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Abstract
We further research on the accelerated optimization phenomenon on Riemannian manifolds by

introducing accelerated global first-order methods for the optimization of 𝐿-smooth and geodesi-
cally convex (g-convex) or 𝜇-strongly g-convex functions defined on the hyperbolic space or a
subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to
globally achieve the same rates as accelerated gradient descent in the Euclidean space with respect
to 𝐿 and 𝜀 (and 𝜇 if it applies), up to log factors. Previous results with these accelerated rates only
worked, given strong g-convexity, in a small neighborhood (initial distance 𝑅 to a minimizer being
𝑅 = 𝑂((𝜇/𝐿)3/4)). Our rates have a polynomial factor on 1/ cos(𝑅) (spherical case) or cosh(𝑅)
(hyperbolic case). Thus, we completely match the Euclidean case for a constant initial distance,
and for larger 𝑅 we incur greater constants due to the geometry.

As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a
condition between convexity and quasar-convexity, of independent interest. Additionally, for any
Riemannian manifold of bounded sectional curvature, we provide reductions from optimization
methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions
and vice versa.
Keywords: Riemannian optimization, geodesic convexity, accelerated optimization.

1. Introduction

Acceleration in convex optimization is a phenomenon that has drawn plenty of attention and has
yielded many important results, since the renowned Accelerated Gradient Descent (AGD) method
of Nesterov (1983). Having been proved successful for deep learning (Sutskever et al., 2013),
among other fields, there have been recent efforts to better understand this phenomenon (Allen
Zhu and Orecchia, 2017; Diakonikolas and Orecchia, 2019; Su et al., 2016; Wibisono et al., 2016).
These have yielded numerous new results going beyond convexity or the standard oracle model,
in a wide variety of settings (Allen-Zhu, 2017, 2018a,b; Allen Zhu and Orecchia, 2015; Allen Zhu
et al., 2016; Allen-Zhu et al., 2017; Carmon et al., 2017; Cohen et al., 2018; Cutkosky and Sar-
lós, 2019; Diakonikolas and Jordan, 2019; Diakonikolas and Orecchia, 2018; Gasnikov et al., 2019;
Wang et al., 2016). This surge of research that applies tools of convex optimization to models going
beyond convexity has been fruitful. One of these models is the setting of geodesically convex Rie-
mannian optimization. In this setting, the function to optimize is geodesically convex (g-convex),
i.e. convex restricted to any geodesic (cf. Definition 1).

Riemannian optimization, g-convex and non-g-convex alike, is an extensive area of research.
In recent years there have been numerous efforts towards obtaining Riemannian optimization algo-
rithms that share analogous properties to the more broadly studied Euclidean first-order methods:

0. Most of the notations in this work have a link to their definitions. For example, if you click or tap on any instance of
𝐿, you will jump to the place where it is defined as the smoothness constant of the function we consider in this work.
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deterministic (de Carvalho Bento et al., 2017; Wei et al., 2016; Zhang and Sra, 2016), stochastic
(Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni et al., 2018), variance-reduced (Sato
et al., 2017, 2019; Zhang et al., 2016), adaptive (Kasai et al., 2019), saddle-point-escaping (Crisc-
itiello and Boumal, 2019; Sun et al., 2019; Zhang et al., 2018; Zhou et al., 2019; Criscitiello and
Boumal, 2020), and projection-free methods (Weber and Sra, 2017, 2019), among others. Un-
surprisingly, Riemannian optimization has found many applications in machine learning, including
low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and Sepul-
chre, 2014; Tan et al., 2014; Vandereycken, 2013), dictionary learning (Cherian and Sra, 2017; Sun
et al., 2017), optimization under orthogonality constraints (Edelman et al., 1998), with applica-
tions to Recurrent Neural Networks (Lezcano-Casado, 2019; Lezcano-Casado and Martínez-Rubio,
2019), robust covariance estimation in Gaussian distributions (Wiesel, 2012), Gaussian mixture
models (Hosseini and Sra, 2015), operator scaling (Allen-Zhu et al., 2018), and sparse principal
component analysis (Genicot et al., 2015; Huang and Wei, 2019b; Jolliffe et al., 2003).

However, the acceleration phenomenon, largely celebrated in the Euclidean space, is still not
understood in Riemannian manifolds, although there has been some progress on this topic recently
(cf. Related work). This poses the following question, which is the central subject of this paper:

Can a Riemannian first-order method enjoy the same rates as AGD does in the Euclidean space?

In this work, we provide an answer in the affirmative for functions defined on hyperbolic and
spherical spaces, up to constants depending on the sectional curvature 𝐾 and the initial distance to
a minimizer 𝑅, and up to log factors. We summarize our main results in the following:

• Full acceleration. We design algorithms that provably achieve the same rates of convergence
as AGD in the Euclidean space, up to constants and log factors. More precisely, we ob-
tain the rates ̃︀𝑂(

√︀
𝐿/𝜀) and𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀)) when obtaining 𝜀-minimizers of 𝐿-smooth

functions that are, respectively, g-convex and 𝜇-strongly g-convex, defined on the hyperbolic
space or a subset of the sphere. The notation ̃︀𝑂(·) and 𝑂*(·) omits log(𝐿/𝜀) and log(𝐿/𝜇)
factors, respectively, and constants depending on𝑅 and𝐾. We discuss these constants in Ap-
pendix D, noting a difference with respect to the Euclidean case and discussing lower bounds.
Previous accelerated approaches only showed local results (Zhang and Sra, 2018) or obtained
results with rates in between the ones obtainable by Riemannian Gradient Descent (RGD)
and AGD (Ahn and Sra, 2020). Moreover, these previous works only apply to functions that
are smooth and strongly g-convex and not to smooth functions that are only g-convex. As a
proxy, we design an accelerated algorithm under a condition between convexity and quasar-
convexity in the constrained setting, of independent interest.

• Reductions. We present two reductions for any Riemannian manifold of bounded sectional
curvature. Given an optimization method for smooth and g-convex functions they provide a
method for optimizing smooth and strongly g-convex functions, and vice versa.

It is often the case that methods and key geometric inequalities that apply to manifolds with
bounded sectional curvatures are obtained from the ones existing for the spaces of constant ex-
tremal sectional curvature (Grove et al., 1997; Zhang and Sra, 2016, 2018). Consequently, our
contribution is relevant not only because we establish an algorithm achieving global acceleration on
functions defined on a manifold other than the Euclidean space, but also because understanding the
constant sectional curvature case is an important step towards understanding the more general case

2



GLOBAL RIEMANNIAN ACCELERATION IN HYPERBOLIC AND SPHERICAL SPACES

of obtaining algorithms that optimize g-convex functions, strongly or not, defined on manifolds of
bounded sectional curvature.
Structure of the paper. We provide some definitions, notations, and related work in the rest of
this section. We introduce our algorithms and their ideas and a proof sketch in Section 2 and we
present our reductions in Section 3. Appendix A contains the convergence proofs of the accelerated
algorithms. Appendix B contains the proofs of the reductions and the corollaries showing how to
apply them to our algorithms. In Appendix C, we prove our geometric lemmas that show how to re-
duce our Riemannian problem to the Euclidean non-convex problem that we solve in an accelerated
way. In Appendix D we comment on the constants of our algorithms, on rates of related work and
on hardness results. We also show a lower bound on the condition number of any strongly g-convex
function defined on a bounded domain.
Basic Geometric Definitions. We recall basic definitions of Riemannian geometry that we use in
this work. For a thorough introduction we refer to (Petersen et al., 2006). A Riemannian manifold
(ℳ, g) is a real smooth manifoldℳ equipped with a metric g, which is a smoothly varying inner
product. For 𝑥 ∈ℳ and any two vectors 𝑣, 𝑤 ∈ 𝑇𝑥ℳ in the tangent space ofℳ, the inner product
⟨𝑣, 𝑤⟩𝑥 is g(𝑣, 𝑤). For 𝑣 ∈ 𝑇𝑥ℳ, the norm is defined as usual ‖𝑣‖𝑥

def
=
√︀
⟨𝑣, 𝑣⟩𝑥. Typically, 𝑥 is

known given 𝑣 or 𝑤, so we will just write ⟨𝑣, 𝑤⟩ or ‖𝑣‖ if 𝑥 is clear from context. A geodesic of
length ℓ is a curve 𝛾 : [0, ℓ] → ℳ of unit speed that is locally distance minimizing. A uniquely
geodesic space is a space such that for every two points there is one and only one geodesic that
joins them. In such a case the exponential map Exp𝑥 : 𝑇𝑥ℳ →ℳ and inverse exponential map
Exp−1

𝑥 :ℳ→ 𝑇𝑥ℳ are well defined for every pair of points, and are as follows. Given 𝑥, 𝑦 ∈ℳ,
𝑣 ∈ 𝑇𝑥ℳ, and a geodesic 𝛾 of length ‖𝑣‖ such that 𝛾(0) = 𝑥, 𝛾(‖𝑣‖) = 𝑦, 𝛾′(0) = 𝑣/‖𝑣‖, we
have that Exp𝑥(𝑣) = 𝑦 and Exp−1

𝑥 (𝑦) = 𝑣. Note, however, that Exp𝑥(·) might not be defined
for each 𝑣 ∈ 𝑇𝑥ℳ. We denote by 𝑑(𝑥, 𝑦) the distance between 𝑥 and 𝑦. Its value is the same as
‖Exp−1

𝑥 (𝑦)‖. Given a 2-dimensional subspace 𝑉 ⊆ 𝑇𝑥ℳ, the sectional curvature at 𝑥 with respect
to 𝑉 is defined as the classical notion of Gauss curvature, for the surface Exp𝑥(𝑉 ) at 𝑥. The Gauss
curvature at a point 𝑥 can be defined as the product of the maximum and minimum curvatures of
the curves resulting from intersecting the surface with planes normal to the surface at 𝑥.
Notation. Letℳ be a 𝑛-dimensional Riemannian manifold. Given two points 𝑥, 𝑦 ∈ ℳ and a
vector 𝑣 ∈ 𝑇𝑥ℳ in the tangent space of 𝑥, we use the formal notation ⟨𝑣, 𝑦− 𝑥⟩ def

= −⟨𝑣, 𝑥− 𝑦⟩ def
=

⟨𝑣,Exp−1
𝑥 (𝑦)⟩. We call 𝐹 :ℳ→ R a function we want to optimize and that has at least one global

minimum. We denote by 𝑥0 an initial point, inℳ, of an optimization algorithm. We denote 𝑅 ≥
𝑑(𝑥0, 𝑥

*) a bound on the initial distance to a minimizer 𝑥*. We use the notation Exp𝑥0(𝐵̄(0, 𝑅)) ⊂
ℳ to mean thatℳ is such that Exp𝑥0 is defined on the closed ball 𝐵̄(0, 𝑅) ⊂ 𝑇𝑥0ℳ. We use
ℳ𝐾 to denote any manifold that is a subset of an 𝑛-dimensional complete and simply connected
manifold of constant sectional curvature 𝐾, namely a subset of the hyperbolic space or sphere
(Petersen et al., 2006), with the inherited metric, and such that Exp𝑥0(𝐵̄(0, 𝑅)) ⊂ ℳ𝐾 . In such a
case, we use ℬ𝑅 for Exp𝑥0(𝐵̄(0, 𝑅)). Note that we are not making explicit the dependence on 𝑛, 𝑥0,
ℳ𝐾 , and 𝐾. We want to work with the standard choice of uniquely geodesic manifolds (Ahn and
Sra, 2020; Liu et al., 2017; Zhang and Sra, 2016, 2018). Therefore, if 𝐾 > 0 we restrict ourselves
to 𝑅 < 𝜋/2

√
𝐾, so ℬ𝑅 is uniquely geodesic (it is contained in an open hemisphere). Note that by

definition 𝑥* ∈ ℬ𝑅. For 𝑀 ⊆ R𝑛, we denote by ℎ :ℳ → 𝑀 a geodesic map (Kreyszig, 1991),
which is a diffeomorphism such that the image and the inverse image of a geodesic is a geodesic.
Unless specified otherwise, we will have ℎ(𝑥0) = 0. Given a point 𝑥 ∈ ℳ we use the notation
𝑥̃

def
= ℎ(𝑥) and vice versa; any point in 𝑀 will use a tilde. Given a vector 𝑣 ∈ 𝑇𝑥ℳ, we call 𝑣 ∈ R𝑛
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the vector of the same norm such that {𝑥̃+ 𝜆̃𝑣|𝜆̃ ∈ R+, 𝑥̃+ 𝜆̃𝑣 ∈ 𝑀} = {ℎ(Exp𝑥(𝜆𝑣))|𝜆 ∈ 𝐼 ⊆
R+}, for some interval 𝐼 . Likewise, given 𝑥 and a vector 𝑣 ∈ R𝑛, we define 𝑣 ∈ 𝑇𝑥ℳ. In the case
of ℳ𝐾 , we call 𝒳 = ℎ(ℬ𝑅). The big 𝑂 notations ̃︀𝑂(·) and 𝑂*(·) omit log(𝐿/𝜀) and log(𝐿/𝜇)
factors, respectively, and constant factors depending on 𝑅 and 𝐾.

We define now the main properties that will be assumed on the function 𝐹 to be minimized.

Definition 1 (Geodesic Convexity and Smoothness) Let 𝐹 :ℳ→ R be a differentiable function
defined on a Riemannian manifold (ℳ, g). Given 𝐿 ≥ 𝜇 > 0, we say that 𝐹 is 𝐿-smooth, and
respectively 𝜇-strongly g-convex, if for any two points 𝑥, 𝑦 ∈ℳ, 𝐹 satisfies

𝐹 (𝑦) ≤ 𝐹 (𝑥)+ ⟨∇𝐹 (𝑥), 𝑦−𝑥⟩+ 𝐿

2
𝑑(𝑥, 𝑦)2, resp. 𝐹 (𝑦) ≥ 𝐹 (𝑥)+ ⟨∇𝐹 (𝑥), 𝑦−𝑥⟩+ 𝜇

2
𝑑(𝑥, 𝑦)2.

We say 𝐹 is g-convex if the second inequality above, i.e. 𝜇-strong g-convexity, is satisfied with
𝜇 = 0. We have used the formal notation above for the subtraction of points in the inner product.

Our main technique consists of mapping the function domain to a subset 𝑀 of the Euclidean
space via a geodesic map ℎ. Given the gradient of a point 𝑥 ∈ℳ, convexity defines a lower bound
on the function that is affine over the tangent space of 𝑥, namely ℓ(𝑦) = 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦− 𝑥⟩ ≤
𝐹 (𝑦) and it implies a minimizer must be in the halfspace 𝐻 = {𝑦|⟨∇𝐹 (𝑥), 𝑦−𝑥⟩ ≤ 0}, since ℓ(·)

is greater than 𝐹 (𝑥) outside of 𝐻 . This lower bound induces, via the geodesic map, a function on
𝑀 . And𝐻 is mapped to a halfspace𝐻 ′ in the Euclidean space, because {ℎ(𝑦)|⟨∇𝐹 (𝑥), 𝑦−𝑥⟩ = 0}
is mapped to a hyperplane by the definition of geodesic map. We find a lower bound of ℓ ∘ ℎ−1 that
is affine over 𝐻 ′ and such that it is equal to 𝐹 (𝑥) at ℎ(𝑥), despite the geodesic map being non-
conformal, deforming distances, and breaking convexity, cf. Lemma 3. This allows to aggregate
the lower bounds easily in the Euclidean space by taking an average, in the same spirit as mirror
descent algorithms do. We believe that effective lower bound aggregation is key to achieving Rie-
mannian acceleration and optimality and it has been the main hurdle of previous algorithms. Using
this strategy, we are able to define a continuous method that we discretize using an approximate
implementation of the implicit Euler method, achieving the same rates as the Euclidean AGD, up to
constants and log factors, for the optimization of g-convex smooth functions. Our reductions take
into account the deformations produced by the geometry to generalize existing optimal Euclidean
reductions (Allen Zhu and Hazan, 2016; Allen Zhu and Orecchia, 2017). Applying them, we obtain
an analogous algorithm for strongly g-convex and smooth functions. Applying them again to the
latter they yield an algorithm for g-convex smooth functions with the rates of the same order as the
first one.
Comparison with Related Work. There are a number of works that study the problem of first-
order acceleration in Riemannian manifolds of bounded sectional curvature. The first study is (Liu
et al., 2017). In this work, the authors develop an accelerated method with the same rates as AGD
for both g-convex and strongly g-convex functions, provided that at each step a given non-linear
equation can be solved. No algorithm for solving this equation has been found and, in principle, it
could be intractable or infeasible. In (Alimisis et al., 2019) a continuous method analogous to the
continuous approach to accelerated methods is presented, but it is not known if there exists an accel-
erated discretization of it. In (Alimisis et al., 2020), an algorithm presented is claimed to enjoy an
accelerated rate of convergence, but fails to provide convergence when the function value gets below
a potentially large constant that depends on the manifold and smoothness constant. The work (Lin
et al., 2020) is inspired by accelerated algorithms and focuses on adapting to the strong g-convex
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parameter but does not obtain accelerated algorithms. In (Huang and Wei, 2019a) an accelerated al-
gorithm is presented but relying on strong geometric inequalities that are not proved to be satisfied.
Zhang and Sra (2018) obtain a local algorithm that optimizes 𝐿-smooth and 𝜇-strongly g-convex
functions achieving the same rates as AGD in the Euclidean space, up to constants. That is, the
initial point needs to start close to the optimum, 𝑂((𝜇/𝐿)3/4) close, to be precise. Their approach
consists of adapting Nesterov’s estimate sequence technique by keeping a quadratic on 𝑇𝑥𝑖ℳ that
induces onℳ a regularized lower bound on 𝐹 (𝑥*) via Exp𝑥𝑖(·). They build another lower bound
by aggregating the information yielded by the gradient ∇𝐹 (𝑥𝑖) to it, and use a geometric lemma
to find a quadratic in 𝑇𝑥𝑖+1ℳ whose induced function lower bounds the previous one. Ahn and
Sra (2020) generalize the previous algorithm and, by using similar ideas for the lower bound, they
adapt it to work globally, obtaining strictly better rates than RGD, recovering the local acceleration
of the previous paper, but not achieving global rates comparable to the ones of AGD. In fact, they
prove that their algorithm eventually decreases the function value at a rate close to AGD but this
can take as many iterations as the ones needed by RGD to reach the neighborhood of the previous
local algorithm, cf. Remark 30. In our work, we take a step back and focus on the constant sectional
curvature case to provide a global algorithm that achieves the same rates as AGD, up to constants
on𝑅, 𝐾, and log factors. It is common to characterize the properties of spaces of bounded sectional
curvature by using the ones of the spaces of constant extremal sectional curvature (Grove et al.,
1997; Zhang and Sra, 2016, 2018), which makes the study of the constant sectional curvature case
critical to the development of full accelerated algorithms in the general bounded sectional curvature
case. Our work also studies g-convexity besides strong g-convexity. No previous accelerated algo-
rithms applied to this case. Some of the results of Ahn and Sra (2020), among others, require to
assume that the iterates of the algorithm remain in a fixed ball around the minimizer, while our algo-
rithms and analysis can work with this constraint directly. Because of the hardness of the geometry,
our convergence rates incur greater constants depending on 𝑅 and 𝐾 with respect to the Euclidean
case. They are a small polynomial on 1/ cos(𝑅

√︀
|𝐾|) in spherical spaces and cosh(𝑅

√︀
|𝐾|) in

hyperbolic spaces, the latter being an exponential dependence. It is not clear if these constants can
be avoided in fully accelerated algorithms and we provide a discussion about this in Appendix D.
We also show a lower bound on the condition number of any strongly g-convex function defined
on ℬ𝑅. Due to the geometry, there is a lower bound (Hamilton and Moitra, 2021; Criscitiello and
Boumal, 2021) of ̃︀Ω(𝑅) on several negatively curved Riemannian manifolds, but this does not pre-
clude to globally accelerate, unless this lower bound preponderates over the condition number, cf.
Remark 29.

On Euclidean optimization, a related work is the approximate duality gap technique (Diakoniko-
las and Orecchia, 2019), which presents a unified view of the analysis of first-order methods. It
defines a continuous duality gap and by enforcing a natural invariant, it obtains accelerated con-
tinuous dynamics and their discretizations for most classical first-order methods. A derived work
(Diakonikolas and Orecchia, 2018) obtains Euclidean acceleration in a fundamentally different way
from previous acceleration approaches, namely using an approximate implicit Euler method for the
discretization of the acceleration dynamics. Our convergence analysis of Theorem 5 draws ideas
from these two works. We will see in the sequel that, for our manifolds of interest, g-convexity is
related to a model known as quasar-convexity or weak-quasi-convexity (Guminov and Gasnikov,
2017; Nesterov et al., 2018; Hinder et al., 2019).
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Table 1: Worse-case rates of related works for smooth problems. AGD is a Euclidean algorithm.
Our Algorithm 1 works in manifolds of constant sectional curvature 𝐾 ̸= 0. The rest of
the algorithms work in manifolds of sectional curvature that is bounded above and below.

Method g-convex 𝜇-st. g-convex

AGD (Nesterov, 1983) 𝑂(
√︀
𝐿/𝜀) 𝑂(

√︀
𝐿/𝜇 log(𝜇/𝜀))

(Zhang and Sra, 2018) (it only works locally) - 𝑂(
√︀
𝐿/𝜇 log(𝜇/𝜀))

(Ahn and Sra, 2020) - 𝑂*(𝐿/𝜇+
√︀
𝐿/𝜇 log(𝜇/𝜀))

Remark 30 (RGD+(Zhang and Sra, 2018)) - 𝑂*(𝐿/𝜇+
√︀
𝐿/𝜇 log(𝜇/𝜀))

Theorem 6 and Corollary 8 resp. ̃︀𝑂(
√︀
𝐿/𝜀) 𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀))

2. Algorithm

We study the minimization problem min𝑥∈ℳ𝐾
𝐹 (𝑥) with a gradient oracle, for a twice differen-

tiable smooth function 𝐹 :ℳ𝐾 → R that is g-convex or strongly g-convex, for an initial point 𝑥0,
a minimizer 𝑥* of 𝐹 that is assumed to exist, and a constant𝑅 > 𝑑(𝑥0, 𝑥

*). We recallℳ𝐾 refers to
any manifold of constant non-zero sectional curvature such thatℬ𝑅 = Exp𝑥0(𝐵̄(0, 𝑅)) ⊂ℳ𝐾 . We
work in this setting in this entire section. We perform constrained optimization over ℬ𝑅 in order to
control the deformations caused by the geometry. We defer the proofs of the lemmas and theorems in
this and following sections to the appendix. We assume without loss of generality that the sectional
curvature ofℳ𝐾 is 𝐾 ∈ {1,−1}, since for any other value of 𝐾 and any function 𝐹 :ℳ𝐾 → R

defined on such a manifold, we can reparametrize 𝐹 by a rescaling, so it is defined over a manifold
of constant sectional curvature 𝐾 ∈ {1,−1}. The parameters 𝐿, 𝜇 and 𝑅 are rescaled accordingly
as a function of𝐾, cf. Remark 22. We denote the special cosine by C𝐾(·), which is cos(·) if𝐾 = 1

and cosh(·) if 𝐾 = −1. For a geodesic map ℎ :ℳ→𝑀 , we define 𝒳 def
= ℎ(ℬ𝑅) ⊆𝑀 ⊆ R𝑛. We

use classical geodesic maps for the manifolds that we consider: the Gnomonic projection for𝐾 = 1
and the Beltrami-Klein projection for 𝐾 = −1 (Greenberg, 1993). They map an open hemisphere
and the hyperbolic space of curvature 𝐾 ∈ {1,−1} to R𝑛 and 𝐵(0, 1) ⊆ R𝑛, respectively. We
will derive our results from the following characterization of ℎ (Greenberg, 1993). Let 𝑥̃, 𝑦 ∈ 𝒳 be
two points. Recall that we denote 𝑥 = ℎ−1(𝑥̃), 𝑦 = ℎ−1(𝑦) ∈ ℬ𝑅. Then we have that 𝑑(𝑥, 𝑦), the
distance between 𝑥 and 𝑦 with the metric ofℳ𝐾 , satisfies

C𝐾(𝑑(𝑥, 𝑦)) =
1 +𝐾⟨𝑥̃, 𝑦⟩√︀

1 +𝐾‖𝑥̃‖2 ·
√︀

1 +𝐾‖𝑦‖2
. (1)

Observe that the expression is symmetric with respect to rotations. In particular, 𝒳 is a closed ball
of some radius 𝑅̃. Using 𝑥̃ = 0 and 𝑦 such that 𝑑(𝑥0, 𝑦) = 𝑅, we have C𝐾(𝑅) = (1 +𝐾𝑅̃2)−1/2.

Consider a point 𝑥 ∈ ℬ𝑅 and the lower bound provided by the g-convexity assumption when
computing ∇𝐹 (𝑥). Dropping the 𝜇 term in case of strong g-convexity, this bound is affine over
𝑇𝑥ℬ𝑅. In order to define a duality gap, as we show in Section 2.1, we would like our algorithm
to aggregate effectively the lower bounds it computes during the course of the optimization. The
deformations of the geometry make the aggregation a difficult task, despite the fact that we have
a simple description of each individual lower bound: each of them is affine over 𝑇𝑥𝑖ℬ𝑅 but these
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simple functions are defined on different tangent spaces. We deal with this problem by obtaining a
lower bound that is looser by a constant depending on𝑅, and that is affine over𝒳 ⊂ R𝑛. In this way
the aggregation becomes easier: all of them are simple and are in the same space. Then, we are able
to combine this lower bound with decreasing upper bounds in the fashion some other accelerated
methods work in the Euclidean space (Allen Zhu and Orecchia, 2017; Diakonikolas and Orecchia,
2018, 2019; Nesterov, 1983). Alternatively, we can see the approach in this work as the constrained
optimization problem of minimizing the non-convex function 𝑓 : 𝒳 → R, 𝑥̃ ↦→ 𝐹 (ℎ−1(𝑥̃))

minimize 𝑓(𝑥̃), for 𝑥̃ ∈ 𝒳 .

In the rest of the section, we will focus on the g-convex case. For simplicity, instead of solving the
strongly g-convex case directly in an analogous way by finding a lower bound that is quadratic over
𝒳 , we rely on the reductions of Section 3 to obtain the accelerated algorithm in this case.

The following two lemmas show that finding the affine lower bound is possible, and is defined
as a function of ∇𝑓(𝑥̃). We first gauge the deformations caused by the geodesic map ℎ. Distances
are deformed, the map ℎ is not conformal, and the image of the geodesic Exp𝑥(𝜆∇𝐹 (𝑥)) is not
mapped into the image of the geodesic 𝑥̃+ 𝜆̃∇𝑓(𝑥̃), i.e. the direction of the gradient changes. We
are able to find the affine lower bound after bounding these deformations.

