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Abstract
We consider the minimax query complexity of online planning with a generative model in fixed-
horizon Markov decision processes (MDPs) with linear function approximation. Following recent
works, we consider broad classes of problems where either (i) the optimal value function 𝑣★ or (ii)
the optimal action-value function 𝑞★ lie in the linear span of some features; or (iii) both 𝑣★ and 𝑞★

lie in the linear span when restricted to the states reachable from the starting state. Recently, Weisz
et al. (2021b) showed that under (ii) the minimax query complexity of any planning algorithm is at
least exponential in the horizon 𝐻 or in the feature dimension 𝑑 when the size 𝐴 of the action set can
be chosen to be exponential in min(𝑑, 𝐻). On the other hand, for the setting (i), Weisz et al. (2021a)
introduced TensorPlan, a planner whose query cost is polynomial in all relevant quantities when the
number of actions is fixed. Among other things, these two works left open the question whether
polynomial query complexity is possible when 𝐴 is subexponential in min(𝑑, 𝐻). In this paper we
answer this question in the negative: we show that an exponentially large lower bound holds when
𝐴 = Ω(min(𝑑1/4, 𝐻1/2)), under either (i), (ii) or (iii). In particular, this implies a perhaps surprising
exponential separation of query complexity compared to the work of Du et al. (2021) who prove a
polynomial upper bound when (iii) holds for all states. Furthermore, we show that the upper bound
of TensorPlan can be extended to hold under (iii) and, for MDPs with deterministic transitions and
stochastic rewards, also under (ii).
Keywords: Reinforcement Learning, Planning, Online Planning, Linear Function Approximation,
Information Theoretic Lower Bound, Sample Complexity

1. Introduction

We are concerned with the query complexity of online planning in fixed-horizon Markov decision
processes (MDPs) with large state spaces and finite action sets when the planner is used in a closed-
loop configuration. In each step of the closed-loop process, the planner is called with the state of
the process, after which it is allowed to query a simulator of the MDP until it decides to stop. Then
it needs to return an action, which is used to move the state of the process. This is repeated until
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the time for the episode runs out. The goal of the planner is to maximize the total expected reward
incurred in the episode.

To deal with large state spaces, the planner is helped by giving it access to features (elements of
R𝑑 , the 𝑑-dimensional Euclidean space). The features are associated with the states, but the planner
is only given the features of that states that it encounters either in response to a query or when the
planner is called with a state. The features are assumed to be such that the optimal value 𝑣★(𝑠) at
any state 𝑠 is equal to the linear combination of the features at the state, where the vector 𝜃★ ∈ R𝑑
formed by the coefficients is fixed (regardless of the state) but unknown. An MDP together with
a feature-map (regardless of whether 𝑣★ is realizable or not) is called a featurized MDP. We also
consider the analogous case when the linear combination of features, which can now also depend
on the actions, gives the optimal action-value function 𝑞★, as well as the case when the planner has
access to two sets of features, one for representing the optimal value function and another one for
representing the optimal action-value function.

The model described so far, regardless of which value functions are realizable, is called planning
with local access as the planner can query the simulator for transitions and associated features only
at states previously encountered. We also consider planning with global access to the features where
the planner is given the set of all the states and associated features in advance (no queries required),
and the option to query the simulator for transitions at any state of its choice.

Fix a set of featurized MDPsM and a positive real 𝛿. We say that a planner 𝑃 is 𝛿-sound forM
if for any 𝑀 ∈ M and any start state 𝑠 of the underlying MDP, the total expected value the planner
achieves in an episode when used in 𝑀 from 𝑠 is at most 𝛿 worse than the optimal value associated
with that start state. The set of 𝛿-sound planners forM under the global access (local access) model
is denoted by PGA(M, 𝛿) (respectively, by PLA(M, 𝛿)).

A planner’s query cost is the worst-case expected number of queries it ever uses in a call. For
the global access model and a featurized MDP 𝑀 this is denoted by 𝑞GA(𝑃, 𝑀), while for the local
access model this is denoted by 𝑞LA(𝑃, 𝑀).

Our main results are concerned with the minimax query cost that 𝛿-sound planners incur. In
particular, for a class of featurized MDPsM and 𝛿 > 0, we denote by C★GA(M, 𝛿) the minimax query
cost (in short, query complexity) of 𝛿-sound planners overM given the global access model:

C★GA(M, 𝛿) = inf
𝑃∈PGA (M, 𝛿)

sup
𝑀 ∈M

𝑞GA(𝑃, 𝑀).

Similarly, we define
C★LA(M, 𝛿) = inf

𝑃∈PLA (M, 𝛿)
sup
𝑀 ∈M

𝑞LA(𝑃, 𝑀).

Local access is more demanding in that any planner that is 𝛿-sound forM under the local access
model is automatically 𝛿-sound forM under the global access model. It follows that

C★GA(M, 𝛿) ≤ C★LA(M, 𝛿) (1)

no matter the choice ofM and 𝛿.
In this paper we are concerned mainly with three classes of featurized MDPs. For 𝐵 ≥ 0 and

positive integers 𝑑, 𝐻, 𝐴, these are defined as follows:

• 𝑣★-realizable class:M𝑣★

𝐵,𝑑,𝐻 ,𝐴
is the class of finite-state-space featurized MDPs with 𝐴 actions,

where the feature-vectors are 𝑑-dimensional, the length of the episodes is 𝐻. For any (𝑀, 𝜑)
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in this class, 𝑀 is an MDP with some state space S and random rewards confined to (say)
[0, 1], the associated feature-map 𝜑 : S → R𝑑 with sup𝑠∈S ‖𝜑(𝑠)‖2 ≤ 1 is such that for some
𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵, 𝑣★

𝑀
(𝑠) = 𝜑(𝑠)>𝜃★ holds for all 𝑠 ∈ S where 𝑣★

𝑀
is the optimal value

function in 𝑀 . 1

• 𝑞★-realizable class:M𝑞★

𝐵,𝑑,𝐻 ,𝐴
is the class of featurized MDPs as above except that here for any

(𝑀, 𝜑) in the class, for [𝐴] := {1, . . . , 𝐴}, 𝜑 : S× [𝐴] → R𝑑 with sup𝑠∈S,𝑎∈[𝐴] ‖𝜑(𝑠, 𝑎)‖2 ≤
1 and 𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵, we now require that 𝑞★

𝑀
(𝑠, 𝑎) = 𝜑(𝑠, 𝑎)>𝜃★ holds for all

states 𝑠 ∈ S and actions 𝑎 ∈ [𝐴], where 𝑞★
𝑀
(𝑠, 𝑎) is the optimal action-value at (𝑠, 𝑎).

• Reachable-𝑣★/𝑞★-realizable class: M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

is the class of featurized MDPs as above
except that here the MDPs 𝑀 are associated with two feature-maps, 𝜑𝑣 : S → R𝑑 and
𝜑𝑞 : S × [𝐴] → R𝑑 (their 2-norms bounded by 1 as before), and it is assumed that there exists
some 𝜃★ ∈ R𝑑 with ‖𝜃★‖2 ≤ 𝐵 such that 𝑣★

𝑀
(𝑠) = 𝜑𝑣 (𝑠)>𝜃★ and 𝑞★

𝑀
(𝑠, 𝑎) = 𝜑𝑞 (𝑠, 𝑎)>𝜃★

hold for any action 𝑎 and any state 𝑠 of the MDP that is reachable from the initial states. 2

Our main results are a lower and an upper bound for the query complexity of planning forM where
M is one of the above classes. The lower bound is for the case when the number of actions grows
polynomially with 𝑑 ∧ 𝐻, where we define 𝑎 ∧ 𝑏 := min(𝑎, 𝑏):

Theorem 1.1 (Lower bound with global access, at least poly(𝑑 ∧ 𝐻) actions). For 𝛿, 𝐵, 𝑑, 𝐻 suffi-
ciently large, 𝐴 ≥ 𝑑1/4 ∧ 𝐻1/2,

C★GA(M ∩M
Pdet, 𝛿) = 2Ω(𝑑

1/4∧𝐻 1/2) ,

whereMPdet is the class of featurized MDPs with deterministic transitions and

M ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴
,M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴
} .

Together with (1) this result also gives a lower bound on the query complexity of planning when
only local access is available to the featurized MDP.

We also prove a result that provides a polynomial upper bound on the corresponding query
complexity for a fixed number of actions.

Theorem 1.2 (Upper bound with local access). ForM ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴
,M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet,M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴
},

arbitrary positive reals 𝛿, 𝐵 and arbitrary positive integers 𝑑, 𝐻,

C★LA(M, 𝛿) = 𝑂
(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
.

The rest of the paper is organized as follows: In the next section, we discuss these result and their
relationship to existing work. This is followed by Section 3 that introduces our notation and gives
the precise problem description. The proof of Theorem 1.1 is presented in Section 4: after a brief

1. For the sake of simplifying the notation, we assume that the states encode the stage index that the process can be at
within an episode and we also add a final absorbing state where all actions incur a zero reward. This allows us to
use the total expected reward criterion and thus a notation where the dependence on the stage index of values can be
suppressed, and also means that we can talk about the initial states in an MDP.

2. It is without loss of generality that we use that same 𝜃★ in the inner products that yield 𝑣★
𝑀
(𝑠) and 𝑞★

𝑀
(𝑠, 𝑎): if these

parameters are not shared, we can concatenate them with only a factor 2 increase in 𝑑 and 𝐵.
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intuitive overview in Section 4.1, for modularity, a simplified “abstract game” is introduced and is
shown to be hard to solve in Section 4.2; the remaining proof turns the abstract game into a featurized
MDP with a low action count that is similarly hard to solve for a planner; this is summarized in
Section 4.3 before the arguments are presented in detail. Finally, the proof of Theorem 1.2 is given
in Section 5.

2. Discussion and related works

A great many problems of interest can be formulated as optimal sequential decision making in a
stochastic environment. If the model of the environment is given or learned with a sufficient accuracy,
one only has to figure out how to use the model to find good actions. This is the problem addressed
in planning. An elegant, minimalist approach to describe stochastic controlled environments is to
adopt the language of MDPs. The price of simplicity (and thus generality) is that efficient planning in
large state-spaces is intractable, a phenomenon pointed out by (Bellman, 1957) and today informally
referred to as Bellman’s curse of dimensionality. While dynamic programming methods in MDPs
with 𝑆 states, 𝐴 actions and a horizon of 𝐻 can solve the planning problem with poly(𝑆, 𝐴, 𝐻)
resources (Tseng, 1990; Ye, 2011; Scherrer, 2016), in the lack of extra information, the query cost of
the easier problem of online planning (Chapter 6 Mausam and Kolobov, 2012) is at least Ω(𝐴𝐻 )
when the number of states is unbounded (Kearns et al., 2002). An intriguing approach to avoid
intractability when both 𝑆 and 𝐻 are large is the use of “function approximation” which promises to
empower planners to extrapolate beyond the states that the planner has encountered. This approach
has been proposed shortly after MDPs have been introduced when it was observed that in various
problems of practical interest, value functions that the dynamic programming algorithms aim to
compute can be well approximated with the linear combination of only a few basis functions, which
themselves can be guessed by studying the structure of the problem to be solved (Bellman et al.,
1963; Schweitzer and Seidmann, 1985). This raises the question of whether under such a favorable
condition a provably efficient planner exist, i.e., whether the curse can be sidestepped.

