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Abstract

We consider the Scale-Free Adversarial Multi Armed Bandits(MAB) problem. At the beginning of
the game, the player only knows the number of arms n. It does not know the scale and magnitude
of the losses chosen by the adversary or the number of rounds 7'. In each round, it sees bandit
feedback about the loss vectors l1,...,lr € R™. The goal is to bound its regret as a function of
n and norms of [y, ..., l7. We design a bandit Follow The Regularized Leader (FTRL) algorithm,
that uses an adaptive learning rate and give two different regret bounds, based on the exploration
parameter used. With non-adaptive exploration, our algorithm has a regret of @(\/nLg + LOO\/TTT)
and with adaptive exploration, it has a regret of O(v/nLy + Loov/nLy). Here Loo = sup, ||l oo
Ly = ZtT:l 013, L1 = Z;T:l ||Z¢|| and the O notation suppress logarithmic factors. These are the
first MAB bounds that adapt to the || - ||2, || - |1 norms of the losses. The second bound is the first
data-dependent scale-free MAB bound as T' does not directly appear in the regret. We also develop
a new technique for obtaining a rich class of local-norm lower-bounds for Bregman Divergences.
This technique plays a crucial role in our analysis for controlling the regret when using importance
weighted estimators of unbounded losses. This technique could be of independent interest.
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1. Introduction

The Adversarial Multi Armed Bandit(MAB) problem proceeds as a sequential game of 1" rounds
between a player and an adversary. In eachround ¢t = 1, ..., T, the player selects a distribution p,
over the n-arms and the adversary selects a loss vector [; belonging to some set £ C R"™. An action
iy is sampled from p, and the player observes the loss /;(i;). The (expected) regret of the player is:

i€[n

T T
Rp=E | (i) — mﬁz 1,(i)
t=1 t=1

We assume that the adversary is oblivious, i.e., the loss vectors [y, .. . , I are chosen before the
game begins. So, the above expectation is with respect to the randomness in the player’s strategy. The
goal of the player is to sequentially select the distributions py, . . ., pr such that Rp is minimized. The
adversarial MAB problem has been studied extensively; we refer the reader to the texts of Bubeck and
Cesa-Bianchi (2012); Lattimore and Szepesvari (2020); Slivkins (2019) for further details. Assuming
that £ is bounded, and the || - ||oo-Lipschitz constant G is known to the player in advance (i.e.
supjez |l1]lo = G < 00), the minimax rate of regret is known to be ©(Gv/nT). The Exp3 algorithm
(Auer et al., 2002) has a O(G+/nT log(n)) regret bound whereas the Poly-INF algorithm (Audibert
and Bubeck, 2009) removes the 1/log(n) factor, achieving the optimal O(G+v/nT) regret bound.
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Exp3 and Poly-INF use G in tuning the learning rate, which helps them achieve a linear dependence
on G.

In this paper, we address the case when the player has no knowledge of £. We consider
Scale-Free bounds for MABs, which aim to bound the regret in terms of n and norms of the
loss vectors 1, ...,lr for any sequence of loss vectors chosen arbitrarily by adversary. Scale-
free bounds have been studied in the full-information setting (where the player sees the complete
vector [; in each round). For the Experts problem, which is the full-information counterpart of
adversarial MAB, the AdaHedge algorithm (de Rooij et al., 2014) has a scale-free regret bound

of (’)(\/ log(n) (31, l1]|2,))- For the same problem, the Hedge algorithm (Freund and Schapire,

1997) has a regret bound of O(G+/T log(n)) with knowledge of G. The scale-free bound is more
general as it holds for any /1, ..., 7 € R"”, whereas the bound achieved by the Hedge algorithm only
holds provided that sup, ||/||.c < G where G needs to be known in advance.

1.1. Our Contributions

We present an algorithm for the scale-free MAB problem. By appropriately setting the parameters
of this algorithm, we can achieve a scale-free regret upper-bound of either (5(\/@ + LooV/nT),
or O(v/nLy 4 Looy/nLy). Here Log = sup, ||lt]lco» Lo = So1—; 1113, L1 = 32—, [li¢]|1 and the O
notation suppress logarithmic factors. Our algorithm is also any-time as it does not need to know the
number of rounds 7" in advance. Assuming sup; ||/« < G, our first regret bound achieves linear
dependence on G (sans the hidden logarithmic terms). This bound is only @(\/ﬁ) factor larger than
Poly-INF’s regret of O(G \/717) The second bound is the first completely data-dependent scale-free
regret bound for MABs as it has no direct dependence on 1. Moreover, these are the first MAB
bounds that adapt to the || - ||2, || - |1 norms of the losses. The only previously known scale-free result
for MABs was O( L y/n1 log(n)) by Hadiji and Stoltz (2020), which adapts to the || - || norm
and is not completely data-dependent due to the 7" in their bound.