Lemma 2 [↓] Let 𝐾 ∈ {1,−1}. Let 𝑥, 𝑦 ∈ ℬ𝑅 be two different points, and in part 𝑏) different from
𝑥0. Let 𝛼̃ be the angle ∠𝑥̃0𝑥̃𝑦, formed by the vectors 𝑥̃0 − 𝑥̃ and 𝑦− 𝑥̃. Let 𝛼 be the corresponding
angle, the one between the vectors Exp−1

𝑥 (𝑥0) and Exp−1
𝑥 (𝑦). Assume without loss of generality

that 𝑥̃ ∈ span{𝑒1} and ∇𝑓(𝑥̃) ∈ span{𝑒1, 𝑒2} for the canonical orthonormal basis {𝑒𝑖}𝑛𝑖=1. Let
𝑒𝑖 ∈ 𝑇𝑥ℳ𝐾 be the unit vector such that ℎ maps the image of the geodesic Exp𝑥(𝜆𝑒𝑖) to the image
of the geodesic 𝑥̃+ 𝜆̃𝑒𝑖, for 𝑖 = 1, . . . , 𝑛, and 𝜆, 𝜆̃ ≥ 0. Then, the following holds.

a) Distance deformation:

𝐾 C2
𝐾(𝑅) ≤ 𝐾 𝑑(𝑥, 𝑦)

‖𝑥̃− 𝑦‖
≤ 𝐾.

b) Angle deformation:

sin(𝛼) = sin(𝛼̃)

√︃
1 +𝐾‖𝑥̃‖2

1 +𝐾‖𝑥̃‖2 sin2(𝛼̃)
, cos(𝛼) = cos(𝛼̃)

√︃
1

1 +𝐾‖𝑥̃‖2 sin2(𝛼̃)
.

c) Gradient deformation:

∇𝐹 (𝑥) = (1 +𝐾‖𝑥̃‖2)∇𝑓(𝑥̃)1𝑒1 +
√︀
1 +𝐾‖𝑥̃‖2∇𝑓(𝑥̃)2𝑒2 and 𝑒𝑖 ⊥ 𝑒𝑗 for 𝑖 ̸= 𝑗.

And if 𝑣 ∈ 𝑇𝑥ℳ𝐾 is a vector that is normal to∇𝐹 (𝑥), then 𝑣 is normal to∇𝑓(𝑥).

The previous lemma shows that ∇𝑓(𝑥̃) can be easily computed from ∇𝐹 (𝑥). The following
lemma uses the deformations described in Lemma 2 to obtain the affine lower bound on the function,
given a gradient at a point 𝑥̃. Note that Lemma 2.c implies that we have ⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ = 0 if and
only if ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩ = 0. In the proof we lower bound, generally, affine functions defined on
𝑇𝑥ℳ𝐾 by affine functions in the Euclidean space 𝒳 . This generality allows to obtain a result with
constants that only depend on 𝑅. See Remark 28 for a discussion on these constants.
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Lemma 3 [↓] Let 𝐹 :ℳ𝐾 → R be a differentiable function and let 𝑓 = 𝐹 ∘ ℎ−1. Then, there are
constants 𝛾n, 𝛾p ∈ (0, 1] depending on 𝑅 such that for all 𝑥, 𝑦 ∈ ℬ𝑅 satisfying ⟨∇𝑓(𝑥̃), 𝑦− 𝑥̃⟩ ≠ 0
we have:

𝛾p ≤
⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩
⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩

≤ 1

𝛾n
. (2)

In particular, if 𝐹 is g-convex we have the following condition, that we call tilted-convexity:

𝑓(𝑥̃) +
1

𝛾n
⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 0,

𝑓(𝑥̃) + 𝛾p⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≥ 0.

(3)

Figure 1: Deformations of the map ℎ.

We provide intuition for the previous lemma through Figure 1. The geodesic that ∇𝐹 (𝑥) in-
duces on ℬ𝑅 corresponds to the geodesic that the blue vector would induce on 𝒳 , which is in a dif-
ferent direction than the one induced by ∇𝑓(𝑥̃). The angle and gradient deformations of Lemma 2
allow to show that, for any direction, inducing a geodesic 𝛾, the slope of the affine function induced
by ∇𝑓(𝑥̃) on 𝒳 is within a constant factor 𝑐1 of the one of the lower bound ℓ defined by ∇𝐹 (𝑥)
in ℬ𝑅. Our main aim is to bound 𝐹 (𝑥*) and the shaded area of each image represents where 𝑥*

can be. On the right, we exemplify the deformation on a geodesic 𝛾 passing through 𝑥. Initially,
we have the affine lower bound ℓ, but the map ℎ deforms the domain. To lower bound the function
on the shaded region, we can use an affine lower bound 1 . Its slope is within a constant factor of
the one of the tangent line 3 by the distance deformation of Lemma 2 and the factor 𝑐1—the latter
bounds the change of the directional derivatives, in black. This gives the first line of (3). The other
one is analogous, using another affine function 2 .

The first inequality in tilted-convexity shows the affine lower bound, which can be used to
bound 𝑓(𝑥̃*) = 𝐹 (𝑥*). This first inequality, only applied to 𝑦 = 𝑥̃* for a function 𝑓 : R𝑛 → R,
defines a model known in the literature as quasar-convexity or weak-quasi-convexity (Guminov
and Gasnikov, 2017; Nesterov et al., 2018; Hinder et al., 2019), for which accelerated algorithms
exist in the unconstrained case, provided smoothness is also satisfied. However, to the best of our
knowledge, there is no known algorithm for solving the constrained case in an accelerated way. The
condition in (3) is a relaxation of convexity that is stronger than quasar-convexity. We will make
use of (3) in order to obtain acceleration in the constrained setting. This is of independent interest.
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Recall that we need the constraint to guarantee bounded deformation due to the geometry. We also
require smoothness of 𝑓 . We prove in the following lemma that 𝑓 is as smooth as 𝐹 up to a constant
depending on 𝑅.

Lemma 4 [↓] The function 𝑓 is 𝑂(𝐿)-smooth in 𝒳 = ℎ(ℬ𝑅) if 𝐹 :ℳ𝐾 → R is 𝐿-smooth.

Inspired by the approximate duality gap technique (Diakonikolas and Orecchia, 2019) we obtain
accelerated continuous dynamics, for the optimization of the function 𝑓 . Then we achieve accel-
eration by obtaining an implicit Euler discretization of the dynamics. Diakonikolas and Orecchia
(2018) obtained an accelerated method for convex functions by also making use of an implicit Eu-
ler discretization. Their algorithm is fundamentally different from AGD and techniques as Linear
Coupling (Allen Zhu and Orecchia, 2017) or Nesterov’s estimate sequence (Nesterov, 1983). The
latter techniques use a balancing gradient step at each iteration to compensate the regret of an im-
plicit or explicit dual algorithm, like mirror descent. Our use of a looser lower bound makes this
regret greater by a constant factor and it complicates guaranteeing finding a gradient step within the
constraints to compensate this greater regret. We state here the accelerated theorem and provide a
sketch of the proof in Section 2.1.

Theorem 5 [↓] Let 𝑄 ⊆ R𝑛 be a closed convex set. Let 𝑓 : 𝑄→ R be an 𝐿̃-smooth, tilted-convex
function with constants 𝛾n, 𝛾p ∈ (0, 1]. Assume there is a point 𝑥̃* ∈ 𝑄 such that ∇𝑓(𝑥̃*) = 0. We
can obtain an 𝜀-minimizer of 𝑓 using ̃︀𝑂([𝐿̃/(𝛾2n𝛾p𝜀)]

1/2) queries to the gradient oracle of 𝑓 .

Finally, we have Riemannian acceleration as a consequence of Lemma 3, Lemma 4 and Theo-
rem 5.

Theorem 6 (g-Convex Acceleration) [↓] Let 𝐹 :ℳ𝐾 → R be an 𝐿-smooth and g-convex func-
tion with a point 𝑥* ∈ ℬ𝑅 satisfying ∇𝐹 (𝑥*) = 0. Algorithm 1 computes a point 𝑥𝑇 ∈ ℬ𝑅
satisfying 𝐹 (𝑥𝑇 )− 𝐹 (𝑥*) ≤ 𝜀 using ̃︀𝑂(

√︀
𝐿/𝜀) queries to the gradient oracle.

We provide a sketch of the main optimization theorem in the section below. The full proof can
be found in Appendix A. Our use of geodesic maps was a choice we used to be able to aggregate
lower bounds. Our method showcases that an effective lower bound aggregation makes possible to
achieve global full acceleration. It suggests that acceleration could also be achieved for functions
defined on other manifolds by using our accelerated techniques if we can effectively aggregate the
lower bounds yielded by the gradient at each iteration to build a lower bound on 𝐹 (𝑥*), similarly
as in (4) below. We observe that if there is a geodesic map mapping a manifold into a convex subset
of the Euclidean space then the manifold must necessarily have constant sectional curvature, cf.
Beltrami’s Theorem (Busemann and Phadke, 1984; Kreyszig, 1991). This means that lower bound
aggregation in other manifolds would need to use a different kind of transformations. The field
of comparison geometry allows to obtain properties of spaces of bounded sectional curvature by
using the properties of the spaces that have constant curvature equal to the bounds of the former
(Grove et al., 1997). Other Riemannian optimization algorithms have used comparison theorems
that allow to obtain convergence bounds after computing the maximum possible deformations in
spaces of extremal constant sectional curvature and relating them to the spaces of bounded sectional
curvature (Zhang and Sra, 2016, 2018). The generalization to algorithms to optimize functions
defined on manifolds of bounded sectional curvature is a future direction of research.
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2.1. Sketch of the proof of Theorem 5

Inspired by the approximate duality gap technique (Diakonikolas and Orecchia, 2019), we let 𝛼𝑡
be an increasing function of time 𝑡, and denote 𝐴𝑡 =

∫︀ 𝑡
𝑡0
𝑑𝛼𝜏 =

∫︀ 𝑡
𝑡0
𝛼̇𝜏𝑑𝜏 . We define a continuous

method that keeps a solution 𝑥̃𝑡, along with a differentiable upper bound 𝑈𝑡 on 𝑓(𝑥̃𝑡) and a lower
bound 𝐿𝑡 on 𝑓(𝑥̃*). In our case 𝑓 is differentiable so we can just take 𝑈𝑡 = 𝑓(𝑥̃𝑡). The lower bound
comes from

𝑓(𝑥̃*) ≥
∫︀ 𝑡
𝑡0
𝑓(𝑥̃𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

∫︀ 𝑡
𝑡0

1
𝛾n
⟨∇𝑓(𝑥̃𝜏 ), 𝑥̃* − 𝑥̃𝜏 ⟩𝑑𝛼𝜏

𝐴𝑡
, (4)

after adding and subtracting a regularizer 𝜓, which is a 1-strongly convex function, and after remov-
ing the unknown 𝑥̃* by taking a minimum over 𝒳 . Note (4) comes from averaging (3) for 𝑦 = 𝑥̃*.
Then, if we define the gap𝐺𝑡 = 𝑈𝑡−𝐿𝑡 and design a method that forces 𝛼𝑡𝐺𝑡 to be non-increasing,
we can deduce 𝑓(𝑥𝑡) − 𝑓(𝑥̃*) ≤ 𝐺𝑡 ≤ 𝛼𝑡0𝐺𝑡0/𝛼𝑡. By forcing 𝑑

𝑑𝑡(𝛼𝑡𝐺𝑡) = 0, we naturally obtain
the following continuous dynamics, where 𝑧𝑡 is a mirror point and 𝜓* is the Fenchel dual of 𝜓.

˙̃𝑧𝑡 = −
1

𝛾n
𝛼̇𝑡∇𝑓(𝑥̃𝑡); ˙̃𝑥𝑡 =

1

𝛾n
𝛼̇𝑡
∇𝜓*(𝑧𝑡)− 𝑥̃𝑡

𝛼𝑡
; 𝑧𝑡0 = ∇𝜓*(𝑥̃𝑡0), 𝑥̃𝑡0 ∈ 𝒳 . (5)

We note that except for the constant 𝛾n, these dynamics match the accelerated dynamics used in the
optimization of convex functions (Krichene et al., 2015; Diakonikolas and Orecchia, 2018, 2019).
The AXGD algorithm (Diakonikolas and Orecchia, 2018), designed for the accelerated optimization
of convex functions, discretizes the dynamics coming from the optimization of convex functions by
using an approximate implementation of implicit Euler discretization. This has the advantage of
not needing a gradient step per iteration to compensate for some positive discretization error. In
our case, the extra error we incur by using a looser lower bound does not seem to be able to be
compensated by a gradient step in the constrained case, as other acceleration techniques like Linear
Coupling (Allen Zhu and Orecchia, 2017) or Nesterov’s estimate sequence (Nesterov, 1983) do, so
obtaining an approximate implicit Euler discretization proves to be a better approach. However, our
dynamics are different and in our case we must use tilted-convexity (3) instead of convexity. We are
able to obtain the following discretization coming from an approximate implicit Euler discretization:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜒̃𝑖 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
𝑥̃𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖)

𝜁𝑖 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(𝜒̃𝑖)

𝑥̃𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
𝑥̃𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝜁𝑖)

𝑧𝑖+1 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(𝑥̃𝑖+1)

(6)

where 𝛾𝑖 ∈ [𝛾p, 1/𝛾n] is a parameter, 𝑥̃0 ∈ 𝒳 is an arbitrary point, 𝑧0 = ∇𝜓(𝑥̃0) and now 𝛼𝑡 is a
discrete measure and 𝛼̇𝑡 is a weighted sum of Dirac delta functions 𝛼̇𝑡 =

∑︀∞
𝑖=1 𝑎𝑖𝛿(𝑡−(𝑡0+𝑖−1)).

However, not having convexity, in order to have per-iteration discretization error less than 𝜀̂/𝐴𝑇 ,
we require 𝛾𝑖 to be such that 𝑥̃𝑖+1 satisfies

𝑓(𝑥̃𝑖+1)− 𝑓(𝑥̃𝑖) ≤ 𝛾𝑖⟨∇𝑓(𝑥̃𝑖+1), 𝑥̃𝑖+1 − 𝑥̃𝑖⟩+ 𝜀, (7)

where 𝜀 is chosen so that the accumulated discretization error is < 𝜀/2, after having performed
the steps necessary to obtain an 𝜀/2 minimizer. We would like to use (3) to find such a 𝛾𝑖 but we
need to take into account that we only know 𝑥̃𝑖+1 a posteriori. Indeed, using (3) we conclude that
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setting 𝛾𝑖 to 1/𝛾n or 𝛾p then we either satisfy (7) or there is a point 𝛾𝑖 ∈ (𝛾p, 1/𝛾n) for which
⟨∇𝑓(𝑥̃𝑖+1), 𝑥̃𝑖+1 − 𝑥̃𝑖⟩ = 0, which satisfies the inequality for 𝜀 = 0. Then, using smoothness of
𝑓 , the fact that ∇𝑓(𝑥̃*) = 0, and boundedness of 𝒳 we can guarantee that a binary search finds
a point satisfying (7) in 𝑂(log(𝐿̃𝑖/𝛾𝑛𝜀)) iterations. Each iteration of the binary search requires to
run (6), that is, one step of the discretization. Computing the final discretization error, we obtain
acceleration after choosing appropriate learning rates 𝑎𝑖. Algorithm 1 contains the pseudocode of
this algorithm along with the reduction of the problem from minimizing 𝐹 to minimizing 𝑓 . We
chose 𝜓(𝑥̃) def

= 1
2‖𝑥̃‖

2 as our strongly convex regularizer.

Algorithm 1 Global Fully Accelerated g-Convex Minimization

Input: Initial point 𝑥0 ∈ℳ𝐾 . Constants 𝐿̃, 𝛾p, 𝛾n. Geodesic map ℎ satisfying (1) and ℎ(𝑥0) = 0.
Smooth and g-convex function 𝐹 :ℳ𝐾 → R with a minimizer 𝑥* ∈ ℬ𝑅.
Bound on the distance to a minimum 𝑅 ≥ 𝑑(𝑥0, 𝑥*). Accuracy 𝜀 and number of iterations 𝑇 .

1: 𝒳 def
= ℎ(ℬ𝑅) ⊆𝑀 ; 𝑓

def
= 𝐹 ∘ ℎ−1 and 𝜓(𝑥̃)

def
= 1

2‖𝑥̃‖
2

2: 𝑧0 ← ∇𝜓(𝑥̃0); 𝐴0 ← 0
3: for 𝑖 = 0 to 𝑇 − 1 do
4: 𝑎𝑖+1 ← (𝑖+ 1)𝛾2n𝛾p/2𝐿̃
5: 𝐴𝑖+1 ← 𝐴𝑖 + 𝑎𝑖+1

6: 𝜆← BinaryLineSearch(𝑥̃𝑖, 𝑧𝑖, 𝑓 ,𝒳 , 𝑎𝑖+1, 𝐴𝑖, 𝜀, 𝐿̃, 𝛾n, 𝛾p) (cf. Algorithm 2 in Appendix A)
7: 𝜒̃𝑖 ← (1− 𝜆)𝑥̃𝑖 + 𝜆∇𝜓*(𝑧𝑖)
8: 𝜁𝑖 ← 𝑧𝑖 − (𝑎𝑖+1/𝛾n)∇𝑓(𝜒̃𝑖)
9: 𝑥̃𝑖+1 ← (1− 𝜆)𝑥̃𝑖 + 𝜆∇𝜓*(𝜁𝑖)

[︀
∇𝜓*(𝑝) = argmin𝑧∈𝒳 {‖𝑧 − 𝑝‖} = Π𝒳 (𝑝)

]︀
10: 𝑧𝑖+1 ← 𝑧𝑖 − (𝑎𝑖+1/𝛾n)∇𝑓(𝑥̃𝑖+1)
11: end for
12: return 𝑥𝑇 .

3. Reductions

The construction of reductions proves to be very useful in order to facilitate the design of algorithms
in different settings. Moreover, reductions are a helpful tool to infer new lower bounds without extra
ad hoc analyses. We present two reductions. We will see in Corollary 8 and Example 1 that one
can obtain full accelerated methods to minimize smooth and strongly g-convex functions from our
accelerated methods for smooth and g-convex functions and vice versa. These are generalizations of
some reductions designed to work in the Euclidean space (Allen Zhu and Hazan, 2016; Allen Zhu
and Orecchia, 2017). The reduction to strongly g-convex functions takes into account the effect
of the deformation of the space on the strong convexity of the function 𝐹𝑦(𝑥) = 𝑑(𝑥, 𝑦)2/2, for
𝑥, 𝑦 ∈ ℳ. It does not entail an extra log(1/𝜀) factor. The reduction to g-convexity requires the
rate of the algorithm that applies to g-convex functions to be proportional to the squared distance
between the initial point and the optimum 𝑑(𝑥0, 𝑥

*)2 or to a bound𝑅2. The proofs of the statements
in this section can be found in the appendix. We will use Timens(·) and Time(·) to denote the time
algorithms 𝒜ns and 𝒜 below require, respectively, to perform the tasks we define below.

Theorem 7 [↓] Let ℳ be a Riemannian manifold, let 𝐹 : ℳ → R be an 𝐿-smooth and 𝜇-
strongly g-convex function, with a minimizer 𝑥*. Suppose we have an algorithm 𝒜ns to minimize
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𝐹 , such that for any starting point 𝑥0 such that 𝑑(𝑥0, 𝑥*) ≤ 𝑅, it produces a point 𝑥̂𝑇 in time
𝑇 = Timens(𝐿, 𝜇,𝑅) satisfying 𝐹 (𝑥̂𝑇 )− 𝐹 (𝑥*) ≤ 𝜇𝑅2/4. Then we can compute an 𝜀-minimizer
of 𝐹 in time 𝑂(Timens(𝐿, 𝜇,𝑅) log(𝜇/𝜀)).

Theorem 7 implies that if we forget about the strong g-convexity of a function and we treat it
as if it is just g-convex then we can run in stages an algorithm designed for optimizing g-convex
functions and still achieve acceleration. The fact that the function is strongly g-convex is only used
between stages. We exemplify the power of the reduction by applying it to Algorithm 1.

Corollary 8 [↓] We can compute an 𝜀-minimizer of an 𝐿-smooth and 𝜇-strongly g-convex function
𝐹 :ℳ𝐾 → R in 𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀)) queries to the gradient oracle.

We note that in the strongly convex case, by decreasing the function value by a factor we can
guarantee we decrease the distance to 𝑥* by another factor, so we can periodically recenter the
geodesic map to reduce the constants produced by the deformations of the geometry, see the proof
of Corollary 8. Finally, we show the reverse reduction.

Theorem 9 (simplified, cf. Theorem 19) Let 𝐹 :ℳ→ R be 𝐿-smooth and g-convex, and letℳ
be of bounded sectional curvature. Let Δ satisfy 𝐹 (𝑥0)−𝐹 (𝑥*) ≤ Δ. Let𝒜 be an algorithm that in
time 𝑇 = Time(𝐿, 𝜇,ℳ, 𝑅) produces 𝑥̂ ∈ Exp𝑥0(𝐵̄(0, 𝑅)) that reduces the gap of an 𝐿-smooth
and 𝜇-strongly g-convex function 𝐹 :ℳ → R, with minimizer in Exp𝑥0(𝐵̄(0, 𝑅)), by a factor of
1/4, i.e., 𝐹 (𝑥̂)−min𝑥∈ℳ 𝐹 (𝑥) ≤ (𝐹 (𝑥̂0)−min𝑥∈ℳ 𝐹 (𝑥))/4. Let 𝑇 = ⌈log2(Δ/𝜀)⌉+ 1. Then,
we can compute an 𝜀-minimizer in time

∑︀𝑇−1
𝑡=0 Time(𝐿+𝑂(2−𝑡Δ), 𝑂(2−𝑡Δ),ℳ, 𝑅).

Example 1 [↓] Applying Theorem 9 to the algorithm in Corollary 8 we can optimize 𝐿-smooth
and g-convex functions defined onℳ𝐾 with a gradient oracle complexity of ̃︀𝑂(𝐿/

√
𝜀).

Note that this reduction cannot be applied to the locally accelerated algorithm in (Zhang and
Sra, 2018), that we discussed in the related work section. The reduction runs in stages by regu-
larizing each time with a strongly g-convex regularizer whose parameter decreases exponentially
until we use a regularizer with 𝑂(𝜀) maximum function value. The local assumption required by
the algorithm in (Zhang and Sra, 2018) on the closeness to the minimum cannot be guaranteed. In
(Ahn and Sra, 2020), the authors give an unconstrained global algorithm whose rates are strictly
better than RGD. The reduction could be applied to a constrained version of this algorithm to obtain
a method for smooth and g-convex functions defined on manifolds of bounded sectional curvature
and whose rates are strictly better than RGD.

4. Conclusion

In this work, we proposed an algorithm with the same rates as AGD, for the optimization of smooth
and strongly g-convex functions, up to constants and log factors, while previous approaches essen-
tially only reached this for a ball around the minimizer of radius 𝑂((𝜇/𝐿)3/4). Our algorithm also
applies to g-convex functions while previous accelerated algorithms did not apply. We focused on
hyperbolic and spherical spaces, that have constant sectional curvature. The study of geometric
properties for this is often employed to conclude that a space of bounded sectional curvature sat-
isfies a property that is in between the ones for the cases of constant extremal sectional curvature.
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Several previous algorithms have been developed for the general case by utilizing this philosophy,
for instance (Ahn and Sra, 2020; Ferreira et al., 2019; Wang et al., 2015; Zhang and Sra, 2016,
2018). In future work, we will attempt to use the techniques and insights developed in this work to
give an algorithm with the same rates as AGD for manifolds of bounded sectional curvature.

The key technique of our algorithm is the effective lower bound aggregation. Indeed, lower
bound aggregation is the main hurdle to obtain accelerated first-order methods defined on Rieman-
nian manifolds. Whereas the process of obtaining decreasing upper bounds on the function works
similarly as in the Euclidean space—the same approach of locally minimizing the upper bound
given by the smoothness assumption is used—obtaining adequate lower bounds proves to be a dif-
ficult task. We usually want a simple lower bound such that it, or a regularized version of it, can
be easily optimized globally. We also want that the lower bound combines the knowledge that the
g-convexity or strong g-convexity provides for all the queried points, commonly an average. These
Riemannian convexity assumptions provide simple lower bounds, namely linear or quadratic, but
each with respect to each of the tangent spaces of the queried points only. The deformations of the
space complicate the aggregation of the lower bounds. Our work deals with this problem by finding
appropriate lower bounds via the use of a geodesic map and takes into account the deformations
incurred to derive a fully accelerated algorithm. We also used other tools for designing the acceler-
ated algorithm. We worked with a relaxation of convexity that allowed to perform a binary search
to reduce the discretization error. We had to use an implicit discretization of some accelerated con-
tinuous dynamics, since at least the vanilla application of usual approaches like Linear Coupling
(Allen Zhu and Orecchia, 2017) or Nesterov’s estimate sequence (Nesterov, 1983), that can be seen
as a forward Euler discretization of the accelerated dynamics combined with a balancing gradient
step (Diakonikolas and Orecchia, 2019), did not work in our constrained case. We interpret that
the difficulty arises from trying to keep the gradient step inside the constraints while being able to
compensate for a lower bound that is looser by a constant factor.

13
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We divide the appendix in four sections. Appendix A contains the proofs related to the acceler-
ated algorithm, i.e. the proofs of Theorems 5 and 6. In Appendix B we prove the results related to
the reductions in Section 3. In Appendix C, we prove the geometric lemmas that take into account
the geodesic map ℎ to obtain relationships between 𝐹 and 𝑓 , namely Lemmas 2, 3 and 4. Finally,
Appendix D contains a discussion on the constants of our algorithms, on rates of related work and
on hardness results. We also show a lower bound on the condition number for any strongly g-convex
function defined on ℬ𝑅.

Appendix A. Acceleration. Proofs of Theorem 5 and Theorem 6

Diakonikolas and Orecchia (2019) developed the approximate duality gap technique which is a
technique that provides a structure to design and prove first order methods and their guarantees for
the optimization of convex problems. We take inspiration from these ideas to apply them to the
non-convex problem we have at hand Theorem 5, as it was sketched in Section 2.1. We start with
two basic definitions.

Definition 10 Given two points 𝑥̃, 𝑦, we define the Bregman divergence with respect to 𝜓(·) as

𝐷𝜓(𝑥̃, 𝑦)
def
= 𝜓(𝑥̃)− 𝜓(𝑦)− ⟨∇𝜓(𝑦), 𝑥̃− 𝑦⟩.

Definition 11 Given a closed convex set 𝑄 and a function 𝜓 : 𝑄 → R, we define the convex
conjugate of 𝜓, also known as its Fenchel dual, as the function

𝜓*(𝑧) = max
𝑥̃∈𝑄
{⟨𝑧, 𝑥̃⟩ − 𝜓(𝑥̃)}.

For simplicity, we will use 𝜓(𝑥̃) = 1
2‖𝑥̃‖

2 + 𝑖𝑄(𝑥̃) in Algorithm 1, but any strongly convex map
works. Here 𝑖𝑄(𝑥) = 0 if 𝑥 ∈ 𝑄 and 𝑖𝑄(𝑥) = +∞ otherwise. The gradient of the Fenchel dual of
𝜓(·) is ∇𝜓*(𝑧) = argmin𝑧′∈𝑄{‖𝑧′ − 𝑧‖}, that is, the Euclidean projection Π𝑄(𝑧) of the point 𝑧
onto𝑄. Note that when we apply Theorem 5 to Theorem 6 our constraint𝑄 will be 𝒳 , that is, a ball
centered at 0 of radius 𝑅̃, so the projection of a point 𝑧 outside of 𝒳 will be the vector normalization
𝑅̃𝑧/‖𝑧‖. Any continuously differentiable strongly convex 𝜓 would work, provided that ∇𝜓*(𝑧) is
easily computable, preferably in closed form. Note that by the Fenchel-Moreau theorem we have
for any such map that 𝜓** = 𝜓.

We recall we assume that 𝑓 satisfies tilted-convexity (3):

𝑓(𝑥̃) +
1

𝛾n
⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 0,

𝑓(𝑥̃) + 𝛾p⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≤ 𝑓(𝑦) if ⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩ ≥ 0.

