obtain bounds for the transfer function in ., norm (Lemma A.6).

We suppose the inputs w(0), ..., u(T — 1) ~ N(0, I4,) are iid, observe y(0),...,y(T — 1) €
R%, and perform linear regression on the finite impulse response ' : {0,1,..., L} — Rd*du
(which we will also treat as an element of R(Z+1)%dyxdu without further comment).

Recall that given a sequence (F(t))?—)} where each F(t) € C™*", the Toeplitz matrix is given
by

F(0) 0 0
Toep, . 4(F) = Ffl) F(:O) (:) < Camxbn
Fla—1) F(a—2) '

SISO setting. For simplicity, first consider the SISO setting: d,, = d, = 1 and n(t) ~ N(0,1).
In this case, we learn a finite impulse response f € R“*! by minimizing the loss function

T-1
2
2 2
ly = s fllfy oy = 2 [u®) —ules | = lyoa—1 = U] (12)
t=0
where we let yo.7—1 denote the vertical concatenation of y(0), . .., y(7'—1) and similarly for w;.;—,

and let U = Toepry (r11)((u(t))i>0). Wesetu(t) = 0fort < 0. Solving the least-squares problem
gives

f=U0T0)U yor-1.
Suppose that the data is generated as y = f* x u + 1 where 7(t) ~ N(0, 1) are independent and f*
is supported on [0, L]. Later, we will consider the effect of truncating an infinite response. We abuse
notation by considering f, f* both as functions Z — R and as vectors in R“*1, as they are supported

in [0, L]. Similarly, we consider ¥, 1) as vectors in R”. Then as vectors in R”, y = U f* 4 1. Hence
the error is

f-f=UTO)UTUf ) - =00 Uy
Because 7 has iid Gaussian entries,
f=f ~N@O,U0)™.

To bound this, we need to bound ||(UTU)™*
U'u.

}, and hence bound the smallest singular value of

17
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Notation for MIMO setting. For a vector or matrix-valued function F' : {a,a + 1,...,b} —
C%1xd2 define
F(a)"
MF I . c C(b—a-‘rl)dzxdl
F(b)"

with the indices omitted if they are clear from context.

MIMO setting. In the general case, we would like to learn F' = (F'(t) € Rv*du)L - ¢ RUADxdyxdu,
Now suppose the data is generated as

y=F'sxu+G *x{+n

where F*, G* are supported on [0, 00) and n(t) ~ N(0,%,), £(t) ~ N(0,%;), t > 0 are indepen-
dent. Let U = Toepry (141 ((u(t)T)IZ") as before. Truncating F* and G*, we have

y=(F"1p) xu+ (Gl «E+n+e
where e(t) = (F* Lz 41,00)) * ¥ + (G* L[ 41,00)) * &
Thus, by taking the transpose and stacking vectors,
Myo.r—1=UMp«g.,—1 +WMg+ o.0—1 + Myo1-1+ Meo.17-1
where W = Toepry 41y ((£()T).-
The least squares solution F' minimizes ||Y — U Mp||2, so and the error is

Mp — Mp« = (U'U)'UT M, + (UTU)'UTW Mg + (UTU) ™ M.. (13)

A.1. Lower bounding sample covariance matrix

In this subsection we lower bound the sample covariance matrix.

Lemma A.1 There is a constant K such that the following holds. Let u(t) ~ N(0,1I4,) and
U = Toepyy 11y (w(t) iz0). Then for 0 < § < §, T > Ky Ld, log (£4+),

T
P <am-m(UTU) > 2) >1-4.

This is a corollary of the following concentration bound, which generalizes Theorem 3.4 of Dje-
hiche et al. (2019) to the MIMO setting. The main additional ingredient is an e-net argument to
reduce to the analysis of the SISO case. We also swap out the chaining argument with a use of
Lemma A.4, which allows a shorter proof.

Theorem A.2 There is K such that the following holds. Suppose u(t), 0 < t < T are independent,
zero-mean, and K,-sub-gaussian (see Definition D.1), and let U = ToepTX(LH)((u(t)T)tZg).
Then for 0 < § < Lr>1p,

HUTU - TId“H < KK? (Ldu log <§> + 4/ TLdy log (?))

with probability > 1 — 0.