While this question was arguably one of the main driving forces behind much of the research
in operations research and reinforcement learning since the beginnings, most of the early results
focused on the case when the function space underlying the features have a certain completeness
property when dynamic programming algorithms can be successfully adopted (e.g., Bertsekas and
Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1996; Munos, 2003, 2005; Szepesvári and Munos, 2005).
For more recent works in this, and some other related directions, see, e.g., (Du et al., 2019; Lattimore
et al., 2020; Du et al., 2021) and the references therein.

While interesting, these works left open the question of whether efficient planners exist in the
case when the function space may lack the completeness property but is still able to represent the
optimal value function. The first results in this direction are quite recent (Wen and Roy, 2013; Weisz
et al., 2021b,a; Du et al., 2021). Of these, the closest to our results is a result of Weisz et al. (2021b)
who proved an exponential lower bound:

Theorem 2.1 (Weisz et al., 2021b, Theorem 9, lower bound for exponentially many actions). For
any 𝛿 > 0 sufficiently small, and 𝐻, 𝑑, 𝐵 sufficiently large, if 𝐴 = 2Ω(𝑑∧𝐻 ) then 3

C★GA(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet, 𝛿) = 2Ω(𝑑∧𝐻 ) .

3. Recall that 𝑎 ∧ 𝑏 = min(𝑎, 𝑏).
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According to this result, as long as there are exponentially many actions, planning remains
intractable even for featurized MDPs where the features provided realize the optimal action-value
function of the associated MDP and even if the MDPs are deterministic. Note that the exponential
lower bound in this theorem is nontrivial since the query complexity of finding a good approximation
to a function that lies in the span of 𝑑 features from input-output examples is polynomial in the number
of features regardless the cardinality of the input domain of the function, hence, the intractability in
the above result cannot be solely attributed to the presence of a large action set.

Thus, an intriguing question is whether planning for the same setting as considered
by that of Theorem 2.1 but with subexponential number of actions is tractable.

This question is partially answered by Theorem 1.1, which states that even with an action count
that is polynomial in 𝑑 and 𝐻, planning remains intractable for the same class of MDPs. This theorem
also extends the result to two additional settings. The remaining problem then is whether planning is
tractable when 2 ≤ 𝐴 = 𝑜(𝑑1/4 ∧ 𝐻1/2). For a constant number of actions, Theorem 1.2 answers this
question in the positive, though part of this theorem whenM =M𝑣★

𝐵,𝑑,𝐻 ,𝐴
has been proved earlier

by Weisz et al. (2021a) and in fact the proof of Theorem 1.2 for the remaining two cases follows
closely their proof. The importance of these extensions we give here is that they complement the
lower bounds we prove. (Sadly, the featurized MDP classes used in these results are incomparable in
the sense that we know of no general way of transforming results from one class to another, hence
the need for the separate proofs.)

Intriguingly, even the new results leave open whether online planning with local
access is tractable under 𝑞★ realizability when the MDPs involved have stochastic
transition dynamics and rewards while the number of actions is fixed.

In fact, even though our upper bound holds generally for the 𝑣★-realizable and reachable-𝑣★/𝑞★-
realizable classes of MDPs, for the 𝑞★-realizable class our upper bound only holds for MDPs with
deterministic transitions. If in addition to the transitions, the rewards are also deterministic, the
result of Wen and Roy (2013) can be used to show a polynomial query (and even computational)
complexity for online planning with local access. While the compute cost would depend linearly on
the number of actions, the number of actions would not even appear in the query cost. (This result
can also be proved directly by arguing that the subspace that contains 𝑞★ is either trivial, or a rollout
with any action sequence will provide new information that can be used to decrease the dimension of
this subspace by one.)

Given that our upper bound is polynomial when the number of actions is fixed, one may speculate
that when the number of actions is large, perhaps one should replace each stage of an episode
with log2(𝐴) stages, where actions would be chosen by determining their bits one by one, in a
sequential fashion. The difficulty then is that this calls for an extension of the state space and a
new, suitable feature-map. If one could derive a new, suitable feature-map given the old one and
other information available during planning, this would result in a planner with query complexity
𝑂 (poly(𝑑𝐻 log2(𝐴)/𝛿, 𝐵)), showing a very mild dependence on the number of actions provided that
𝑑, the dimensionality of the new feature-map can be kept small. Sadly, our lower bound tells us that
this action binarization approach cannot work when the number of actions is at least Ω(𝑑1/4∧𝐻1/2).

Recently, the topic of online learning with good features has also seen many new results. As
opposed to planning, here there is no simulator that can reset the state, and the only reset possible is
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Publications Action count MDP class poly(·) sample
complexity?

Wen and Roy (2013) any M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩Mdet 3

Du et al. (2021) any M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴

3

Weisz et al. (2021a) O(1) M𝑣★

𝐵,𝑑,𝐻 ,𝐴
3

Weisz et al. (2021b) 2Ω(𝑑∧𝐻 ) M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet 7

This work Ω(𝑑1/4 ∧ 𝐻1/2) M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet 7

—"— —"— M𝑣★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet 7

—"— —"— M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

∩MPdet 7

—"— O(1) M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet 3

—"— —"— M𝑣★

𝐵,𝑑,𝐻 ,𝐴
3

—"— —"— M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

3

Table 1: Comparison of various query complexity results for online planning with global access, and features
realizing the optimal value or action-value function. The symbolMdet stands for the class of finite MDPs with
deterministic transitions and rewards. 3 indicates the existence of a sound planner with query cost polynomial
in relevant parameters (excluding 𝑆 and 𝐴); 7 indicates that such a planner does not exist.

to the start state of the MDP. As such, this is a harder setting than online planning. We would like
to emphasize two results in this topic closely related to Theorem 1.2. First, the work of Du et al.
(2021) implies that as long as all the features are given in advance (as in global access), regardless the
number of actions 𝐴, the classM𝑣★/𝑞★

𝐵,𝑑,𝐻 ,𝐴
enjoys a minimax query complexity of order poly(𝐵, 𝑑, 𝐻).

For this result, we define the classM𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴

like the classM𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

, except that realizability is
required to hold over the entire state-space, and not only for states reachable from the initial states.
Note that while according to Theorem 1.1, online planning with global (and thus also local) access
overM𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴
is intractable, the result just mentioned implies that online planning with global

access overM𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴

is tractable. Thus, while it is immediate from the definitions that

M𝑣★/𝑞★
𝐵,𝑑,𝐻 ,𝐴

⊂ M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

,

the two results together imply that the class on the right-hand side (RHS) is substantially larger
than the one on the left-hand side (LHS). However, this difference disappears if in addition to the
feature-maps, the planner working with the class on the RHS is also provided with the reachable
subset of the state-space. Indeed, in this case, the MDP that the planner works with can be redefined
by removing all the unreachable states, leaving a featurized MDP that belongs to the class on the
LHS. The two results together thus indicate that this extra piece of knowledge is hard to obtain.
Indeed, as this information is not provided in the local access model when the state space is redefined
to reachable states only, Theorem 1.1 implies that online learning with local access is intractable,
which proves the first exponential information theoretic separation result between local and global
access that the authors are aware of (cf. Du et al., 2021).

The fact that the set of reachable states is hard to obtain should not be too surprising. In robotics
and many other problems the reachable part of the state space is known to have a fairly complicated
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geometry. In such applications, assuming that the features describe the value functions over the
whole state space means that they encode the complicated shape of these reachable sets, as well. As
this looks difficult to achieve, the class that requires realizability only for reachable states appears
more attractive even though for this class, per our lower bound, tractability only holds when the
number of actions is relatively small. For convenience, we summarize the results discussed so far in
Table 1.

The second result of interest in online learning with good features is due to Wang et al. (2021),
who gave an exponential lower bound in the flavor of Theorem 2.1 by adapting the hard MDP
construction of Weisz et al. (2021b) to satisfy a constant suboptimality gap between the action
values of the best and second-best actions for all states. Instead of exponentially downscaling the
values in the more advanced stages, such a result is possible by implementing this reduction effect
through zero-reward transitions to the episode-over stage, such that the probability of reaching an
advanced stage (instead of the value at such a stage) is exponentially small. While this does not
lead to a hardness result in our online planning setup (at least under global access, see e.g., Du
et al., 2019), but we note that we expect similar modifications to the hard MDP class underlying our
Theorem 1.1 to lead to a similar, constant suboptimality gap version of the theorem in the online
learning case.

At this stage, the reader may also wonder about the limitations of the present work. For example,
we restricted the MDPs to those that have finite state spaces. As it turns out, this was done only
for the sake of convenience: on the one hand, the lower bounds are not impacted by this restriction,
while, on the other hand, the upper bounds go through with no change to the proofs apart from
the occasional need to switch to a more technical, measure-theoretic language. Similar comments
apply to our MDP model which assumes that the same number of actions is available at all states,
or changing the problem to allow misspecification errors (when the features can only represent
the target functions only with some positive error). If one allows for such misspecification errors,
the misspecification level 𝜂 (measured by the maximum norm) will put a lower bound on the
suboptimality gap 𝛿 that the planner can achieve. The argument of Weisz et al. (2021a) can be used
in this case and gives that with a polynomial query complexity, one can achieve suboptimality gaps
of magnitude 𝛿 = Ω(poly(𝐻, 𝑑)𝜂1/𝐴). While (similarly) the upper bound of Theorem 1.2 can be
adapted to the infinite-horizon discounted MDP setting using the arguments of Weisz et al. (2021a), a
more significant limitation of our lower bound (Theorem 1.1) is that it does not immediately apply to
the discounted setting, even though the lower bound of Weisz et al. (2021b) (with exponentially many
actions) does. Indeed, the linear structure of our MDP construction relies on the rewards counting
towards 𝑣★ and 𝑞★ with the same weight if they are delayed by a few steps. The final limitation is that
the results do not apply to problems where a controller is needed to work based on only features of
the state. This is due to the limitation of the online planning protocol that requires state information
to be passed to the planner (in addition to the features of the state). For settings like this, global
planning, which directly aims for arriving at a policy that depends on the states only through the
features, is more suitable.