Let 𝛼𝑡 be an increasing function of time 𝑡. We use Lebesgue-Stieltjes integration and its no-
tation, so that

∫︀ 𝑡
0 𝑓(𝑥𝜏 )𝛼̇𝜏𝑑𝜏 =

∫︀ 𝑡
0 𝑓(𝑥𝜏 )𝑑𝛼𝜏 . We want to work with continuous and discrete

approaches in a unified way. Thus, when 𝛼𝑡 is a discrete measure, we have that 𝛼̇𝑡 =
∑︀∞

𝑖=1 𝑎𝑖𝛿(𝑡−
(𝑡0 + 𝑖 − 1)) is a weighted sum of Dirac delta functions. We define 𝐴𝑡

def
=
∫︀ 𝑡
𝑡0
𝑑𝛼𝜏 =

∫︀ 𝑡
𝑡0
𝛼̇𝜏𝑑𝜏 . In

discrete time, it is𝐴𝑡 =
∑︀⌊𝑡−𝑡0+1⌋

𝑖=1 𝑎𝑖 = 𝛼𝑡. In the continuous case note that we have 𝛼𝑡−𝐴𝑡 = 𝛼𝑡0 .
We start defining a continuous method that we discretize with an approximate implementation

of the implicit Euler method. Let 𝑥̃𝑡 be the solution obtained by the algorithm at time 𝑡. We define
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the duality gap 𝐺𝑡
def
= 𝑈𝑡 − 𝐿𝑡 as the difference between a differentiable upper bound 𝑈𝑡 on the

function at the current point and a lower bound on 𝑓(𝑥̃*). Since in our case 𝑓 is differentiable
we use 𝑈𝑡

def
= 𝑓(𝑥̃𝑡). The idea is to enforce the invariant 𝑑

𝑑𝑡(𝛼𝑡𝐺𝑡) = 0, so we have at any time
𝑓(𝑥̃𝑡)− 𝑓(𝑥̃*) ≤ 𝐺𝑡 = 𝐺𝑡0𝛼𝑡0/𝛼𝑡.

Note that for a global minimum 𝑥̃* of 𝑓 and any other point 𝑥̃ ∈ 𝑄, we have ⟨∇𝑓(𝑥̃), 𝑥̃*− 𝑥̃⟩ ≤
0. Otherwise, we would obtain a contradiction since by tilted-convexity (3) we would have

𝑓(𝑥̃) < 𝑓(𝑥̃) + 𝛾p⟨∇𝑓(𝑥̃), 𝑥̃* − 𝑥̃⟩ ≤ 𝑓(𝑥̃*).

Therefore, in order to define an appropriate lower bound, we will make use of the inequality 𝑓(𝑥̃*) ≥
𝑓(𝑥̃) + 1

𝛾n
⟨∇𝑓(𝑥̃), 𝑥̃* − 𝑥̃⟩, for any 𝑥̃ ∈ 𝑄, which holds true by tilted-convexity (3), for 𝑦 = 𝑥̃*.

Combining this inequality for all the points visited by the continuous method we have

𝑓(𝑥̃*) ≥
∫︀ 𝑡
𝑡0
𝑓(𝑥̃𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

∫︀ 𝑡
𝑡0

1
𝛾n
⟨∇𝑓(𝑥̃𝜏 ), 𝑥̃* − 𝑥̃𝜏 ⟩𝑑𝛼𝜏

𝐴𝑡
.

We cannot compute this lower bound, since the right hand side depends on the unknown point 𝑥̃*.
We could compute a looser lower bound by taking the minimum over 𝑢̃ ∈ 𝑄 of this expression,
substituting 𝑥̃* by 𝑢̃. However, this would make the lower bound be non-differentiable and we
could have problems at 𝑡0. In order to solve the first problem, we first add a regularizer and then
take the minimum over 𝑢̃ ∈ 𝑄.

𝑓(𝑥̃*)+
𝐷𝜓(𝑥̃

*, 𝑥̃𝑡0)

𝐴𝑡

≥
∫︀ 𝑡
𝑡0
𝑓(𝑥̃𝜏 )𝑑𝛼𝜏

𝐴𝑡
+

min𝑢̃∈𝑄

{︁∫︀ 𝑡
𝑡0

1
𝛾n
⟨∇𝑓(𝑥̃𝜏 ), 𝑢̃− 𝑥̃𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(𝑢̃, 𝑥̃𝑡0)

}︁
𝐴𝑡

In order to solve the second problem, we mix this lower bound with the optimal lower bound 𝑓(𝑥̃*)
with weight 𝛼𝑡 − 𝐴𝑡 (this is only necessary in continuous time, in discrete time this term is 0).
Not knowing 𝑓(𝑥̃*) or 𝐷𝜓(𝑥̃

*, 𝑥̃𝑡0) will not be problematic. Indeed, we only need to guarantee
𝑑
𝑑𝑡(𝛼𝑡𝐺𝑡) = 0. After taking the derivative, these terms will vanish. After rescaling the normalization
factor, we finally obtain the lower bound

𝑓(𝑥̃*) ≥ 𝐿𝑡
def
=

∫︀ 𝑡
𝑡0
𝑓(𝑥̃𝜏 )𝑑𝛼𝜏

𝛼𝑡
+

min𝑢̃∈𝑄

{︁∫︀ 𝑡
𝑡0
⟨ 1
𝛾n
∇𝑓(𝑥̃𝜏 ), 𝑢̃− 𝑥̃𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(𝑢̃, 𝑥̃𝑡0)

}︁
𝛼𝑡

+
(𝛼𝑡 −𝐴𝑡)𝑓(𝑥̃*)−𝐷𝜓(𝑥̃

*, 𝑥̃𝑡0)

𝛼𝑡
.

(8)

Let 𝑧𝑡 = ∇𝜓(𝑥̃𝑡0)−
∫︀ 𝑡
𝑡0

1
𝛾n
∇𝑓(𝑥̃𝜏 )𝑑𝛼𝜏 . Then, by Fact 16, we can compute the optimum 𝑢̃ ∈ 𝑄

above as

∇𝜓*(𝑧𝑡) = argmin
𝑢̃∈𝑄

{︂∫︁ 𝑡

𝑡0

⟨ 1
𝛾n
∇𝑓(𝑥̃𝜏 ), 𝑢̃− 𝑥̃𝜏 ⟩𝑑𝛼𝜏 +𝐷𝜓(𝑢̃, 𝑥̃𝑡0)

}︂
. (9)

Recalling 𝑈𝑡 = 𝑓(𝑥̃𝑡) and using (8) and (9) we obtain:

𝑑

𝑑𝑡
(𝛼𝑡𝐺𝑡) =

𝑑

𝑑𝑡
(𝛼𝑡𝑓(𝑥̃𝑡))− 𝛼̇𝑡𝑓(𝑥̃𝑡)− 𝛼̇𝑡

1

𝛾n
⟨∇𝑓(𝑥̃𝑡),∇𝜓*(𝑧𝑡)− 𝑥̃𝑡⟩

=
1

𝛾n
⟨∇𝑓(𝑥̃𝑡), 𝛾n𝛼𝑡 ˙̃𝑥𝑡 − 𝛼̇𝑡(∇𝜓*(𝑧𝑡)− 𝑥̃𝑡)⟩.
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Thus, to satisfy the invariant 𝑑
𝑑𝑡(𝛼𝑡𝐺𝑡) = 0, it is enough to set 𝛾n𝛼𝑡 ˙̃𝑥𝑡 = 𝛼̇𝑡(∇𝜓*(𝑧𝑡)−𝑥̃𝑡), yielding

the following continuous accelerated dynamics

˙̃𝑧𝑡 = −
1

𝛾n
𝛼̇𝑡∇𝑓(𝑥̃𝑡),

˙̃𝑥𝑡 =
1

𝛾n
𝛼̇𝑡
∇𝜓*(𝑧𝑡)− 𝑥̃𝑡

𝛼𝑡
,

𝑧𝑡0 = ∇𝜓(𝑥̃𝑡0),
𝑥̃𝑡0 ∈ 𝑄 is an arbitrary initial point.

(10)

Now we proceed to discretize the dynamics, so from now on we will use a discrete measure 𝛼𝑡,
as we described above. We set 𝑡0 to 1. Let 𝐸𝑖+1

def
= 𝐴𝑖+1𝐺𝑖+1 − 𝐴𝑖𝐺𝑖 be the discretization error.

Then we have

𝐺𝑡 =
𝐴1

𝐴𝑡
𝐺1 +

∑︀𝑡−1
𝑖=1 𝐸𝑖+1

𝐴𝑡
.

Lemma 12 If we have

𝑓(𝑥̃𝑖+1)− 𝑓(𝑥̃𝑖) ≤ 𝛾𝑖⟨∇𝑓(𝑥̃𝑖+1), 𝑥̃𝑖+1 − 𝑥̃𝑖⟩+ 𝜀𝑖, (11)

for some 𝛾𝑖, 𝜀𝑖 ≥ 0, then the discretization error satisfies

𝐸𝑖+1 ≤ ⟨∇𝑓(𝑥̃𝑖+1), (𝐴𝑖𝛾𝑖 +
𝑎𝑖+1

𝛾n
)𝑥̃𝑖+1 − 𝛾𝑖𝐴𝑖𝑥̃𝑖 −

𝑎𝑖+1

𝛾n
∇𝜓*(𝑧𝑖+1))⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1) +𝐴𝑖𝜀𝑖.

Proof In a similar way to (Diakonikolas and Orecchia, 2018), we could compute the discretization
error as the difference between the gap and the gap computed allowing continuous integration rules
in the integrals that it contains. However, we will directly bound𝐸𝑖+1 as𝐴𝑖+1𝐺𝑖+1−𝐴𝑖𝐺𝑖 instead.
Recall that in discrete time we have 𝛼𝑖 = 𝐴𝑖 so the definition of the lower bound in discrete time
becomes the following, by combining (8) and (9):

𝐿𝑖 =
𝑖∑︁

𝑗=1

𝑎𝑗𝑓(𝑥̃𝑗) +
𝑖∑︁

𝑗=1

⟨
𝑎𝑗
𝛾n
∇𝑓(𝑥̃𝑗),∇𝜓*(𝑧𝑖)− 𝑥̃𝑗⟩+𝐷𝜓(∇𝜓*(𝑧𝑖), 𝑥̃𝑡0)−𝐷𝜓(𝑥̃

*, 𝑥̃𝑡0).
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Hence, using the definition of 𝐺𝑖, 𝑈𝑖, 𝐿𝑖 we have

𝐴𝑖+1𝐺𝑖+1 −𝐴𝑖𝐺𝑖
= (𝐴𝑖+1𝑓(𝑥̃𝑖+1)−𝐴𝑖𝑓(𝑥̃𝑖))−𝐴𝑖+1𝐿𝑖+1 +𝐴𝑖𝐿𝑖

1
= (𝐴𝑖𝑓(𝑥̃𝑖+1)−𝐴𝑖𝑓(𝑥̃𝑖) + 𝑎𝑖+1𝑓(𝑥̃𝑖+1))

−
𝑖+1∑︁
𝑗=1

𝑎𝑗𝑓(𝑥̃𝑗)−
𝑖+1∑︁
𝑗=1

𝑎𝑗
𝛾n
⟨∇𝑓(𝑥̃𝑗),∇𝜓*(𝑧𝑖+1)− 𝑥̃𝑗⟩ −𝐷𝜓(∇𝜓*(𝑧𝑖+1), 𝑥̃𝑡0)

+
𝑖∑︁

𝑗=1

𝑎𝑗𝑓(𝑥̃𝑗) +
𝑖∑︁

𝑗=1

𝑎𝑗
𝛾n
⟨∇𝑓(𝑥̃𝑗),∇𝜓*(𝑧𝑖)− 𝑥̃𝑗⟩+𝐷𝜓(∇𝜓*(𝑧𝑖), 𝑥̃𝑡0)

2
= 𝐴𝑖(𝑓(𝑥̃𝑖+1)− 𝑓(𝑥̃𝑖))− ⟨

𝑎𝑖+1

𝛾n
∇𝑓(𝑥̃𝑖+1),∇𝜓*(𝑧𝑖+1)− 𝑥̃𝑖+1⟩

+

𝑖∑︁
𝑗=1

⟨
𝑎𝑗
𝛾n
∇𝑓(𝑥̃𝑗),∇𝜓*(𝑧𝑖)−∇𝜓*(𝑧𝑖+1)⟩

[−⟨∇𝜓(𝑥̃𝑡0),∇𝜓*(𝑧𝑖)−∇𝜓*(𝑧𝑖+1)⟩+ 𝜓(∇𝜓*(𝑧𝑖))− 𝜓(∇𝜓*(𝑧𝑖+1))]

3
= 𝐴𝑖(𝑓(𝑥̃𝑖+1)− 𝑓(𝑥̃𝑖))− ⟨

𝑎𝑖+1

𝛾n
∇𝑓(𝑥̃𝑖+1),∇𝜓*(𝑧𝑖+1)− 𝑥̃𝑖+1⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

4
≤ ⟨∇𝑓(𝑥̃𝑖+1), (𝐴𝑖𝛾𝑖 +

𝑎𝑖+1

𝛾n
)𝑥̃𝑖+1 − 𝛾𝑖𝐴𝑖𝑥̃𝑖 −

𝑎𝑖+1

𝛾n
∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1) +𝐴𝑖𝜀𝑖.

In 1 we write down the definitions of𝐿𝑖+1 and𝐿𝑖 and split the first summand so it is clear that in 2
we cancel all the 𝑎𝑗𝑓(𝑥̃𝑗). In 2 we also cancel some terms involved in the inner products, we write
the definitions of the Bregman divergences and cancel some of their terms. For equality 3 , we recall
𝑧𝑖 = ∇𝜓(𝑥̃𝑡0)−

∑︀𝑖
𝑗=1

𝑎𝑗
𝛾n
∇𝑓(𝑥̃𝑗) so we use this fact and𝜓*(𝑧) = ⟨∇𝜓*(𝑧), 𝑧⟩−𝜓(∇𝜓*(𝑧)) (which

holds by Fact 16) for 𝑧 = 𝑧𝑖 and 𝑧 = 𝑧𝑖+1 to conclude that the last two lines equal −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1).
Inequality 4 uses (11).

We show now how to cancel out the discretization error by an approximate implementation of
implicit Euler discretization of (10). Note that we need to take into account the tilted-convexity
assumption (3) instead of the usual convexity assumption. According to the previous lemma, we
can set 𝑥̃𝑖+1 so that the right hand side of the inner product in the bound of 𝐸𝑖+1 is 0. Assume for
the moment, that the point 𝑥̃𝑖+1 we are going to compute satisfies the assumption of the previous
lemma for some 𝛾𝑖 ∈ [𝛾p, 1/𝛾n]. Thus, the implicit equation that defines the ideal method we would
like to have is

𝑥̃𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
𝑥̃𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(𝑥̃𝑖+1)).

Note that 𝑥̃𝑖+1 is a convex combination of the other two points so it stays in 𝑄. Indeed, the initial
point is in 𝑄 and by (9) we have that ∇𝜓*(𝑧𝑗) ∈ 𝑄 for all 𝑗 ≥ 0. However this method is
implicit and possibly computationally expensive to implement. Nonetheless, two steps of a fixed
point iteration procedure of this equation will be enough to have discretization error that is bounded
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by the term 𝐴𝑖𝜀𝑖: the last term of our bound. The error in the bound of 𝐸𝑖+1 that the inner product
incurs is compensated by the Bregman divergence term. In such a case, the equations of this method
become, for 𝑖 ≥ 0: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜒̃𝑖 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
𝑥̃𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝑧𝑖)

𝜁𝑖 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(𝜒̃𝑖)

𝑥̃𝑖+1 =
𝛾𝑖𝐴𝑖

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
𝑥̃𝑖 +

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

∇𝜓*(𝜁𝑖)

𝑧𝑖+1 = 𝑧𝑖 −
𝑎𝑖+1

𝛾n
∇𝑓(𝑥̃𝑖+1)

(12)

We prove now that this indeed leads to an accelerated algorithm. After this, we will show that we
can perform a binary search at each iteration, to ensure that even if we do not know 𝑥̃𝑖+1 a priori,
we can compute a 𝛾𝑖 ∈ [𝛾p, 1/𝛾n] satisfying assumption (11). This will only add a log factor to the
overall complexity.

Lemma 13 Consider the method given in (12), starting from an arbitrary point 𝑥̃0 ∈ 𝑄 with
𝑧0 = ∇𝜓(𝑥̃0) and 𝐴0 = 0. Assume we can compute 𝛾𝑖 such that 𝑥̃𝑖+1 satisfies (11). Then, the error
from Lemma 12 is bounded by

𝐸𝑖+1 ≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(𝑥̃𝑖+1)−∇𝑓(𝜒̃𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖) +𝐴𝑖𝜀𝑖.

Proof Using Lemma 12 and the third line of (12) we have

𝐸𝑖+1 −𝐴𝑖𝜀𝑖 ≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(𝑥̃𝑖+1),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

≤
𝑎𝑖+1

𝛾n
⟨∇𝑓(𝑥̃𝑖+1)−∇𝑓(𝜒̃𝑖) +∇𝑓(𝜒̃𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)

By the definition of 𝜁𝑖 we have (𝑎𝑖+1/𝛾n)∇𝑓(𝜒̃𝑖) = 𝑧𝑖−𝜁𝑖. Using this fact and the triangle equality
of Bregman divergences Lemma 17, we obtain

𝑎𝑖+1

𝛾n
⟨∇𝑓(𝜒̃𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ = ⟨𝑧𝑖 − 𝜁𝑖,∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩

= 𝐷𝜓*(𝑧𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖).

The lemma follows after combining these two equations.

Theorem 14 Let 𝑄 be a closed convex set of diameter 𝐷. Let 𝑓 : 𝑄 → R be an 𝐿̃-smooth tilted-
convex function with constants 𝛾n, 𝛾p. Assume there is a point 𝑥̃* ∈ 𝑄 such that ∇𝑓(𝑥̃*) = 0. Let
𝜓 : 𝑄 → R be a 𝜎-strongly convex map. Let 𝑥̃𝑖, 𝑧𝑖, 𝜒̃𝑖, 𝜁𝑖 be updated according to (12), for 𝑖 ≥ 0
starting from an arbitrary initial point 𝑥̃0 ∈ 𝑄 with 𝑧0 = ∇𝜓(𝑥̃0) and 𝐴0 = 0, assuming we can
find 𝛾𝑖 at each iteration satisfying (11). If 𝐿̃𝑎2𝑖+1/𝛾n𝜎 ≤ 𝑎𝑖+1+𝐴𝑖𝛾n𝛾p, then for all 𝑇 ≥ 1 we have

𝑓(𝑥̃𝑇 )− 𝑓(𝑥̃*) ≤
𝐷𝜓(𝑥̃

*, 𝜒̃0)

𝐴𝑇
+

𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇

.
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In particular, if 𝑎𝑖 =
𝑖
2
𝜎
𝐿̃
𝛾2n𝛾p, 𝜓(𝑥̃) = 𝜎

2 ‖𝑥̃‖
2, 𝜀𝑖 =

𝐴𝑇 𝜀

2(𝑇−1)𝐴𝑖
and 𝑇 =

⌈︂√︁
4𝐿̃‖𝑥̃0 − 𝑥̃*‖2/(𝛾2n𝛾p𝜀)

⌉︂
=

𝑂(
√︁
𝐿̃/(𝛾2n𝛾p𝜀)) then

𝑓(𝑥̃𝑇 )− 𝑓(𝑥̃*) < 𝜀.

Proof We bound the right hand side of the discretization error given by Lemma 13. Define 𝑎 =
‖∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)‖ and 𝑏 = ‖∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖)‖. We have

𝐸𝑖+1 −𝐴𝑖𝜀𝑖
1
≤

𝑎𝑖+1

𝛾n
⟨∇𝑓(𝑥̃𝑖+1)−∇𝑓(𝜒̃𝑖),∇𝜓*(𝜁𝑖)−∇𝜓*(𝑧𝑖+1)⟩ −𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖)

2
≤

𝑎𝑖+1

𝛾n
𝐿̃‖𝑥̃𝑖+1 − 𝜒̃𝑖‖ · 𝑎−𝐷𝜓*(𝜁𝑖, 𝑧𝑖+1)−𝐷𝜓*(𝑧𝑖, 𝜁𝑖)

3
≤

𝑎𝑖+1

𝛾n
𝐿̃‖𝑥̃𝑖+1 − 𝜒̃𝑖‖ · 𝑎−

𝜎

2
(𝑎2 + 𝑏2)

4
≤

𝑎2𝑖+1/𝛾
2
n

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
𝐿̃ · 𝑎𝑏− 𝜎

2
(𝑎2 + 𝑏2)

5
≤ 𝑎𝑏

(︂
𝑎2𝑖+1/𝛾

2
n

𝐴𝑖𝛾𝑖 + 𝑎𝑖+1/𝛾n
𝐿̃− 𝜎

)︂
.

Here 1 follows from Lemma 13, 2 uses the Cauchy-Schwartz inequality and gradient Lipschitz-
ness, which is equivalent to smoothness for differentiable tilted convex functions, as we point out
in the proof of Lemma 4. In 3 , we used Lemma 18, and 4 uses the fact that by the definition
of the method (12) we have 𝑥̃𝑖+1 − 𝜒̃𝑖 =

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n

(∇𝜓*(𝜁𝑖) − ∇𝜓*(𝑧𝑖)). Finally 5 uses

−(𝑎2 + 𝑏2) ≤ −2𝑎𝑏, which comes from (𝑎 − 𝑏)2 ≥ 0. By the previous inequality, if we want
𝐸𝑖+1 ≤ 𝐴𝑖𝜀𝑖, it is enough to guarantee the right hand side of the last expression is ≤ 0 which is
implied by

𝐿̃

𝜎𝛾n
𝑎2𝑖+1 ≤ 𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p, (13)

since 𝛾p ≤ 𝛾𝑖. And this is the assumption we made in the theorem. By inspection, if we use the
value in the second part of the statement of the theorem 𝑎𝑖 =

𝑖
2 ·

𝜎
𝐿̃
·𝛾2n𝛾p into the previous inequality

and noting that 𝐴𝑖 =
𝑖(𝑖+1)

4 · 𝜎
𝐿̃
· 𝛾2n𝛾p we prove that the previous inequality is satisfied:

𝐿̃

𝜎𝛾n
𝑎2𝑖+1 =

(𝑖+ 1)2

4
· 𝜎
𝐿̃
· 𝛾3n𝛾2p

≤
(︂
𝑖+ 1

2
+
𝑖(𝑖+ 1)

4

)︂
𝜎

𝐿̃
· 𝛾3n𝛾2p

≤ 𝑖+ 1

2

𝜎

𝐿̃
· 𝛾2n𝛾p +

𝑖(𝑖+ 1)

4

𝜎

𝐿̃
· 𝛾3n𝛾2p

= 𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p.
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So this choice, and in particular any choice that satisfies (13), guarantees discretization error𝐸𝑖+1 ≤
𝐴𝑖𝜀𝑖. By the definition of 𝐺𝑖 and 𝐸𝑖 we have

𝑓(𝑥̃𝑇 )− 𝑓(𝑥̃*) ≤
𝐴1𝐺1

𝐴𝑇
+
𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇

So it only remains to bound the initial gap 𝐺1. In order to do this, we note that the initial conditions
and the method imply the following computation of the first points, from 𝑥̃0 ∈ 𝑄, which is an
arbitrary initial point:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑧0 = ∇𝜓(𝑥̃0)
𝜒̃0 =

𝛾0𝐴0
𝐴0𝛾0+𝑎1/𝛾n

𝑥̃0 +
𝑎1/𝛾n

𝐴0𝛾0+𝑎1/𝛾n
∇𝜓*(𝑧0) = ∇𝜓*(∇𝜓(𝑥̃0)) = 𝑥̃0

𝜁0 = 𝑧0 −
𝑎1
𝛾n
∇𝑓(𝜒̃0) = 𝑧0 −

𝑎1
𝛾n
∇𝑓(𝑥̃0)

𝑥̃1 =
𝛾0𝐴0

𝐴0𝛾0+𝑎1/𝛾n
𝑥̃0 +

𝑎1/𝛾n
𝐴0𝛾0+𝑎1/𝛾n

∇𝜓*(𝜁0) = ∇𝜓*(𝜁0)

(14)

We have used 𝐴0 = 0. Note this first iteration does not depend on 𝛾0. Also, by using this dis-
cretization we start at 𝑥̃0 so we modify the definition of the lower bound (8) so the regularizer added
measures the distance from 𝑥̃0. This change of 𝑥̃𝑡0 to 𝑥̃0 = 𝜒̃0 only changes the initial gap. Thus,
the first lower bound computed is

𝐿1 = 𝑓(𝑥̃1) +
1

𝛾n
⟨∇𝑓(𝑥̃1),∇𝜓*(𝑧1)− 𝑥̃1⟩+

1

𝐴1

𝐷𝜓(∇𝜓*(𝑧1), 𝜒̃0)−
1

𝐴1

𝐷𝜓(𝑥̃
*, 𝜒̃0).

Using 𝑎1 = 𝐴1, 𝑥̃1 = ∇𝜓*(𝜁0), (𝑎1/𝛾n)∇𝑓(𝜒̃0) = 𝑧0 − 𝜁0, and the triangle equality for Bregman
divergences Lemma 17 we obtain

1

𝛾n
⟨∇𝑓(𝜒̃0),∇𝜓*(𝑧1)− 𝑥̃1⟩ =

1

𝐴1

⟨𝑧0 − 𝜁0,∇𝜓*(𝑧1)−∇𝜓*(𝜁0)⟩

=
1

𝐴1

(︁
𝐷𝜓*(𝑧0, 𝜁0)−𝐷𝜓*(𝑧0, 𝑧1) +𝐷𝜓*(𝜁0, 𝑧1)

)︁
.

(15)

On the other hand, by smoothness of 𝑓 and the initial condition we have

1

𝛾n
⟨∇𝑓(𝑥̃1)−∇𝑓(𝜒̃0),∇𝜓*(𝑧1)− 𝑥̃1⟩ ≥ −

𝐿̃

𝛾n
‖∇𝜓*(𝜁0)− 𝜒̃0‖‖∇𝜓*(𝑧1)− 𝑥̃1‖. (16)
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We can now finally bound 𝐺1:

𝐺1

1
≤ 𝐿̃

𝛾n
‖∇𝜓*(𝜁0)− 𝜒̃0‖ · ‖∇𝜓*(𝑧1)− 𝑥̃1‖

− 1

𝐴1

(︁
𝐷𝜓*(𝑧0, 𝜁0) +𝐷𝜓*(𝜁0, 𝑧1)

)︁
+

1

𝐴1

𝐷𝜓(𝑥̃
*, 𝜒̃0)

2
≤ 𝐿̃

𝛾n
‖∇𝜓*(𝜁0)− 𝜒̃0‖ · ‖∇𝜓*(𝑧1)− 𝑥̃1‖

− 𝜎

2𝐴1

(︁
‖∇𝜓*(𝜁0)− 𝜒̃0‖2 + ‖∇𝜓*(𝑧1)− 𝑥̃1‖2

)︁
+

1

𝐴1

𝐷𝜓(𝑥̃
*, 𝜒̃0)

3
≤ ‖∇𝜓*(𝜁0)− 𝜒̃0‖ · ‖∇𝜓*(𝑧1)− 𝑥̃1‖

(︃
𝐿̃

𝛾n
− 𝜎

𝐴1

)︃
+

1

𝐴1

𝐷𝜓(𝑥̃
*, 𝜒̃0)

4
≤ 1

𝐴1

𝐷𝜓(𝑥̃
*, 𝜒̃0).