18
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We first note the fact that infinite Toeplitz matrices become diagonal in the Fourier basis.

Lemma A.3 Consider the infinite block Toeplitz matrix (Z(j — k)); gz, € CE*d)x(Zxd2) yypere
7 is a function 7. — CM > [n the Fourier basis, it is given by the kernel Z (w1) 1y, =w,. That is, if
v:Z—RE2 | Z||,, |v|l; < oo, then letting

w(i) =Y Z(j — ky(k),
k

we have
B(w) = Z(w)o(w).

Here, Z (w) is called the multiplication polynomial of the matrix.
Proof Simply note that w = Z % v and so w = Zv. |

We will use the following lemma in order to bound the maximum of the Fourier transform by
the maximum at a finite number of points.

Lemma A.4 (Bhaskar et al. (2013)) Ler Q(z) := Z};é ai2*, where ay, € C. For any N > 47r,
27ij

1Qll3.. < (14 %FF) maxjo, . n—1]Q(e ™~ ).

Proof [Proof of Theorem A.2] By rescaling we may suppose K,, = 1. Decompose

U = Uy + Uy where (14)
u(0) " 0
: : .
Uy — u(0)
w(T —-L—-1)T ;
0 w(T—L—1)"
0 0
_ T
Uy = u(T | L)
w(T—-1)" - w(T-L)T 0

Then
UTU = (T = L)Ipa, + (U Uy = (T = L)1) + Ul Us + Uy Uy + Uy Us.— (15)

Let T be the shift operator on functions: Tf(t) = f(t—1). LetT’ = T—L and let u(") = ulpor_q)-
Then the (3, k)th block of U, Uy is

(U U1)je = ) (TFaD) () (THa D)) T

teZ
Define the infinite block Toeplitz matrix in R(Zxdu)x (Zxdu) by
T .
Zig, = Y (MDY )T V) (0) 1) < — T' Tz,
t=1
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By Lemma A.3, the multiplication polynomial of this matrix is

L
Pyw) = > (TuM)@)ull () Te > — T'1,,

l=—L teZ
_ Z u(j)u(k)'l'e%ri(j—k)w _ T/Idu
JkeZ
-kl <L
u(0)"
= (u(0) -+ w(T'-1)M —T'I,, (16)
w(T —1)T

where M € C%*Z is the matrix with M;;, = ™0 _k)w]l| j—k|<z- In order to work with a scalar-
valued function, we consider for ||v|| = 1

v Py(w)v = > (v,u(5)) (v, u(k)) ™01 g — T )%
3,ke{0,... T"—1}

By Lemma A.3,
|70y = T'ra, | <112 = T'Ea| < 1Pu@) .,
Taking N = [87L] and noting e?™“% P(w) is a polynomial of degree at most 2L in €™, we have

1Pu(@)llg,, = sup [[Pu(w)l| = sup sup v Pu(w)o|
0

we[0,1] l[v]l=1 we(0,1]
= sup 2 max |v! Py(w)v| by Lemma A .4
Joll=1 we{0,5 .}
=2 max <sup lv" Py(w)v] + 3¢ ||Pu(w)|]) (17)
we{0, %, } \veN:
where A is an e-net of the unit sphere in R?. (For arbitrary v’ with ||v/|| = 1, write v = v + Av

where v € N, and ||Av|| < £.) We first bound v P(w)v. Letting w € R”" be the vector with
entries w(j) = (v, u(j)), we have

v Py(w)v =w Mw —T" ||v]*.