In the analysis, we present a novel and general technique to obtain local-norm lower-bounds
for Bregman divergences induced by a special class of functions that are commonly used in online
learning. These local-norm lower-bounds can be used to obtain regret inequalities as shown in
Lattimore and Szepesvdri (2020, Corollary 28.8). We use our technique to obtain a full-information
regret inequality that holds for any arbitrary sequence of losses and is particularly useful in the bandit
setting due to its local-norm structure. This technique could be of independent interest.

1.2. Related Work

Scale-Free Regret. As mentioned earlier, Scale-Free regret bounds were studied in the full informa-
tion setting. The AdaHedge algorithm from de Rooij et al. (2014) gives a scale-free bound for the
experts problem. The AdaFTRL algorithm from Orabona and Pl (2018) extends these bounds to
the general online convex optimization problem. We rely on the analysis of AdaFTRL as presented
in Koolen (2016). For the MAB problem, Hadiji and Stoltz (2020) show a scale-free bound of
O(Loo+/nT log(n)), which is close to the O(G+/nT log(n)) bound of Exp3. Our scale-free bounds
are more versatile as they are able to adapt to additional structure in the loss sequence, such as the
case of sparse losses with large magnitude, i.e., when Ly << L2 nT and L; << Lo,nT. Even in
the worst-case, our bounds are a factor of @(\/ﬁ) and @(m ) larger than their bound respectivley.
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Data-dependent Regret. These bounds use a “measure of hardness” of the sequence of loss vectors
instead of T'. Algorithms that have a data-dependent regret bound perform better than the worst-case
regret, when the sequence of losses is “easy” according to the measure of hardness used. For instance,
First-order bounds (Allenberg et al., 2006; Foster et al., 2016; Pogodin and Lattimore, 2019), also
known as small-loss or L* bounds depend on L* = min;¢|y Zthl l¢(7). Bounds that depend on the
empirical variance of the losses were shown in Hazan and Kale (2011); Bubeck et al. (2018). Path
length bounds that depend on ZtT:_ll ||l — ly41]| or a similar quantity appear in Wei and Luo (2018);
Bubeck et al. (2019). Zimmert and Seldin (2021) give an algorithm that adapts to any stochastictiy
present in the losses. Our bound is comparable to a result in Bubeck et al. (2018), where they derive
a regret bound depending on Y"1, ||/;]|3. However, all these results assume either £ = [0, 1] or
L£=[-1,1]".

Effective Range Regret. The effective range of the loss sequence is defined as supy ; ; [I:(i) — l:(j)]-
Gerchinovitz and Lattimore (2016) showed that it is impossible to adapt to the effective range in
adversarial MAB. This result does not contradict the existence of scale-free bounds as the effective
range could be much smaller than, for instance, the complete range sup; g ; ; [l+(7) — Is(j)|. In fact,
Hadiji and Stoltz (2020) already show a regret bound that adapts to the complete range. We do
note that under some mild additional assumptions, Cesa-Bianchi and Shamir (2018) show that it is
possible to adapt to the effective range.

1.3. Organization

In Section 2 we present the scale-free MAB algorithm (Algorithm 1) and its scale-free regret bound
(Theorem 1). Section 3 introduces Potential functions, based on which we build our analysis. Section
4 shows a technique for obtaining local-norm lower-bounds for Bregman divergences. Section 5
briefly discusses full-information FTRL, AdaFTRL and in Theorem 8 we obtain a regret inequality
for AdaFTRL with the log-barrier regularizer. Theorem 1 is proved in Section 6.

1.4. Notation

Let A,, be the probability simplex {p € R™ : S°" | p(i) = 1,p(i) > 0,i € [n]}. Let 1° be the vector
with 1°(4) = 1 and 1°(j) = O for all j # 4. For e € (0, 1], let 1© = (1 — ¢)1° 4 ¢/n. The all ones and
all zeros vector are denoted by 1 and 0 respectively. Let H; be the history from time-step 1 to ¢, i.e.,
Hy = {l1(i1),l2(i2), ..., 1e(i) }.

2. Algorithm

Consider for a moment, full-information strategies on A,,. In the full information setting, in each
round ¢, the player picks a point p, € A,,. Simultaneously, the adversary picks a loss vector I, € R".
The player incurs a loss of [, p; and (unlike the bandit setting) sees the entire vector l;. A full-
information strategy JF takes as input a sequence of loss vectors [y, . . ., [; and outputs the next iterate
pi+1 € A, A MAB strategy B can be constructed from a full-information strategy F along with
two other components as follows:

1. A sampling scheme S, which constructs a sampling distribution pj from the current iterate p;.
An arm i, is then sampled from pj and the loss [;(i;) is revealed to the player.



SCALE-FREE ADVERSARIAL MAB

2. An estimation scheme &, that constructs an estimate /; of the loss vector [; using l4(i¢) and py.

3. A full-information strategy ./, which computes the next iterate p;11 using all the estimates
I, ... 1.

In fact, most existing MAB strategies in the literature can be described in the above framework with
different choices of S, &, F.