We used in 1 the definition of 𝐺1 = 𝑈1 − 𝐿1 = 𝑓(𝑥̃1) − 𝐿1 and we bound the inner product in
𝐿1 using −((15) + (16)). Also, since 𝑧0 = ∇𝜓(𝜒̃0) we have 𝐷𝜓*(𝑧0, 𝑧1) = 𝐷𝜓*(∇𝜓(𝜒̃0), 𝑧1) =
𝐷𝜓(∇𝜓*(𝑧1), 𝜒̃0), so we can cancel two of the Bregman divergences. In 2 , we used Lemma 18,
∇𝜓*(𝑧0) = 𝑥̃0 = 𝜒̃0, and ∇𝜓*(𝜁0) = 𝑥̃1. In 3 we used again the inequality −(𝑎2 + 𝑏2) ≤ −2𝑎𝑏.
Finally 4 is deduced from 𝐴1 = 𝑎1 ≤ 𝜎𝛾n/𝐿̃ which comes from the assumption 𝐿̃𝑎2𝑖+1/𝛾n𝜎 ≤
𝑎𝑖+1 +𝐴𝑖𝛾n𝛾p for 𝑖 = 0.

The first part of the theorem follows. The second one is a straightforward application of the

first one as we see below. Indeed, taking into account 𝐴𝑇 =
𝑇 (𝑇+1)𝜎𝛾2n𝛾p

4𝐿̃
, and the choice of

𝑇 =

⌈︂√︁
4𝐿̃‖𝑥̃0 − 𝑥̃*‖2/(𝛾2n𝛾p𝜀)

⌉︂
, 𝜓(𝑥̃) = 𝜎

2 ‖𝑥̃‖
2, and 𝜀𝑖 =

𝐴𝑇 𝜀

2(𝑇−1)𝐴𝑖
we derive the second

statement.

𝑓(𝑥̃𝑇 )− 𝑓(𝑥̃*) ≤
𝐴1𝐺1

𝐴𝑇
+

𝑇−1∑︁
𝑖=1

𝐴𝑖𝜀𝑖
𝐴𝑇
≤

𝜎
2 ‖𝑥̃0 − 𝑥̃

*‖2

𝐴𝑇
+
𝜀

2
<

2𝐿̃‖𝑥̃0 − 𝑥̃*‖2

𝛾2n𝛾p𝑇
2

+
𝜀

2
≤ 𝜀.

We present now the final lemma, that proves that 𝛾𝑖 can be found efficiently. As we advanced
in the sketch of the main paper, we use a binary search. The idea behind it is that due to tilted-
convexity (3) we satisfy the equation for 𝛾𝑖 = 1

𝛾n
or 𝛾𝑖 = 𝛾p, or there is 𝛾𝑖 ∈ (𝛾p, 1/𝛾n) such that

⟨∇𝑓(𝑥̃𝑖+1), 𝑥̃𝑖+1− 𝑥̃𝑖⟩ = 0. The existence of 𝑥̃* that satisfies∇𝑓(𝑥̃*) = 0 along with the bounded-
ness of 𝑄 and smoothness, imply the Lipschitzness of 𝑓 . Both Lipschitzness and smoothness allow
to prove that a binary search finds efficiently a suitable point.

Lemma 15 Let 𝑄 ⊆ R𝑛 be a convex set of diameter 2𝑅̃. Let 𝑓 : 𝑄 → R be a function that
satisfies tilted-convexity (3), is 𝐿̃ smooth and such that there is 𝑥̃* ∈ 𝑄 such that ∇𝑓(𝑥̃*) = 0.
Let the strongly convex parameter of 𝜓(·) be 𝜎 = 𝑂(1). Let 𝑖 ≥ 1 be an index. Given two points
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𝑥̃𝑖, 𝑧𝑖 ∈ 𝑄 and the method in (6) using the learning rates 𝑎𝑖 =
𝑖
2 ·

𝜎
𝐿̃
·𝛾2n𝛾p prescribed in Theorem 14,

we can compute 𝛾𝑖 satisfying (11), i.e.,

𝑓(𝑥̃𝑖+1)− 𝑓(𝑥̃𝑖) ≤ 𝛾𝑖⟨∇𝑓(𝑥̃𝑖+1), 𝑥̃𝑖+1 − 𝑥̃𝑖⟩+ 𝜀𝑖. (17)

And the computation of 𝛾𝑖 requires no more than

𝑂

(︃
log

(︃
𝐿̃𝑅̃

𝛾n𝜀𝑖
· 𝑖

)︃)︃

queries to the gradient oracle.

Proof Let Γ̂𝑖(𝜆) : [
𝑎𝑖+1

𝐴𝑖+1
,

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾p+𝑎𝑖+1/𝛾n

]→ R be defined as

Γ̂𝑖

(︂
𝑎𝑖+1/𝛾n

𝐴𝑖~x+ 𝑎𝑖+1/𝛾n

)︂
= ~x, for ~x ∈ [𝛾p,

1

𝛾n
]. (18)

By monotonicity, it is well defined. Let 𝑥̃𝜆𝑖+1 be the point computed by one iteration of (6) using the
parameter 𝛾𝑖 = Γ̂𝑖(𝜆). Likewise, we define the rest of the points in iteration (6) depending on 𝜆. We
first try 𝛾𝑖 = 1/𝛾n and 𝛾𝑖 = 𝛾p and use any of them if they satisfy the conditions. If neither of them
do, it means that for the first choice we had ⟨∇𝑓(𝑥̃𝜆1𝑖+1), 𝑥̃

𝜆1
𝑖+1− 𝑥̃𝑖⟩ < 0 and for the second one, it is

⟨∇𝑓(𝑥̃𝜆2𝑖+1), 𝑥̃
𝜆2
𝑖+1−𝑥̃𝑖⟩ > 0, for 𝜆1 = Γ̂−1

𝑖 (1/𝛾n) and 𝜆2 = Γ̂−1
𝑖 (𝛾p). Therefore, by continuity, there

is 𝜆* ∈ [𝜆1, 𝜆2] such that ⟨∇𝑓(𝑥̃𝜆*𝑖+1), 𝑥̃
𝜆*
𝑖+1 − 𝑥̃𝑖⟩ = 0. The continuity condition is easy to prove.

We omit it because it is derived from the Lipschitzness condition that we will prove below. Such
a point satisfies (11) for 𝜀𝑖 = 0. We will prove that the function 𝒢𝑖 : [

𝑎𝑖+1

𝐴𝑖+1
,

𝑎𝑖+1/𝛾n
𝐴𝑖𝛾p+𝑎𝑖+1/𝛾n

] → R,
defined as

𝒢𝑖(𝜆)
def
= −Γ̂𝑖(𝜆)⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩+ (𝑓(𝑥̃𝜆𝑖+1)− 𝑓(𝑥̃𝑖)), (19)

is Lipschitz so we can guarantee that (11) holds for a large enough interval around 𝜆*. Finally, we
will be able to perform a binary search to efficiently find a point in such interval or another interval
around another point that satisfies that the inner product is 0.

So

|𝒢𝑖(𝜆)− 𝒢𝑖(𝜆′)| ≤ |𝑓(𝑥̃𝜆𝑖+1)− 𝑓(𝑥̃𝜆
′
𝑖+1)|

+ |Γ̂𝑖(𝜆′)| · |⟨∇𝑓(𝑥̃𝜆
′
𝑖+1), 𝑥̃

𝜆′
𝑖+1 − 𝑥̃𝑖⟩ − ⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩|

+ |⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃
𝜆
𝑖+1 − 𝑥̃𝑖⟩| · |Γ̂𝑖(𝜆′)− Γ̂𝑖(𝜆)|

(20)

We have used the triangular inequality and the inequality

|𝛼1𝛽1 − 𝛼2𝛽2| ≤ |𝛼1||𝛽1 − 𝛽2|+ |𝛽2||𝛼1 − 𝛼2|, (21)

which is a direct consequence of the triangular inequality, after adding and subtracting 𝛼1𝛽2 in the
|·| on the left hand side. We bound each of the three summands of the previous inequality separately,
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but first we bound the following which will be useful for our other bounds,

‖𝑥̃𝜆′𝑖+1 − 𝑥̃𝜆𝑖+1‖
1
= ‖(𝜆′∇𝜓*(𝜁𝜆

′
𝑖 ) + (1− 𝜆′)𝑥̃𝑖)− (𝜆∇𝜓*(𝜁𝜆𝑖 ) + (1− 𝜆)𝑥̃𝑖)‖

2
≤ ‖∇𝜓*(𝜁𝜆𝑖 )− 𝑥̃𝑖‖|𝜆′ − 𝜆|+ ‖𝜆′∇𝜓*(𝜁𝜆

′
𝑖 )− 𝜆′∇𝜓*(𝜁𝜆𝑖 )‖

3
≤ 2𝑅̃|𝜆− 𝜆′|+ ‖∇𝜓*(𝜁𝜆

′
𝑖 )−∇𝜓*(𝜁𝜆𝑖 )‖

4
≤ 2𝑅̃|𝜆− 𝜆′|+ 𝑎𝑖+1

𝛾n𝜎
‖∇𝑓(𝜒̃𝜆𝑖 )−∇𝑓(𝜒̃𝜆

′
𝑖 )‖

5
≤ 2𝑅̃|𝜆− 𝜆′|+ 𝑎𝑖+1𝐿̃

𝛾n𝜎
‖𝜒̃𝜆𝑖 − 𝜒̃𝜆

′
𝑖 ‖

6
≤

(︃
2𝑅̃+

2𝑎𝑖+1𝐿̃𝑅̃

𝛾n𝜎

)︃
|𝜆− 𝜆′|

(22)

Here, 1 uses the definition of 𝑥̃𝜆𝑖+1 as a convex combination of 𝑥̃𝑖 and ∇𝜓*(𝜁𝜆𝑖 ). 2 adds and
substracts 𝜆′∇𝜓*(𝜁𝜆𝑖 ), groups terms and uses the triangular inequality. In 3 we use the fact that
the diameter of 𝑄 is 2𝑅̃ and bound 𝜆′ ≤ 1, and |𝜆| ≤ 1. 4 uses the 1

𝜎 Lipschitzness of ∇𝜓*(·),
which is a consequence of the 𝜎-strong convexity of 𝜓(·). 5 uses the smoothness of 𝑓 . In 6 , from
the definition of 𝜒̃𝜆𝑖 we have that ‖𝜒̃𝜆𝑖 − 𝜒̃𝜆

′
𝑖 ‖ ≤ ‖𝑥̃𝑖 − 𝑧𝑖‖|𝜆 − 𝜆′|. We bounded this further using

the diameter of 𝑄.
Note that 𝑓 is Lipschitz over 𝑄. By the existence of 𝑥̃*, 𝐿̃-smoothness, and the diameter of 𝑄

we have ‖∇𝑓(𝑥̃)‖ = ‖∇𝑓(𝑥̃) −∇𝑓(𝑥̃*)‖ ≤ 𝐿̃‖𝑥̃ − 𝑥̃*‖ ≤ 2𝑅𝐿̃. So the Lipschitz constant 𝐿p of
𝑓 is 𝐿p ≤ 2𝑅𝐿̃. Now we can proceed and bound the three summands of (20). The first one reduces
to the inequality above after using Lipschitzness of 𝑓(·):

|𝑓(𝑥̃𝜆𝑖+1)− 𝑓(𝑥̃𝜆
′
𝑖+1)| ≤ 𝐿p‖𝑥̃𝜆

′
𝑖+1 − 𝑥̃𝜆𝑖+1‖. (23)

We prove Lipschitzness of Γ̂𝑖. Note that

|(Γ̂−1
𝑖 )′(~x)| =

⃒⃒⃒⃒
𝐴𝑖𝑎𝑖+1/𝛾n

(𝐴𝑖~x+ 𝑎𝑖+1/𝛾n)
2

⃒⃒⃒⃒
≥
𝛾n𝐴𝑖𝑎𝑖+1

𝐴2
𝑖+1

, (24)

so Γ̂𝑖
′(𝜆) is bounded by 𝐴2

𝑖+1/(𝛾n𝐴𝑖𝑎𝑖+1) for any 𝜆. In order to bound the second summand,
we use ~x ∈ [𝛾p, 1/𝛾n] and obtain |Γ̂𝑖(𝜆)| ≤ 1

𝛾n
. For the second factor, we add and subtract

⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃
𝜆′
𝑖+1 − 𝑥̃𝑖⟩ and use the triangular inequality and then Cauchy-Schwartz. Thus, we

obtain

|⟨∇𝑓(𝑥̃𝜆′𝑖+1), 𝑥̃
𝜆′
𝑖+1 − 𝑥̃𝑖⟩ − ⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩|

≤ ‖∇𝑓(𝑥̃𝜆𝑖+1)‖ · ‖𝑥̃𝜆
′
𝑖+1 − 𝑥̃𝜆𝑖+1‖+ ‖∇𝑓(𝑥̃𝜆

′
𝑖+1)−∇𝑓(𝑥̃𝜆𝑖+1)‖ · ‖𝑥̃𝜆

′
𝑖+1 − 𝑥̃𝑖‖

1
≤ (𝐿p + 2𝐿̃𝑅̃)‖𝑥̃𝜆′𝑖+1 − 𝑥̃𝜆𝑖+1‖.

(25)

In 1 , we used Lipschitzness to bound the first factor. We also used the diameter of 𝑄 to bound the
last factor and the smoothness of 𝑓(·) to bound the first factor of the second summand.

For the third summand, we will bound the first factor using Cauchy-Schwartz, Lipschitzness of
𝑓(·) and the diameter of 𝑄. We just proved in (24) that Γ̂𝑖 is Lipschitz, so use this property for the
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second factor. The result is the following

|⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃
𝜆
𝑖+1 − 𝑥̃𝑖⟩| · |Γ̂𝑖(𝜆′)− Γ̂𝑖(𝜆)| ≤ 2𝐿p𝑅̃

𝐴2
𝑖+1

𝛾n𝐴𝑖𝑎𝑖+1

|𝜆′ − 𝜆|. (26)

Applying the bounds of the three summands (23), (24), (25), (26) into (20) we obtain the in-
equality |𝒢𝑖(𝜆′)− 𝒢𝑖(𝜆)| ≤ 𝐿̂|𝜆′ − 𝜆| for

𝐿̂ =

(︃
2𝑅̃+

2𝑎𝑖+1𝐿̃𝑅̃

𝛾n𝜎

)︃(︂
𝐿p + (𝐿p + 2𝐿̃𝑅̃)

1

𝛾n

)︂
+ 2𝐿p𝑅̃

𝐴2
𝑖+1

𝛾n𝐴𝑖𝑎𝑖+1

.

We will use the following to bound 𝐿̂. If we use the learning rates prescribed in Theorem 14,

namely 𝑎𝑖 =
𝑖𝜎𝛾2n𝛾p
2𝐿 and thus 𝐴𝑖 =

𝑖(𝑖+1)𝜎𝛾2n𝛾p
4𝐿 we can bound 𝐴2

𝑖+1/(𝐴𝑖𝑎𝑖+1) ≤ 4(𝑖 + 2), using
that 𝑖 ≥ 1. We recall we computed 𝐿p ≤ 2𝑅̃𝐿̃ and that we assumed 𝜎 = 𝑂(1). In Algorithm 1 we
use 𝜎 = 1.

On the other hand the initial length of the search interval, which is the domain of definition
of 𝒢𝑖 is at most 1 since the interval is in (0, 1). Recall we are denoting by 𝜆* a value such that
⟨∇𝑓(𝑥̃𝜆*𝑖+1), 𝑥̃

𝜆*
𝑖+1 − 𝑥̃𝑖⟩ = 0 so 𝒢𝑖(𝜆*) ≤ 0. Lipschitzness of 𝐺 implies that if 𝒢𝑖(𝜆*) ≤ 0 then

𝒢𝑖(𝜆) ≤ 𝜀𝑖 for

𝜆 ∈ [𝜆* − 𝜀𝑖

𝐿̂
, 𝜆* +

𝜀𝑖

𝐿̂
] ∩ [Γ̂−1

𝑖 (1/𝛾n), Γ̂
−1
𝑖 (𝛾p)].

If the extremal points, Γ̂−1
𝑖 (1/𝛾n), Γ̂

−1
𝑖 (𝛾p) did not satisfy (17), then this interval is of length

2𝜀𝑖
𝐿̂

and a point in such interval or another interval that is around another point 𝜆̄* that satisfies

⟨∇𝑓(𝑥̃𝜆̄*𝑖+1), 𝑥̃
𝜆̄*
𝑖+1 − 𝑥̃𝑖⟩ = 0 can be found with a binary search in at most

𝑂

(︃
log

(︃
𝐿̂

𝜀𝑖

)︃)︃
1
= 𝑂

(︃
log

(︃
𝐿̃𝑅̃

𝛾n𝜀𝑖
· 𝑖

)︃)︃
iterations, provided that at each step we can ensure we halve the size of the search interval. The
bounds of the previous paragraph are applied in 1 .The binary search can be done easily: we start
with [Γ̂−1

𝑖 (1/𝛾n), Γ̂
−1
𝑖 (𝛾p)] and assume the extremes do not satisfy (17), so the sign of ⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1−

𝑥̃𝑖⟩ is different for each extreme. Each iteration of the binary search queries the midpoint of the
current working interval and if (17) is not satisfied, we keep the half of the interval such that the
extremes keep having the sign of ⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩ different from each other, ensuring that

there is a point in which this expression evaluates to 0 and thus keeping the invariant. We include
the pseudocode of this binary search in Algorithm 2.

We proceed to prove Theorem 5, which is an immediate consequence of the previous results.
Proof of Theorem 5. The proof follows from Theorem 14, provided that we can find 𝛾𝑖 satisfying
(11). Lemma 15 shows that this is possible after performing a logarithmic number of queries to the
gradient oracle. Note that given our choice of 𝜀𝑖, 𝑇 and 𝑎𝑖, the number of queries to the gradient
oracle Lemma 15 requires is no more than 𝑂(log(𝐿̃𝑅/𝛾n𝜀)) for any 𝑖 ≤ 𝑇 . So we find an 𝜀-

minimizer of 𝑓 after ̃︀𝑂(
√︁
𝐿̃/(𝛾2n𝛾p𝜀)) queries to the gradient oracle.

Proof of Theorem 6. Given the function to optimize 𝐹 :ℳ𝐾 → R and the geodesic map ℎ, we
define 𝑓 = 𝐹 ∘ ℎ−1. Using Lemma 4 we know that 𝑓 is 𝐿̃-smooth, with 𝐿̃ = 𝑂(𝐿). Lemma 3
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Algorithm 2 BinaryLineSearch(𝑥̃𝑖, 𝑧𝑖, 𝑓 ,𝒳 , 𝑎𝑖+1, 𝐴𝑖, 𝜀, 𝐿̃, 𝛾n, 𝛾p)

Input: Points 𝑥̃𝑖, 𝑧𝑖, function 𝑓 , domain 𝒳 , learning rate 𝑎𝑖+1, accumulated learning rate 𝐴𝑖, final
target accuracy 𝜀, final number of iterations 𝑇 , smoothness constant 𝐿̃, constants 𝛾n, 𝛾p. Define
𝜀𝑖 ← (𝐴𝑇 𝜀)/(2(𝑇 − 1)𝐴𝑖) as in Theorem 14, i.e. with 𝐴𝑇 = 𝑇 (𝑇 + 1)𝛾2n𝛾p/4𝐿̃. Γ̂𝑖 defined
as in (18) and 𝒢𝑖 defined as in (19) i.e.

𝒢𝑖(𝜆)
def
= −Γ̂𝑖(𝜆)⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩+ (𝑓(𝑥̃𝜆𝑖+1)− 𝑓(𝑥̃𝑖)),

for 𝑥𝜆𝑖+1 being the result of method (12) when 𝛾𝑖 = Γ̂𝑖(𝜆).

Output: 𝜆 =
𝑎𝑖+1/𝛾n

𝐴𝑖𝛾𝑖+𝑎𝑖+1/𝛾n
for 𝛾𝑖 such that 𝒢𝑖(Γ̂−1

𝑖 (𝛾𝑖)) ≤ 𝜀𝑖.

1: if 𝒢𝑖(Γ̂−1
𝑖 (1/𝛾n)) ≤ 𝜀𝑖 then 𝜆 = Γ̂−1

𝑖 (1/𝛾n)

2: else if 𝒢𝑖(Γ̂−1
𝑖 (𝛾p)) ≤ 𝜀𝑖 then 𝜆 = Γ̂−1

𝑖 (𝛾p)
3: else
4: left← Γ̂−1

𝑖 (1/𝛾n)

5: right← Γ̂−1
𝑖 (𝛾p)

6: 𝜆← (left+ right)/2
7: while 𝒢𝑖(𝜆) > 𝜀𝑖 do
8: if ⟨∇𝑓(𝑥̃𝜆𝑖+1), 𝑥̃

𝜆
𝑖+1 − 𝑥̃𝑖⟩ < 0 then right← 𝜆

9: else left← 𝜆
10: end if
11: 𝜆← (left+ right)/2
12: end while
13: end if
14: return 𝜆

proves that 𝑓 satisfies tilted-convexity (3) for constants 𝛾n and 𝛾p depending on 𝑅. So Theo-
rem 5 applies and the total number of queries to the oracle needed to obtain an 𝜀-minimizer of 𝑓 is̃︀𝑂(
√︁
𝐿̃/𝛾2n𝛾p𝜀) =

̃︀𝑂(
√︀
𝐿/𝜀). The result follows, since 𝑓(𝑥̃𝑇 )− 𝑓(𝑥̃*) = 𝐹 (𝑥𝑇 )− 𝐹 (𝑥*).

We recall a few concepts that were assumed during Section 2 to better interpret Theorem 6.
We work in the hyperbolic space, or in an open hemisphere. The aim is to minimize a smooth and
g-convex function defined on any of these manifolds, or a submanifold of them. The existence of
a point 𝑥* that satisfies ∇𝐹 (𝑥*) = 0 is assumed. Starting from an arbitrary point 𝑥0, we let 𝑅
be a bound of the distance between 𝑥0 and 𝑥*, that is, 𝑅 ≥ 𝑑(𝑥0, 𝑥

*). We perform constrained
optimization over ℬ𝑅 = Exp𝑥0(𝐵̄(0, 𝑅)). Note 𝑥* ∈ ℬ𝑅. We assume 𝐹 : ℳ𝐾 → R is a
differentiable function, ℬ𝑅 ⊂ ℳ𝐾 , andℳ𝐾 has constant sectional curvature 𝐾. If 𝐾 is positive,
we restrict 𝑅 < 𝜋/2

√
𝐾 so ℬ𝑅 is contained in an open hemisphere and it is uniquely geodesic. We

define a geodesic map ℎ :ℳ𝐾 → 𝑀 , where 𝑀 ⊂ R𝑛 and define the function 𝑓 : ℎ(ℳ𝐾) → R

as 𝑓 = 𝐹 ∘ ℎ−1. We perform constrained optimization over this function 𝑓 in 𝒳 = ℎ(ℬ𝑅) in
an accelerated way, up to constants and log factors, where the constants appear as an effect of the
deformation of the geometry and depend on 𝑅 and 𝐾 only.

We note that we assumed the existence of 𝑥* ∈ ℬ𝑅, such that ∇𝐹 (𝑥*) = 0 for simplicity
only. The algorithm can find 𝑥̂* = argmin𝑥∈ℬ𝑅

{𝐹 (𝑥)} instead. This point always satisfies the first
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inequality in tilted-convexity (3)—the same proof used for 𝑥* works— so the lower bounds 𝐿𝑖 can
be defined in the same way as we did, and all the proofs work in the same way, except that in this
case, then we would need to bound the Lipschitz constant of 𝐹 when restricted to 𝐵𝑅, which for
the case ∇𝐹 (𝑥̂*) = 0, it was 𝑂(𝐿). This Lipschitz constant would be used for the analysis of the
binary search and for the computation of 𝐿̃, the smoothness constant of 𝑓 .

Note that there are some cases in which one can perform the aforementioned constrained op-
timization to adapt to the value of 𝑑(𝑥0, 𝑥*), if an estimate 𝑅 > 𝑑(𝑥0, 𝑥

*) is not available. For
instance, in the negative curvature case, if we know the value of 𝐹 (𝑥*), we can run the algorithm
with a small value of𝑅 and with precision 𝜀. We can check if we obtained a global 𝜀-minimizer and
if we did not, we increase 𝑅 by a factor of 2 and repeat. As soon as our 𝑅 upper bounds 𝑑(𝑥0, 𝑥*),
we will obtain a global 𝜀-minimizer, and the total complexity is of the order of the one of the last
run. We always have the lower bound 𝑑(𝑥0, 𝑥*) ≥ ‖∇𝐹 (𝑥0)‖/𝐿 so we can choose the right hand
side as the initial value of 𝑅.

A.1. Auxiliary lemmas

The following are classical lemmas of convex optimization that we used in this section and that we
add for completeness.

Fact 16 Let 𝜓 : 𝑄→ R be a differentiable strongly-convex function. Then

∇𝜓*(𝑧) = argmin
𝑥̃∈𝑄

{⟨−𝑧, 𝑥̃⟩+ 𝜓(𝑥̃)}.

See Bertsekas and Nedic (2003) for a proof. Note that by the definition of Bregman divergence
argmin𝑥̃∈𝑄{⟨𝑦 −∇𝜓(𝑥̃0), 𝑥̃⟩+ 𝜓(𝑥̃)} = argmin𝑥̃∈𝑄{⟨𝑦, 𝑥̃⟩+𝐷𝜓(𝑥̃, 𝑥̃0)}.

Lemma 17 (Triangle equality of Bregman Divergences) For all 𝑥̃, 𝑦, 𝑧 ∈ 𝑄 we have

𝐷𝜓*(𝑥̃, 𝑦) = 𝐷𝜓*(𝑧, 𝑦) +𝐷𝜓*(𝑥̃, 𝑧) + ⟨∇𝜓*(𝑧)−∇𝜓*(𝑦), 𝑥̃− 𝑧⟩.

Proof

𝐷𝜓*(𝑧, 𝑦) +𝐷𝜓*(𝑥̃, 𝑧) + ⟨∇𝜓*(𝑧)−∇𝜓*(𝑦), 𝑥̃− 𝑧⟩
= (𝜓*(𝑧)− 𝜓*(𝑦)− ⟨∇𝜓*(𝑦), 𝑧 − 𝑦⟩)
+ (𝜓*(𝑥̃)− 𝜓*(𝑧)− ⟨∇𝜓*(𝑧), 𝑥̃− 𝑧⟩)
+ ⟨∇𝜓*(𝑧)−∇𝜓*(𝑦), 𝑥̃− 𝑧⟩

= 𝜓*(𝑥̃)− 𝜓*(𝑦)− ⟨∇𝜓*(𝑦), 𝑧 − 𝑦⟩+ ⟨−∇𝜓*(𝑦), 𝑥̃− 𝑧⟩
= 𝐷𝜓*(𝑥̃, 𝑦).

Lemma 18 Given a 𝜎-strongly convex function 𝜓(·) the following holds:

𝐷𝜓*(𝑧1, 𝑧2) ≥
𝜎

2
‖∇𝜓*(𝑧1)−∇𝜓*(𝑧2)‖2.