Fix v. Because each u(t) is independent 1-subgaussian, each entry of w is 1-subgaussian. By the
Hanson-Wright inequality (Theorem D.3), for some constant ¢ > 0,

s> s
P(jv" Py(w)v| > 5) < 2exp |—c-min{ —— —— 3|,
" M2 M

We calculate that || M| < (2L + 1)T and the Fourier transform of the function e>™1; ;
satisfies H]?H <|/fll; £ 2L+ 1,s0by Lemma A.3, ||M|| < 2L + 1. Then for appropriate I,
[e.e]

P <|UTPu(w)v| S K ( TLlog <511> + Llog <511>>> <4
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Next we bound ||P,(w)| and choose ¢ appropriately. A crude bound with Markov’s inequality
suffices to bound || P,(w)||. We have (because the second moment is at most the sub-gaussian
constant)

dy T'—1
El|(u(©0) - w(T=1)[F<EIY (ej u(®)® < duT’
7j=1 t=0
so with probability > 1 — 4, || (w(0) - w(T'—1)) Hi < d“g—zT'. Hence, for every w € [0, 1],
by (16),
d, T’
1Pute) + T2 || < [[((0) -+ u(@ = 1)[[F 1] < Z 2.
Choose € = 5 d 2. Then with probability > 1 — d2, we have
d2 d, T’ y
wsélﬁfl] 3e || Pu(w)]] < 3- LT ( 5 2L+T> < 4.5.

Now take §; = $. By Cor. 4.2.13 of Vershynin (2018), there is an e- net of size [Nz < (1+ )d“
exp (du log (1 + %)) = exp (d log (1 + Sd"LT)) Letting 61 = W and taking a union bound,
with probability 1 — § we get

(I <K ( TLdlog <§> + Ldlog (?))

Next consider the term UlTUQ. Let u(}) = uljorr—1), u® = ulfps p_qj. This is part of the
infinite Toeplitz matrix with Z;;, = zteZ(Tju(l))(t) (TFu@) ()T 1}j_g<r—1- In the Fourier basis,

Pyi2(w) = Z Z e~ 25w (Tiy (U (1) (Thu@)) (1) T 2k

jkez t€Z

li—kl<L
Z Lo -1 (i) Lr—rr-1)(k)e 2GRy (5 )u(k)
M <r
u(0) "
:(u(O) u(T’—l))M
u(T' —1)T

where My, = 1o 7/—1)(J) Ljr—r,7— 1](/<:)]l‘j,k|§L62m(j_k)“’. As before, we have

HUlTUQH <2 max sup ]vTPng(w)v\ + 3¢ || Pui2(w)]|l -
wE{O,%,-“}vENg

We calculate |[M |2 < (T — L)(2L + 1) and each block in M is part of a Toeplitz matrix, so
similarly to before || M| < 2L + 1. Hence, with probability at least 1 — 6,

HU{UQH <K ( TLlog <5> + Llog (2))
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Note HUlT UQH = HU2T Uy H Finally, we bound U, Us. Note Uy is part of an infinite Hankel matrix
with entries u(7” 4+ 1)7,...,u(T’" + L) . The multiplication polynomial is

L-1

Pu72(w) _ 6727ri(TfL)w Z ’LL(T — L+ t)TefQM'tw'
t=0

1/2
The real part is K ( Z!TI_ I cos? (—27rtw)) -sub-gaussian and the imaginary part is

1/2
K (ZtT:}}_ I sin2(—27rtw)) -sub-gaussian for some constant /. Hence

P (tey Puate) < 1105 (5) ) 216

Using this for j = 1, ..., d,, replacing § < d%, and using a union bound gives

P (IRl < KLdog (§)) 215

Now for N > 47 L, using another union bound gives

2 2
WL
|vf v < ( sup ”Pu,Q(w)H) < (2 max }||Pu,2(w)||> < KLdylog (dé)
we

WE[O,H { a%w“

with probability > 1 — §. Putting all the bounds together with (15) gives the theorem. |
Proof [Proof of Lemma A.1] For large enough K, for T' > KsLd,log (%) we have that by

Theorem A.2 that |[UTU — T1I,,|| < £, 50 omin(UTU) > L.
Finally, note that for large enough K, T > K Ld,, log (Lg“

) implies 7 > K5Ld, log (%). W

We show here a bound similar to Theorem A.2 that will be useful to us later.

Lemma A.5 There is a constant K such that the following holds. Suppose u(t), 0 < t < T
are independent, zero-mean, and K, -sub-gaussian, and similarly for w(t) with constant K,,. Let
U = ToepTX(LH)((u(t)T)tZg), W = ToepTX(LH)((w(t)T)tZO). Then for0 < 6 < 3, T >
K1 Ld,, log (£4+),

HUTWH < KK K, (Ldu log (f) + [T Ldy log <§>)

with probability at least 1 — 9.