A delicate balance needs to be struck between S, £ and F in order to achieve a good regret
bound for B. Suppose the best arm in hindsight is i, = arg min;cp, Zthl l¢(i) The expected regret
of MAB strategy BB can be decomposed as follows:

T T
> alin) - lt(i*))] =E [Z I (p —17) ] —E
1
T
:E[Zl:(p pt th—l pt—li*)
=1

(1) (2 3)

+E

Z lt —pt)
Z I (pr — li*)]

t=1

th ]916*1z )]

t=1

+E +E

Term (1) is due to the sampling scheme S, term (2) is the effect of the estimation~scheme~: & and term
(3) is the expected regret of the full-information strategy . on the loss sequence l1, . . ., /7 compared
to playing the fixed strategy 1°".

Sampling Scheme. A commonly used sampling scheme mixes p; with the uniform distribution using
a parameter v, i.e., pj = (1 — v)ps + v/n. Such schemes were first introduced in the seminal work
of Auer et al. (2002) and have remained a mainstay in MAB algorithm design. We use a time-varying
7, i.e., we pick p; = (1 — v.—1)pt + Yt—1/n. Here ;1 could be any measurable function of H;_.

Estimation Scheme. We use the Importance Weighted(IW) estimator which was also introduced by
Auer et al. (2002). It computes [; as:
i) i

P (it)

Since the sampling distribution is p}, the IW estimator is an unbiased estimate of [;:

SN i)
Byl = 3" sl ) 1,

=1 pi(it)

t =

Note that p; is a measurable function of H;_;. Using the tower rule and the fact that E; i~p, [lt] =,
we can see that term (2) is 0.

Full-information strategy. For F, there is a large variety of full-information algorithms that one
could pick from. Most if not all of them belong to one of the two principle families of algorithms:
Follow The Regularized Leader(FTRL) or Online Mirror Descent(OMD). Further, one also has to
choose a suitable regularizer ' within these algorithms for the particular application at hand. We
refer to Cesa-Bianchi and Lugosi (2006); Shalev-Shwartz (2012); Hazan (2016); Orabona (2019);
Joulani et al. (2017, 2020) for a detailed history and comparison of these algorithms. The particular
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algorithm we use is FTRL with a H; measurable, adaptive learning rate 7, that resembles the adaptive
schemes in AdaHedge (de Rooij et al., 2014) and AdaFTRL (Orabona and Pal, 2018).

The regret of F has an component called the stability term W, : R — R. In the bandit case, F
receives the IW estimates I;. So, it is important that the stability term be bounded with IW estimates.
Without going into any technical details, we note that it is desirable to have a stability term bounded
by W,(1) < p'i? as its expectation with IW estimates can be bounded.

Previous techniques to bound the stability term by p ' 12 relied on the assumptions on I, such as
either [ > 0 or [ > —1 (See (Lattimore and Szepesvari, 2019, Page 5)). For arbitrary [ € R", we
show that it is possible to bound the stability term by p'i? using the log-barrier regularizer. The
procedure we develop to obtain this bound is the main technical contribution of our paper.

The complete algorithm for the scale-free MAB problem is described below. We give two choices
for the exploration parameter ;. A simple non-adaptive scheme that is similar to the one in Hadjiji

and Stoltz (2020), where v; L and an adaptive scheme that picks ~y; in a fashion that resembles

Vit
the adaptive learning rate scheme 7.

Algorithm 1: Scale-Free Multi Armed Bandit

Starting Parameters: 79 = n,yo = 1/2
n

Regularizer F(q) = Z(f(q(z)) — f(1/n)), where f(z) = —log(x)
First iterate p; = (1/Z;,1. .., 1/n)
fort =1t T do

Sampling Scheme: p; = (1 — v¢—1)pt + %

Sample Arm i; ~ p} and see loss l¢(it).
L (i) 4,

P} (i)
Compute -y, for next step:

(Option 1) Non-adaptive v, = min(1/2, /n/t)
n

Estimation Scheme: [; =

Y|l (i)

(Option 2) Adaptive v; = where T'y(y) = :
2n + 30 T(vs-1) (1 —pe(ie) +v/n
n 1
Compute 7; = where M;(n) = sup [F (pt — q) — —Bregp(qllp)
1430 My(ns—1) gein |’ n oF

Find next iterate using FTRL: p;11 = arg miAn
qEAnR

t
P +ny qus]
s=1

end

Our main result is the following regret bound for Algorithm 1.

Theorem 1 Foranyly,...,lr € R”, the expected regret of Algorithm 1 is at most:
1. O(v/nLy + LooV/nT) if 4; is non-adaptive (Option 1) and T > 4n
2. O(y/nLy 4+ Loov/nLy) if v; is adaptive (Option 2)

Where Lo = maxy ||lt]|oe, L2 = >y [l L1 = 3oy ||lel1-
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3. Preliminaries

We begin by recalling a few definitions.

Definition 2 (Legendre function) A continuous function F' : D — R is Legendre if F is strictly
convex, continuously differentiable on Interior(D) and limy_,p pserior(p) |V F' ()] = +00.