3. Notation and problem setup

The purpose of this section is to introduce the notation we use and the necessary definitions that will
allow us to precisely formulate the problems we study. We start with the notation. This is followed
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by a quick review of definitions and basic concepts concerning MDPs. The section will be closed by
describing the planning problems considered.

3.1. Notation

Let N+ = {1, 2, . . . } be the set of positive integers, and N = {0} ∪ N+. Let R denote the set of real
numbers, B𝑑 (𝑟) = {𝑥 ∈ R𝑑 : ‖𝑥‖2 ≤ 𝑟} the 𝑑-dimensional ball of radius 𝑟, and let [𝑖] = {1, . . . , 𝑖}
be the set of integers from 1 to 𝑖 for an integer 𝑖 ∈ N+. For 𝑖, 𝑗 ∈ N, we use [𝑖 : 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗}
if 𝑖 ≤ 𝑗 , and [𝑖 : 𝑗] = {} otherwise. For vectors 𝑎 and 𝑏 of compatible sizes, 〈𝑎, 𝑏〉 = 𝑎𝑇 𝑏 denotes
their inner product. For a True or False statement 𝑋 (possibly depending on random variables), let
I{𝑋} take 1 if 𝑋 is True, and 0 otherwise. Let 𝑎 ∧ 𝑏 = min(𝑎, 𝑏) and 𝑎 ∨ 𝑏 = max(𝑎, 𝑏). For an
event 𝐸 , let 𝐸𝐶 denote its complementary event. Let () denote the empty sequence.

3.2. Episodic Markov decision processes with bounded rewards

A Markov decision process (MDP) is defined by a tuple 𝑀 = (S,A, 𝑄) of states, actions, and a
transition-reward-kernel, respectively. The structure 𝑀 defines a discrete time sequential decision
making problem where in time step 𝑡 = 0, 1, . . . , an environment responds to an action 𝐴𝑡 (∈ A)
of an agent by transitioning from its current state 𝑆𝑡 (∈ S) to a new random state 𝑆𝑡+1(∈ S)
while also generating a random reward 𝑅𝑡+1 ∈ R so that the distribution of (𝑅𝑡+1, 𝑆𝑡+1) given
𝑆0, 𝐴0, 𝑅1, 𝑆1, . . . , 𝐴𝑡−1, 𝑅𝑡 , 𝑆𝑡 , 𝐴𝑡 is given by 𝑄( · | 𝑆𝑡 , 𝐴𝑡 ) regardless of the history before 𝑆𝑡 , 𝐴𝑡 .
Formally, 𝑄 is a probability kernel from state-action pairs to reward-state pairs. For simplicity, it is
assumed that 𝑅𝑡+1 above is supported in [0, 1].

To simplify the presentation, we assume that the state space is finite. As noted beforehand, the
definitions and results can be naturally translated to infinite state spaces. Similarly, assume that the
set of actions is finite and A = [𝐴] for some integer 𝐴.

In this work we focus on the fixed-horizon undiscounted total expected reward objective.
Denoting the horizon by 𝐻, under this objective, the goal is to find a policy, a way of choosing
actions given the past, such that the total expected reward over 𝐻 steps is maximized regardless of
the initial state of the process. (Formally, a policy is a stochastic kernel from histories to actions.)
The 𝐻 steps of the process is also called an episode. As it is well known, the optimal policy, which
maximizes the stated objective, depends on the number of steps left before the episode finishes. In
this work, we will use an equivalent formulation which avoids this dependence. In this formulation,
only the first 𝐻 rewards can be non-zero, while the process continues indefinitely and the objective is
changed to the total undiscounted expected reward. To emulate the fixed-horizon setting, one can
then create 𝐻 disjoint copies of the state space, each corresponding to one step of the process while
copying the transition structure to transition from one copy to the next one, and add an extra state (⊥)
such that after 𝐻 steps this state is reached from which point this state is never left while the reward
incurred remains zero regardless of the actions taken. This is summarized below:

Assumption 3.1 (Fixed-horizon MDP). The state space S satisfies S = ∪𝐻
ℎ=0Sℎ with S𝐻 = {⊥}

and 𝑄 is such that for any 𝑠 ∈ Sℎ, ℎ ∈ [0 : 𝐻 − 1] and 𝑎 ∈ A, 𝑄(·|𝑠, 𝑎) is supported on
[0, 1] × ({⊥} ∪Sℎ+1), while for ℎ = 𝐻, this support is {0} × S𝐻 = {0} × {⊥}. In particular, the sets
{Sℎ}ℎ∈[0:𝐻 ] are pairwise disjoint.

Thanks to this assumption, when writing definitions, we consider the infinite horizon total
expected reward criterion. This criterion assigns to a policy 𝜋 used in MDP 𝑀 from initial state
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𝑠 ∈ S the value 𝑣𝜋 (𝑠), which is defined as

𝑣𝜋 (𝑠) = E𝜋𝑀,𝑠
[∑∞

𝑡=0 𝑅𝑡+1
]
. (2)

Here E𝜋
𝑀,𝑠

is the expectation corresponding to the probability distribution P𝜋
𝑀,𝑠

over trajectories of
infinite length composed of state-action-reward triplets where this probability distribution arises from
using policy 𝜋 in every step, with the first state fixed to 𝑠, while next states and rewards are generated
according to 𝑄. Under our assumption the value of any policy in any state is well-defined. The value,
obviously, depends on 𝑀 , but to minimize clutter this dependence is suppressed. We will also need
the action-value function of a policy. This is defined similarly as above, except that one fixes both
the initial state and the initial action. Thus, for (𝑠, 𝑎) ∈ S × A,

𝑞𝜋 (𝑠, 𝑎) = E𝜋𝑀,𝑠,𝑎
[∑∞

𝑡=0 𝑅𝑡+1
]
. (3)

where E𝜋
𝑀,𝑠,𝑎

is the expectation corresponding to the probability distribution P𝜋
𝑀,𝑠,𝑎

over the tra-
jectories as before, except that this time the first state-action pair is fixed to (𝑠, 𝑎) instead of just
fixing the first state to 𝑠. Note that under Assumption 3.1, both 𝑣𝜋 (mapping states to reals, the value
function of 𝜋) and 𝑞𝜋 (mapping state-action pairs to reals, the action-value function of 𝜋) are well
defined and take values in [0, 𝐻] and the infinite sums can be truncated after stage 𝐻.

Define 𝑣★ : S → R and 𝑞★ : S × A → R, the optimal value and, respectively, optimal
action-value function as

𝑣★(𝑠) = sup
𝜋

𝑣𝜋 (𝑠), 𝑞★(𝑠, 𝑎) = sup
𝜋

𝑞𝜋 (𝑠), 𝑠 ∈ S, 𝑎 ∈ A . (4)

A policy 𝜋 is said to be optimal if 𝑣★ = 𝑣𝜋 . It is well known that in our setting an optimal policy
always exists and in fact the policy that uses any maximizer of 𝑞★(𝑠, ·) when the state 𝑆𝑡 is 𝑠 is
an optimal policy. This policy, as the choice of the action only depends on the last state, is called
memoryless. Since the choice is also deterministic, the policy is also deterministic. A deterministic
memoryless policy can be concisely given as a map from states to actions. By slightly abusing
notation, in what follows, we will identify such policies with such maps and write 𝜋 : S → A to
denote a memoryless deterministic policy. Given such a policy 𝜋 : S → A, its value functions 𝑣𝜋

and 𝑞𝜋 satisfy the following equations:

𝑣𝜋 (𝑠) = 𝑞𝜋 (𝑠, 𝜋(𝑠)) , (5)

𝑞𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) +
∑︁
𝑠′∈S

𝑃(𝑠′ |𝑠, 𝑎)𝑣𝜋 (𝑠′) , 𝑠 ∈ S, 𝑎 ∈ A , (6)

where 𝑃(𝑠′ |𝑠, 𝑎), derived from the transition kernel 𝑄, is the probability of arriving at state 𝑠′ when
the process is in state 𝑠 and action 𝑎 is taken while 𝑟 (𝑠, 𝑎) is the expected reward along this transition.
Formally, 𝑃(𝑠′ |𝑠, 𝑎) = 𝑄( [0, 1] × {𝑠′}|𝑠, 𝑎) and 𝑟 (𝑠, 𝑎) =

∫
[0,1]×S 𝑟𝑑𝑄(𝑟, 𝑠

′ |𝑠, 𝑎). The coupled
equations (6) are known as the Bellman equations for 𝜋 (Puterman, 1994).

Oftentimes in MDPs the rewards and the next states are independently chosen. In this case,
𝑄(·|𝑠, 𝑎) takes the form of the “product” of a probability kernel 𝑅 mapping state-action pairs to
[0, 1] and the probability kernel 𝑃 mapping state-action pairs to states. In some constructions below,
we will thus specify an MDP with the help of two such kernels.

When the dependence of 𝑣𝜋 , 𝑣★, or 𝑞★ on 𝑀 is important, we will put 𝑀 in the index of these
symbols. For example, for a policy 𝜋 for 𝑀 , we will write 𝑣𝜋

𝑀
to denote its value function in 𝑀 .

9
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3.3. Online planning with featurized MDPs

The purpose of this section is to make the earlier definitions more formal. While we repeat some
of the definitions (in a more precise way) from the introduction, to avoid unnecessary duplications,
some definitions (e.g., the definitions of featurized MDPs) are not repeated.

As described in the introduction, in online planning a planner is used in a closed-loop configu-
ration. In our 𝐻-horizon setting, given an MDP 𝑀 = (S,A, 𝑄) satisfying Assumption 3.1, in step
𝑡 ∈ [0 : 𝐻 − 1] of using the planner, the planner is given access to state 𝑆𝑡 of the process. By con-
vention, 𝑆0 ∈ S0 and thus we also have 𝑆𝑡 ∈ S𝑡 , for every 𝑡, where (Sℎ)0≤ℎ≤𝐻 is the decomposition
of S from Assumption 3.1. The planner is given access to a simulation oracle that can be queried
with state action pairs (𝑠, 𝑎) ∈ S × A, to which the oracle responds with a reward-state pair (𝑅′, 𝑆′)
generated from 𝑄:

(𝑅′, 𝑆′) ∼ 𝑄(·|𝑠, 𝑎) .