Proof By scaling we may assume K,, = K,, = 1. Decompose U = U; + Uz and W = W7 + W5
asin (14). Let S, = {0,...,T—L—1}and S, ={T — L,...,T — 1}. We have

U'w= > U/W,.
a,be{0,1}
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Let u(® = ulg, and similarly define w(®) = w1g,. Then the (j, k)th block of U, W, is

(Ud Wo)jie = Y (TPu@) () (T (1)
teZ

This is part of the infinite block Toeplitz matrix in R(Z*du)*(Zxdv) defined by

Zix = Y (Tru@) () (TF®)(£) ;<L
teZ

with multiplication polynomial
Pu,ab(“) = Z u(@ (j)w(b)(k)BQM(j—k)w
li—k|<L
w(0)"

= (uw(0) -+ w(T—-1)M o
w(T —1)T

omi(j—k
where M, = e i) )]ljeSa]lkeSb]1|j—k|§L'

We calculate that ||M||§, <T(2L+1)and | M| < 2L+1 so the same argument as in Theorem A.2
(but using the version of Hanson-Wright given by Corollary D.4) gives that

HUTWH < KKK, (Ldulog (?) + \/m> .

A.2. Upper bound in ., norm

The following Lemma A.6 generalizes the results of Tu et al. (2017) to the MIMO setting. To
get the right dimension dependence, we will use the concentration bound for covariance given by
Theorem D.2.

Lemma A.6 There is a constant K such that the following holds. Suppose that n(0), ... ,n(T —
1) ~ N(0,%) are iid, ® € RUEADDXT and F(0), ..., E(L) € R%*% are such that

E@©)"
= Mg = ®M, € RUEFDhxdy
E(L)T

ForanyO<5§%and—1§a<L—L’,

1 L
P (\\Eﬂ[a+1,a+m . SEVT S| ||¢>r\/dy +d, + log (5)) >1-4
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Proof First, by considering
Mpx~YV% = (M, 2~Y?),

we may reduce to the case where 7(t) ~ N(0, Iy, ) are iid, i.e., all entries of M,, are iid standard
gaussian.
Let M, = (Eljgy1041)" (w) € C4*% . Note that

M, = (¢£I @ Idu)ME

(627rikw 1 RL+1

where ¢, = at1<k<at+L')0<k<L €

as a column vector. Because the columns of )M,, are independent and distributed as N (0, I7), the

columns m; of M, are independent. To bound M, it suffices to bound Mwa = ;l 1M mf .
Note that

[Bmjmf || = (65 @ Lu,)00T (60 @ L,)| < ' 9],

Let &' = (¢l @ I,)®®" (¢, ® I4,). By Theorem D.2!,

dy
LS mmt — 0| < wr o] ([P B ) 51 ge
dy j=1 dy dy

d
IR 2 d, +log (2
= P || =D mymjl|| < KL'||@] <1+dyW> >1-4

by taking uv = log (%) Multiplying by d,, gives

P <HMwM5H <KL'||o'| <dy +dy +log <§>>> >1-04.

Replacing § by %, taking the square root, and taking a union bound gives

]P’( max HMWHSK@H@’H%\/dy+du+1og<§>>21—5. (18)

{OvN? 7NT}

Finally, we note that by Lemma A.4, for N = [47L'],

[P oo = SUP HE]l[a-H atr 1) ( H = “SHUP Sl[lp] HEﬂ[a+1,a+L'](W)UH
v||,=1we€|0,1
< sup max QHEJLa—Ha—s—L’ H
o]l ,<1we{0,%,.... N1}
<2 max = ’E]l[a+1a+m( )H
UJE{O,N, 7T
Combining this with (18) gives the result. |

Finally we can put everything together to obtain a H, error bound for linear regression.