33



GLOBAL RIEMANNIAN ACCELERATION IN HYPERBOLIC AND SPHERICAL SPACES

Proof Using the first order optimality condition of the Fenchel dual and (16) we obtain

⟨∇𝜓(∇𝜓*(𝑧1))− 𝑧1,∇𝜓*(𝑧2)−∇𝜓*(𝑧1)⟩ ≥ 0

Using 𝜎-strong convexity of 𝜓 and the previous inequality we have

𝐷𝜓*(𝑧1, 𝑧2) = 𝜓(∇𝜓*(𝑧2))− 𝜓(∇𝜓*(𝑧1))− ⟨𝑧1,∇𝜓*(𝑧2)−∇𝜓*(𝑧1)⟩

≥ 𝜎

2
‖∇𝜓*(𝑧1)−∇𝜓*(𝑧2)‖2 + ⟨∇𝜓(∇𝜓*(𝑧1))− 𝑧1,∇𝜓*(𝑧2)−∇𝜓*(𝑧1)⟩

≥ 𝜎

2
‖∇𝜓*(𝑧1)−∇𝜓*(𝑧2)‖2.

Appendix B. Reductions. Proofs of results in Section 3

Proof of Theorem 7. Let 𝒜ns be the algorithm in the statement of the theorem. By strong g-
convexity of 𝐹 and the assumptions on 𝒜ns we have that 𝑥̂𝑇 , the point computed by 𝒜ns, satisfies

𝜇

2
𝑑(𝑥̂𝑇 , 𝑥

*)2 ≤ 𝐹 (𝑥̂𝑇 )− 𝐹 (𝑥*) ≤
𝜇

2

𝑅2

2
,

after 𝑇 = Timens(𝐿, 𝜇,𝑅) queries to the gradient oracle. This implies 𝑑(𝑥̂𝑇 , 𝑥*)2 ≤ 𝑅2/2. We
perform this process 𝑟 def

= ⌈log(𝜇𝑅2/𝜀)− 1⌉ times. We use the previous output as input for the next
round. The distance bound to 𝑥* can be updated to a lower value. We denote 𝑅𝑖 the distance bound
from the input to 𝑥* at stage 𝑖 and we set its value to 𝑅𝑖 = 𝑅𝑖−1/

√
2, for 𝑅1 = 𝑅. Thus, after 𝑟

stages we obtain a point 𝑥̂𝑟𝑇 that satisfies

𝐹 (𝑥̂𝑟𝑇 )− 𝐹 (𝑥*) ≤
𝜇 ·𝑅2

𝑟

4
=

𝜇 ·𝑅2
1

4 · 2𝑟−1
≤ 𝜀.

And the total running time is Timens(𝐿, 𝜇,𝑅) · 𝑟 = 𝑂(Timens(𝐿, 𝜇,𝑅) log(𝜇/𝜀)).

Proof of Corollary 8. We can assume without loss of generality 𝐾 ∈ {−1, 1} as we did in Sec-
tion 2. Let𝑅 be an upper bound on the distance between the initial point 𝑥0 and an optimizer 𝑥*, i.e.
𝑑(𝑥0, 𝑥

*) ≤ 𝑅. Note that ‖𝑥̃0 − 𝑥̃*‖/𝑅 is bounded by a constant depending on 𝑅 by Lemma 2.a.
Note that 𝛾n and 𝛾p are constants depending on 𝑅 by Lemma 3. As any g-strongly convex function
is g-convex, by using Theorem 14 and Lemma 15 with 𝜀 = 𝜇𝑅

2

4 we obtain that Algorithm 1 obtains
a 𝜇𝑅

2

4 -minimizer in at most

𝑇 = 𝑂

(︃
‖𝑥̃0 − 𝑥̃*‖

𝑅

√︃
4𝐿

𝜇𝛾2n𝛾p
log

(︃
‖𝑥̃0 − 𝑥̃*‖

𝑅

√︃
4𝐿

𝜇𝛾2n𝛾p

)︃)︃
= 𝑂

(︁√︀
𝐿/𝜇 log(𝐿/𝜇)

)︁
queries to the gradient oracle. Subsequent stages, i.e. calls to Algorithm 1, use the point computed
at the previous stage as its input. The distance bound to 𝑥* is updated, following the proof of
Theorem 7. Because the constant depending on 𝑅 in the running time of the subroutine decreases
when 𝑅 has a lower value, subsequent stages need a time which is 𝑂(

√︀
𝐿/𝜇 log(𝐿/𝜇)) as well. So
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we satisfy the assumption of Theorem 7 for Timens(𝐿, 𝜇,𝑅) = 𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)). We conclude

that given 𝜀 > 0 and running Algorithm 1 in stages, we obtain an 𝜀-minimizer of 𝐹 in

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇/𝜀)) = 𝑂*(

√︀
𝐿/𝜇 log(𝜇/𝜀))

queries to the gradient oracle.
Note that each time we call Algorithm 1 we recenter the geodesic map. In order to per-

form the method with these recentering steps, we need the function 𝐹 to be defined over at least
Exp𝑥0(𝐵̄(0, 𝑅 · (1 + 2−1/2))), since subsequent centers are only guaranteed to be ≤ 𝑅/

√
2 close

to 𝑥*, and they could get slightly farther than 𝑅 from 𝑥0. But they are no farther than 𝑅 + 𝑅/
√
2

since 𝑑(𝑥0, 𝑥̂𝑖𝑇 ) ≤ 𝑑(𝑥0, 𝑥*)+𝑑(𝑥*, 𝑥̂𝑖𝑇 ) ≤ 𝑅+𝑅/
√
2, where 𝑥̂𝑖𝑇 is the center at stage 𝑖, and where

𝑖 > 1.

B.1. Proof of Theorem 9

We provide here the full statement of the theorem.

Theorem 19 Letℳ be a Riemannian manifold of bounded sectional curvature, let 𝐹 :ℳ → R

be an 𝐿-smooth and g-convex function, and assume there is a point 𝑥* ∈ ℳ such that ∇𝐹 (𝑥*) =
0. Let 𝑥0 be a starting point such that 𝑑(𝑥0, 𝑥*) ≤ 𝑅 and let Δ satisfy 𝐹 (𝑥0) − 𝐹 (𝑥*) ≤
Δ. Assume Exp𝑥0 is a diffeomorphism when restricted to 𝐵̄(0, 𝑅) and that we have an algo-
rithm 𝒜 that given an 𝐿-smooth and 𝜇-strongly g-convex function 𝐹 : ℳ → R, with minimizer
in Exp𝑥0(𝐵̄(0, 𝑅)), and any initial point 𝑥̂0 ∈ ℳ, produces a point 𝑥̂ ∈ Exp𝑥0(𝐵̄(0, 𝑅)) in
time 𝑇 = Time(𝐿, 𝜇,ℳ, 𝑅) satisfying 𝐹 (𝑥̂) − min𝑥∈ℳ 𝐹 (𝑥) ≤ (𝐹 (𝑥̂0) − min𝑥∈ℳ 𝐹 (𝑥))/4.
Let 𝑇 = ⌈log2(Δ/𝜀)⌉ + 1. Then, we can compute an 𝜀-minimizer in time

∑︀𝑇−1
𝑡=0 Time(𝐿 +

2−𝑡Δ𝒦−
𝑅/𝑅

2, 2−𝑡Δ𝒦+
𝑅/𝑅

2,ℳ, 𝑅), where 𝒦+
𝑅 and 𝒦−

𝑅 are constants that depend on 𝑅 and the
bounds on the sectional curvature ofℳ.

The algorithm is the following. We successively regularize the function with strongly g-convex
regularizers in this way 𝐹 (𝜇𝑖)(𝑥)

def
= 𝐹 (𝑥) + 𝜇𝑖

2 𝑑(𝑥, 𝑥0)
2 for 𝑖 ≥ 0. For each 𝑖 ≥ 0, we use

the algorithm 𝒜 on the function 𝐹 (𝜇𝑖) for the time in the statement of the theorem and obtain a
point 𝑥̂𝑖+1, starting from point 𝑥̂𝑖, where 𝑥̂0 = 𝑥0. The regularizers are decreased exponentially
𝜇𝑖+1 = 𝜇𝑖/2 from 𝜇0 = Δ/𝑅2, until we reach roughly 𝜇𝑇 = 𝜀/𝑅2, see below for the precise
value. Let’s see how this algorithm works. We first state the following fact, that says that indeed
𝜇𝑖
2 𝑑(𝑥, 𝑥0)

2 is a strongly g-convex regularizer. Recall that Exp𝑥0(𝐵̄(0, 𝑅)) ⊂ ℳ. We define the
following quantities

𝒦+
𝑅

def
=

{︃
1 if 𝐾max ≤ 0
√
𝐾max𝑅 cot(

√
𝐾max𝑅) if 𝐾max > 0

𝒦−
𝑅

def
=

{︃√
−𝐾min𝑅 coth(

√
−𝐾min𝑅) if 𝐾min < 0

1 if 𝐾min ≥ 0

Here𝐾max and𝐾min are the upper and lower bounds on the sectional curvature of the manifoldℳ.
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Fact 20 Let ℳ be a manifold with sectional curvature bounded below and above by 𝐾min and
𝐾max, respectively. For a point 𝑥0 ∈ ℳ, assume Exp𝑥0 is a diffeomorphism when restricted to
𝐵̄(0, 𝑅). The function 𝑓 : ℳ → R defined as 𝑓(𝑥) = 1

2𝑑(𝑥, 𝑥0)
2 is 𝒦+

𝑅-g-strongly convex and
𝒦−
𝑅-smooth in Exp𝑥0(𝐵̄(0, 𝑅)).

The result regarding strong convexity can be found, for instance, in (Alimisis et al., 2019) and
it is a direct consequence of the following inequality, which can also be found in (Alimisis et al.,
2019):

𝑑(𝑦, 𝑥0)
2 ≥ 𝑑(𝑥, 𝑥0)2 − 2⟨Exp−1

𝑥 (𝑥0), 𝑦 − 𝑥⟩+𝒦+
𝑅𝑑(𝑥, 𝑦)

2,

along with the fact that grad 𝑓(𝑥) = −Exp−1
𝑥 (𝑥0). The result regarding smoothness is, similarly,

obtained from the following inequality:

𝑑(𝑦, 𝑥0)
2 ≤ 𝑑(𝑥, 𝑥0)2 − 2⟨Exp−1

𝑥 (𝑥0), 𝑦 − 𝑥⟩+𝒦−
𝑅𝑑(𝑥, 𝑦)

2,

which can be found in (Zhang and Sra, 2016) (Lemma 6). These inequalities are tight in spaces of
constant sectional curvature. Alternatively, one can derive these inequalities from upper and lower
bounds on the Hessian of 𝑓(𝑥) = 1

2𝑑(𝑥, 𝑥0)
2, as it was done in (Lezcano-Casado, 2020) (Theorem

3.15).
We prove now that the regularization makes the minimum to be closer to 𝑥0, so the assumption

of the theorem on 𝐹 holds for the functions we use. Define 𝑥𝑖+1 as the minimizer of 𝐹 (𝜇𝑖).

Lemma 21 We have 𝑑(𝑥𝑖+1, 𝑥0) ≤ 𝑑(𝑥*, 𝑥0).

Proof By the fact that 𝑥𝑖+1 is the minimizer of 𝐹 (𝜇𝑖) we have 𝐹 (𝜇𝑖)(𝑥𝑖+1)− 𝐹 (𝜇𝑖)(𝑥*) ≤ 0. Note
that by g-strong convexity, equality only holds if 𝑥𝑖+1 = 𝑥* which only happens if 𝑥0 = 𝑥𝑖+1 = 𝑥*.
By using the definition of 𝐹 (𝜇𝑖)(𝑥) = 𝐹 (𝑥) + 𝜇𝑖

2 𝑑(𝑥, 𝑥0)
2 we have:

𝐹 (𝑥𝑖+1) +
𝜇𝑖
2
𝑑(𝑥𝑖+1, 𝑥0)

2 − 𝐹 (𝑥*)− 𝜇𝑖
2
𝑑(𝑥*, 𝑥0)

2 ≤ 0

⇒ 𝑑(𝑥𝑖+1, 𝑥0) ≤ 𝑑(𝑥*, 𝑥0),

where in the last step we used the fact 𝐹 (𝑥𝑖+1)−𝐹 (𝑥*) ≥ 0 that holds because 𝑥* is the minimizer
of 𝐹 .

We note that previous techniques proved and used the fact that 𝑑(𝑥𝑖+1, 𝑥
*) ≤ 𝑑(𝑥0, 𝑥*) instead

(Allen Zhu and Hazan, 2016). But crucially, we need our former lemma in order to prove the bound
for our non-Euclidean case. Our variant can be applied to (Allen Zhu and Hazan, 2016) to decrease
the constants of their Euclidean reduction. Now we are ready to prove the theorem.
Proof of Theorem 9. We recall the definitions above. 𝐹 (𝜇𝑖)(𝑥) = 𝐹 (𝑥) + 𝜇𝑖

2 𝑑(𝑥, 𝑥0)
2. We start

with 𝑥̂0 = 𝑥0 and compute 𝑥̂𝑖+1 using algorithm𝒜with starting point 𝑥̂𝑖 and function 𝐹 (𝜇𝑖) for time
Time(𝐿(𝑖), 𝜇(𝑖),ℳ, 𝑅), where 𝐿(𝑖) and 𝜇(𝑖) are the smoothness and strong g-convexity parameters
of 𝐹 (𝜇𝑖). We denote by 𝑥𝑖+1 the minimizer of 𝐹 (𝜇𝑖). We pick 𝜇𝑖 = 𝜇𝑖−1/2 and we will choose later
the value of 𝜇0 and the total number of stages. By the assumption of the theorem on 𝒜, we have
that

𝐹 (𝜇𝑖)(𝑥̂𝑖+1)− min
𝑥∈ℳ

𝐹 (𝜇𝑖)(𝑥) = 𝐹 (𝜇𝑖)(𝑥̂𝑖+1)− 𝐹 (𝜇𝑖)(𝑥𝑖+1) ≤
𝐹 (𝜇𝑖)(𝑥̂𝑖)− 𝐹 (𝜇𝑖)(𝑥𝑖+1)

4
. (27)
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Define 𝐷𝑖
def
= 𝐹 (𝜇𝑖) (𝑥̂𝑖) − 𝐹 (𝜇𝑖) (𝑥𝑖+1) to be the initial objective distance to the minimum on

function 𝐹 (𝜇𝑖) before we call 𝒜 for the (𝑖+ 1)-th time. At the beginning, we have the upper bound
𝐷0 = 𝐹 (𝜇0)(𝑥̂0)−min𝑥 𝐹

(𝜇0)(𝑥) ≤ 𝐹 (𝑥0)− 𝐹 (𝑥*). For each stage 𝑖 ≥ 1, we compute that

𝐷𝑖 = 𝐹 (𝜇𝑖) (𝑥̂𝑖)− 𝐹 (𝜇𝑖) (𝑥𝑖+1)

1
= 𝐹 (𝜇𝑖−1) (𝑥̂𝑖)−

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, 𝑥̂𝑖)
2 − 𝐹 (𝜇𝑖−1) (𝑥𝑖+1) +

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, 𝑥𝑖+1)
2

2
≤ 𝐹 (𝜇𝑖−1) (𝑥̂𝑖)− 𝐹 (𝜇𝑖−1) (𝑥𝑖) +

𝜇𝑖−1 − 𝜇𝑖
2

𝑑(𝑥0, 𝑥𝑖+1)
2

3
≤ 𝐷𝑖−1

4
+
𝜇𝑖
2
𝑑(𝑥0, 𝑥𝑖+1)

2

4
≤ 𝐷𝑖−1

4
+
𝜇𝑖
2
𝑑(𝑥0, 𝑥

*)2.

Above, 1 follows from the definition of 𝐹 (𝜇𝑖)(·) and 𝐹 (𝜇𝑖−1)(·); 2 follows from the fact that 𝑥𝑖
is the minimizer of 𝐹 (𝜇𝑖−1)(·). And we dropped the negative term −(𝜇𝑖−1 − 𝜇𝑖)𝑑(𝑥0, 𝑥̂𝑖)/2. 3
follows from the definition of 𝐷𝑖−1, the assumption on 𝒜, and the choice 𝜇𝑖 = 𝜇𝑖−1/2 for 𝑖 ≥ 1;
and 4 follows from Lemma 21. Now applying the above inequality recursively, we have

𝐷𝑇 ≤
𝐷0

4𝑇
+ 𝑑(𝑥0, 𝑥

*)2 · (𝜇𝑇
2

+
𝜇𝑇−1

8
+ · · · ) ≤ 𝐹 (𝑥0)− 𝐹 (𝑥*)

4𝑇
+ 𝜇𝑇 · 𝑑(𝑥0, 𝑥*)2. (28)

We have used the choice 𝜇𝑖 = 𝜇𝑖−1/2 for the second inequality. Lastly, we can prove that 𝑥̂𝑇 , the
last point computed, satisfies

𝐹 (𝑥̂𝑇 )− 𝐹 (𝑥*)
1
≤ 𝐹 (𝜇𝑇 )(𝑥̂𝑇 )− 𝐹 (𝜇𝑇 )(𝑥*) +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2

2
≤ 𝐹 (𝜇𝑇 )(𝑥̂𝑇 )− 𝐹 (𝜇𝑇 )(𝑥𝑇+1) +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2

3
= 𝐷𝑇 +

𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2

4
≤ 𝐹 (𝑥0)− 𝐹 (𝑥*)

4𝑇
+

3𝜇𝑇
2
𝑑(𝑥0, 𝑥

*)2.

We use the definition of 𝐹 (𝜇𝑇 ) in 1 and drop −𝜇𝑇
2 𝑑(𝑥0, 𝑥̂𝑇 )

2. In 2 we use the fact that
𝑥𝑇+1 is the minimizer of 𝐹 (𝜇𝑇 ). The definition of 𝐷𝑇 is used in 3 . We use inequality (28)
for step 4 . Recall the assumption of the theorem 𝐹 (𝑥0) − 𝐹 (𝑥*) ≤ Δ. Finally, by choosing
𝑇 = ⌈log2(Δ/𝜀)⌉+ 1 and 𝜇0 = Δ/𝑅2 we obtain that the point 𝑥̂𝑇 satisfies

𝐹 (𝑥̂𝑇 )− 𝐹 (𝑥*) ≤
𝐹 (𝑥0)− 𝐹 (𝑥*)

4Δ/𝜀
+

3𝜇0
8Δ/𝜀

𝑑(𝑥0, 𝑥
*)2 ≤ 𝜀

4
+

3𝜀

8
< 𝜀,

and can be computed in time
∑︀𝑇−1

𝑡=0 Time(𝐿 + 2−𝑡𝜇0𝒦−
𝑅, 2

−𝑡𝜇0𝒦+
𝑅,ℳ, 𝑅), since by Fact 20 the

function 𝐹 (𝜇𝑡) is 𝐿+ 2−𝑡𝜇0𝒦−
𝑅 smooth and 2−𝑡𝜇0𝒦+

𝑅 g-strongly convex.
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B.2. Example 1

We use the algorithm in Corollary 8 as the algorithm 𝒜 of the reduction of Theorem 9. Given
a manifold under considerationℳ𝐾 , the assumption on 𝒜 is satisfied for Time(𝐿, 𝜇,ℳ𝐾 , 𝑅) =
𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)). Indeed, if Δ is a bound on the gap𝐹 (𝑥0)−𝐹 (𝑥*) = 𝐹 (𝑥0)−min𝑥∈ℳ𝐾

𝐹 (𝑥) =

𝐹 (𝑥0)−min𝑥∈Exp𝑥0 (𝐵̄(0,𝑅)) 𝐹 (𝑥) for some 𝜇-strongly g-convex 𝐹 , then we know that 𝑑(𝑥0, 𝑥*)2 ≤
2Δ
𝜇 by 𝜇-strong g-convexity. By calling the algorithm in Corollary 8 with 𝜀 = Δ

4 we require a time
that is

𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇 · 𝑑(𝑥0, 𝑥*)2/(Δ/4))) = 𝑂(

√︀
𝐿/𝜇 log(𝐿/𝜇) log(𝜇 · (2Δ/𝜇)/(Δ/4)))

= 𝑂(
√︀
𝐿/𝜇 log(𝐿/𝜇)).

Let 𝑇 = ⌈log2(Δ/𝜀)⌉+ 1. The reduction of Theorem 9 gives an algorithm with rates

𝑇−1∑︁
𝑡=0

Time(𝐿+ 2−𝑡𝜇0𝒦−
𝑅, 2

−𝑡𝜇0𝒦+
𝑅,ℳ𝐾 , 𝑅)

1
= 𝑂

(︃
𝑇−1∑︁
𝑡=0

√︃
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2
· log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2

)︂)︃
2
= 𝑂

(︃(︃√︃
𝒦−
𝑅

𝒦+
𝑅

log(Δ/𝜀) +
𝑇−1∑︁
𝑡=0

√︃
𝐿

2−𝑡𝒦+
𝑅Δ/𝑅

2

)︃
log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

𝒦+
𝑅𝜀

)︂)︃
3
= 𝑂

(︃(︃√︃
𝒦−
𝑅

𝒦+
𝑅

log(Δ/𝜀) +

√︃
𝐿

𝒦+
𝑅𝜀

)︃
log

(︂
𝒦−
𝑅

𝒦+
𝑅

+
𝐿

𝒦+
𝑅𝜀

)︂)︃
4
= ̃︀𝑂(

√︀
𝐿/𝜀)

In 1 we write down the definition and use the value 𝜇0 = Δ/𝑅2. In 2 we have used Minkowski’s
inequality

√
𝑎+ 𝑏 ≤

√
𝑎 +
√
𝑏. We added up the first group of summands. For the log factor,

we upper bounded 𝐿/(2−𝑡𝒦+
𝑅Δ/𝑅

2) = 𝑂(𝐿/𝒦+
𝑅𝜀), for 𝑡 < 𝑇 . In 3 we used the fact that√︀

1/𝜀 +
√︀
1/2𝜀 + · · · = 𝑂(

√︀
1/𝜀), along with the fact 𝜀/2𝑅2 ≤ 2−(𝑇−1)𝜇0 ≤ 𝜀/𝑅2. Note that

by 𝐿-smoothness and the diameter being 2𝑅, we have Δ ≤ 2𝐿𝑅2 so
√︁
𝒦−
𝑅/𝒦

+
𝑅 log(Δ/𝜀) = ̃︀𝑂(1).

We applied this in 4 .

Appendix C. Geometric results. Proofs of Lemmas 2, 3 and 4

In this section we prove the lemmas that take into account the deformations of the geometry and
the geodesic map ℎ to obtain relationships between 𝐹 and 𝑓 . Namely Lemma 2, Lemma 3 and
Lemma 4. First, we recall the characterizations of the geodesic map and some consequences. Then
in Appendix C.2, Appendix C.3 and Appendix C.4, we prove the results related to distances an-
gles and gradient deformations, respectively. That is, each of the three parts of Lemma 2. In
Appendix C.4 we also prove Lemma 4, which comes naturally after the proof of Lemma 2.c. In
Appendix C.5 we prove Lemma 3 and finish with a proof on lower bounds for the condition num-
ber of strongly g-convex functions and an intuitive comment on its implications. We conclude in
Appendix D.1 with a remark about a hardness result proved in a previous work.
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Before this, we note that we can assume without loss of generality that the curvature of our
manifolds of interest can be taken to be 𝐾 ∈ {1,−1}. One can see that the final rates depend on 𝐾
through 𝑅, 𝐿 and 𝜇.

Remark 22 For a function 𝐹 :ℳ𝐾 → R whereℳ𝐾 is a manifold of constant sectional curvature
𝐾 ̸∈ {1,−1, 0}, we can apply a rescaling to the Gnomonic or Beltrami-Klein projection to define a
function on a manifold of constant sectional curvature 𝐾 ∈ {1,−1}. Namely, we can mapℳ𝐾 to
𝑀 via the geodesic map ℎ :ℳ𝐾 → 𝑀 , then we can rescale 𝑀 by multiplying each vector in 𝑀
by the factor

√︀
|𝐾| and then we can apply the inverse geodesic map for the manifold of curvature

𝐾 ∈ {1,−1}. If 𝑅 is the original bound of the initial distance to an optimum, and 𝐹 is 𝐿-smooth
and 𝜇-strongly g-convex (possibly with 𝜇 = 0) then the initial distance bound becomes

√︀
|𝐾|𝑅 and

the induced function becomes 𝐿/|𝐾|-smooth and 𝜇/|𝐾|-strongly g-convex. This is a consequence
of the transformation rescaling distances by a factor of

√︀
|𝐾|, i.e. if 𝑟 : ℳ𝐾 → ℳ𝐾/|𝐾| is the

rescaling function, then 𝑑𝐾(𝑥, 𝑦)
√︀
|𝐾| = 𝑑𝐾/|𝐾|(𝑟(𝑥), 𝑟(𝑦)), where 𝑑𝑐(·, ·) denotes the distance

on the manifold of constant sectional curvature 𝑐.

C.1. Preliminaries

We recall our characterization of the geodesic map. Given two points 𝑥̃, 𝑦 ∈ 𝒳 , we have that
𝑑(𝑥, 𝑦), the distance between 𝑥 and 𝑦 with the metric ofℳ𝐾 , satisfies

C𝐾(𝑑(𝑥, 𝑦)) =
1 +𝐾⟨𝑥̃, 𝑦⟩√︀

1 +𝐾‖𝑥̃‖2 ·
√︀

1 +𝐾‖𝑦‖2
. (29)

And since the expression is symmetric with respect to rotations, 𝒳 = ℎ(ℬ𝑅) is a closed ball of
radius 𝑅̃, with C𝐾(𝑅) = (1 +𝐾𝑅̃2)−1/2. Equivalently,

𝑅̃ = tan(𝑅) if 𝐾 = 1,

𝑅̃ = tanh(𝑅) if 𝐾 = −1.
(30)

Similarly, we can write the distances as

𝑑(𝑥, 𝑦) = arccos

(︃
1 + ⟨𝑥̃, 𝑦⟩√︀

1 + ‖𝑥̃2‖
√︀
1 + ‖𝑦2‖

)︃
if 𝐾 = 1,

𝑑(𝑥, 𝑦) = arccosh

(︃
1− ⟨𝑥̃, 𝑦⟩√︀

1− ‖𝑥̃2‖
√︀
1− ‖𝑦2‖

)︃
if 𝐾 = −1,

(31)

Alternatively, we have the following expression for the distance 𝑑(𝑥, 𝑦) when 𝐾 = −1. Let 𝑎̃, 𝑏̃ be
the two points of intersection of the ball 𝐵(0, 1) ⊇𝑀 with the line joining 𝑥̃, 𝑦, so the order of the
points in the line is 𝑎̃, 𝑥̃, 𝑦, 𝑏̃. Then

𝑑(𝑥, 𝑦) =
1

2
log

(︃
‖𝑎̃− 𝑦‖‖𝑥̃− 𝑏̃‖
‖𝑎̃− 𝑥̃‖‖𝑏̃− 𝑦‖

)︃
if 𝐾 = −1. (32)

We will use this expression when working with the hyperbolic space. A simple elementary proof
of the equivalence of the expressions in (31) and (32) when 𝐾 = −1 is the following. We can
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assume without loss of generality that we work with the hyperbolic plane, i.e. 𝑛 = 2. By rotational
symmetry, we can also assume that 𝑥̃ = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2), for 𝑥1 = 𝑦1. In fact, it is
enough to prove it in the case 𝑥2 = 0 because we can split a general segment into two, each with
one endpoint at (𝑥1, 0), and then add their lengths up. So according to (31) and (32), respectively,
we have

1

cosh2(𝑑(𝑥, 𝑦))
=

(1− 𝑥21)(1− 𝑦21 − 𝑦22)
(1− 𝑥21)2

=
(1− 𝑥21 − 𝑦22)

1− 𝑥21
,

𝑑(𝑥, 𝑦) =
1

2
log

(︃
(
√︀
1− 𝑦21 + 𝑦2)(

√︀
1− 𝑥21)

(
√︀
1− 𝑥21)(

√︀
1− 𝑦21 − 𝑦2)

)︃
=

1

2
log

(︃
1 + 𝑦2/

√︀
1− 𝑥21

1− 𝑦2/
√︀
1− 𝑥21

)︃

= arctanh

(︃
𝑦2√︀
1− 𝑥21

)︃
.

where we have used the equality arctanh(𝑡) = 1
2 log(

1+𝑡
1−𝑡). Now, using the trigonometric identity

1
cosh2(𝑡)

= 1 − tanh2(𝑡), for 𝑡 = 𝑑(𝑥, 𝑦), we obtain that the two expressions above are equal. See
Theorem 7.4 in (Greenberg, 1993) (p. 268) for more details about the distance formula under this
geodesic map.