The planner is given the freedom to decide which queries and how many of them to use whenever it
is called. Eventually, the planner needs to stop querying and return an action 𝐴𝑡 ∈ A, which is then
used to generate the next state in 𝑀 and an associated reward:

(𝑅𝑡+1, 𝑆𝑡+1) ∼ 𝑄(·|𝑆𝑡 , 𝐴𝑡 ) .

When used in an MDP 𝑀 , a planner induces a policy 𝜋𝑀 . Note that 𝜋𝑀 is a stochastic policy (possibly
history-dependent, if the planner saves information between its calls), where the stochasticity
comes from the randomness of the entire planner-oracle interaction (and possibly some independent
randomization). As such, 𝜋 itself is not a random element. The goal of planner design is to
find planners that induce near-optimal policies for large classes of MDPs while controlling the
total computational cost of planning. Formally, a planner is 𝛿-sound for class M if for any
𝑀 = (∪ℎSℎ,A, 𝑄) ∈ M and any 𝑠0 ∈ S0, if the planner is used in 𝑀 while 𝑆0 = 𝑠0, it holds that
E[∑𝐻

𝑡=1 𝑅𝑡 | 𝑆0 = 𝑠0] ≥ 𝑣★𝑀 (𝑠0) − 𝛿, or, equivalently,

𝑣
𝜋𝑀
𝑀
(𝑠0) ≥ 𝑣★𝑀 (𝑠0) − 𝛿 .

Above, E is the expectation operator induced by the probability measure P induced by the intercon-
nection of the planner with the simulation oracle of 𝑀 and MDP 𝑀 over the interaction sequences
that contain all information that flows between the planner, the simulation oracle and the MDP. As all
queries involve a computation step, a lower bound on the compute cost of planning is the query cost,
which is defined as the expected number of queries that the planner uses in a planning step (or call).
For a planner and MDP, the maximal query cost over all possible calls to the planner is the worst-case
query cost of using the planner on the MDP. The notion is naturally extended to the concept of query
complexity of classes of MDPs by again taking the worst-case over the possible MDPs in the class.

In the special case when the planner is given access to the state space (and feature-map) of the
MDP and can thus call the simulator at any state of the MDP, the problem described so far is known
as (online) planning with a generative model, or global access. As opposed to this, if the planner is
not given access to the state space (or the feature-map) and can only query the simulator at states that
it has encountered beforehand, we say that the planner has local access only to the simulator.

When interacting with a featurized MDP (𝑀, 𝜑𝑣 ) in the local access model, with, say, state
features (i.e., 𝜑𝑣 : S → R𝑑 , where 𝑀 = (S,A, 𝑄)), in step 𝑡 of the planning process, the planner is
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called with (𝑆𝑡 , 𝜑𝑣 (𝑆𝑡 )), while the simulation oracle returns

(𝑅′, 𝑆′, 𝜑𝑣 (𝑆′)) ∼ 𝑄(·|𝑠, 𝑎)

when queried with (𝑠, 𝑎). In an alternate problem setting if the features are defined over state-action
pairs, i.e., the planner interacts with a featurized MDP of the form (𝑀, 𝜑𝑞) with 𝜑𝑞 : S × A → R𝑑 ,
in step 𝑡 of the planning process, the planner is called with (𝑆𝑡 , 𝜑𝑞 (𝑆𝑡 ), (𝜑𝑞 (𝑆𝑡 , 𝑎))𝑎∈A), while the
simulation oracle returns

(𝑅′, 𝑆′, (𝜑𝑞 (𝑆′, 𝑎))𝑎∈A) ∼ 𝑄(·|𝑠, 𝑎)

when queried with (𝑠, 𝑎). When the setting is such that both state and state-action features are
available, the interaction is modified accordingly to include both types of features. The definitions of
query cost and soundness remain the same for these settings.

4. Lower bound (the proof of Theorem 1.1)

In this section we give the proof of Theorem 1.1. We start by introducing the high level ideas
underlying the proof.

4.1. Overview

We prove the lower bound by designing a class of MDPs where by traversing the MDP, the agent
effectively has to pick corners of a 𝑝-dimensional hypercube, in sequence, until either 𝐾 picks were
made or a pick was sufficiently close to the secret “solution” corner 𝑤★. Here, 𝑝 ≈ 𝐻1/2 ∧ 𝑑1/4

(large if both 𝐻 and 𝑑 are large) and 𝐾 ≈ 𝐻/𝑝 (large if 𝐻 is large). If the agent picks a corner
close to the solution, the episode is effectively terminated and the agent receives the highest possible
reward achievable from that state. Otherwise, the agent’s next pick has to substantially differ from
the previously picked corner. After each choice, the highest reward achievable shrinks by a penalty
factor that is governed by how different the subsequent picks are: picking dissimilar corners results
in a larger penalty (i.e., a smaller penalty factor). Since subsequent picks need to be substantially
different, this means that 𝑞★ (or 𝑣★) reduces at an exponential rate throughout the episode until
a guess is sufficiently close to the solution or all 𝐾 picks are exhausted, in which case the agent
receives a Bernoulli reward with expectation exp(−Ω(𝐾)). Without additional information, guessing
sufficiently close to the solution is a needle-in-a-haystack problem with an exponentially large
haystack: with probability above (say) 3/4, the secret corner will not be found within exp(Ω(𝑝))
guesses. Additional information is not provided to the agent as long as the final reward is 0. Since
the probability that this Bernoulli outcome is identically zero for the first exp(Ω(𝐾)) guesses can be
made to be 3/4 or larger, if a planner uses at most exp(Ω(𝑝 ∧ 𝐾)) guesses, with probability at least
1/2, neither blind guessing nor the Bernoulli outcomes will lead to success. Thus, in expectation,
any sound planner has to query more than exp(Ω(𝑝 ∧ 𝐾)) times.

To achieve realizability of 𝑞★ (or 𝑣★), it is sufficient if the value of the optimal policy is a
low-order polynomial of the 𝑝-dimensional secret solution at any state in the MDP. To achieve this,
the mechanics of choosing a guess and the penalty factor are carefully chosen in such a way that
the optimal policy has a simple “greedy” structure that moves any guess as close as possible to the
solution. The value of this greedy optimal policy is then proved to be a 4th-order polynomial of 𝑤★,
which gives rise to a 𝑑 ≈ 𝑝4 dimensional feature-map that can realize the optimal values.
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For the sake of simplicity and modularity, rather than defining the MDP, we first define a
simplified “abstract game” where an “abstract planner” has to guess the above-mentioned secret
parameter. This abstract game is essentially what has been described in the previous paragraph. This
construction focuses on the information theoretic aspect of the proof, leaving the construction of the
MDP with the required realizability properties to the subsequent sections.

4.2. Abstract game

The abstract game has a length parameter 𝐾 ∈ N+ and an integer dimensionality parameter 𝑝 ≥ 2,
which are known to the abstract planner. Let𝑊 = {−1, 1}𝑝. Let 0 and 1 indicate the 𝑝-dimensional
vectors of all zeros and all ones, respectively. For vectors 𝑥 and 𝑦 from 𝑊 , define diff (𝑥, 𝑦) as the
Hamming distance between 𝑥 and 𝑦, i.e., the number of components where 𝑥 and 𝑦 are different. We
will use the property of the Hamming distance that it can be written as an (affine) bilinear function of
its arguments: for 𝑤1, 𝑤2 ∈ 𝑊 ,

diff (𝑤1, 𝑤2) =
1
2
(𝑝 − 〈𝑤1, 𝑤2〉) . (7)

Note that diff (·, ·) is a metric on the set𝑊 . Let

𝑊★ = {𝑤 ∈ 𝑊 : 𝑝/4 ≤ diff (1, 𝑤) ≤ 3𝑝/4} (8)

be the set that will hold the game’s secret parameter: 𝑤★ ∈ 𝑊★. For any 𝑘 ∈ N, let

𝑊◦𝑘 = {(𝑤𝑖)𝑖∈[𝑘 ] ∈ 𝑊 𝑘 : diff (𝑤𝑖−1, 𝑤𝑖) ≥ 𝑝/4 for 𝑖 ∈ [𝑘]} , (9)

with 𝑤0 := 1 defined for convenience, be the subset of 𝑘-length sequences of𝑊 where the elements
are “sufficiently far” from each other.

The union of these over 𝑘 ≤ 𝐾 is the action set of the bandit-like game. Given 𝑤★, the reward
function 𝑓𝑤★ : {()} ∪ ⋃

𝑘∈[𝐾 ]𝑊
◦𝑘 → R (index dropped when clear from context) is defined as

follows (again 𝑤0 := 1):4 𝑓 (()) = 𝑔(diff (𝑤0, 𝑤
★)), and for 𝑘 ∈ [𝐾],

𝑓𝑤★

(
(𝑤𝑖)𝑖∈[𝑘 ]

)
=

©­«
∏
𝑖∈[𝑘 ]

𝑔(diff (𝑤𝑖−1, 𝑤𝑖))
ª®¬ 𝑔(diff (𝑤𝑘 , 𝑤★)) where

𝑔(𝑥) = 1 − 𝑥
𝑝
+ (𝑥 − 1)𝑥

2𝑝2 .

The game is sequential. It proceeds in steps where the abstract planner performs a query and
receives a corresponding response (both the query and the response may be randomized). At each
step 𝑡 ∈ N+, the abstract planner randomly chooses whether to continue or not, and what its output
or next query (correspondingly) is. If it continues, it chooses a sequence length 𝐿𝑡 ∈ [𝐾], and a
sequence 𝑆𝑡 = (𝑤𝑡𝑖 )𝑖∈[𝐿𝑡 ] ∈ 𝑊◦𝐿𝑡 . Otherwise, if it returns, it chooses its output 𝑆𝑡 = (𝑤𝑡𝑖 )𝑖∈[8] ∈ 𝑊◦8.

4. The reason for this form of 𝑓 will become clear only when the MDP corresponding to the abstract game is defined.
For now, let us only note that (1) as the input sequence grows in size, their elements being sufficiently far ensures an
exponential rate of reduction of 𝑓 , and (2) 𝑔(𝑥) is the second-order Taylor expansion of (1 − 1/𝑝)𝑥 , which ensures
through some inequalities that the optimal strategy for maximizing 𝑓 is to greedily move towards 𝑤★ in the MDP as
fast as possible. A simple optimal policy with a low-order polynomial expression for 𝑓 allows deriving linear features
for the MDP’s value function.
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Note that the output is confined to have the fixed length of 8.5 To distinguish this from the case
when the planner continues, we let 𝐿𝑡 = 0 denote that the planner wants to return an output. Let
𝑁 = min {𝑡 ∈ N+ : 𝐿𝑡 = 0} indicate the step at which the planner returns. Thus, the planner’s output
is 𝑆𝑁 .