1. The theorem is stated for real matrices, but we can view the matrix as acting on a real vector space of twice the
dimension.
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Lemma A.7 There are K1, Ko such that the following hold. Suppose y = F* x u + G* %
€+ n where u(t) ~ N(0,1g,), £(t) ~ N(0,3;), n(t) ~ N(0,X2 )forO <t < T, and
Supp(£*), Supp(G*) € [0,00). Let ' = argmingc 1y pdyxdu ST y(t) — (F xu) (1))
Mg = (G*(0),.,G*(L)T € REDIDD, and eipune = | F* Ui 1.00) [ VA |G L1100 | |52
For0<6 <1 T>KLddog(X),1<L'<L -1<a<L-L,

|(F = F*)Ljgt1,041/ e

<\/HE % (d +d, +10g \/Hz | L' Ld, 1og<

with probability at least 1 — 9.

< K»

Ld,
) HMG’*H> +€trunC]

Proof By (13), using the notation defined there,
Mp — Mp« = (UTU)'UT M, + (UTU)'UTW Mg+ (UTU) ' M, .
=F =:Fo =:F3
We wish to bound ||(F — F*)Ljat1a+ 1|5, = SWuepo (¢4 © La,)(Mp — Mp-)].

We bound the contributions from E, EQ, Es. Firstnote that ||(UTU)~'U T H2 |(wTu) H 1/2

and by Lemma A.1, for T" > K1 Ld,, log ( v ), with probability 1 — 4, [[(UTU) ! H < 2. Call this
event A.

1. Under the event .4, by Lemma A.6,

(wzug)l][(qbw ® Iq,)Er] < Ky/L'||3,| \/7\/d +d, +log(5)> >1-09.

2. By Lemma A.5 and the condition on T,

Ld,
o] <o oves s iz < \/TLd g (5% ) =]

Under A, we bound the spectral norm (for all w)

|6t © 1) 07U U M-

< loff @ Lol || @) ||l | 10e |

K Ld,
< VI [TLdon (55 ) 5. 04

Ld,
< K\/|Zz|| L'Ld, log ( 5

3. Let €trune,F = HF *Il[ L+1,00) HH and similarly define €¢;ync,c. We bound the last term by
noting

) M.

[(F Lz s1.00)) #ully < [ (F Tz s1,00)" - lly < Erune,p [Jull,
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and similarly ||(G*1{z41,00)) * €|, < Etrunc.c [I€]]5- We have P (\|770;T_1|| > /Td, + K /log (%)) <

§ and P (HfO:T—IH >T HEQIC/QHF + K/||22] log (%)) < § by Theorem D.5, so condi-
tioned on event A,

/1 1
sup [(qsf ® Idu)ES] S Ky = 5trunC,F Tdu + 10g <>
we(0,1] T 5
1
e <VT |=22|| + (f1=2l0g (5>> )

with probability at least 1 — §. By the condition on 7', the first terms are dominant.

Finish by replacing § by g and using the triangle inequality and a union bound. |

Appendix B. Improved rates for learning system matrices

In this section, we combine Lemma 4.2 and Lemma 4.3 with bounds in Oymak and Ozay (2019) to
give improved bounds for learning the system matrices.?

As L can be chosen to make ey, negligible, this gives 4/ %d rates, however, with factors
depending on the minimum eigenvalue of H.

We first re-do some of the bounds in Oymak and Ozay (2019) more carefully, using their nota-
tion.

Lemma B.1 ((Oymak and Ozay, 2019, Lemma B.1)) Suppose oin(L) > 2 HL — EH where oyin (L)

is the smallest nonzero singular value of L. Let rank-d matrices L, L have singular value decom-
positions UXV™* and USV*. There existsan x n unitary matrix W so that

~[12
A2+ 1 dHL—LH
HUzl/t(?iWWHQ n Hvzl/tx?imw“? < (vV2+1) .
F F Umin(L)

Proof This inequality is given as an intermediate inequality in the proof of Lemma B.1 in Oymak

~2
L-L
and Ozay (2019). The first line gives that the LHS is < \/52_ 1 ‘Lmin (!f .

~ ~|12 |12
rank(L — L) < 2d, soHL—LHF §2dHL—LH . n

Then use the fact that

Using this instead of Lemma B.1 gives the following for Theorem 4.3 of Oymak and Ozay
(2019).