For instance, the function z log(z) — =, —\/x, — log(z) are all Legendre on (0, c0)
Definition 3 (Bregman Divergence) The Bregman Divergence of function F is:
Bregp(z|ly) = F(z) = F(y) = VF(y)" (z —y).

Definition 4 (Potential Function) A function ¢ : (—oo,a) — (0, +00) for some a € R U {400}
is called a Potential if it is convex, strictly increasing, continuously differentiable and satisfies:

lim ¢(z)=0 and limy(z)=—+oc0

T—r—00 T—a

(a,0)

Figure 1: Potential Function

For instance, exp(z) is a potential with @ = oo and —1/z is a potential with a = 0. A potential
function typically looks like Figure 1. Potentials were introduced in Audibert and Bubeck (2009);
Audibert et al. (2011, 2014) for analyzing the Implicitly Normalized Forecaster(INF) algorithm, of
which Poly-INF is a specific case.

Associated with a potential ¢, we define a function fy as the indefinite integral fy(z) =
[4~Y(2)dz + C. Since the domain of ¢~ is (0, 00), the domain of £, is also (0, 0o). For instance,
if ¢)(x) = —1/x on the domain (—o0, 0), the associated function is fy(z) = —log(z) + C.

Observe that f,,(2) = ¥~1(2) and fu(z) = [w’(w_l(z))]_l. Since ) is strictly convex and
increasing, ¢/ > 0 and thus fj > 0, making fy strictly convex. Moreover, lim,_,o | f;(2) |=
lim,— | ¥™'(2) |= +oo. Thus fy is a Legendre function on (0,cc). Define the function F :
R™ — Ras Fy(z) = > [fy(z(i)) — fy(1/n)]. This function is Legendre on (0, c0)™.

Given a potential 7 : (—00,a) — (0, 400) and its associated function fy;, the Legendre-Fenchel
dual of fy is f7 : (—o0,a) — Rdefined as f(u) = sup,~q(zu— fy(2)). The supremum is achieved
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at z = f}, "' (u) = ¥(u). So we have that £};(u) = uh(u) — fy(1)(u)). This implies £}/ (w) = ¢(u)
and f7"(u) = 1’ (u). Further, using integration by parts on [ ¢(u)du and substituting ¢(u) = s:

[t = wit)~ [ ) = wiw) [ 47 6)ds = ()~ Fo(0lw) +C = F(a)+C
Thus fw f (u)du — C. Here C' is the same constant of integration picked when defining

= 1 ~1(2)dz + C. We have the following property (proof in Appendix A):

Lemma 5 Let x,y be such that x = (u) and y = 1 (v). Then Breg; (y|z) = Bregflz (ul|v)

4. New local-norm lower-bounds for Bregman divergences

Let ¢ be a potential and =,y € R;. We show a general way of obtaining lower-bounds using
potential functions, that are of the form:

Breg;, (yllz) =

Where w is some positive function.

Lemma 6 Let 1 be a potential and x € Ry such that x = 1 (u) for some u. Let ¢ be a non-
negative function such that )(u + ¢(u)) exists. Define the function m(z) = W For all

0 <y < ¢(u+ ¢(u)) we have the lower bound.: Breg; (y|x) = %mgfp%?{)(i))

Proof Let v be such that y = ¢)(v). Using Lemma 5, we have Breg, (y||z) = Bregm (u|lv). Using
the fact that f7(u) = [ ¢ (u)du — C, we have:

Breg ., (ullv) = f3(u) — £ () — f1/(0) (u — ) /w y(u — )

We can visualize Breg f*( u||v) using the potential function. When v < w, it is the area with
green borders in Figure 2 and when u < v, it is the area with green borders in Figure 3.

Consider the line passing through (u,z) and (u + ¢(u), ¥ (u + ¢(u)). Its slope is m(u) >
¥’ (u) > 0. In both cases, the height of the red triangle is |« — y| and its base is % So, the area of

the red triangle will be 3 (‘fn(zg Since the triangle is always smaller than Breg 1 (ul|v), we have the

lower bound Bregy, (y||z) > %% [

In the context of online learning, local-norm lower-bounds have been studied before, see for
example Orabona (2019). However, these relied upon Taylor’s theorem to show that Breg (y||z) =
%(m —y)? fQZ(z) for some z € [z,y]. Then, they used further conditions on z,y to argue that
cfy(x) < fi(2) for some positive constant c and thus arrive at Breg; (yllz) > §(z — y)QfJ(x)
We generalize this argument in Lemma 6, through which we are able to generate a more rich class of
lower-bounds. We illustrate with an example below:
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/
/ /
0 U : 7 u
u+o(u
Figure 2: v < u Figure 3: u < v < u+ ¢(u)

Corollary 7 Let 1p(u) = —1/u in the domain (—oc0,0). For z,y € (0, 1], we have the lower-bound