The spherical case is of a remarkable simplicity. If we have an (𝑛)-sphere of radius 1 centered
at 0, we can see the transformation of the geodesic map as the projection onto the plane 𝑥𝑛+1 = 1.
Given two points x = (𝑥̃, 1), y = (𝑦, 1) then the angle between these two vectors is the distance of
the projected points on the sphere so we have cos(𝑑(𝑥, 𝑦)) = ⟨x,y⟩/‖x‖‖y‖ which is equivalent to
the corresponding formula in (31).

C.2. Distance deformation

Lemma 23 Let 𝑥, 𝑦 ∈ ℬ𝑅 = Exp𝑥0(𝐵̄(0, 𝑅)) ⊆ ℳ𝐾 be two different points, whereℳ𝐾 is the
hyperbolic space with constant sectional curvature 𝐾 = −1. Then, we have

1 ≤ 𝑑(𝑥, 𝑦)

‖𝑥̃− 𝑦‖
≤ cosh2(𝑅).

Proof We can assume without loss of generality that the dimension is 𝑛 = 2. As in (30), let
𝑅̃ = tanh(𝑅), so any point 𝑥̃ ∈ 𝒳 satisfies ‖𝑥̃‖ ≤ 𝑅̃, or equivalently 𝑑(𝑥, 𝑥0) ≤ 𝑅. Recall
𝑥̃0 = ℎ(𝑥0) = 0. Without loss of generality, we parametrize an arbitrary segment of length ℓ in
𝒳 by two endpoints 𝑥̃, 𝑦 with coordinates 𝑥̃ = (𝑥1, 𝑥2) and 𝑦 = (𝑥1 − ℓ, 𝑥2), for 0 ≤ 𝑥2 ≤ 𝑅̃,

0 ≤ 𝑥1 ≤
√︁
𝑅̃2 − 𝑥22 and 0 < ℓ ≤ 𝑥1 +

√︁
𝑅̃2 − 𝑥22. Let d(𝑥1, 𝑥2, ℓ)

def
= 𝑑(𝑥,𝑦)

ℓ , the quantity we aim
to bound. We will prove the upper bound on d(𝑥1, 𝑥2, ℓ) in three steps.

1. If 𝑥1 = ℓ then d(·) is larger the larger 𝑥1 is. This allows to prove that it is enough to consider
points with the extra constraint ℓ ≤ 𝑥1.

2. The partial derivative of d(·) with respect to 𝑥1, whenever ℓ ≤ 𝑥1, is non-negative. So we can

just look at the points for which 𝑥1 =
√︁
𝑅̃2 − 𝑥22.
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3. With the constraints above, d(·) is larger the smaller ℓ is. So we have

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(

√︁
𝑅̃2 − 𝑥22, 𝑥2, ℓ) =

√︁
1− 𝑥22/(1− 𝑅̃

2).

This expression is maximized at 𝑥2 = 0 and evaluates to 1/(1− tanh2(𝑅)) = cosh2(𝑅).

We proceed now to prove the steps above. For the first step, we note

d(𝑥1, 𝑥2, 𝑥1) =
1

2𝑥1
log

(︃√︀
1− 𝑥22(

√︀
1− 𝑥22 + 𝑥1)√︀

1− 𝑥22(
√︀
1− 𝑥22 − 𝑥1)

)︃
=

1

2𝑥1
log

(︃
1 +

2𝑥1√︀
1− 𝑥22 − 𝑥1

)︃
.

We prove that the inverse of this expression is not increasing with respect to 𝑥1. By taking a partial
derivative:

𝜕(1/d(𝑥1, 𝑥2, 𝑥1))

𝜕𝑥1
= 2

−2𝑥1
√

1−𝑥22
1−𝑥22−𝑥21

+ log(1 + 2𝑥1/(
√︀
1− 𝑥22 − 𝑥1))

log(1 + 2𝑥1/(
√︀
1− 𝑥22 − 𝑥1))2

?
≤ 0

⇐⇒ 2𝑥1
√︀

1− 𝑥22
1− 𝑥22 − 𝑥21

− log(1 + (2𝑥1

√︁
1− 𝑥22 + 2𝑥21)/(1− 𝑥22 − 𝑥21))

?
≥ 0.

In order to see that the last inequality is true, note that the expression on the left hand side is 0 when
𝑥1 = 𝑥2 = 0. And the partial derivatives of this with respect to 𝑥1 and 𝑥2, respectively, are:

4
√︀

1− 𝑥22𝑥21
(1− 𝑥22 − 𝑥21)2

and
4𝑥2𝑥

3
1√︀

1− 𝑥22(1− 𝑥22 − 𝑥21)2
.

Both are greater than 0 in the interior of the domain 0 ≤ 𝑥2 ≤ 𝑅̃, 0 ≤ 𝑥1 ≤
√︁
𝑅̃2 − 𝑥22 and at least

0 in the border. Now we use this monotonicity to prove that we can consider ℓ ≤ 𝑥1 only. Suppose
ℓ > 𝑥1. The segment ℓ is divided into two parts by the 𝑒2 axis and we can assume without loss of
generality that the negative part is no greater than the other, i.e. 𝑥1 ≥ ℓ − 𝑥1. Otherwise, we can
perform the computations after a symmetry over the 𝑒2 axis. Let 𝑟 be the point (0, 𝑥2). We want to
see that the segment from 𝑥̃ to 𝑟 gives a greater value of d(·):

𝑑(𝑥, 𝑟)

𝑥1
≥ 𝑑(𝑥, 𝑦)

ℓ
⇐⇒ 𝑑(𝑥, 𝑟)(𝑥1 + (ℓ− 𝑥1)) ≥ 𝑥1(𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦))

⇐⇒ 𝑑(𝑥, 𝑟)/𝑥1 ≥ 𝑑(𝑟, 𝑦)/(ℓ− 𝑥1),

and the last inequality holds true by the monotonicity we just proved.
In order to prove the second step, we take the partial derivative of d(𝑥1, 𝑥2, ℓ) with respect to

𝑥1. We have

d(𝑥1, 𝑥2, ℓ) =
1

2ℓ
log

(︃
1 + ℓ/(

√︀
1− 𝑥22 − 𝑥1)

1− ℓ/
√︀

1− 𝑥22 + 𝑥1

)︃
,

𝜕d(𝑥1, 𝑥2, ℓ)

𝜕𝑥1
=

√
1− 𝑑2(2𝑥1 − ℓ)

2(1− 𝑥22 − 𝑥21)(1− 𝑥22 − (𝑥1 − ℓ)2)
.

And the derivative is positive in the domain we are considering.
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We now prove step 3. We want to show that d(
√︁
𝑅̃2 − 𝑥22, 𝑥2, ℓ·) decreases with ℓ, within

our constraints ℓ ≤ 𝑥1 =
√︁
𝑅̃2 − 𝑥22, 0 ≤ 𝑥2 ≤ 𝑅̃. If we split the segment joining 𝑥̃ and 𝑦 in

half, with respect to the metric in 𝒳 , we see that due to the monotonicity proved in step 1, the
segment that is farther to the origin is longer in ℳ than the other one and so d(·) is greater for
this half of the segment than for the original one. In symbols, let 𝑟 be the middle point of the
segment joining 𝑥̃ and 𝑦. We have by monotonicity that d(𝑥1, 𝑥2, ℓ/2) ≥ d(𝑥1, 𝑥2 − ℓ/2, ℓ/2). So
d(𝑥1, 𝑥2, ℓ/2) =

𝑑(𝑥̃,𝑟)
ℓ/2 ≥

𝑑(𝑥̃,𝑟)+𝑑(𝑟,𝑦)
ℓ = d(𝑥1, 𝑥2, ℓ). Thus,

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(

√︁
𝑅̃2 − 𝑥22, 𝑥2, ℓ)

= lim
ℓ→0

1

2ℓ
log

⎛⎜⎜⎝1 + ℓ/

(︂√︀
1− 𝑥22 −

√︁
𝑅̃2 − 𝑥22

)︂
1− ℓ/

(︂√︀
1− 𝑥22 +

√︁
𝑅̃2 − 𝑥22

)︂
⎞⎟⎟⎠

1
= lim

ℓ→0

√︀
1− 𝑥22

1− 𝑅̃2 − 2ℓ
√︁
𝑅̃2 − 𝑥22 + ℓ2

=

√︀
1− 𝑥22

1− 𝑅̃2
.

We used L’Hôpital’s rule for 1 . We can maximize the last the result of the limit by setting 𝑥2 = 0
and obtain that for any two different 𝑥̃, 𝑦 ∈ 𝒳

𝑑(𝑥, 𝑦)

‖𝑥̃− 𝑦‖
≤ 1

1− 𝑅̃2
=

1

1− tanh2(𝑅)
= cosh2(𝑅).

The lower bound is similar, assume that ℓ > 𝑥1 and define 𝑟 as above. We assume again without
loss of generality that 𝑥1 ≥ ℓ− 𝑥1. Then

𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦)

ℓ
≥ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
⇐⇒ 𝑑(𝑟, 𝑦)

𝑥1
≥ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
and the latter is true by the monotonicity proved in step 1. This means that we can also consider
ℓ ≤ 𝑥1. But this time, according to step 2, we want 𝑥1 to be the lowest possible, so it is enough to
consider 𝑥1 = ℓ. Using step 1 again, we obtain that the lowest value of d(·) can be bounded by the
limit limℓ→0 d(ℓ, 𝑥2, ℓ) which using L’Hôpital’s rule in 1 is

d(𝑥1, 𝑥2, ℓ) ≥ lim
ℓ→0

d(ℓ, 𝑥2, ℓ)

= lim
ℓ→0

1

2ℓ
log

(︃
1 +

2ℓ√︀
1− 𝑥22 − ℓ

)︃

1
= lim

ℓ→0

2(
√

1−𝑥22−ℓ)+2ℓ

(
√

1−𝑥22−ℓ)2

2(1 + 2ℓ/(
√︀
1− 𝑥22 − ℓ))

=
1√︀

1− 𝑥22
.
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The expression is minimized at 𝑥2 = 0 and evaluates to 1.

The proof of the corresponding lemma for the sphere is analogous, we add it for completeness.

Lemma 24 Let 𝑥, 𝑦 ∈ 𝐵𝑅 = Exp𝑥0(𝐵̄(0, 𝑅)) ⊆ ℳ𝐾 be two different points, whereℳ𝐾 is the
spherical space with constant sectional curvature 𝐾 = 1, and 𝑅 < 𝜋/2. Then, we have

cos2(𝑅) ≤ 𝑑(𝑥, 𝑦)

‖𝑥̃− 𝑦‖
≤ 1.

Proof We proceed in a similar way than with the hyperbolic case. We can also work with 𝑑 = 2
only, since 𝑥̃, 𝑦 and 𝑥̃0 lie on a plane. We parametrize a general pair of points as 𝑥̃ = (𝑥1, 𝑥2) ∈ 𝒳
and 𝑦 = (𝑥1 − ℓ, 𝑥2) ∈ 𝒳 , so 𝑥21 + 𝑥22 ≤ 𝑅̃2, for 𝑅̃ = tan(𝑅) and by definition ℓ = ‖𝑥̃− 𝑦‖.

Let d(𝑥1, 𝑥2, ℓ)
def
= 𝑑(𝑥, 𝑦)/‖𝑥̃ − 𝑦‖. We proceed to prove the result in three steps, similarly to

the hyperbolic case.

1. If 𝑥1 = ℓ then d(𝑥1, 𝑥2, ℓ) decreases whenever 𝑥1 increases. This allows to prove that it is
enough to consider points in which ℓ ≤ 𝑥1.

2. 𝜕d(·)
𝜕𝑥1
≤ 0, whenever ℓ ≤ 𝑥1. So we can consider 𝑥1 =

√︁
𝑅̃2 − 𝑥22 only.

3. With the constraints above, d(·) increases with ℓ, so in order to lower bound d(·) we can
consider limℓ→0 d(

√︀
𝑅̃− 𝑥2, 𝑥2, ℓ) =

√︀
1 + 𝑥22/(1 + 𝑅̃2). This is minimized at 𝑥2 = 0 and

evaluates to 1/(1 + 𝑅̃2).

For the first step, we compute the partial derivative:

𝜕d(𝑥1, 𝑥2, 𝑥1)

𝜕𝑥1
=
𝑥1
√︀

1 + 𝑥22/(1 + 𝑥21 + 𝑥22)− arccos
(︁√︀

(1 + 𝑥22)/(1 + 𝑥21 + 𝑥22)
)︁

𝑥21
. (33)

In order to see that it is non-positive, we compute the partial derivative of the denominator with
respect to 𝑥2 and obtain

2𝑥31𝑥2√︀
1 + 𝑥22(1 + 𝑥21 + 𝑥22)

≥ 0.

so in order to maximize (33) we set 𝑥2 =
√︁
𝑅̃− 𝑥21. In that case, the numerator is

𝑥1
√︀
1 +𝑅2 − 𝑥21
1 +𝑅2

− arccos

⎛⎝√︃1 +𝑅2 − 𝑥21
1 +𝑅2

⎞⎠ , (34)

and its derivative with respect to 𝑥1 is

− 2𝑥21
(1 +𝑅2)

√︀
1 +𝑅2 − 𝑥21

≤ 0.

and given that (34) with 𝑥1 = 0 evaluates to 0 we conclude that (33) is non-positive. Similarly
to Lemma 23, suppose the horizontal segment that joins 𝑥̃ and 𝑦 passes through 𝑟 def

= (0, 𝑥2). And
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suppose without loss of generality that 𝑑(𝑥, 𝑟) ≥ 𝑑(𝑟, 𝑦), i.e. 𝑥1 ≥ ℓ−𝑥1. Then by the monotonicity
we just proved, we have

𝑑(𝑥, 𝑟)

‖𝑥̃− 𝑟‖
= d(𝑥1, 𝑥2, 𝑥1) ≤ d(ℓ− 𝑥1, 𝑥2, ℓ− 𝑥1) =

𝑑(𝑟, 𝑦)

‖𝑟 − 𝑦‖
. (35)

And this implies d(𝑥1, 𝑥2, 𝑥1) ≤ d(𝑥1, 𝑥2, ℓ). Indeed, that is equivalent to show

𝑑(𝑥, 𝑟)

‖𝑥̃− 𝑟‖
≤ 𝑑(𝑥, 𝑦)

‖𝑥̃− 𝑦‖
=
𝑑(𝑥, 𝑟) + 𝑑(𝑟 + 𝑦)

‖𝑥̃− 𝑟‖+ ‖𝑟 − 𝑦‖
.

Which is true, since after simplifying we arrive to (35). So in order to lower bound d(·), it is enough
to consider ℓ ≤ 𝑥1.

We focus on step 2 now. We have

𝜕d(𝑥1, 𝑥2, ℓ)

𝜕𝑥1
=

√︀
1 + 𝑥22(ℓ− 2𝑥1)

(1 + 𝑥22 + (ℓ− 𝑥1)2)(1 + 𝑥22 + 𝑥21)
.

which is non-positive given the restrictions we imposed after step 1. So in order to lower bound d(·)
we can consider 𝑥1 =

√︁
𝑅̃− 𝑥22 only.

Finally, in order to complete step 3 we compute

𝜕d(
√︁
𝑅̃− 𝑥22, 𝑥2, ℓ)
𝜕ℓ

=

√︀
1 + 𝑥22

ℓ(1 + 𝑅̃2) + ℓ3 − 2ℓ2
√︁
𝑅̃2 − 𝑥22

− 1

ℓ2
arccos

⎛⎜⎜⎝ 1 + 𝑅̃2 − ℓ
√︁
𝑅̃2 − 𝑥22√︂

(1 + 𝑅̃2)(1 + 𝑅̃2 + ℓ2 − 2ℓ
√︁
𝑅̃2 − 𝑥22)

⎞⎟⎟⎠
And in order to prove that this is non-negative, we will prove that the same expression is non-

negative, when multiplied by ℓ2. We compute the partial derivative of the aforementioned expression
with respect to ℓ:

𝜕

𝜕ℓ

⎛⎝𝜕d(
√︁
𝑅̃− 𝑥22, 𝑥2, ℓ)
𝜕ℓ

ℓ2

⎞⎠ =
2ℓ
√︀

1 + 𝑥22(
√︁
𝑅̃2 − 𝑥22 − ℓ)

(1 + 𝑅̃2 + ℓ2 − 2ℓ
√︁
𝑅̃2 − 𝑥22)2

≥ 0.

And ℓ2(𝜕d(
√︁
𝑅̃− 𝑥22, 𝑥2, ℓ)/𝜕ℓ) evaluated at 0 is 0 for all choices of parameters 𝑅 and 𝑥2 in

the domain. So we conclude that 𝜕d(
√︁
𝑅̃− 𝑥22, 𝑥2, ℓ)/𝜕ℓ ≥ 0.
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Thus, we can consider the limit when ℓ→ 0 in order to lower bound d(·). In the defined domain,
we have

lim
ℓ→0

d(

√︁
𝑅̃− 𝑥2, 𝑥2, ℓ) = lim

ℓ→0

1

ℓ
arccos

⎛⎜⎜⎝ 1 + 𝑅̃2 − 𝑥
√︁
𝑅̃2 − 𝑥22√︀

1 + 𝑅̃2

√︂
1 + 𝑥22 + (ℓ−

√︁
𝑅̃2 − 𝑥22)2

⎞⎟⎟⎠
1
= lim

ℓ→0

√︀
1 + 𝑥22

1 + 𝑅̃2 + ℓ2 − 2ℓ
√︁
𝑅̃2 − 𝑥22

=

√︀
1 + 𝑥22

1 + 𝑅̃2
.

We used L’Hôpital’s rule for 1 . Now, the right hand side of the previous expression is minimized
at 𝑥2 = 0 so we conclude that we have

cos2(𝑅) =
1

1 + tan2(𝑅)
=

1

1 + 𝑅̃2
≤ d(𝑥1, 𝑥2, ℓ) =

𝑑(𝑝, 𝑞)

‖𝑝− 𝑞‖
.

The upper bound uses again a similar argument. Assume that ℓ > 𝑥1 and define 𝑟 as above. We
assume again without loss of generality that 𝑥1 ≥ ℓ− 𝑥1. Then

𝑑(𝑥, 𝑟) + 𝑑(𝑟, 𝑦)

ℓ
≤ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
⇐⇒ 𝑑(𝑟, 𝑦)

𝑥1
≤ 𝑑(𝑥, 𝑟)

ℓ− 𝑥1
and the latter is true by the monotonicity proved in step 1. Consequently we can just consider the
points that satisfy ℓ ≤ 𝑥1. By step 2, d(·) is maximal whenever 𝑥1 is the lowest possible, so it is
enough to consider 𝑥1 = ℓ. Using step 1 again, we obtain that the greatest value of d(·) can be
bounded by the limit limℓ→0 d(ℓ, 𝑥2, ℓ) which using L’Hôpital’s rule in 1 and simplifying is

d(𝑥1, 𝑥2, ℓ) ≤ lim
ℓ→0

d(ℓ, 𝑥2, ℓ)

= lim
ℓ→0

1

ℓ
arccos

(︃√︃
1 + 𝑥22

1 + ℓ2 + 𝑥22

)︃
1
=

1√︀
1 + 𝑥22

.

The expression is maximized at 𝑥2 = 0 and evaluates to 1.

C.3. Angle deformation

Lemma 25 Let 𝑥, 𝑦 ∈ 𝐵𝑅 = Exp𝑥0(𝐵̄(0, 𝑅)) ⊆ ℳ𝐾 be two different points and different from
𝑥0, where ℳ𝐾 is a manifold constant sectional curvature 𝐾 ∈ {1,−1}, and if 𝐾 = 1, then
𝑅 < 𝜋/2. Let 𝛼̃ be the angle ∠𝑥0𝑥𝑦, formed by the vectors 𝑥0 − 𝑥 and 𝑦 − 𝑥. Let 𝛼 be the
corresponding angle between the vectors Exp−1

𝑥 (𝑥0) and Exp−1
𝑥 (𝑦). The following holds:

sin(𝛼) = sin(𝛼̃)

√︃
1 +𝐾‖𝑥̃‖2

1 +𝐾‖𝑥̃‖2 sin2(𝛼̃)
, cos(𝛼) = cos(𝛼̃)

√︃
1

1 +𝐾‖𝑥̃‖2 sin2(𝛼̃)
.
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Proof Note that we can restrict ourselves to 𝛼 ∈ [0, 𝜋] because we have (̃−𝑤) = −𝑤̃ (recall our
notation about vectors with tilde). This means that the result for the range 𝛼 ∈ [−𝜋, 0] can be
deduced from the result for −𝛼.

We start with the case 𝐾 = −1. We can assume without loss of generality that the dimension
is 𝑛 = 2, and that the coordinates of 𝑥̃ are (0, 𝑥2), for 𝑥2 ≤ tanh(𝑅) that 𝑦 = (𝑦1, 𝑦2), for some
𝑦1 ≤ 0 and 𝛿 def

= ∠𝑦𝑥̃0𝑥̃ ∈ [0, 𝜋/2], since we can make the distance ‖𝑥̃ − 𝑦‖ as small as we want.
Recall 𝑥̃0 = 0𝑛. We recall that 𝑑(𝑥, 𝑥0) = arctanh(‖𝑥̃‖) and we note that sinh(arctanh(𝑡)) =
𝑡

1−𝑡2 , so that sinh(𝑑(𝑥, 𝑥0)) = ‖𝑥̃‖/
√︀
1− ‖𝑥̃‖2, for any 𝑥̃ ∈ 𝒳 . We will apply the hyperbolic and

Euclidean law of sines Fact 26 in order to compute the value of sin(𝛼) with respect to 𝛼̃. Let 𝑎̃ and
𝑏̃ be points in the border of 𝐵(0, 1) such that the segment joining 𝑎̃ and 𝑏̃ is a chord that contains 𝑥̃
and 𝑦 and ‖𝑎̃− 𝑥̃‖ ≤ ‖𝑏̃− 𝑥̃‖. So ‖𝑎̃− 𝑥̃‖ and ‖𝑏̃− 𝑥̃‖ are

√︀
1− ‖𝑥̃‖2 sin2(𝛼̃)− ‖𝑥̃‖ cos(𝛼̃) and√︀

1− ‖𝑥̃‖2 sin2(𝛼̃) + ‖𝑥̃‖ cos(𝛼̃), respectively. We have

sin(𝛼)
1
=

sinh(𝑑(𝑥0, 𝑦)) sin(𝛿)

sinh(𝑑(𝑥, 𝑦))

2
=

‖𝑥̃0 − 𝑦‖√︀
1− ‖𝑥̃0 − 𝑦‖2

· ‖𝑥̃− 𝑦‖ sin(𝛼̃)
‖𝑥̃0 − 𝑦‖

· 1

sinh(𝑑(𝑥, 𝑦))

3
=

sin(𝛼̃)√︀
1− ‖𝑥̃‖2 + ‖𝑥̃− 𝑦‖(−2‖𝑥̃‖ cos(𝛼̃) + ‖𝑥̃− 𝑦‖)

· ‖𝑥̃− 𝑦‖
sinh(𝑑(𝑥, 𝑦))

4
=

sin(𝛼̃)√︀
1− ‖𝑥̃‖2

lim
𝑑(𝑥,𝑦)→0

‖𝑥̃− 𝑦‖ 1

sinh(𝑑(𝑥, 𝑦))

5
=

sin(𝛼̃)√︀
1− ‖𝑥̃‖2

lim
𝑑(𝑥,𝑦)→0

(𝑒2𝑑(𝑥,𝑦) − 1)(‖𝑎̃− 𝑥̃‖ · ‖𝑏̃− 𝑥̃‖)
𝑒2𝑑(𝑥,𝑦)(‖𝑎̃− 𝑥̃‖+ ‖𝑏̃− 𝑥̃‖)

· 2𝑒𝑑(𝑥,𝑦)

𝑒2𝑑(𝑥,𝑦) − 1

=
sin(𝛼̃)√︀
1− ‖𝑥̃‖2

· 2‖𝑎̃− 𝑥̃‖ · ‖𝑏̃− 𝑥̃‖
‖𝑎̃− 𝑥̃‖+ ‖𝑏̃− 𝑥̃‖

6
=

sin(𝛼̃)√︀
1− ‖𝑥̃‖2

· 2(1− ‖𝑥̃‖
2 sin2(𝛼̃)− ‖𝑥̃‖2 cos2(𝛼̃))

2
√︀
1− ‖𝑥̃‖2 sin2(𝛼̃)

= sin(𝛼̃)

√︃
1− ‖𝑥̃‖2

1− ‖𝑥̃‖2 sin2(𝛼̃)
.

In 1 we used the hyperbolic sine theorem. In 2 we used the expression above regarding segments
that pass through the origin, and the Euclidean sine theorem. In 3 , we simplify and use that the
coordinates of 𝑦 are (− sin(𝛼̃)‖𝑥̃− 𝑦‖, ‖𝑥̃‖ − cos(𝛼̃)‖𝑥̃− 𝑦‖). Then, in 4 , since sin(𝛼) does not
depend on ‖𝑥̃ − 𝑦‖, we can take the limit when 𝑑(𝑥, 𝑦) → 0, by which we mean we take the limit
𝑦 → 𝑥̃ by keeping the angle 𝛼̃ constant. Since a posteriori the limit of each fraction exists, we
compute them one at a time. 5 uses (32) and the definition of sinh(𝑑(𝑥, 𝑦)) for the last factor. The
equality for the other factor can be checked with (32). In 6 we substitute ‖𝑎̃− 𝑥̃‖ and ‖𝑏̃− 𝑥̃‖ by
their values.

The spherical case is similar to the hyperbolic case. We also assume without loss of generality
that the dimension is 𝑛 = 2. Define 𝑦 as a point such that ∠𝑥̃0𝑥̃𝑦 = 𝛼̃. We can assume without
loss of generality that the coordinates of 𝑥̃ are (0, 𝑥2), that 𝑦 = (𝑦1, 𝑦2), for 𝑦1 ≤ 0, and 𝛿 def

=
∠𝑦𝑥̃0𝑥̃ ∈ [0, 𝜋/2], since we can make the distance ‖𝑥̃ − 𝑦‖ as small as we want. We recall that
by (30) we have 𝑑(𝑥0, 𝑥) = arctan(‖𝑥̃0 − 𝑥̃‖) and we note that sin(arctan(𝑡)) = 𝑡

1+𝑡2
, so that

sin(𝑑(𝑥0, 𝑥)) = ‖𝑥̃0 − 𝑥̃‖/
√︀
1 + ‖𝑥̃0 − 𝑥̃‖2, for any 𝑥̃ ∈ 𝒳 . We will apply the spherical and

Euclidean law of sines Fact 26 in order to compute the value of sin(𝛼) with respect to 𝛼̃. We have
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sin(𝛼)
1
=

sin(𝑑(𝑥0, 𝑦)) sin(𝛿)

sin(𝑑(𝑥, 𝑦))

2
=

‖𝑥̃0 − 𝑦‖√︀
1 + ‖𝑥̃0 − 𝑦‖2

· ‖𝑥̃− 𝑦‖ sin(𝛼̃)
‖𝑥̃0 − 𝑦‖

1

sin(𝑑(𝑥, 𝑦))

3
=

sin(𝛼̃)‖𝑥̃− 𝑦‖√︀
1 + ‖𝑥̃0 − 𝑦‖2

√︁
1− (1−‖𝑥‖ cos(𝛼̃)‖𝑥̃−𝑦‖+‖𝑥̃‖2)2

(1+‖𝑥̃‖2)(1+‖𝑥̃0−𝑦‖2)

4
=

sin(𝛼̃)‖𝑥̃− 𝑦‖√︀
‖𝑥̃− 𝑦‖2(1 + ‖𝑥̃‖2 − ‖𝑥̃‖2 cos2(𝛼̃))/(1 + ‖𝑥̃‖2)

5
= sin(𝛼̃)

√︃
1 + ‖𝑥̃‖2

1 + ‖𝑥̃‖2 sin2(𝛼̃)
.