Lemma B.2 Ler A\, B , C be the state-space realization corresponding to the output of Ho-Kalman
with input G. Suppose the system is observable and controllable. Let L = Hankely, ( L—1)(F ).

2. References to Oymak and Ozay (2019) are for the arXiv version https://arxiv.org/abs/1806.05722.
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Suppose omin(L) > 0 and the low-rank approximation from Ho-Kalman satisfies HL -y H <
Omin(L) /2. Then there exists a unitary matrix W € R¥4 such that

21/ (V2 + 1)dHL - EH

|B-wB],.|lc-cw], <
F E Umin(L)
R V2 ~L _ _
o, < 20 (Y e |

Proof We refer the reader to Oymak and Ozay (2019) for the details and just note the differences. As
in Oymak and Ozay (2019), the first inequality follows from taking the square root in Lemma B.1.
For the second inequality, using Lemma B.1, the inequality for HOT - xt H ¢ becomes instead

o'}
< 21/(V2 + 1)dHL—ZHF > 4/ (V2 + 1)dHL—EHF
= /2 ' = )3/2

Omin (L) 1 Omin (L) Omin (L

2

9

for ], = 10~ g {1

so that (B.3)—(B.7) become

ol
|of - xhutel| < e +Jmi)(iuf at sl

e,
F— Omin(L)?

Substituting in (B.2) then gives the theorem. |

i@y (el s =2+

Proof [Proof of Theorem 2.3] Lemma 4.2 gives a bound on HH —H H By (Oymak and Ozay, 2019,
Appendix B.4),

e

=] < |1 H], HL—ZH ngH_ﬁH.

)

By Lemma 4.3, | H|| < [[F*[|3_ = [|®pll3_ - Plugging this into Lemma B.2 gives the theorem. B

Appendix C. Lower bound

We prove a minimax lower bound which shows that the rates in Theorem 2.2 are optimal up to
logarithmic factors. In fact, the lower bound already holds in the simple case where there is no time
dependency, in which case the problem reduces to a low-rank linear regression problem.
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Theorem C.1 Given the setting in Problem 2.1 with ¥¢ = JQIdy and ¥, = O, if max{d,,d,} >
d, then with probability > 1 — 0 over the randomness of the u(t), the minimax error for esti-

mating F* (even when A = O, B = O, and C = O) in squared Frobenius norm is at least
max{d,,dy }do?

Tv2(/T1og(2) +o8(%))

, Le., any estimator ﬁ(y) satisfies

2 S max{dy, dy}do?
F T+2 (y/Tlog (%) + log (g))

Note alternatively we can restrict to D = O and A = O; the only difference is that the impulse
response is now nonzero only at ¢ = 1 rather than ¢ = 0.
We will use the following theorem.

Fy) - F*

me |
D:A=0,B=0,C=0

Theorem C.2 ((Candes and Plan, 2011, Theorem 2.5)) Suppose that A : R™*"2 — R™ is a
linear transformation such that

A3 < K1 X|7

for all matrices X of rank at most r. Suppose that n = max{ni,ne} > r. Given the observa-

tion y = A(X) + z where z ~ N(0,0%1,,), the minimax error in squared Frobenius norm over
. 2 . . — .

{X e Rm>*™2 :rank(X) < r}is at least 3%, i.e., any estimator M (y) satisfies

nr02

7

— 2
sup IEHM(y)—MH >
M:rank(M)<r F
Note that (Candes and Plan, 2011, Theorem 2.5) assumed a stronger condition—a matrix RIP (re-
stricted isometry property)—but the lower bound coming from RIP is not used in the proof.
Proof [Proof of Theorem C.1] We are in the setting of Theorem C.2 where A(D) = (Du(0);...; Du(T—
1)). Note that by change of basis, we may assume D is diagonal. If o1, ..., 04 are the singular val-
ues of D, then [|A(D)||3 = 125 [ Du(t)||? is distributed as 2% | 02X, where each X; ~ x2 is
a x2-random variable with 7" degrees of freedom. By the tail bound in Laurent and Massart (2000),
P(X; > T+ 2(vVTu +u)) < e ™ Letting u = log (4) and Q = T + 2(v/Tu + u), we get that

S < > <
P (112?§}(Xm > Q> <dP(X; > Q) <6.