1 - 2
Breg;, (yllz) = 5 —1—1In ( ) > 2(xgvy)
Proof For any z € (0, 1], let u € (—o0, —1] be such that ¢)(u) = z. Let ¢(u) = —1 — u. Clearly,
d(u) > 0and ¥(u+ ¢(u)) = (—1) = 1. We have
_Yut ) —gpuw) _ 1+5 -1 _
m(w) = o(u) - l-u  u =) =2
Applying Lemma 6, we have the lower-bound forall 0 < y < 1:
1 o 2 1 o 2
Breg;, (y|o) =2 —1-In ( ) > 2% _ 2($$y)

The result of Corollary 7 is illustrated in Figure 4. The shaded region is {(z,y) : = > 0,y >
0,£-1-1In(%) > %@} Clearly the region {(z,y) : 0 <z < 1,0 < y < 1} is within the
shaded region.

S. Full-Information FTRL and AdaFTRL

The iterates of FTRL with the regularizer Fyy(x) = > " [ fy(x(i)) — fy(1/n)] for some potential
function 1) and positive learning rates {n; }Z_,, are of the form:

L Fyla +ntzl q]

Since F); is Legendre, the point p;;1 always exists strictly inside A,,. Orabona (2019) and Joulani
et al. (2017, 2020) provide general purpose regret analysis of FTRL. For the sake of completeness,

DPty1 = arg mlﬂ
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2.5

0:5

1 (z—y)?
2 x

Figure4: £ =1 —1n (%) >

we show a simple way of analyzing FTRL when the action set is A,, and the regularizer chosen is of
the form Fy,(z) = > | [fy(2(7)) — fy(1/n)] in Appendix C.

The AdaFTRL strategy picks a specific sequence of learning rate 7; based on the history H. This
strategy was analyzed in Orabona and P4l (2018) and a simpler analysis was given by Koolen (2016).
Our analysis is adapted from Hadiji and Stoltz (2020, Section E.2.1). We consider the adaptive

learning rate:
@

T B+ Y, My(ne)

Where M(n) = supgea,, [l;—(pt —q) — %Breng (qut)], is the Mixability Gap and o, 3 > 0.

Nt

Since ¢ = p; is a feasible solution for this optimization problem, we have M;(n) > 0. Let p; be the
optimal value of g in the optimization. We have the upper bound

* 1 * *
My(n) =1 (p = p}) — Breer, (v lpe) < 1 (pe = p7) < 2||lilloo

Since M, (n) are non-negative and bounded, the sequence 7, is non-increasing.

Theorem 8 If the regularizer is the log-barrier Fy(z) = > 7", [log(1/n) —log(x(i))] then for any
i € [n], € € (0,1] and any sequence of losses 1y, .. ., Ir, the iterates of AdaFTRL satisfy the regret
inequality "1, 1] (py — 10):

< nlog(1/e) (g + W’O> ZT:ptTl? (nlog(l/e) + x/5>

+ 2sup ||l¢]loo +
t =1
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Proof The log-barrier regularizer Fy,(x) = Y ;" ,[log(1/n) — log(x(7))] is obtained by using the
potential ¢)(u) = —1/u on the domain (—o0, 0). Using Corollary 7, we have the lower-bound:

n
Bregp,, (pfllpe) = D Bregy, (0} (1)[pe(i) > D 5 ol
i=1 =1

This gives us the upper-bound:

n . 1 82 n - . N2 )
< — < —_ = —
= Z.: sk [lt(z)s 277pt(i>:| =2 2 pi(Dh(0) pPe

Thus, we have

Applying Theorem 13(Appendix C), for any i € [n] and € € (0, 1] we have that 31| I;(p; — 17):

St (P 4 va)

; 2 It oo
< rotad) (24 22l ) g g+

The term F,(1%) can be bounded as:

Fy(1%) = nlog(1/n) — (n — 1)log(e/n) — log((1 — €) + ¢/n)
< nlog(1/n) — nlog(e/n) = nlog(1/¢)

For p € A, and regularizer F;, the stability term W is defined as

W, (1) = sup [T (p— q) — Bregp, (qllp)
q€A,

Observe that nM;(n) = ¥, (nl;). For the log-barrier regularizer, we have M;(n) < np/ ?. Thus,
W,(1) < p"i? forall I € R™. Previously, the only known way to achieve ¥,,(I) < pi? was by using
the negative-entropy regularizer along with the assumption / > —1 (See Lattimore and Szepesvari
(2019, Eq. 6 ) or Lattimore and Szepesvari (2020, Eq. 37.15)).