At step 𝑡, denote the choice of the planner by 𝑋𝑡 = (𝐿𝑡 , 𝑆𝑡 ). If the planner is not done yet (𝐿𝑡 > 0,
and thus 𝑡 < 𝑁) then, in response to the planner’s query, a random response 𝑌𝑡 = (𝑈𝑡 , 𝑉𝑡 , 𝑍𝑡 ) ∈
{0, 1} × {0, 1} × [0, 1] is generated as follows:

• 𝑈𝑡 indicates whether the penultimate component of 𝑆𝑡 is close to 𝑤★ (for convenience define
𝑤𝑡0 = 1):

𝑈𝑡 = I{diff (𝑤𝑡𝐿𝑡−1, 𝑤
★) < 𝑝/4} .

• 𝑉𝑡 indicates whether the last component of 𝑆𝑡 is close to 𝑤★:

𝑉𝑡 = I{diff (𝑤𝑡𝐿𝑡 , 𝑤
★) < 𝑝/4} .

• 𝑍𝑡 is distributed as Ber( 𝑓𝑤★ (𝑆𝑡 )) if either 𝑉𝑡 = 1 (the last component of 𝑆𝑡 is close to 𝑤★)
or 𝐿𝑡 = 𝐾 (all components are used in 𝑆𝑡 ), else 𝑍𝑡 = 0. Here, Ber denotes the Bernoulli
distribution. This is well-defined as 𝑓𝑤★ (𝑆𝑡 ) ∈ [0, 1] by Lemma 4.2.

If, on the other hand, the planner indicates that it is done (𝐿𝑡 = 0, and thus 𝑡 = 𝑁) then there is
no feedback, but the payoff (reward) to the planner is

𝑅 = 𝑓𝑤★

(
(𝑤𝑁𝑖 )𝑖∈[𝑘★]

)
(10)

where 𝑘★ = 𝑘★(𝑆𝑡 ;𝑤★) denotes the first component of 𝑆𝑡 = (𝑤𝑁𝑘 )𝑘∈[8] that is sufficiently close to
𝑤★, or 8 if none of them are:

𝑘★ = min{𝑘 ∈ [8] : 𝑘 = 8 or diff (𝑤𝑁𝑘 , 𝑤
★) < 𝑝/4} .

For future reference, it will be useful to introduce 𝜏𝑤★ (𝑠) to denote the first 𝑘★(𝑠, 𝑤★) components of
𝑠 = (𝑤𝑖)𝑖∈[8] so that 𝑅 = 𝑓𝑤★ (𝜏𝑤★ (𝑆𝑡 )). While the interaction is over at this stage, for simplifying
notation, we introduce 𝑌𝑡 and define it as 𝑌𝑡 = (0, 0, 0).

This finishes the description of the abstract game; for a given value of 𝑤★ we will refer it as “ab-
stract game 𝑤★”. To summarize, in this game, the planner can choose actions from a combinatorially
structured action set to collect information for the final round where it needs to choose an action from
a smaller (but still combinatorially large) subset of the action set. The feedback is nonlinear. The
essence of the information theoretic argument that will follow will be that good planners essentially
need to find 𝑤★.

For these information theoretic arguments, as well as the statement of the main result of this
section, some extra definitions are necessary. For 𝑡 ∈ N+, let 𝐹𝑡 = (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑡−1] . For each step 𝑡
sequentially, if the game is not over yet, i.e., 𝑡 − 1 < 𝑁 , the planner A defines the distribution of
𝑋𝑡 given 𝐹𝑡 . Given 𝐹𝑡 and 𝑋𝑡 , the distribution of 𝑌𝑡 is defined as above. Together, A and 𝑤★ define
PA
𝑤★, the probability distribution over interaction sequences (𝑋𝑡 , 𝑌𝑡 )𝑡 ∈[𝑁 ] between the planner and

5. The constant 8 here is sufficiently small to prove that planners cannot guess close enough to 𝑤★ with any of these 8
attempts, yet large enough so that to achieve a small suboptimality in the MDP problem (that will be derived later), it
will be crucial to guess a vector among these 8 vectors that is close to 𝑤★.

13
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the game, where the sequence needs to satisfy that 𝐿𝑡 > 0 for 𝑡 < 𝑁 and 𝐿𝑁 = 0.6 The planner
is well-defined if PA

𝑤★ [𝑁 < ∞] = 1. Let EA
𝑤★ be the expectation operator corresponding to PA

𝑤★.
The abstract planner is sound with worst-case query cost 𝑁̄ if for all 𝑤★ ∈ 𝑊★, EA

𝑤★ [𝑁 − 1] ≤ 𝑁̄ ,
and EA

𝑤★ [𝑅] ≥ max𝑠∈W◦8 𝑓𝑤★ (𝜏𝑤★ (𝑠)) − 0.01. We note in passing that max𝑠∈𝑊 ◦8 𝑓𝑤★ (𝜏𝑤★ (𝑠)) =
𝑓𝑤★ (()), i.e., the maximizing sequence is the empty sequence.

The main result of this section is the following claim, which states that the abstract game is hard:

Theorem 4.1. For any abstract planner that is sound with query cost 𝑁̄ ,

𝑁̄ = 2Ω(𝑝∧𝐾 ) .

The proof is given in a number of lemmas. We start with some elementary properties of 𝑓𝑤★:

Lemma 4.2 (Properties of 𝑓𝑤★). For any 𝑤★ ∈ 𝑊★, 𝑘 ∈ N+, 𝑠 = (𝑤𝑘′)𝑘′∈[𝑘 ] ∈ 𝑊◦𝑘 , the following
hold:

11
32
≤ 𝑓𝑤★ (()) ≤ 25

32
, (11)

0 < 𝑓𝑤★ (𝑠) ≤
(
25
32

) 𝑘+I{diff (𝑤𝑘 ,𝑤
★) ≥𝑝/4}

(12)

Proof. We prove Eq. 12 by first showing that

0 < 𝑓𝑤★ (𝑠) ≤
(
25
32

) 𝑘
. (13)

This follows since 𝑓 is the product of 𝑘 + 1 terms, each defined using the function 𝑔. Now, notice that
𝑔(𝑥) decreases as 𝑥 increases in the range 0 ≤ 𝑥 ≤ 𝑝, so for all 𝑘 ′ ∈ [𝑘], thanks to diff (𝑤𝑘′−1, 𝑤𝑘′) ≥
𝑝/4 which holds since by assumption 𝑠 ∈ 𝑊◦𝑘 , we have

0 < 𝑔(𝑝) ≤ 𝑔(diff (𝑤𝑘′−1, 𝑤𝑘′)) ≤ 𝑔(𝑝/4) <
25
32
.

This, together with 0 < 𝑔(0) ≤ 1 proves Eq. 13. To finish the proof of Eq. 12, note that if
diff (𝑤𝑘 , 𝑤★) ≥ 𝑝/4 then, similarly to the previous case, we have 0 < 𝑔(diff (𝑤𝑘 , 𝑤★)) ≤ 𝑔(𝑝/4) <
25
32 , which implies Eq. 12. As 𝑤★ ∈ 𝑊★, 1

4 𝑝 ≤ diff (1, 𝑤★) ≤ 3
4 𝑝. Hence, 𝑓𝑤★ (()) = 𝑔(diff (1, 𝑤★)) ≥

𝑔( 34 𝑝) ≥
11
32 and 𝑓𝑤★ (()) ≤ 𝑔( 14 𝑝) ≤

25
32 .

Let

𝑛 =

⌊
min

(
𝑒

𝑝

8

16
− 5,

1
𝜀
− 1

7.5

)⌋
, (14)

where

𝜀 =

(
25
32

)𝐾+1
.

6. Luckily for us, 𝐹𝑡 takes values in a finite set, which makes it trivial to show that PA
𝑤★ with the required properties exist.

14
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For any 𝑤★ ∈ 𝑊★, let 𝐸𝑤
★

𝑛 be the event when in the first 𝑛 steps the planner does not hit on any
vector that is close to 𝑤★:

𝐸𝑤
★

𝑛 =
⋂
𝑡 ∈[𝑛]

{
𝑡 > 𝑁 or

(
𝑡 = 𝑁 and min

𝑖∈[8]
diff (𝑤𝑁𝑖 , 𝑤★) ≥

𝑝

4

)
or

(
𝑡 < 𝑁 and diff (𝑤𝑡𝐿𝑡−1, 𝑤

★) ≥ 𝑝/4 and diff (𝑤𝑡𝐿𝑡 , 𝑤
★) ≥ 𝑝/4

) }
.

We define the “abstract game 0” (and, for any planner A, the associated probability distribution PA0 )
to be a variant of the game where the responses are 𝑌𝑡 ≡ (0, 0, 0) for all 𝑡 ∈ N+ (irrespective of the
choices of the planner).

Our next lemma claims that the bad event 𝐸𝑤
★

𝑛 happens with large probability in abstract game
𝑤★ whenever it happens with large probability in abstract game 0. The reason for this is that the
probability of ever receiving nonzero feedback on the bad event is a small value, which in fact can be
bounded by 𝜀 (the only way to receive nonzero feedback is by playing to the end, hence 𝜀 appears).
From here it will follow that since the number of steps is at most 𝑛 (bad events are defined for
interactions of length at most 𝑛), the probability of 𝐸𝑤

★

𝑛 in game 𝑤★ is at least the probability of this
event in game 0 times (1 − 𝜀)𝑛, and the latter is lower bounded by an absolute constant because 𝑛 is
chosen to be not too large compared to 1/𝜀.

Lemma 4.3. Take 𝑛 as defined in Eq. 14. Then, for any abstract planner A and for any 𝑤★ ∈ 𝑊 ,

PA
𝑤★ (𝐸𝑤

★

𝑛 ) ≥
7
8
PA0 (𝐸

𝑤★

𝑛 ) .