In 1 we used the spherical sine theorem. In 2 we used the expression above regarding seg-
ments that pass through the origin, and the Euclidean sine theorem. In 3 , we use the fact that the
coordinates of 𝑦 are (− sin(𝛼̃)‖𝑥̃−𝑦‖, ‖𝑥̃‖2−cos(𝛼̃)‖𝑥̃−𝑦‖), use the distance formula (31) and the
trigonometric equality sin(arccos(𝑥)) =

√
1− 𝑥2. Then, in 4 and 5 , we multiply and simplify.

Finally, in both cases, the cosine formula is derived from the identity sin2(𝛼) + cos2(𝛼) = 1
after noticing that the sign of cos(𝛼) and the sign of cos(𝛼̃) are the same. The latter fact can be seen
to hold true by noticing that 𝛼 is monotonous with respect to 𝛼̃ and the fact that 𝛼̃ = 𝜋/2 implies
sin(𝛼) = 0.

Fact 26 (Constant Curvature non-Euclidean Law of Sines and Law of Cosines) Let𝐾 ̸= 0 and
let S𝐾(·) and C𝐾(·) denote the special sine and cosine, respectively, defined as S𝐾(𝑡) = sin(

√
𝐾𝑡)

and C𝐾(𝑡) = cos(
√
𝐾𝑡) if 𝐾 > 0, and as S𝐾(𝑡) = sinh(

√
−𝐾𝑡) and C𝐾(𝑡) = cosh(

√
−𝐾𝑡) if

𝐾 < 0. Let 𝑎, 𝑏, 𝑐 be the lengths of the sides of a geodesic triangle defined on a manifold of constant
sectional curvature 𝐾. Let 𝛼, 𝛽, 𝛾 be the angles of the geodesic triangle, that are opposite to the
sides 𝑎, 𝑏, 𝑐. The following holds:

• Law of sines:
sin(𝛼)

S𝐾(𝑎)
=

sin(𝛽)

S𝐾(𝑏)
=

sin(𝛾)

S𝐾(𝑐)
.

• Law of cosines:
C𝐾(𝑎) = C𝐾(𝑏) C𝐾(𝑐) + cos(𝛼) S𝐾(𝑏) S𝐾(𝑐).

We refer to (Greenberg, 1993) for a proof of these classical theorems.

C.4. Gradient deformation and smoothness of 𝑓

Lemma 25, with 𝛼̃ = 𝜋/2, shows that 𝑒1 ⊥ 𝑒𝑗 , for 𝑗 ̸= 1. The rotational symmetry implies 𝑒𝑖 ⊥ 𝑒𝑗
for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 > 1. As in Lemma 2, let 𝑥 ∈ ℬ𝑅 be a point and assume without loss of generality
that 𝑥̃ ∈ span{𝑒1} and ∇𝑓(𝑥̃) ∈ span{𝑒1, 𝑒2}. It can be assumed without loss of generality
because of the symmetries. So we can assume the dimension is 𝑛 = 2. Using Lemma 2 we obtain
that 𝛼̃ = 0 implies 𝛼 = 0. Also 𝛼̃ = 𝜋/2 implies 𝛼 = 𝜋/2, so the adjoint of the differential of
ℎ−1 at 𝑥, (dℎ−1)*𝑥 diagonalizes and has 𝑒1 and 𝑒2 as eigenvectors. We only need to compute the
eigenvalues. The computation of the first one uses that the geodesic passing from 𝑥0 and 𝑥 can be
parametrized as ℎ−1(𝑥̃0+arctan(𝜆̃𝑒1)) if𝐾 = 1 and ℎ−1(𝑥̃0+arctanh(𝜆̃𝑒1)) if𝐾 = −1, by (29).
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The derivative of arctan(·) or arctanh(·) reveals that the first eigenvector, the one corresponding to
𝑒1, is 1/(1 +𝐾‖𝑥̃2‖), i.e. ∇𝑓(𝑥̃)1 = ∇𝐹 (𝑥)1/(1 +𝐾‖𝑥̃2‖). For the second one, let 𝑥 = (𝑥1, 0)
and 𝑦 = (𝑦1, 𝑦2), with 𝑦1 = 𝑥1 the second eigenvector results from the computation, for 𝐾 = −1:

lim
𝑦2→0

𝑑(𝑥, 𝑦)

𝑦2
= lim

𝑦2→0

1

2𝑦2
log

(︃
1 +

2𝑦2√︀
1− 𝑥21 − 𝑦2

)︃

1
= lim

𝑦2→0

2√
1−𝑥21−𝑦2

+ 2𝑦2

(
√

1−𝑥21−𝑦2)2

2 + 4𝑦2√
1−𝑥21−𝑦2

=
1√︀

1− 𝑥21
,

and for 𝐾 = 1:

lim
𝑦2→0

𝑑(𝑥, 𝑦)

𝑦2
= lim

𝑦2→0

1

𝑦2
arccos

(︃ √︀
1 + 𝑥21√︀

1 + 𝑥21 + 𝑦22

)︃
2
= lim

𝑦2→0

√︀
1 + 𝑥21

1 + 𝑥21 + 𝑦22

=
1√︀

1 + 𝑥21
.

So, since 𝑥1 = ‖𝑥̃‖, we have ∇𝑓(𝑥̃)2 = ∇𝐹 (𝑥)2/
√︀
1 +𝐾‖𝑥̃‖2 for 𝐾 ∈ {1,−1}. We used

L’Hôpital’s rule in 1 and 2 .
Also note that if 𝑣 ∈ 𝑇𝑥ℳ𝐾 is a vector normal to∇𝐹 (𝑥), then 𝑣 is normal to∇𝑓(𝑥). It is easy

to see this geometrically: Indeed, no matter how ℎ changes the geometry, since it is a geodesic map,
a geodesic in the direction of first-order constant increase of 𝐹 is mapped via ℎ to a geodesic in the
direction of first-order constant increase of 𝑓 . And the respective gradients must be perpendicular
to all these directions. Alternatively, this can be seen algebraically. Suppose first 𝑛 = 2, then 𝑣 is
proportional to (∇𝐹 (𝑥)2,−∇𝐹 (𝑥)1) = (

√︀
1 +𝐾‖𝑥̃‖2∇𝑓(𝑥̃)2,−(1 + 𝐾‖𝑥̃‖2)∇𝑓(𝑥̃1)). And a

vector 𝑣′ normal to∇𝑓(𝑥) must be proportional to (−∇𝑓(𝑥)2,∇𝑓(𝑥)1). Let 𝛼 be the angle formed
by 𝑣 and −𝑒1, 𝛼̃ the corresponding angle formed between 𝑣 and −𝑒1, and 𝛼̃′ the angle formed by 𝑣′

and −𝑒1. Then we have, using the expression for the vectors proportional to 𝑣 and 𝑣′:

sin(𝛼) =
−𝑓(𝑥)2√︀

∇𝑓(𝑥)22 + (1 + ‖𝑥‖2)∇𝑓(𝑥)21
and sin(𝛼̃′) =

−𝑓(𝑥)2√︀
∇𝑓(𝑥)22 +∇𝑓(𝑥)21

and using one equation on the other yields sin(𝛼) = sin(𝛼̃′)
√︀

(1 +𝐾‖𝑥̃2‖)/(1 +𝐾‖𝑥̃2‖ sin2(𝛼̃′)),
which after applying Lemma 25 we obtain sin(𝛼̃′) = sin(𝛼̃) from which we conclude that 𝛼̃′ = 𝛼̃
given that the angles are in the same quadrant. So 𝑣 ⊥ ∇𝑓(𝑥). In order to prove this for 𝑛 ≥ 3 one
can apply the reduction (42) to the case 𝑛 = 2 that we obtain in the next section.

Combining the results obtained so far in Appendix C, we can prove Lemma 2. We continue by
proving Lemma 4, which will generalize the computations we just performed, in order to analyze
the Hessian of 𝑓 and provide smoothness. Then, in the next section, we combine the results in
Lemma 2 to prove Lemma 3.
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Proof of Lemma 2. The lemma follows from Lemmas 23, 24, 25 and the previous reasoning in this
Section C.4.

Proof of Lemma 4. Recall 𝐹 :ℳ𝐾 → R is a function defined on a manifold of constant sectional
curvature with a point 𝑥* ∈ ℬ𝑅 such that∇𝐹 (𝑥*) = 0 and we call 𝑅 an upper bound on 𝑑(𝑥0, 𝑥*),
for an initial point 𝑥0.

We will compute the Hessian of 𝑓 = 𝐹 ∘ ℎ−1 and we will bound its spectral norm for any
point 𝑥̃ ∈ 𝒳 . We can assume without loss of generality that 𝑛 = 2 and 𝑥̃ = (ℓ̃, 0), for ℓ̃ > 0
(the case ℓ̃ = 0 is trivial), since there is a rotational symmetry with 𝑒1 as axis. This means that by
rotating we could align the top eigenvector of the Hessian at a point so that it is in span{𝑒1, 𝑒2}. Let
𝑦 = (𝑦1, 𝑦2) ∈ 𝒳 be another point, with 𝑦1 = ℓ̃. We can also assume that 𝑦2 > 0 without loss of
generality, because of our symmetry. Our approach will be the following. We know by Lemma 2.b
and by the beginning of this Section C.4 that the adjoint of the differential of ℎ−1 at 𝑦, (dℎ−1)*𝑦
has Exp−1

𝑦 (𝑥0) and a normal vector to it as eigenvectors. Their corresponding eigenvalues are
1/(1+𝐾‖𝑦‖2) and 1/

√︀
1 +𝐾‖𝑦‖2, respectively. Consider the basis {𝑒1, 𝑒2} of 𝑇𝑥ℳ𝐾 as defined

at the beginning of this section, i.e. where 𝑒1 is a unit vector proportional to −Exp−1
𝑥 (𝑥0) and 𝑒2 is

the normal vector to 𝑒1 that makes the basis orthonormal. Consider this basis being transported to 𝑦
using parallel transport and denote the result {𝑣𝑦, 𝑣⊥𝑦 }. Assume we have the gradient∇𝐹 (𝑦) written
in this basis. Then we can compute the gradient of 𝑓 at 𝑦 by applying (dℎ−1)*𝑦 to ∇𝐹 (𝑦). In order
to do that, we compose the change of basis from {𝑣𝑦, 𝑣⊥𝑦 } to the basis of eigenvectors of (dℎ−1)*𝑦,
then we apply a diagonal transformation given by the eigenvalues and finally we change the basis to
{𝑒1, 𝑒2}. Once this is done, we can differentiate with respect to 𝑦2 in order to compute a column of
the Hessian. Let 𝛼̃ be the angle formed by the vectors 𝑦 and 𝑥̃. Note that 𝛼̃ = arctan(𝑦2/𝑦1). Let
𝛾 be the angle formed by the vectors (𝑦 − 𝑥̃) and −𝑦. That is, the angle 𝛾 = 𝜋 −∠𝑥̃𝑦𝑥̃0. Since 𝑣⊥𝑦
is the parallel transport of 𝑒⊥2 , the angle between 𝑣⊥𝑦 and the vector Exp−1

𝑦 (𝑥0) is 𝛾. Note we use
the same convention as before for the angles, i.e. 𝛾 is the corresponding angle to 𝛾, meaning that if
𝛾 is the angle between two intersecting geodesics in ℬ𝑅, then 𝛾 is the angle between the respective
corresponding geodesics in 𝒳 . Note the first change of basis is a rotation and that the angle of
rotation is 𝛾 − 𝜋/2. The last change of basis is a rotation with angle equal to the angle formed by a
vector 𝑣 normal to −𝑦 ( 𝑣 is the one such that −𝑦 × 𝑣 > 0) and the vector 𝑒2. This vector is equal
to 𝛼̃. So we have

∇𝑓(𝑦) =
(︂
cos(𝛼̃) − sin(𝛼̃)
sin(𝛼̃) cos(𝛼̃)

)︂(︃ 1
1+𝐾(𝑦21+𝑦

2
2)

0

0 1√
1+𝐾(𝑦21+𝑦

2
2)

)︃(︂
sin(𝛾) − cos(𝛾)
cos(𝛾) sin(𝛾)

)︂
∇𝐹 (𝑦)

(36)
We want to take the derivative of this expression with respect to 𝑦2 and we want to evaluate it at

𝑦2 = 0. Let the matrices above be 𝐴, 𝐵 and 𝐶 so that ∇𝑓(𝑦) = 𝐴𝐵𝐶∇𝐹 (𝑦). Using Lemma 2.b
we have

sin(𝛾) = sin(𝛾)

√︃
1 +𝐾(𝑦21 + 𝑦22)

1 +𝐾(𝑦21 + 𝑦22) sin
2(𝛾)

1
= cos(𝛼̃)

√︃
1 +𝐾(𝑦21 + 𝑦22)

1 +𝐾(𝑦21 + 𝑦22) cos
2(𝛼̃)

,

cos(𝛾) = − sin(𝛼̃)

√︃
1

1 +𝐾(𝑦21 + 𝑦22) cos
2(𝛼̃)

,

(37)
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where 1 follows from sin(𝛾) = sin(𝛼̃+ 𝜋/2) = cos(𝛼̃). Now we compute some quantities

𝐴|𝑦2=0 = 𝐼, 𝐵|𝑦2=0 =

(︃ 1
1+𝐾𝑦21

0

0 1√
1+𝐾𝑦21

)︃
, 𝐶|𝑦2=0 = 𝐼,

𝜕𝐴

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

=
𝜕𝛼̃

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

·
(︂
0 −1
1 0

)︂
1
=

(︃
0 −1

𝑦1
1
𝑦1

0

)︃
,

𝜕𝐵

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

=

(︃ 2𝐾𝑦2
(1+𝐾(𝑦21+𝑦

2
2))

2 0

0 2𝐾𝑦2
2(1+𝐾(𝑦21+𝑦

2
2))

3/2

)︃⃒⃒⃒⃒
⃒
𝑦2=0

=

(︂
0 0
0 0

)︂
,

𝜕𝐶

𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

2
=

⎛⎝ 0 1

𝑦1
√

1+𝐾𝑦21
−1

𝑦1
√

1+𝐾𝑦21
0

⎞⎠ .

Equalities 1 and 2 follow after using (37), 𝛼̃ = arctan(𝑦2𝑦1 ) and taking derivatives. Now we
differentiate (36) with respect to 𝑦2 and evaluate to 𝑦2 = 0 using the chain rule. The result is(︂
∇2𝑓(𝑥̃)12
∇2𝑓(𝑥̃)22

)︂
=

(︂
𝜕𝐴

𝜕𝑦2
𝐵𝐶∇𝐹 (𝑥) +𝐴

𝜕𝐵

𝜕𝑦2
𝐶∇𝐹 (𝑥) +𝐴𝐵

𝜕𝐶

𝜕𝑦2
∇𝐹 (𝑥) +𝐴𝐵𝐶

𝜕∇𝐹 (𝑥)
𝜕𝑦2

)︂⃒⃒⃒⃒
𝑦2=0

=

⎛⎝ −∇𝑓(𝑥̃)2
𝑦1
√

1+𝐾𝑦21
∇𝑓(𝑥̃)1

𝑦1(1+𝐾𝑦21)

⎞⎠+

(︂
0
0

)︂
+

⎛⎝ ∇𝑓(𝑥̃)2
𝑦1(1+𝐾𝑦21)

3/2

−∇𝑓(𝑥̃)1
𝑦1(1+𝐾𝑦21)

⎞⎠+

⎛⎝ ∇2𝐹 (𝑥)12
(1+𝐾𝑦21)

3/2

∇2𝐹 (𝑥)22
1+𝐾𝑦21

⎞⎠
Computing the other column of the Hessian is easier. We can just consider (36) with 𝛼̃ = 0,
𝛾 = 𝜋/2 and vary 𝑦1. Taking derivatives with respect to 𝑦1 gives

(︂
∇2𝑓(𝑥̃)11
∇2𝑓(𝑥̃)21

)︂
=

⎛⎝−2𝐾𝑦1∇𝑓(𝑥̃)1
(1+𝐾𝑦21)

2

−𝐾𝑦1∇𝑓(𝑥̃)2
(1+𝐾𝑦21)

3/2

⎞⎠+

⎛⎝ ∇2𝐹 (𝑥)11
(1+𝐾𝑦21)

2

∇2𝐹 (𝑥)21
(1+𝐾𝑦21)

3/2

⎞⎠ .

Note in the computations of both of the columns of the Hessian we have used

𝜕∇𝐹 (𝑦)𝑖
𝜕𝑦1

= ∇𝐹 (𝑥)𝑖1 ·
1

1 +𝐾𝑦21
and

𝜕∇𝐹 (𝑦)𝑖
𝜕𝑦2

⃒⃒⃒⃒
𝑦2=0

= ∇𝐹 (𝑥)𝑖2 ·
1√︀

1 +𝐾𝑦21
,

for 𝑖 = 1, 2. The eigenvalues of the adjoint of the differential of ℎ−1 appear as a factor because
we are differentiating with respect to the geodesic in 𝒳 which moves at a different speed than the
corresponding geodesic in ℬ𝑅. Note as well, as a sanity check, that the cross derivatives are equal,
since

− 1

𝑦1
√︀
1 +𝐾𝑦21

+
1

𝑦1(1 +𝐾𝑦21)
3/2

=
1

𝑦1
√︀

1 +𝐾𝑦21

(︂
−1 + 1

1 +𝐾𝑦21

)︂
=

−𝐾𝑦1
(1 +𝐾𝑦21)

3/2
.

Finally, we bound the new smoothness constant 𝐿̃ by bounding the spectral norm of this Hessian.
First note that using 𝑦1 = ℓ̃ we have that 1√

1+𝐾ℓ̃2
= C𝐾(ℓ) and then for 𝐾 = −1 it is ℓ̃ = tanh(ℓ)

and for 𝐾 = 1 it is ℓ̃ = tan(ℓ), where ℓ = 𝑑(𝑥, 𝑥0) < 𝑅. We have that since there is a point
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𝑥* ∈ ℬ𝑅 such that ∇𝐹 (𝑥*) = 0 and 𝐹 is 𝐿-smooth, then it is ‖∇𝐹 (𝑥)‖ ≤ 2𝐿𝑅. Similarly, by
𝐿-smoothness |∇2𝐹 (𝑥)𝑖𝑗 | ≤ 𝐿. We are now ready to prove 𝐿̃-smoothness of 𝑓 .

𝐿̃2 ≤ max
𝑥̃∈𝒳
‖∇2𝑓(𝑥̃)‖22

≤ max
𝑥̃∈𝒳
‖∇2𝑓(𝑥̃)‖2𝐹 = max

𝑥̃∈𝒳
{∇2𝑓(𝑥̃)11 + 2∇2𝑓(𝑥̃)12 +∇2𝑓(𝑥̃)22}

≤ 𝐿2([C4
𝐾(𝑅) + 4𝑅 S𝐾(𝑅) C3

𝐾(𝑅)]2 + 2[C3
𝐾(𝑅) + 2𝑅 S𝐾(𝑅) C2

𝐾(𝑅)]2 +C4
𝐾(𝑅))

and this can be bounded by 44𝐿2max{1, 𝑅2} if 𝐾 = 1 and 44𝐿2max{1, 𝑅2}C8
𝐾(𝑅) if 𝐾 = −1.

In any case, it is 𝑂(𝐿2). We note that for tilted convex functions we have that gradient Lipschitz-
ness, smoothness and bounded Hessian are equivalent properties. Indeed, this is a classical result
for convex functions and the proof of the implication that does not hold for general differentiable
functions (showing that smoothness implies gradient Lipschitzness) only requires that a point with
zero gradient is a global minimizer, cf. (Zhou, 2018) for instance. This property is true for tilted
convex functions.

C.5. Proof of Lemma 3

Proof Assume for the moment that the dimension is 𝑛 = 2. We can assume without loss of
generality that 𝑥̃ = (ℓ̃, 0). We are given two vectors, that are the gradients ∇𝐹 (𝑥), ∇𝑓(𝑥̃) and a
vector 𝑤 ∈ 𝑇𝑥ℳ𝐾 . Let 𝛿 be the angle between 𝑤̃ and −𝑥̃. Let 𝛿 be the corresponding angle, i.e.
the angle between 𝑤 and 𝑢 def

= Exp−1
𝑥 (𝑥0). Let 𝛼 be the angle in between ∇𝐹 (𝑥) and 𝑢. Let 𝛽 be

the angle in between∇𝑓(𝑥̃) and −𝑥. 𝛼̃ and 𝛽 are defined similarly. We claim

⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(𝑥̃)
‖∇𝑓(𝑥̃)‖ ,

𝑤̃
‖𝑤̃‖⟩

=

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
. (38)

Let’s see how to arrive to this expression. By Lemma 2.c we have

tan(𝛼) =
tan(𝛽)√︀
1 +𝐾ℓ̃2

. (39)

From this relationship we deduce

cos(𝛼) = cos(𝛽)

√︃
1 +𝐾ℓ̃2

1 +𝐾ℓ̃2 cos2(𝛽)
, (40)
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that comes from squaring (39), reorganizing terms and noting that sign(cos(𝛼)) = sign(cos(𝛽))
which is implied by Lemma 2.c. We are now ready to prove the claim (38) (for 𝑛 = 2). We have

⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(𝑥̃)
‖∇𝑓(𝑥̃)‖ ,

𝑤̃
‖𝑤̃‖⟩

=
cos(𝛼− 𝛿)
cos(𝛽 − 𝛿)

2
=

cos(𝛿) + tan(𝛼) sin(𝛿)

cos(𝛽) cos(𝛿) + sin(𝛽) sin(𝛿)
cos(𝛼)

3
=

cos(𝛿)√
1+𝐾ℓ̃2 sin2(𝛿)

+ tan(𝛽)√
1+𝐾ℓ̃2

sin(𝛿)
√

1+𝐾ℓ̃2√
1+𝐾ℓ̃2 sin2(𝛿)

cos(𝛽) cos(𝛿) + sin(𝛽) sin(𝛿)
cos(𝛽)

√︃
1 +𝐾ℓ̃2

1 +𝐾ℓ̃2 cos2(𝛽)

4
=

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
.

Equality 1 follows by the definition of 𝛼, 𝛿, 𝛿, and 𝛽. In 2 , we used trigonometric identities. In
3 we used Lemma 2.b, (39) and (40). By reordering the expression, the denominator cancels out

with a factor of the numerator in 4 .
In order to work with arbitrary dimension, we note it is enough to prove it for 𝑛 = 3, since in

order to bound
⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑣
‖𝑣‖⟩

⟨ ∇𝑓(𝑥̃)
‖∇𝑓(𝑥̃)‖ ,

𝑣
‖𝑣‖⟩

,

it is enough to consider the following submanifold

ℳ′
𝐾

def
= Exp𝑥(span{𝑣,Exp−1

𝑥 (𝑥0),∇𝐹 (𝑥)}).

for an arbitrary vector 𝑣 ∈ 𝑇𝑥ℳ𝐾 and a point 𝑥 defined as above. The case 𝑛 = 3 can be further
reduced to the case 𝑛 = 2 in the following way. Suppose ℳ′

𝐾 is a three dimensional manifold
(if it is one or two dimensional there is nothing to do). Define the following orthonormal basis of
𝑇𝑥ℳ𝐾 , {𝑒1, 𝑒2, 𝑒3} where 𝑒1 = −Exp−1

𝑥 (𝑥0)/‖Exp−1
𝑥 (𝑥0)‖, 𝑒2 is a unit vector, normal to 𝑒1

such that 𝑒2 ∈ span{𝑒1,∇𝐹 (𝑥)}. And 𝑒3 is a vector that completes the orthonormal basis. In this
basis, let 𝑣 be parametrized by ‖𝑣‖(sin(𝛿), cos(𝜈) cos(𝛿), sin(𝜈) cos(𝛿)), where 𝛿 can be thought as
the angle between the vector 𝑣 and its projection onto the plane span{𝑒2, 𝑒3} and 𝜈 can be thought
as the angle between this projection and its projection onto 𝑒2. Similarly we parametrize 𝑣 by
‖𝑣‖(sin(𝛿), cos(𝜈) cos(𝛿), sin(𝜈) cos(𝛿)), where the base used is the analogous base to the previous
one, i.e. the vectors {𝑒1, 𝑒2, 𝑒3}. Taking into account that 𝑒2 ⊥ 𝑒1, 𝑒3 ⊥ 𝑒1, 𝑒2 ⊥ 𝑒1, 𝑒3 ⊥ 𝑒1, and
the fact that 𝑒1 is parallel to −Exp𝑥(𝑥0), by the radial symmetry of the geodesic map we have that
𝜈 = 𝜈. Also, by looking at the submanifold Exp𝑥(span{𝑒1, 𝑣}) and using Lemma 2.b we have

sin(𝛿) = sin(𝛿)

√︃
1 +𝐾ℓ̃2

1 +𝐾ℓ̃2 sin(𝛿)
.

If we want to compare ⟨∇𝐹 (𝑥), 𝑣⟩ with ⟨∇𝑓(𝑥̃), 𝑣⟩ we should be able to just zero out the third
components of 𝑣 and 𝑣 and work in 𝑛 = 2. But in order to completely obtain a reduction to the
two-dimensional case we studied a few paragraphs above, we would need to prove that if we call
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𝑤
def
= (sin(𝛿), cos(𝜈) cos(𝛿), 0) the vector 𝑣 with the third component made 0, then 𝑤̃ is in the same

direction of the vector 𝑣, when the third component is made 0. The norm of these two vectors
will not be the same, however. Let 𝑤̃′ = (sin(𝛿), cos(𝜈) cos(𝛿), 0) be the vector 𝑣 when the third
component is made 0. Then

‖𝑤‖ = ‖𝑣‖
√︁

sin2(𝛿) + cos2(𝛿) cos2(𝜈) and ‖𝑤̃′‖ = ‖𝑣‖
√︁
sin2(𝛿) + cos2(𝛿) cos2(𝜈). (41)

But indeed, we claim
𝑤̃ and 𝑤̃′ have the same direction. (42)

This is easy to see geometrically: since we are working with a geodesic map, the submanifolds
Exp𝑥(span{𝑣, 𝑒3}) and Exp𝑥(span{𝑒1, 𝑒2}) contain𝑤. Similarly the submanifolds 𝑥+span{𝑣, 𝑒3}
and 𝑥+span{𝑒1, 𝑒2} contain 𝑤̃′. If the intersections of each of these pair of manifolds is a geodesic
then the geodesic map must map one intersection to the other one, implying 𝑤̃ is proportional to
𝑤̃′. If the intersections are degenerate the case is trivial. Alternatively, one can prove this fact al-
gebraically after some computations. It will be convenient for the rest of the proof so we will also
include it here. If we call 𝛿* and 𝛿′ the angles formed by, respectively, the vectors 𝑒2 and 𝑤, and the
vectors 𝑒2 and 𝑤̃′, then we have 𝑤̃′ is proportional to 𝑤̃ if 𝛿′ = 𝛿*, or equivalently 𝛿′ = 𝛿*. Using
the definitions of 𝑤 and 𝑤̃′ we have

sin(𝛿*) = sin

(︂
arctan

(︂
sin(𝛿)

cos(𝜈) cos(𝛿)

)︂)︂
=

tan(𝛿)/ cos(𝜈)

(tan(𝛿)/ cos(𝜈))2 + 1

=
sin(𝛿)√︀

sin2(𝛿) + cos2(𝜈) cos2(𝛿)
,

and analogously

sin(𝛿′) = sin

(︃
arctan

(︃
sin(𝛿)

cos(𝜈) cos(𝛿)

)︃)︃
=

tan(𝛿)/ cos(𝜈)

(tan(𝛿)/ cos(𝜈))2 + 1

=
sin(𝛿)√︁

sin2(𝛿) + cos2(𝜈) cos2(𝛿)
.