6. Scale-free bandit regret bounds

Theorem 1 For anylq,...,lp € R™, the expected regret of Algorithm 1 is at most:
1. O(v/nLy + LooV/nT) if 4; is non-adaptive (Option 1) and T > 4n

2. O(y/nLy 4+ Loov/nLy) if v; is adaptive (Option 2)

10
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T
%’ Ly = Zt:l Wt||1-

Proof Suppose the best arm in hindsight is i, = arg min;¢ Zthl 1;(7). Let 1** be the vector with
1%(i,) = 1 and 1% (i) = 0 for all i # i,. Let 1* = (1 — €)1 + ¢/n. The expected regret of
Algorithm 1 is:

Where Lo = max; ||li]|co, L2 = S, |t

T T T T
£ 3 h 10| =[S - 1| <2 [ )] wm S04
t=1 t=1 t=1 t=1
T A T T
~2 S - )] 42 [ 1]+ | ST 0]
t=1 t=1 t=1
(1) ) 3)
Define Sy = || Zthl lt||oo- For term (1), we have:
E > - 12*)] =D 1A — 1) < 2| I =265«
t=1 t=1 t=1 lloo
For term (2), we use the fact that E[l}] =1
T . T . ]
EY U (=12 =E > 1 (pe —17)
t=1 t=1 |
Since Algorithm 1 runs log-barrier regularized AdaFTRL with the loss sequence l,...,Ip, wecan
bound the sum inside the expectation using Theorem 8 as Zthl Er (pr — 1¥):
~ ~ T ~
< 10g(0/0) (1 26up ) + 2oup [ + [0 D pI 2 (g +1) 9
t=1
Consider the term sup; ||7¢]|oo:
- |11 (4t)] |11 (4t)| |14 (4t)]
sup ||{ = sup —— =35 - < nsup
t Itelc ¢ py(ie) t (1 —=y—10)pe(it) +y—1/n t V-1
Since y; is a positive, non-increasing sequence:
~ le (2 L
SUPHltHOO Snsupt‘ t(Zt)‘ S Nloo
¢ YT T
Finally, consider the term p, l?
- (i)’ , li(ii)? Li(i)?
T (2 (2 (2
pe i = pelie) 77— = pe(i . s S 4
= = P S i) + 2wt = (= )pl )

Since 0 < ;1 < 1/2,wehave 1 < (1 —7;_1)~! < 2. Thus:

I:(i¢)?
(i)

p 2 <2

11
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Substituting these bounds in the regret inequality (), we have Zt 1 I (pr — 1%):

22 (log(1/e) + 1)

T .
< log(1/e) + Z og(1/e) + 1)
=1
Applying expectation, we have E [Zthl 1N (py — 1) |

(log(Y/e) + 1) + 2nLs (log(Y/e) + 1) E UT]

IN

lt I lt ¢ 2
n Z QnEtZ_; L?é( (22)

tlpt

Thus term (2) can be bounded as E {Zt (o — 1’*)} :

< log(1/e) + v/2nLs (log(1/e) + 1) + 2nLoo (log(1/e) + 1) E {1]

YT

6.1. Non-Adaptive Exploration
First, we present a simple way to bound term (3):
T
E > i1 (0, —pr)
t=1

T
E Zl:((l = Y—1)pt + Ye-1/1 — pt)

t=1
T

Z ’Yt—l]
t=1

T
2> il
Combining the upper-bounds for term (1), (2) and (3), we have E [Zthl le (i) — lt(i*)} :

T
E > yeal) (1/n—pt>]
t=1

<E <2L.E

< 26S00 + log(Ye) + v/2nLa (log(1/e) + 1) + 2nLoo (log(l/e) + 1) E [fle} + 2L E

£

t=1

Pick € = (1 + S )~ ! and the exploration rate 13 = min(1/2,/n/t). If T > 4n, the regret of
Algorithm 1 with non-adaptive exploration is bounded by:

<2 41og(1+ Suo) + V/2nLa(1 + log(1 + Sao)) + 2LeoVRT(2 4 log(1 4 Sao))
< (24 log(1 + Sx)) (1 +V/2nLy + 2LOO\/nT>
@(\/HLQ + Loo\/nT)

12
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6.2. Adaptive Exploration

An alternate way to bound term (3) is:

T

!Z lt — Pt ] =K !Z ly (py — ] =E !Z’Yt—l}l;((i;))(l/n —Pt(it))]
t=1 A
|4 (ir) |
<E [; V-1 W (i0) ]

Combining the upper-bounds for term (1), (2) and (3), we have E [Zthl le(iy) — lt(i*)} :

< 2eSs + log(1/e) + v/2nLsy (log(1/e) + 1) + E

Lo (log(/) +1) o |lili)]
I + 2 ]

Consider the expression inside the expectation. Let
V[l (i)
(1= y)pe(ie) + v/
When 0 < v < 1/2, we have 0 < I';(y) < n|l(i)| < nLs. Moreover, we have

Li(ye-1) _ [li(ir)]
Vi1 Pi(it)

Li(y) =

Pick
n

2n + 22:1 Ly(Ys-1)
We satisfy 0 < 4 < 1/2. Applying Lemma 10, we have:

V=

2nLoo (log(1/e) + 1)
E (log(1/e) Zt

2nLs (log(1/e) + 1)
Le(y2-1)
s DRI

T

TG
iy )