Proof. We prove that

PA
𝑤★ (𝐸𝑤

★

𝑛 ) ≥ (1 − 𝜀)𝑛 PA0 (𝐸
𝑤★

𝑛 ) . (15)

Since by its choice, 𝑛 satisfies 𝑛 ≤
(

1
𝜀
− 1

)
/7.5, or, equivalently, 1 − 𝜀 ≥ 1 − 1

1+7.5𝑛 , it follows that

(1 − 𝜀)𝑛 ≥
(
1 − 1

1 + 7.5𝑛

)𝑛
≥ lim
𝑛→∞

(
1 − 1

1 + 7.5𝑛

)𝑛
= 𝑒−1/7.5 > 7/8 ,

which shows that it suffices to prove Eq. 15.
Let (𝑋𝑡 , 𝑌𝑡 )𝑡 ∈[𝑁 ] be a complete interaction history and let 𝐻 denote the first 𝑛 ∧ 𝑁 components

of this (thus, 𝐻 is shorter than the complete sequence when 𝑛 < 𝑁). LetH be the set of all possible
values that 𝐻 can take. For ℎ ∈ H , let 𝐸ℎ = 𝐸𝑤

★

𝑛 ∩ {𝐻 = ℎ}. Clearly, 𝐸𝑤
★

𝑛 is the disjoint union of
the sets {𝐸ℎ}ℎ∈H . LetH+ = {ℎ ∈ H : PA0 (𝐸ℎ) > 0}. Then, PA0 (𝐸

𝑤★

𝑛 ) =
∑
ℎ∈H+ P

A
0 (𝐸ℎ), and we

prove Eq. 15 by showing that for any ℎ ∈ H ,

𝜌 =
PA
𝑤★ (𝐸ℎ)
PA0 (𝐸ℎ)

≥ (1 − 𝜀)𝑛 . (16)

Fix ℎ ∈ H+ and let ℎ = (𝑥𝑡 , 𝑦𝑡 )𝑡 ∈[𝑛′] for some 0 < 𝑛′ ≤ 𝑛. Further, let 𝑥𝑡 = (𝑙𝑡 , 𝑠𝑡 ). Note that for
𝑡 < 𝑛′, 𝑙𝑡 > 0 and either 𝑛′ = 𝑛 or 𝑙𝑛′ = 0.
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As PA0 (𝐸ℎ) > 0, 𝑦𝑡 = (0, 0, 0) for all 𝑡 ∈ [𝑛′]. By definition of PA
𝑤★ and PA0 , both the numerator

and denominator factorizes into the product of 𝑛′ terms. Given the same history, the distribution of
𝑋𝑡 under both PA

𝑤★ and PA0 are identical, so the terms that do not cancel remain:

𝜌 =

𝑛′∏
𝑡=1

PA
𝑤★ (𝑌𝑡 = (0, 0, 0) | 𝑋𝑡 = 𝑥𝑡 )
PA0 (𝑌𝑡 = (0, 0, 0) | 𝑋𝑡 = 𝑥𝑡 )

=

𝑛′∏
𝑡=1
PA
𝑤★ (𝑍𝑡 = 0 | 𝑋𝑡 = 𝑥𝑡 ) ,

where 𝑌𝑡 = (𝑈𝑡 , 𝑉𝑡 , 𝑍𝑡 ). Here, the last equality follows since PA0 [𝑌𝑡 = (0, 0, 0) | 𝑋𝑡 = 𝑥𝑡 ] = 1 by defi-
nition and PA

𝑤★ (𝑌𝑡 = (0, 0, 0) | 𝑋𝑡 = 𝑥𝑡 ) = PA𝑤★ (𝑍𝑡 = 0 | 𝑋𝑡 = 𝑥𝑡 ) because on 𝐸ℎ ⊂ 𝐸𝑤
★

𝑛 ,𝑈𝑡 = 𝑉𝑡 = 0
holds PA

𝑤★ almost surely. Now, by definition, PA
𝑤★ (𝑍𝑡 = 1 | 𝑋𝑡 = 𝑥𝑡 ) = 𝑓𝑤★ (𝑠𝑡 )I{diff (𝑤𝑡

𝑙𝑡
, 𝑤★) ≤

𝑝/4 or 𝑙𝑡 = 𝐾}. Since 𝐸ℎ ⊂ 𝐸𝑤
★

𝑛 , diff (𝑤𝑡
𝑙𝑡
, 𝑤★) ≤ 𝑝/4 does not hold. Hence, PA

𝑤★ (𝑍𝑡 = 1 | 𝑋𝑡 = 𝑥𝑡 ) =
𝑓𝑤★ (𝑠𝑡 )I{𝑙𝑡 = 𝐾} ≤ (25/32)𝐾+1 = 𝜀, where the inequality follows from Lemma 4.2 using again that
𝐸ℎ ⊂ 𝐸𝑤

★

𝑛 and thus the last component of 𝑠𝑡 must be “far” from 𝑤★. Putting things together and
using that 𝑛′ ≤ 𝑛 gives that 𝜌 ≥ (1 − 𝜀)𝑛, as required.

We plan to argue that the bad event happens with large probability in game 0. In this game, by
definition, the planner needs to guess 𝑤★ blindly (as there is no feedback ever). Hence, the success
of the planner depends on whether they can without any feedback stumble upon 𝑤★. To bound this
success rate, it will be useful to bound the number of vectors close to a given vector in the hypercube
𝑊 :

Lemma 4.4. For any 𝑤̃ ∈ 𝑊 , let𝑊close(𝑤̃) = {𝑤 ∈ 𝑊 | diff (𝑤, 𝑤̃) < 𝑝/4}. Then,

|𝑊close(𝑤̃) | ≤ 2𝑝 exp
(
− 𝑝

8

)
Proof. By symmetry of the 𝑝-dimensional hypercube, without loss of generality, let 𝑤̃ = 1 and
𝑊close = 𝑊close(𝑤̃). Let 𝑋 = (𝑋𝑖)𝑖 ∈ 𝑊 be a uniformly distributed random variable on𝑊 . Note that
the components 𝑋𝑖 of 𝑋 are independent Rademacher random variables. We have

|𝑊close | =
∑︁
𝑤 ∈𝑊

I{〈𝑤, 1〉 > 𝑝/2} = |𝑊 | P(〈𝑋, 1〉 > 𝑝/2)

= 2𝑝 P

(∑︁
𝑖∈𝑝

𝑋𝑖 > 𝑝/2
)
≤ 2𝑝 exp

(
−2(𝑝/2)2

4𝑝

)
= 2𝑝 exp

(
− 𝑝

8

)
,

where the second inequality holds by Hoeffding’s inequality.

Our next lemma shows that for any planner the probability of a bad event has an absolute lower
bound. We use the previous lemma to show that for any planner there exists a 𝑤★ such that the
probability of the corresponding bad event is lower bounded in game 0, and then we apply Lemma 4.3
to get a lower bound for the same event in game 𝑤★.

Lemma 4.5. For any abstract planner A there exists 𝑤★ ∈ 𝑊★ such that

PA
𝑤★ (𝐸𝑤

★

𝑛 ) ≥
(
7
8

)2
.
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Proof. For any 𝑤̂ ∈ 𝑊★, under event
(
𝐸 𝑤̂𝑛

)𝑐, either there exists 𝑡 ∈ [𝑛 ∧ (𝑁 − 1)] such that
diff (𝑤𝑡

𝐿𝑡−1, 𝑤̂) < 𝑝/4 or diff (𝑤𝑡
𝐿𝑡
, 𝑤̂) < 𝑝/4, or for some 𝑖 ∈ [8], diff (𝑤𝑁

𝑖
, 𝑤̂) < 𝑝/4. That is,(

𝐸 𝑤̂𝑛
)𝑐 ⊂ {𝑤̂ ∈ 𝑍} where

𝑍 :=
⋃

𝑡 ∈[𝑛∧(𝑁−1) ]

(
𝑊close(𝑤𝑡𝐿𝑡−1) ∪𝑊close(𝑤𝑡𝐿𝑡 )

) ⋃©­«
⋃
𝑖∈[8]

𝑊close(𝑤𝑁𝑖 )
ª®¬ .

By Lemma 4.4,

|𝑍 | ≤ (2𝑛 + 8)2𝑝 exp
(
− 𝑝

8

)
. (17)

We also have that 𝑊★ = 𝑊 \𝑊close(1) \𝑊close(−1), so |𝑊★| ≥ 2𝑝
(
1 − 2 exp

(
− 𝑝8

) )
. As 𝑤★ ∈ 𝑍 is

the good event for the planner, we define

𝑤★ = arg min
𝑤̂ ∈𝑊★

PA0 (𝑤̂ ∈ 𝑍) . (18)

Putting things together and using that 𝑍 ⊆ 𝑊 , we get

2𝑝
(
1 − 2 exp

(
− 𝑝

8

))
PA0

(
𝑤★ ∈ 𝑍

)
≤ |𝑊★|PA0

(
𝑤★ ∈ 𝑍

)
≤

∑︁
𝑤̂ ∈𝑊★

PA0 (𝑤̂ ∈ 𝑍) ≤
∑︁
𝑤̂ ∈𝑊

PA0 (𝑤̂ ∈ 𝑍) = E
A
0 [|𝑍 |] ≤ (2𝑛 + 8)2𝑝 exp

(
− 𝑝

8

)
,

Rearranging and using (𝐸𝑤★

𝑛 )𝑐 ⊂ {𝑤★ ∈ 𝑍}, we get

PA0

((
𝐸𝑤

★

𝑛

)𝑐)
≤ PA0

(
𝑤★ ∈ 𝑍

)
≤
(2𝑛 + 8)2𝑝 exp

(
− 𝑝8

)
2𝑝

(
1 − 2 exp

(
− 𝑝8

) ) ≤ 2(𝑛 + 5) exp
(
− 𝑝

8

)
≤ 1

8
,

where the last two inequalities follow by our choice of 𝑛. Combining this with Lemma 4.3 finishes
the proof.

With this, we are ready to prove Theorem 4.1. In fact, all that is left to show is that if the planner
is sound, then the probability of the bad event cannot be too high. That is, connecting the bad event
to poor performance.

Proof of Theorem 4.1. Take a sound abstract planner A with query cost 𝑁̄ . Let 𝑤★ be the vector
whose existence is guaranteed by the previous lemma. By Markov’s inequality,

PA
𝑤★ [𝑁 − 1 ≥ 𝑛] ≤ 1

𝑛
𝑁̄ .