(43)

Using Lemma 2.b for the pairs 𝛿′, 𝛿′ and 𝛿*, 𝛿*, and the equations above we obtain

sin(𝛿*) =

sin(𝛿)

√︂
1+𝐾ℓ̃2

1+𝐾ℓ̃2 sin2(𝛿)√︂
sin2(𝛿) 1+𝐾ℓ̃2

1+𝐾ℓ̃2 sin2(𝛿)
+ cos2(𝜈) cos2(𝛿)

1+𝐾ℓ̃2 sin2(𝛿)

=
sin(𝛿)

√︀
1 +𝐾ℓ̃2√︁

sin2(𝛿)(1 +𝐾ℓ̃2) + cos2(𝜈) cos2(𝛿)
,

and

sin(𝛿′) =
sin(𝛿)√︁

sin2(𝛿) + cos2(𝜈) cos2(𝛿)

⎯⎸⎸⎷ 1 +𝐾ℓ̃2

1 +𝐾ℓ̃2
(︁

sin2(𝛿)

sin2(𝛿)+cos2(𝜈) cos2(𝛿)

)︁ ,
The two expressions on the right hand side are equal. This implies sin(𝛿′) = sin(𝛿*). Since the
angles were in the same quadrant we have 𝛿′ = 𝛿*.
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We can now come back to the study of ⟨∇𝐹 (𝑥),𝑣⟩
⟨∇𝑓(𝑥̃),𝑣⟩ . By (41) we have

⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(𝑥̃), 𝑣⟩

=
‖∇𝐹 (𝑥)‖
‖∇𝑓(𝑥̃)‖

‖𝑣‖
‖𝑣‖
⟨ ∇𝐹 (𝑥)
‖∇𝐹 (𝑥)‖ ,

𝑤
‖𝑤‖⟩

⟨ ∇𝑓(𝑥̃)
‖∇𝑓(𝑥̃)‖ ,

𝑤̃
‖𝑤̃‖⟩

√︀
sin2(𝛿) + cos2(𝛿) cos2(𝜈)√︁
sin2(𝛿) + cos2(𝛿) cos2(𝜈)

We now operate the last two fractions. Using (38) and (41) we get that the product of the last two
fractions above is equal to

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿*))(1 +𝐾ℓ̃2 cos2(𝛽))

√︂
sin2(𝛿) 1+𝐾ℓ̃2

(1+𝐾ℓ̃2 sin2(𝛿))
+ cos2(𝜈) cos2(𝛿)

1+𝐾ℓ̃2 sin(𝛿)

sin2(𝛿) + cos2(𝛿) cos2(𝜈)

which after using (43) (recall 𝛿* = 𝛿′), and simplifying it yields√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
.

So finally we have

⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(𝑥̃), 𝑣⟩

=
‖∇𝐹 (𝑥)‖
‖∇𝑓(𝑥̃)‖

‖𝑣‖
‖𝑣‖

√︃
1 +𝐾ℓ̃2

(1 +𝐾ℓ̃2 sin2(𝛿))(1 +𝐾ℓ̃2 cos2(𝛽))
.

In order to bound the previous expression, we now use Lemma 2.c and Lemma 2.a, and bound
sin2(𝛿) and cos2(𝛽) by 0 or 1 depending on the inequality. Recall that, by (30) we have 1/

√︀
1 +𝐾ℓ̃2 =

C𝐾(ℓ), for ℓ = 𝑑(𝑥, 𝑥0) ≤ 𝑅. And ℓ̃ = ‖𝑥̃‖. Let’s proceed. We obtain, for 𝐾 = −1

cosh−3(𝑅) ≤ 1

cosh2(ℓ)
· 1 · 1

cosh(ℓ)
≤ ⟨∇𝐹 (𝑥), 𝑣⟩
⟨∇𝑓(𝑥̃), 𝑣⟩

≤ 1

cosh(ℓ)
· cosh2(ℓ) · cosh(ℓ) ≤ cosh2(𝑅).

and for 𝐾 = 1 it is

cos2(𝑅) ≤ 1

cos(ℓ)
· cos2(ℓ) · cos(ℓ) ≤ ⟨∇𝐹 (𝑥), 𝑣⟩

⟨∇𝑓(𝑥̃), 𝑣⟩
≤ 1

cos2(ℓ)
· 1 · 1

cos(ℓ)
≤ cos−3(𝑅).

The first part of Lemma 3 follows, for 𝛾p = cosh−3(𝑅) and 𝛾n = cosh−2(𝑅) when 𝐾 = −1,
and 𝛾p = cos2(𝑅) and 𝛾n = cos3(𝑅) when 𝐾 = 1.

The second part of Lemma 3 follows readily from the first one and g-convexity of 𝐹 , as in the
following. It holds

𝑓(𝑥̃) +
1

𝛾n
⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩

1
≤ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩

2
≤ 𝐹 (𝑦) = 𝑓(𝑦),

and

𝑓(𝑥̃) + 𝛾p⟨∇𝑓(𝑥̃), 𝑦 − 𝑥̃⟩
3
≤ 𝐹 (𝑥) + ⟨∇𝐹 (𝑥), 𝑦 − 𝑥⟩

4
≤ 𝐹 (𝑦) = 𝑓(𝑦),

where 1 and 3 hold if ⟨∇𝑓(𝑥̃), 𝑦− 𝑥̃⟩ ≤ 0 and ⟨∇𝑓(𝑥̃), 𝑦− 𝑥̃⟩ ≥ 0, respectively, by the first part
of this theorem. Inequalities 2 and 4 hold by g-convexity of 𝐹 .
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Appendix D. Constants depending on 𝑅 and 𝐾, and comparisons

We discuss the value of the constants of our algorithms in Remark 28 and discuss recent hardness
results in Remark 29. But we start by proving a relevant result that says that the condition number of
an 𝐿-smooth and 𝜇-strongly g-convex function 𝐹 : ℬ𝑅 → R is lower bounded by a term depending
on 𝑅 and 𝐾, where the condition number is defined by 𝐿/𝜇. This is unlike in the Euclidean case,
for which there are functions with condition number 1.

In particular, we show that the function 𝑥 ↦→ 1
2𝑑(𝑥, 𝑥0)

2 has minimum condition number on ℬ𝑅,
and is (𝑅

√︀
|𝐾| cot𝐾(𝑅))− sign(𝐾), where cot𝐾(𝑅) is the special cotangent that is cot(

√︀
|𝐾|𝑅) if

𝐾 > 0 and coth(
√︀
|𝐾|𝑅) if 𝐾 < 0. And sign(𝐾) is 𝐾/|𝐾| for 𝐾 ̸= 0. The fact about the

condition number of 1
2𝑑(𝑥, 𝑥0)

2 can be obtained from the proof of Fact 20, and actually the fact per
se as a comparison geometry theorem that uses that the inequality there is satisfied with equality in
the constant curvature case. However, we recover the computation of this condition number while
proving the proposition.

Proposition 27 Let 𝐹 :ℳ𝐾 → R be an 𝐿-smooth and 𝜇-strongly convex function on ℬ𝑅 ⊂ℳ𝐾 .
Assume 𝐹 is twice differentiable with continuous Hessian. Then, the condition number 𝐿/𝜇 of 𝐹
on ℬ𝑅 is at least the condition number of the function 1

2𝑑(𝑥, 𝑥0)
2 on ℬ𝑅.

Proof As we have done before, we can assume𝐾 ∈ {1,−1} because the other cases can be reduced
to this one by a rescaling, cf. Remark 22. Recall that by definition ofℳ𝐾 and ℬ𝑅, for 𝐾 > 0, we
have that 𝑅 < 𝜋/2

√
𝐾.

We start by noting that given 𝐹 , we can obtain another function 𝐺 whose condition number is
at most the one of 𝐹 and such that it is symmetric with respect to every rotation whose axis goes
through 𝑥0. Formally, 𝐺 = 𝐺 ∘ exp𝑥0 ∘ 𝜎 ∘ exp

−1
𝑥0 for a rotation 𝜎 ∈ SO(𝑛). Equivalently, the

function 𝐺(𝑥) depends on ‖ exp−1
𝑥0 (𝑥)‖ only. Indeed, an average of 𝐹 and itself after performing an

arbitrary rotation 𝜎, that is (𝐹 + 𝐹 ∘ exp𝑥0 ∘ 𝜎 ∘ exp
−1
𝑥0 )/2, has a condition number that is at most

the condition number of 𝐹 . This is due to the Hessian being linear and its maximum and minimum
eigenvalues over the domain determining the condition number. That is, the smoothness constant
can only decrease or stay the same after performing the average. It would only be the same if, at
some point, the Hessian matrices of each of the two added functions both have the same eigenvector
with maximum eigenvalue and it equals the smoothness constant. The argument for the minimum
is analogous. This argument extends to the case in which we integrate the function, pointwise, over
SO(𝑛) after applying a rotation. That is, defining 𝑔(𝑥) =

∫︀
𝑆𝑂(𝑛) 𝐹 ∘ exp𝑥0 ∘ 𝜎 ∘ exp

−1
𝑥0 (𝑥)𝑑𝜎

we obtain a symmetric function with condition number that is at most the condition number of 𝐹 .
So without loss of generality we can solely study symmetric functions 𝐺 and in fact, due to the
symmetries we do not lose generality if we work in dimension 𝑛 = 2.

Denote 𝑦𝑥 = ‖ exp−1
𝑥0 (𝑥)‖ ∈ R. We will express the condition number of 𝐺 by using the

function 𝑔 : R → R, defined as 𝑔(𝑦𝑥) = 𝐺(𝑥) for any point 𝑥 ∈ ℳ𝐾 . Note the function is well
defined by the symmetry property on 𝐺. A basis formed by (two) eigenvectors of ∇2𝐺(𝑥) can be
chosen to have vectors in the direction of exp−1

𝑥 (𝑥0) and its normal. Indeed, either every vector
is an eigenvector associated to the same eigenvalue, which satisfies the above, or by the symme-
try of ∇2𝐺(𝑥), there exists a base {𝑣1, 𝑣2} of orthonormal eigenvectors, associated with different
eigenvalues 𝜆1 > 𝜆2. By the symmetry of 𝐺 we have that 𝜆1 = 𝑣⊤1 ∇2𝐺(𝑥)𝑣1 = 𝑣′⊤1 ∇2𝐺(𝑥)𝑣′1,
where 𝑣′1 is the symmetric vector to 𝑣1 with respect to exp−1

𝑥 (𝑥0). However, since 𝜆1 ̸= 𝜆2 then the
only unit vectors 𝑣 that can satisfy 𝜆1 = 𝑣⊤∇2𝐺(𝑥)𝑣 are ±𝑣1, so 𝑣1 = 𝑣′1 and therefore 𝑣1 and 𝑣2
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can be taken to be in the direction of exp−1
𝑥 (𝑥0) and its normal. Consequently, one eigenvalue of

∇2𝐺(𝑥) is 𝑔′′(𝑦𝑥). We can compute the other eigenvalue by using the non-Euclidean cosine theo-
rem, cf. Fact 26. In order to do this, first note that ∇𝐺(𝑥) must be in the direction of exp−1

𝑥 (𝑥0)
by the symmetry of 𝐺 and it must be ‖∇𝐺(𝑥)‖ = 𝑔′(𝑦𝑥). Now given 𝑥 ∈ ℳ and small enough
𝜂 ∈ R, we consider a right geodesic triangle with vertices 𝑥0, 𝑥 and 𝑧𝜂, where 𝑧𝜂 = exp𝑥(𝜂𝑣2)
for 𝑣2 defined above. Recall it is a unit vector that is normal to exp−1

𝑥 (𝑥0) and it is an eigenvector
of ∇2𝐺(𝑥). The definition of 𝑧𝜂 implies that the angle between exp−1

𝑥 (𝑥0) and exp−1
𝑥 (𝑥2) is 𝜋/2

and 𝑑(𝑥, 𝑧𝜂) = 𝜂. Let 𝛼(𝜂) be the angle between exp−1
𝑧𝜂 (𝑥0) and exp−1

𝑧𝜂 (𝑥). Since we are only
interested about the eigenvalue of∇2𝐺(𝑥) associated to the eigenvector 𝑣2 we can project∇𝐺(𝑧𝜂)
onto exp−1

𝑧𝜂 (𝑥), which has norm ‖∇𝐺(𝑧𝜂) cos(𝛼(𝜂))‖. We compute the eigenvalue as

lim
𝜂→0

‖∇𝐺(𝑧𝜂)‖ cos(𝛼(𝜂))
𝜂

= ‖∇𝐺(𝑥)‖ lim
𝜂→0

cos(𝛼(𝜂))

𝜂

1
= 𝑔′(𝑦𝑥) lim

𝜂→0

C𝐾(𝑑(𝑥0, 𝑥))− C𝐾(𝜂) C𝐾(𝑑(𝑥0, 𝑧𝜂))

𝐾 S𝐾(𝑑(𝑥0, 𝑧𝜂))𝜂 S𝐾(𝜂)

2
= 𝑔′(𝑦𝑥) lim

𝜂→0

C𝐾(𝑑(𝑥0, 𝑥))(1− C2
𝐾(𝜂))/𝐾

S𝐾(𝑑(𝑥0, 𝑧𝜂))𝜂 S𝐾(𝜂)

3
= 𝑔′(𝑦𝑥) cot𝐾(𝑑(𝑥0, 𝑥)) = 𝑔′(𝑦𝑥) cot𝐾(𝑦𝑥).

Above, 1 uses the cosine theorem, cf. Fact 26, applied as

C𝐾(𝑑(𝑥0, 𝑥)) = C𝐾(𝑑(𝑥, 𝑧𝜂)) C𝐾(𝑑(𝑥0, 𝑧𝜂)) +𝐾 cos(𝛼(𝜂)) S𝐾(𝑑(𝑥0, 𝑧𝜂)) S𝐾(𝑑(𝑥, 𝑧𝜂)).

Recall that we have 𝜂 = 𝑑(𝑥, 𝑧𝜂) by definition. Equality 2 uses the cosine theorem again, with a
different ordering of the sides so we obtain

C𝐾(𝑑(𝑥0, 𝑧𝜂)) = C𝐾(𝑑(𝑥0, 𝑥)) C𝐾(𝑑(𝑥, 𝑧𝜂)),

by using the right angle of the geodesic triangle. Finally 3 simplifies some terms, since (1 −
C2
𝐾(𝜂))/𝐾 = S2𝐾(𝜂) and uses that 𝑑(𝑥0, 𝑧𝜂) and S𝐾(𝜂)/𝜂 tend to 𝑑(𝑥0, 𝑥) and 1, respectively,

when 𝜂 → 0. We conclude that the condition number of 𝐺 is

𝜅𝐺 =
max𝑦∈[0,𝑅]{𝑔′′(𝑦), 𝑔′(𝑦) cot𝐾(𝑦)}
min𝑦∈[0,𝑅]{𝑔′′(𝑦), 𝑔′(𝑦) cot𝐾(𝑦)}

. (44)

We only need to prove that for any twice differentiable function 𝑔 : [0, 𝑅] → R with continuous
second derivative, the quotient above is at least the value of the quotient that we obtain for 𝑔(𝑦) =
𝑦2/2, which is (𝑅 cot𝐾(𝑅))−𝐾 . This is computed by noticing that, for that choice of 𝑔, we have
that 𝑔′′(𝑦) = 1, that if 𝐾 = 1 then 𝑔′(𝑦) cot𝐾(𝑦) ≤ 1 and it reaches its minimum at 𝑦 = 𝑅. If
𝐾 = −1 then 𝑔′(𝑦) cot𝐾(𝑦) ≥ 1 and it is maximum at 𝑦 = 𝑅. Note this implies that the condition
number of 1

2𝑑(𝑥0, 𝑥)
2 on ℬ𝑅 is (𝑅 cot𝐾(𝑅))−𝐾 , as it was advanced before.

Given 𝑔, let 𝑎, 𝑏 be tight constants such that 𝑔′′(𝑦) ∈ [𝑎, 𝑏] for 𝑦 ∈ [0, 𝑅]. Such constants
must exist since 𝑔′′ is a continuous function defined on a compact. We have 𝑔′(𝑦) ≤ 𝑏𝑦, since by
the symmetry and differentiability of 𝐺 it must be 𝑔′(0) = 0. We obtain a lower bound on 𝜅𝐺
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if we lower bound the numerator of (44) by max𝑦∈[0,𝑅]{𝑔′′(𝑦)} = 𝑏 and if we upper bound the
denominator by 𝑔′(𝑅) cot𝐾(𝑅). We obtain

𝜅𝐺 ≥
𝑏

𝑔′(𝑅) cot𝐾(𝑅)
≥ 𝑏

𝑅𝑏 cot𝐾(𝑅)
=

1

𝑅 cot𝐾(𝑅)
.

Similarly, if we lower bound the denominator of (44) by 𝑎𝑅 cot𝐾(𝑅) ≤ max𝑦∈[0,𝑅]{𝑔′(𝑦) cot𝐾(𝑦)}
and upper bound the denominator by 𝑎 = min𝑦∈[0,𝑅]{𝑔′′(𝑦)} we obtain

𝜅𝐺 ≥
𝑎𝑅 cot𝐾(𝑅)

𝑎
= 𝑅 cot𝐾(𝑅).

For each case 𝐾 ∈ {1,−1}, there is only one of the lower bounds above such that its right hand
side is greater than 1 and it precisely matches the value of the condition number of 1

2𝑑(𝑥0, 𝑥)
2 we

computed above.

Remark 28 The previous proposition intuitively suggests that it could be unavoidable to have some
particular constants depending on 𝑅 in the rates of any optimization algorithm. For starters, opti-
mizing a g-convex function by adding a strongly g-convex regularizer and optimizing the resulting
strongly g-convex problem would entail rates containing a factor depending on the condition num-
ber of the regularizer, which the proposition proves it is at least the value (𝑅

√︀
|𝐾| cot𝐾(𝑅))− sign(𝐾).

This implies that in the case of positive curvature𝐾 = 1, a 𝜇-strongly g-convex and 𝐿-smooth func-
tion defined on the ballℬ𝑅 must have condition number that is at least tan(𝑅)/𝑅 ∈ [ 2

𝜋 cos(𝑅) ,
1

cos(𝑅) ].
This grows fast with𝑅, but it is only natural if one takes into account that no strongly g-convex func-
tion exists if 𝑅 ≥ 𝜋

2 , due to the space containing a full geodesic circle (so the constant function is
the only g-convex function in this domain). Optimization in manifolds of positive curvature only
makes sense in spaces of low diameter.

The classical domain of application of accelerated methods for strongly convex functions con-
sists of functions with large condition number 𝜅, due to the

√
𝜅-dependence of the rates. For𝐾 = 1,

the constants of our algorithm 1/𝛾p = cos−2(𝑅) and 1/𝛾n = cos−3(𝑅) (we also have the constant√︀
44max{1, 𝑅2} coming from 𝐿̃) might seem large but they are a small polynomial of the minimum

attainable condition number. If the condition number is large or, in its limit to infinity, whenever
the function is g-convex, then acceleration is beneficial. For the case 𝐾 = −1 the previous propo-
sition shows that the minimum condition number is 𝑅 tanh(𝑅). In this case, our constants are
1/𝛾p = cosh3(𝑅) and 1/𝛾n = cosh2(𝑅), and a constant of a similar nature coming from 𝐿̃ (cf,
proof of Lemma 4), which do not present an analogous dependency with respect to the minimum
attainable condition number as in the previous case. This exponential dependence could be due
to the exponential volume that a ball contains in the hyperbolic space. Studying if these constants
are necessary for a global full accelerated method is interesting open problem and future direc-
tion of research. Regardless, the essence of our results for 𝜇-strongly g-convex functions is that
we can optimize at a full accelerated rate globally as opposed to essentially fully accelerating in
a small neighborhood of radius 𝑂((𝜇/𝐿)3/4) around the minimizer (this is explicit in (Zhang and
Sra, 2018) and implicit in (Ahn and Sra, 2020) since the rates of AGD are nearly achieved only
after a number of steps that is what RGD needs to reach the neighborhood). Note that, additionally,
we can achieve acceleration in the g-convex case, which was not possible before. In any case, we
note that in machine learning applications, it has been observed that the iterates do not get far
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from initialization (Nagarajan and Kolter, 2019), especially in overparametrized models. Conse-
quently, in such regime, 𝑅 being a small constant is not a strong assumption and the constants of
our algorithms do not become significant.

In the sequel, we comment on the work of Hamilton and Moitra (2021); Criscitiello and Boumal
(2021), that show a hardness result in this direction. Our intuition is that, due to the geometry, it is
necessary to have an additive and/or multiplicative constant depending on 𝑅 on the optimal rates of
convergence, similarly to the multiplicative constant 𝑅 that one has in the lower bound for the class
of smooth and convex functions in the Euclidean space. And for easy strongly g-convex functions
(low condition number), this hardness could dominate convergence. However, when the condition
number is large, which is the traditional regime of application of accelerated methods, or in its limit
to infinity, that is in the case of g-convexity, acceleration becomes again a very useful tool.

D.1. Comment on hardness results

Remark 29 After this work was publicly available, two lower bounds have been constructed,
(Hamilton and Moitra, 2021; Criscitiello and Boumal, 2021). For the first one (Hamilton and
Moitra, 2021), in the noisy setting, in the hyperbolic plane, the authors claim “[to have] dashed
these hopes [of having Nesterov-like accelerated algorithms] by showing that acceleration is impos-
sible even in the simplest of settings where we want to minimize a smooth and strongly geodesically
convex function over the hyperbolic plane”. We argue here that this is not the case.

Hamilton and Moitra (2021) essentially argue that, in their setting with a noisy oracle in the
hyperbolic plane, one needs & 𝑅/ log(𝑅) noisy queries to the gradient or function value for opti-
mizing functions of the form 𝑑(𝑥, 𝑥*)2, while their condition numbers are 𝐿/𝜇 ≈ 𝑅 so obtaining
rates .

√︀
𝐿/𝜇 is impossible in general. But it does not preclude to have an algorithm with rates

that are, for instance, . 𝑅 +
√︀
𝐿/𝜇 log(1/𝜀). Or a similar expression that involves some other

additive or multiplicative constants depending on 𝑅. In fact, they are able to show that “acceler-
ation is impossible even in the simplest of settings” precisely because they study the simplest of
settings! That is, they show there is some hardness depending on the geometry. In particular, when
the condition number is low this hardness can dominate the convergence. For instance, for rates
𝑅+

√︀
𝐿/𝜇 log(1/𝜀) the 𝑅 can dominate convergence unless 𝐿/𝜇 ≥ 𝑅2 or 𝜀 is small enough. The

lower bound does not mean that acceleration is doomed to fail. In fact, the problems for which ac-
celeration gets the most improvement are ill-conditioned problems and for those one would expect
to still have acceleration in their noisy setting. In particular, acceleration is of importance when
𝐿/𝜇 is large or in the limit to infinity, that is, when the function is g-convex.

We note that Hamilton and Moitra (2021) independently proved a similar result as our Propo-
sition 27, limited to the hyperbolic plane. In particular they show that the condition number for
an 𝐿-smooth 𝜇-strongly g-convex function 𝐹 defined on the hyperbolic disk of curvature 𝐾 = −1
must be 𝜅𝐹 = 𝐿/𝜇 ≥ Ω(𝑅), which is similar to the precise result that we found that had optimal
constant 𝑅 cot(𝑅).

The lower bound of Criscitiello and Boumal (2021) is a generalization of the previous one,
in which they show that the ̃︀Ω(𝑅) lower bound still holds for optimization with a deterministic
first-order oracle, in hyperbolic spaces and some other more general negatively curved manifolds.
Similarly, this lower bound applies when the condition number is small enough (≈ 𝑅), close to the
lower bound on the condition number that we proved in Proposition 27. They also provide a lower
bound in the case of smooth and only g-convex functions. Their lower bound requires to have 𝑅
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growing as ̃︀Θ(1𝜀 ) and in that case they show that RGD is optimal. This result is in the same spirit as
the previous one: The geometry causes some hardness, and if we allow to grow the feasible space
enough, this hardness can dominate convergence. On the other hand, this does not mean that one
cannot accelerate when, for instance, 𝑅 is fixed and 𝜀 is small enough.

D.2. Comment on the rates of eventually accelerated algorithms (Ahn and Sra, 2020)

Remark 30 The local algorithm in (Zhang and Sra, 2018) requires starting 𝑂((𝐿/𝜇)−3/4) close
to the optimum and it finds an 𝜀-minimizer in 𝑂(

√︀
𝐿/𝜇 log(1/𝜀)). On the other hand RGD has a

convergence rate of 𝑂(𝐿/𝜇 log(𝜇/𝜀)). Hence, we could run both algorithms in parallel and restart
them every few iterations from the best of the two points that both algorithms yielded. In that case
we would obtain the convergence rate 𝑂*(𝐿/𝜇 +

√︀
𝐿/𝜇 log(𝜇/𝜀)). Indeed, note that we would

just compute twice as many gradients as if we run RGD but we perform as well as if we first run
RGD until it gets into the desired neighborhood and then we run the local accelerated algorithm.
And by 𝜇-strong g-convexity we can guarantee we are 𝜇𝜀̄2/2-close to a minimizer if we are at an
𝜀̄-minimizer so if we set 𝜀̄ so that 𝜇𝜀̄2/2 = 𝑂((𝐿/𝜇)−3/4) and run RGD we reach the neighborhood
after 𝑂((𝐿/𝜇) log(𝜇(𝐿/𝜇)3/4)) iterations.

We note that this mix of RGD and the local algorithm in (Zhang and Sra, 2018) enjoys the same
worse case guarantee of (Ahn and Sra, 2020). This latter work is a generalization of (Zhang and
Sra, 2018) that eventually accelerates. The proofs of this paper reveal that in order for their bound
to reach accelerated rates the algorithm needs as much time as RGD takes to reach the accelerating
neighborhood of (Zhang and Sra, 2018). Indeed, they can guarantee that for their iterates 𝑦𝑡, their
algorithm converges at an accelerated rate 𝑓(𝑦𝑡) − 𝑓(𝑥*) ≤ 𝑂(𝑓(𝑦𝑡−1) − 𝑓(𝑥*))(1 −

√︀
𝜇/𝐿))

when 𝑡 = Ω*( 1
log(1/𝜆)) = Ω*(𝐿/𝜇), where 𝜆 = Ω(1 − 𝜇/𝐿). A summary of rates is presented in

Table 1, including this fact.
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