< 2nLoo(2 + Loo) (log(Y/e) + 1) + nloo + (2L (log(Ye) + 1)+ 1 E )
t=1 1t

For the expectation above, we apply Jensen’s inequality:

ut S | NSNS oy - o
Z < 2n]EZ oG | 2nZZ|lt(z)|— 2nlLy
t=1 L\

t=1 pi(i t=1 i=1

Pick € = (1 4+ Soo) L. The regret of Algorithm 1 with adaptive exploration is bounded by:

<2+1log(l+ Seo) + V2nLa (log(l 4+ Seo) + 1)
+ 2nLoo(2 + L) (log(1 + Sa) + 1) + nLog + (2Leo (log(1 + Seo) + 1) + 1) \/2nL;
= O(v/nLy + Loo\/nLy)

13
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Appendix A. Basic results on potentials

Consider a function g : R x R — R defined as g(0, \) = >, ¥(6(i) + A) for some potential 1.
Lemma 9 Forevery 6 € R", there exists a unique X such that g(0, \) = 1

Proof For every § € R", we have that lim ¢(#, \) = 0 and lim g(0,\) = +00. As g is
A——00 A—a—min;(0())

monotonically increasing and continuous, by the intermediate value theorem, for every 6 € R"™ there
exists a unique A such that g(6, \) = 1. [

16


http://blog.wouterkoolen.info/AdaFTRL/post.html
http://blog.wouterkoolen.info/AdaFTRL/post.html
http://arxiv.org/abs/1907.05772
http://arxiv.org/abs/1912.13213
https://doi.org/10.1016/j.tcs.2017.11.021
https://doi.org/10.1016/j.tcs.2017.11.021
http://proceedings.mlr.press/v115/pogodin20a.html
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000068
http://proceedings.mlr.press/v75/wei18a.html
http://proceedings.mlr.press/v75/wei18a.html
http://jmlr.org/papers/v22/19-753.html
http://jmlr.org/papers/v22/19-753.html

SCALE-FREE ADVERSARIAL MAB

Using Lemma 9, we can define a function \(¢) such that g(6, A\(0)) = > ¥(0(i) + A(6)) = 1.
Since ¢(0(¢) + A(0)) > 0and > ;- ; ¥(0(i) + A\(0)) = 1, we can see that the vector ¢ (0 + A\(0)) =
{(0(i) + X))}, € A, forms a probability distribution.

Lemma 5 Let x,y be such that x = v (u) and y = 1(v). Then Breg; (y||z) = Bregys (ul|v)

Proof Use the fact that fj(u) = wip(u) — f(¢(u)).

Breg; (yllv) = Bregy, (¥(v)[[¥(u)) = fu(¥(v)) = fu(¥(u)) = f,(¢(u) (¥ (v) — 1(w))
= v (v) = fi(v) = (u(u) = f(u) —u((v) — P(u))
= fi(u) = £5(v) = £ (v)(u = v) = Breg, (ullv)

Appendix B. A useful summation

Lemma 10 Let A > 0and 0 < Mi(a) < Lforallt=1,...T and a € A C (0,00). Consider the
expression

A T
a + tz:; Mt(CLt_1)

o
B+ 22—1 M;(as—1)

Mt (as— 1)

Where
ay =

Constants «, B > 0 are chosen such that a; € A. If < g, then we have the upper bound:

f;+;Mt ar_ 1)<A<ﬁ L)+L+@<\?&+\/&)

Proof Substituting for a7 in the above expression, we have:

T T
— > Milarer) = 2y (‘;1 + 1) S Mi(ar)

t=1

2
Consider (Zthl M; (at71)>

17
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t(ai—1) +22Mt (ar—1) ZMS (as—1)
o
= Mt(at71)2+22Mt(at71) <a 5)
t—1 t—1 -1
T
at 1)
SZ t(ag—1) +2OZZ
<LZMt a1 —|—20ézgt

Using the fact that 2 <a+bx implies that x < \/a + b for all a, b, z > 0, we have:

Thus, we get:

T
A A A
— 4> My(ar1) = A5 < + 1)
ar | o o —

Appendix C. FTRL and AdaFTRL regret bound
Recall the FTRL update:

Pt+1 = arg mm

Fd, +ﬂtZlT]

The iterate p,1 can be expressed in a simple closed form using ¥. Let 6, = —n, Zi:l ls. The
Lagrangian of the above optimization problem is L(q, @) = Fy(q) — 6 ¢ — a(1 — 1" q), where 1 is
the all ones vector. Taking its derivative with respect to ¢(i) and equating to 0, we get:

Y 7Hq(0) = 0u(i) +a = q(i) = ¥(6:(i) + @)

To compute «, we use the fact that ) ;" | ¢(i) = 1 along with Lemma 9 to show that o = \(6;).
Thus, p¢41 can be written as:

t
Pri1 = (0 + M(0;))  where 0y = —m > I

18
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We introduce the Mixed Bregman in order to simplifies our analysis of FTRL.