Let 𝐸 ′ be the event under which both 𝑁 − 1 < 𝑛 and 𝐸𝑤
★

𝑛 hold: 𝐸 ′ = {𝑁 − 1 < 𝑛} ∩ 𝐸𝑤★

𝑛 . By the
union bound and Lemma 4.5,

PA
𝑤★ [𝐸 ′] ≥

(
7
8

)2
− 1
𝑛
𝑁̄ . (19)
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Under the event 𝐸 ′, the output of the planner (𝑤𝑁
𝑖
)𝑖∈[8] satisfies diff (𝑤𝑁

𝑖
, 𝑤★) ≥ 𝑝/4 for 𝑖 ∈ [8],

and therefore 𝑘★ = 8 and, by Lemma 4.2, the reward 𝑅 of the game satisfies 𝑅 <
(

25
32

)9
. Therefore,

combined with the soundness of A, we get

11
32
− 0.01 ≤ 𝑓𝑤★ (()) − 0.01 ≤ EA

𝑤★ [𝑅] ≤
(
25
32

)9
+ (1 − PA

𝑤★ [𝐸 ′])
25
32

≤
(
25
32

)9
+

(
1 −

(
7
8

)2
)

25
32
+ 𝑁̄
𝑛

25
32
,

where we used Lemma 4.2 to bound 𝑓𝑤★ (()), and the maximum value of 𝑅 (maximum value of 𝑓 )
by 25

32 . To satisfy this inequality, we must have 𝑁̄ > 0.05𝑛, and thus by substituting Eqs. 14 and
simplifying we get

𝑁̄ = Ω

(
min

(
𝑒

𝑝

8

16
− 5,

1
𝜀
− 1

7.5

))
= min

(
2Ω(𝑝) ,Ω

((
32
25

)𝐾+1))
= 2Ω(𝑝∧𝐾 ) .

4.3. Description of the hard MDP class

Given a large enough horizon 𝐻 and a large enough dimension 𝑑, in this section we construct
a class of featurized MDPs with horizon 𝐻 and feature-space dimension 𝑑, such that (i) each
featurized MDP in the class corresponds to an abstract game with parameters (𝐾, 𝑝) such that
𝐻 ≈ 𝐾𝑝, 𝐴 = 𝑝 ≈ 𝑑1/4 ∧ 𝐻1/2 (ii) each MDP 𝑀𝑤★ is associated with some abstract game
𝑤★ ∈ 𝑊★ ⊂ 𝑊 = {−1, 1}𝑝; (iii) the feature-maps associated with the MDPs do not depend on 𝑤★;
(iv) the respective realizability assumptions are satisfied by the featurized MDPs in the class; (v) a
planner that is guaranteed to achieve a high value in the MDPs can be used to achieve high values
in the associated abstract game, which also means that (vi) for every 𝑤★ ∈ 𝑊★, one should be able
to emulate the queries in the featurized MDP associated with 𝑤★ using queries that are available in
the abstract game with 𝑤★, while the MDP planner should not get any information about 𝑤★ by any
other means than through these queries.

In the abstract game, at the end the planner needs to choose a sequence (𝑤𝑖)𝑖∈[8] ∈ 𝑊◦8. This
will correspond to the first 8𝑝 steps of the path that the MDP planner traverses in the MDP, which
will have deterministic dynamics. To guarantee that the number of actions is small, choosing such
a weight sequence will be implemented in the MDP by first choosing 𝑤1 in 𝑝 steps, then choosing
𝑤2 in another 𝑝 steps, etc. In each of the 𝑝 steps of these rounds, choosing an action 𝑎 ∈ [𝑝] will
allow the MDP planner to flip component 𝑎 of the weight associated with the round. In particular,
in the first 𝑝 steps, the components of 𝑤1 are chosen this way, starting from the weight vector
𝑤0 = 1. In the next 𝑝 steps, the components of 𝑤2 are chosen this way, but this time starting with
𝑤1. The process is identical for choosing 𝑤𝑘 based on 𝑤𝑘−1, where we let 1 ≤ 𝑘 ≤ 𝐾 go up to 𝐾
to support arbitrary queries in the abstract game. To guarantee that the path chosen is in ∪𝑘𝑊◦𝑘 ,
further rules are necessary. In particular, since we need to guarantee that 𝑤𝑘 differs from 𝑤𝑘−1 by
at least 𝑝/4 positions, the dynamics is chosen so that in the first d𝑝/4e steps within the 𝑘th round,
if an action is repeated then it is called illegal, and leads to the end-state ⊥, while in the remaining
𝑝 − d𝑝/4e ≈ 3𝑝/4 steps an action repeat is called legal and leads to a “frozen” weight, i.e., starting
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from the first such repeated action the weight associated with the path cannot be changed until the
round is over. These rules guarantee that if a path of length 𝑘 𝑝 does not end up in ⊥, the path uniquely
determines an element of𝑊◦𝑘 (in fact, the last state alone uniquely determines such an element). We
associate with every action sequence subject to the constraints just described a unique state, which
can be seen as a node on the action tree. We will say that a state 𝑠 ≠ ⊥ belongs to some round
𝑘 ∈ [0 : 𝐾 − 1], if the length 𝑙 of the associated action sequence (𝑎𝑖)𝑖≤𝑙 satisfies 𝑘 𝑝 ≤ 𝑙 < (𝑘 + 1)𝑝.
We say that the state is in step 𝑖 of round 𝑘 if also 𝑙 = 𝑘 𝑝 + 𝑖.

Normally, the transitions of the MDP follow the path in the action tree just described, and the
rewards are zero. However, there are two exceptions that depend on 𝑤★. To describe them, note that
a state 𝑠 ≠ ⊥ that is in step 𝑝 − 1 of some round 𝑘 is one step away from finalizing the choice of
weight vector 𝑤𝑘+1. Indeed, such a state, together with the action performed in that state, defines the
weight sequence (𝑤𝑖)𝑖∈[𝑘+1] ∈ 𝑊◦𝑘+1, while a shorter sequence (𝑤𝑖)𝑖∈[𝑘 ] ∈ 𝑊◦𝑘 is defined by all
states 𝑠 ≠ ⊥ that are in any step 𝑖 of some round 𝑘 .

For a state that is in some step 𝑖 of some round 𝑘 , the aforementioned exceptions to the MDP
dynamics are: (i) if 𝑘 > 0 and diff (𝑤𝑘 , 𝑤★) < 𝑝/4; (ii) else if 𝑖 = 𝑝 − 1, and either 𝑘 = 𝐾 − 1
(last step of episode), or diff (𝑤𝑘+1, 𝑤★) < 𝑝/4. In case (i), the next state is ⊥, and the reward is
deterministically set to 〈𝜑, 𝜃★〉, where 𝜑 is the feature-vector associated with the state or the state-
action pair (depending on which class of featurized MDPs are considered), and 𝜃★ is a hidden weight
vector corresponding to 𝑤★. In case (ii), a Bernoulli reward with parameter 𝑓𝑤★ ((𝑤𝑖)𝑖∈[𝑘+1]) is
generated, while also transitioning to ⊥. Note that the states associated with case (i) are unreachable
from the initial state as any path to such state goes through a state that satisfies (ii). While there is
much information to be gained from any query where the state is of this type, planners with local
access can never issue such queries, while planners with global access still have very little chance
of encountering such a state (the proportion of these states is exponentially small as can be seen
from, e.g., the result of Lemma 4.4). We refer the reader to Figure 1 for an illustration of the MDP
dynamics and the associated reward structure, and to Eq. 23 for a more precise definition.

The next step is to show that one can define appropriate feature-maps such that the respective
realizability conditions hold, which also means that we will need to compute the optimal value
(or action-value) functions and then we will also need to show that a sound MDP planner for the
appropriate class of MDPs can be used to derive a sound planner for the abstract game.

Here, the main idea is that the optimal value corresponding to a state 𝑠 that is in some step
0 ≤ 𝑖 ≤ 𝑝 − 1 of round 0 ≤ 𝑘 ≤ 𝐾 − 1 takes the form

𝑣∗(𝑠) = 𝑓𝑤★ ((𝑤𝑖)𝑖∈[𝑘 ]) = 𝑔(diff (𝑤0, 𝑤1)) . . . 𝑔(diff (𝑤𝑘−1, 𝑤𝑘))𝑔(diff (𝑤𝑘 , 𝑤★)) ,

where 𝑤0 = 1 by convention, 𝑤𝑖 for 1 ≤ 𝑗 < 𝑘 is the weight vector for the corresponding round,
while 𝑤𝑘 is obtained by performing the component manipulations on 𝑤𝑘−1 prescribed by the action
in round 𝑘 until step 𝑖, after which, the weight obtained is moved as much as possible towards 𝑤★.
Note that 𝑤𝑘 here depends on both 𝑠 and 𝑤★, while the other weight vectors only depend on 𝑠. In
fact, one can write 𝑤𝑘 = 𝐴(𝑠)𝑤★ + 𝑏(𝑠) for some matrix 𝐴(𝑠) and vector 𝑏(𝑠) that depend on 𝑠.
Therefore,

𝑣∗(𝑠) = ℎ(𝑠)𝑔(diff (𝑤𝑘−1(𝑠), 𝐴(𝑠)𝑤★ + 𝑏(𝑠)))𝑔(diff (𝐴(𝑠)𝑤★ + 𝑏(𝑠), 𝑤★)) (20)

where ℎ(𝑠) = 𝑔(diff (𝑤0, 𝑤1)) . . . 𝑔(diff (𝑤𝑘−2, 𝑤𝑘−1)) is a scalar that depends only on 𝑠. The
expression in Eq. 20 is a fourth-order expression of 𝑤★ since 𝑔 is a quadratic function, and while
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Figure 1: Illustration of an MDP associated with a weight vector 𝑤★. The nodes represent states, which
are members of the action tree. Subtrees are illustrated with triangles. Edges represent actions, red edges
transit to the episode-over state ⊥. Unless the action was illegal, there are next-states that an MDP with some
other 𝑤★ would have transited to. These states still exist in 𝑀 , but are unreachable, and illustrated with a red
triangle. The blue triangle represents a part of the action tree where a legal repeated action freezes the weight
corresponding the round. Unless written on the edge, there is no reward for the action. In the figure, (𝑠𝑘𝑖)𝑘𝑖
represents a path through the state space, while for 𝑘 , 𝑖 fixed, 𝑤𝑘𝑖 represents the weight vector of step 𝑖 of
round 𝑘 .

diff is (affine) bilinear in its two arguments and so it appears that diff (𝐴(𝑠)𝑤★ + 𝑏(𝑠), 𝑤★) could be
quadratic itself, due to the special structure, this expression is still linear in 𝑤★. As such, 𝑣∗(𝑠) is
(roughly7) a linear function of (𝑤★)⊗4, the fourth-order tensor product of this vector with itself, which
gives rise to the definition of 𝜑𝑣 and 𝜃★, which is (roughly) the flattening of (𝑤★)⊗4. Of course, it
remains to verify that 𝜑𝑣 (𝑠) and 𝜃★ have small norms as required and also that this definition extends
to states that are not reachable from the initial state (to prove the result with global accessibility). In
fact, it is exactly this second requirement that made us define the deterministic rewards of 〈𝜑𝑣 (𝑠), 𝜃★〉
and the associated transitions to ⊥. (In this case it will be necessary to show that this reward is indeed
in the [0, 1] interval.)