Then with probability > 1 — J, the event max;<;<q X; < @ holds, so

d d
AD)E =3 02X, < (z ) max X; < DI @
i=1 =1

max{dy,dy }do?
Q s

~ ~ 2
Then by Theorem C.2, for any estimate D(y), SUP paank(p)<d E HD(y) - DHF >

as desired. |
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Appendix D. Concentration bounds

In this section, we collect some useful concentration results.

Definition D.1 A R-valued random variable X is sub-gaussian with constant K x if
| X1, = inf {s>0:E[exp((z/s)®) — 1] < 1} < Kx,

and a R"-valued random variable X is sub-gaussian with constant K x if

[ Xy, = sup [(X,z)[|,, < Kx.
peS§n—1

Theorem D.2 ((Vershynin, 2018, Ex. 4.7.3)) There is a constant K such that the following holds.
Let X1, ..., X, be iid copies of a random vector X in R" satisfying the sub-gaussian bound for
any z,

X, 2) .y, < KxE[(X, 2)7].

Let Sy = 23 X; X", Then for any s > 0,

P (\\zm—z\ < KK% (,/"*3 + ”+S> qu) > 12,
m m

Theorem D.3 (Hanson-Wright inequality, (Rudelson et al., 2013, Theorem 1.1)) There is a con-
stant ¢ > 0 such that the following holds. Let A € C™"*™ be a matrix, and let v € R"™ be a random
vector with independent, mean-0, K,-sub-gaussian entries. Then for every s > 0,

s s
P(jv" Av — Ev" Av| > s) < 2exp | —c-min ,
K| A2 K2[IA]

Corollary D.4 There is a constant ¢ > 0 such that the following holds. Let A € C™*™ be a matrix,
and let v € R™, w € R™ be random vectors with independent, mean-0, K, and K, sub-gaussian
entries, respectively. Then for every s > (),

52 S
P(jv" Aw| > 5) < 2exp | —c-min , .
K2K2 ||A||2" KoKy || Al
v O A
Proof Apply Theorem D.3 for v <~ (w) and A < < o O) . |

Theorem D.5 (Sub-gaussian concentration, (Rudelson et al., 2013, Theorem 2.1)) There is a con-
stant ¢ > 0 such that the following holds. Let A € C"™*™ be a matrix, and let v € R"™ be a random
vector with independent, mean-0, K,-sub-gaussian entries. Then for every s > 0,

CS2
Bl Avll, — 14]l¢] > 8] < 2exp (—) .
? K4 Al
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Appendix E. Experimental details

We generate random LDS’s as follows. For B and C, the rows or columns are chosen to be a
random set of orthonormal vectors (depending on whether they have more rows or columns). For
A, the entries are first chosen to be iid standard gaussians, and then A is re-normalized so that its
maximum eigenvalue has absolute value A\ .x. For simplicity, we take D = O.

We make a slight modification of Algorithm 10 which triples the size at each iteration instead.
For L = 3%, we estimate a finite impulse response of length 4 - 3! — 1. Then, for the multiscale
SVD algorithm, at the kth scale (k > 1), we consider the rank-d SVD of Hankely,,(F’), where
¢ =231 and use this SVD to estimate the F(t) for 3k—1 <« ¢ < 2% For the single-scale SVD,
we estimate all F'(t) from the rank-d SVD of Hankelyy,(F'), where ¢ = 2 - 3¢~ 1,

The plots show the error HF* Ip — F ‘ ,» Where I s the estimated impulse response on (1, L],
averaged over 10 randomly generated LDS’s, as a function of the time 7" elapsed, for the following
settings of parameters:

. d=dy=dy=1,L =27, Apax = 0.9.
2. d=dy=dy=3,L=27, Apax = 0.9.
3. d=dy, =dy =3, L =81, Apax = 0.95.
4. d=5,dy =dy =3, [ = 81, Aay = 0.95.
5.d=10,dy, = dy = 3, L = 81, Amax = 0.95.

The code was written in Julia, and is available at https://github.com/holdenlee/
hankel-svd.
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