Definition 11 (Mixed Bregman) For a, 3 > 0 the («, 3)-Mixed Bregman of function F is:

.
Bregi (ully) = £ - T - TEW) iy,

The Mixed Bregman is not a divergence as Breg%’ﬁ (z||z) may not be zero. However, we do have the
relation aBregy” (z||y) = Bregp(z||y).

Theorem 12 For any p € A,, and any sequence of losses l1, . . ., lr, the iterates of FTRL satisfy
the regret equality S"1_, 1] (p; — p)

T
1
= - Bregs, (bllpy) = Breg, (pllor)| + 3 17 (00 = prsa) = Bregly"~ (pesa )|
t=1

Further; if the sequence {n; }1_ is non-decreasing, we have the regret inequality Zt U (pe—p):

T
< Fu(p) + Z [ltT(Pt —Pes1) —

1
) Bregp, (pi+1([pt)

KCA——
Proof Note that VFy,(pi41) = Y (per1) = 0 + A(6;). We also have that [; = zij 7971 For any
p € A, we have I (p; — p):
T T 9t 1 !

=l (pe1—p0)+L e —pe1)=|——— | (D41 —p) + lt (Pt — Pr41)

VF, — A6 VEy( T
= < ¢(pt) ( L 1) ¢ ptH ) pt+1 +lt (pt Pt+1)

M—1

VEu(p:) VFu(pes1)\ " NG T

= < w( t) - w( ax )> (pt+1 p) ) - ( - 1) (pt+1 —p) ‘HtT(pt —pt+1)
Nt—1 Mt M—1

VEu(p:)  VFu(pis1)\ "

= < ﬁj}(l 2 - wét as )> (Pt+1 —p) + ltT(pt — Di41)

Note that )‘(Gt) _ Al0e-1)
M—1

number. Observe that:

(VFw(Pt) _ VEy(pe+1)
Mt—1 Tt

T
is a constant vector. So, (% — %) (pe+1 — p) = 0. Let « be any

T (pyga ||pe)

) (rir-5) = Bregi " (o) Bregs (o) Bree,

Taking summation over ¢, we have Zt U (pe—p):

T T
= > [Bregi " (pllpe) — Bregi:™ (pllper1) | + D 1 (e — pea) — Bregly ™ (prapo)|
t=1 t=1

T
= Bregy" (pllp1) — Breg " (pllpr+1) +Z[ — pu+1) — Bregp "™ 1(pt+1”pt)}
=1
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Since p1 = (1/n,...,1/n), we have Fy;(p1) = 0 and VF(p1) is a constant vector. We see that
VFuz(pl)T(p — pl) = 0, so the first term is:

Fy(pr+1) n VEy(prs1) " (p — pri1)

»710 (
nr nr

Breg%w

plip1) — Bregy™ (pllpr41) =
1
= [Bregs, (wllpr) — Breg, (vllpr-1)
This completes the proof of the first part.

As Fy(pe41) > 0 and 1, are non-increasing we have:

Fy(pen1)  Fulpr)  VFy(p) '

Bregp " (pr1llpe) = (Pe1 — pr)
uiz M—1 M—1
Fy(piaa Fyu(p VFy,(p T 1
> 1/1( t+ ) - w< t) - w< t) (thrl 7pt) _ 7Breng(pt+l||pt)
-1 -1 -1 -1

Thus, we have Zt 1 I (pe — p):

T
1
= o [Breng(ple) Bregp, (pllpr+1) } —i—Z [ — Di+1) — Bregﬂt,m H(posa||pe)
t=1
1 T
< n?Breng (ple) + Z [l:(pt _pt+1> Bregntant 1(pt+1Hpt)}
t=1

Fy(p) 1
¢
= + ; 1 [ ¢ (pt — pPey1) . gF, (pt—&-lHPt)]

This completes the proof. |

Recall that the AdaFTRL strategy picks learning rate:

a

B+ Zi:l MS(ns—l)

U

Where

1
M) = sup i (= )~ Bree, (a1
qeA, n

Theorem 13 If My(1n;—1)/nt—1 < g1, then for any p € A,, and any sequence of losses l1, . .., I,
the iterates of AdaFTRL satisfy the regret inequality ZZ;I 1! (ps — p)

< Fy(p) (ﬁ 4 28up [litlloo Supt@‘””‘”)

+ 2sup ||lt]|co +
o ¢
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Proof When using non-increasing 7, the regret of FTRL is bounded by Theorem 12:

$ T Fy(p) . T 1
S 1l (pr—p) < + > |1 (e = pra1) — —Bregg, (pirallpe)
=1 nr pat Nt—1
T
Fy(p)
< + M;(ns—
o ; t(ne—1)

Using the fact that 0 < My(n) < 2sup, ||/¢t||c and applying Lemma 10, we have Zthl I (pr — p)

(5017

< Fy(p) (ﬁ 4 28up [litlloo Supt@‘““‘"") NG

+ 2sup ||l¢]|co +
o ¢
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