A similar argument can be used for 𝑞∗ realizability, and also for 𝑣∗/𝑞∗ reachable realizability
(in which case the reward at unreachable states could be arbitrary). To finish, one needs to show
that a sound MDP planner can be used to implement a sound abstract planner. For this, note that the
steps that an MDP planner makes in the first 8 rounds of an episode can be directly translated into
an admissible weight sequence of length 8. Further, by construction, the value achieved with this
weight sequence is at least as high as the value that the MDP planner would achieve by completing

7. The precise argument will also include lower-order tensor products.
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the episode (the function 𝑓𝑤★ and the MDP are such that cutting short a weight sequence obtained
from a path in the MDP increases the value of the sequence).

In the remainder of this section, we fill in the gaps of this argument.

4.4. The MDP construction

We start with defining 𝐴, 𝑝 and 𝐾 as a function of the horizon 𝐻 ≥ 81 and dimension 𝑑 ≥ 31:

𝐴 = 𝑝 = min
(
max{𝑥 ∈ N+ : 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 ≤ 𝑑},

⌊
𝐻1/2

⌋ )
, (21)

𝐾 = b𝐻/𝑝c ,
𝐻 ′ = 𝐾𝑝 .

By our definition of 𝐻-horizon MDPs, any 𝐻 ′-horizon MDP for 𝐻 ′ ≤ 𝐻 is also a 𝐻-horizon MDP
(cf. Assumption 3.1). Hence, we shall construct a 𝐻 ′-horizon MDP with 𝐻 ′ defined above. For
future reference, it will be useful to note that

𝐴( = 𝑝) = Θ

(
𝐻1/2 ∧ 𝑑1/4

)
, 𝐾 = Θ(𝐻1/2 ∨ 𝐻/(𝑑1/4)) ,

𝑝 ≥ 2 and 𝐾 ≥ 9 .
(22)

Similarly to the abstract game, we fix some 𝑤★ ∈ 𝑊★ (Eq. 8). In what follows, we define two
MDPs 𝑀 𝑣

𝑤★ = (S,A, 𝑄𝑣
𝑤★) and 𝑀𝑞

𝑤★ = (S,A, 𝑄𝑞
𝑤★).

The state and action spaces are the same for all these MDPs. The superscript 𝑣 and 𝑞 indicates
which realizability setting the MDP is tailored for. Together with the indices, we drop them and
just use 𝑀 and 𝑄 to minimize clutter. The difference between 𝑀 𝑣

𝑤★ and 𝑀𝑞

𝑤★ is minuscule (see
Case 23a). As noted beforehand, A = [𝑝].

Apart from ⊥, states in S are uniquely identifiable with an action sequence of length at most
𝐾𝑝−1. Of all action sequences, we need to remove any action sequence that has a “repeated” action in
the critical first d𝑝/4e steps of any round. For 𝑘 ≥ 0, let𝑈𝑘 ⊂ A𝑘 be those sequences of inA𝑘 which
do not have any repeated elements. Then, letting 𝑟 = d𝑝/4e, 𝑉 = (⋃𝑖∈[𝑟 ] 𝑈𝑖) ∪ (

⋃
𝑖∈[𝑝−𝑟 ] 𝑈𝑟 × A𝑖),

we define

S = {⊥, ()} ∪
⋃

0≤𝑘≤𝐾−1
(𝑈𝑟 × A 𝑝−𝑟 )𝑘 ×𝑉 ,

where () denotes the empty sequence. The elements of S (other than ⊥) can thus be uniquely
identified with a sequence of actions (𝑎00, . . . , 𝑎0, 𝑝−1, . . . , 𝑎𝑘0, . . . , 𝑎𝑘𝑖) with 0 ≤ 𝑘 ≤ 𝐾 − 1 and
0 ≤ 𝑖 ≤ 𝑝 − 1, where the double indexing emphasizes that the steps are grouped into rounds of
length 𝑝, and commas between indices are often dropped to minimize clutter. For convenience, we
let [< 𝑘, 𝑖] = {(𝑛, 𝑚) : 𝑛 ∈ [0 : 𝐾 − 1], 𝑚 ∈ [0 : 𝑝 − 1], 𝑛𝑝 + 𝑚 < 𝑘𝑝 + 𝑖} denote the index set in
this double indexing, so that we can write (𝑎𝑛𝑚) (𝑛,𝑚) ∈[<𝑘,𝑖 ] for the above action sequence. Here, we
can think of 𝑎𝑛𝑚 as the action performed in step 𝑚 of round 𝑛.

As described beforehand, we associate a “weight”, an element of 𝑊 , to each state 𝑠 ≠ ⊥ that
corresponds to all the “flips” described by the action sequence for 𝑠. Let 𝑤 : S → 𝑊 be the
corresponding map, where we let 𝑤(⊥) = 1. We will also find it useful to introduce 𝑤 : S ×A → 𝑊 ,
where for (𝑠, 𝑎) ∈ S × A, 𝑤(𝑠, 𝑎) is the weight sequence where component 𝑎 of the last weight
vector of 𝑤(𝑠) is flipped, except when 𝑠 is a frozen state or 𝑠 = ⊥, in which case 𝑤(𝑠, 𝑎) = 𝑤(𝑠) (𝑠 is
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a frozen state when there is a legal repeated action in the actions that correspond to the current round
of the state).

In what follows, we will often find it useful to fix a path, i.e., a complete action sequence of
the form (𝑎𝑘𝑖) (𝑘,𝑖) ∈[0:𝐾−1]×[0:𝑝−1] ∈ A𝐾 𝑝. Note that here we allow all action sequences. We then
describe the behavior of the MDP in terms of its transitions and rewards encountered during this
fixed action sequence. Notationally, we refer to the state (deterministically) reached in round 𝑘 ,
step 𝑖 for the fixed action sequence as 𝑠𝑘𝑖. This means that 𝑠00 = (), and for 0 ≤ 𝑖 ≤ 𝑝 − 1,
𝑠𝑘,𝑖+1 = 𝛾𝑤★ (𝑠𝑘𝑖 , 𝑎𝑘𝑖) and for 0 ≤ 𝑘 ≤ 𝐾 − 1, 𝑠𝑘+1,0 = 𝑠𝑘 𝑝, where 𝛾𝑤★ is the transition function of
the MDP. Note that the state sequence has extra elements, to help with the notation. In particular,
𝑠𝐾0 = 𝑠𝐾−1, 𝑝 = ⊥. By a slight abuse of notation, for the fixed action sequence, we also let
𝑤𝑘𝑖 = 𝑤(𝑠𝑘−1,𝑖 , 𝑎𝑘−1,𝑖) (if 𝑠𝑘𝑖 ≠ ⊥, 𝑤𝑘𝑖 = 𝑤(𝑠𝑘𝑖)). To disambiguate, the notation 𝑤𝑘𝑖 always uses
two indices for 𝑤, while the notation in the abstract game always uses one. To match the weight
values of the MDP with those of the abstract game, we introduce the shorthand 𝑤𝑘 = 𝑤𝑘0. To
complete the definition of 𝑤𝑘𝑖, we define 𝑤00 = 1 (similarly to the abstract game’s definition of
𝑤0 = 1). We will also find it useful to introduce the function 𝑤last : S → 𝑊 which to a given state
𝑠 = 𝑠𝑘𝑖 ≠ ⊥ at step 𝑖 or round 𝑘 assigns the “last complete weight” 𝑤𝑘 = 𝑤𝑘0 while 𝑤last(⊥) = 1.

The (𝑘, 𝑖)-indexed notation, such as 𝑠𝑘𝑖 and 𝑤𝑘𝑖 (along with other similarly indexed
quantities introduced later) is designed to avoid clutter by hiding the implicit dependence
on the action sequence, which is assumed to be fixed whenever we use such notations.
The action sequence that is fixed should always be clear from the context. Whenever
we state a result concerning these symbols, the result is meant to hold for an arbitrary
action sequence.

For a state 𝑠 ∈ S, 𝑠 ≠ ⊥ that is in step 𝑖 of round 𝑘 , and an action 𝑎 ∈ [𝐴], the transition and
reward of taking action 𝑎 in state 𝑠 leads to the following reward-next state pair (𝑅′, 𝑆′) (which
specifies the kernel 𝑄 of the MDP):

(
𝑅′, 𝑆′

)
=


(〈
𝜑, 𝜃★

〉
,⊥

)
, if 𝑘 > 0 and diff (𝑤𝑘 , 𝑤★) < 𝑝/4 (23a)

(𝑍,⊥) , else if 𝑖 = 𝑝 − 1, diff (𝑤𝑘+1, 𝑤★) < 𝑝/4 (23b)

(𝑍,⊥) , else if 𝑘 = 𝐾 − 1, 𝑖 = 𝑝 − 1 (last step) (23c)

(0, 𝑠𝑘,𝑖+1) , otherwise , (23d)

Here, the symbols not yet introduced beforehand are defined as follows: (i) (𝑤𝑘′)𝑘′∈[𝑘+I{𝑖=𝑝−1}] is
the sequence of round-start weights (𝑤𝑘′,0)𝑘′∈[𝑘+I{𝑖=𝑝−1}] that correspond to state 𝑠 and action 𝑎. If
𝑖 = 𝑝 − 1, this sequence also includes the newly “compiled” weight 𝑤𝑘+1,0 = 𝑤(𝑠, 𝑎). (ii) 𝑍 has
distribution Ber( 𝑓𝑤★ ((𝑤𝑘′)𝑘′∈[𝑘+I{𝑖=𝑝−1}])). (iii) 𝜃★ will be defined in Eq. 31. (iv) for feature-maps
𝜑𝑣 and 𝜑𝑞 (defined in Eqs. 32, 37), 𝜑 = 𝜑𝑣 (𝑠𝑘𝑖) if we are in the 𝑣★-realizable setting (MDP 𝑀 𝑣

𝑤★)
and 𝜑 = 𝜑𝑞 (𝑠𝑘𝑖, 𝑎) otherwise. In either case, the reward in Case 23a is in [0, 1] by Eq. 35 and Eq. 39.

Later in the proof, the following lemma will be useful to convert a sound planner for the MDP
into a sound planner for the abstract game:

Lemma 4.6. We can simulate an outcome of (𝑅′, 𝑆′) in the MDP using at most one query to the
abstract game, if the length, dimensionality, and secret parameters of the game are 𝐾, 𝑝, and 𝑤★,
respectively.
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Proof. For 𝑘 = 0, 𝑖 < 𝑝 − 1, we fall under Case 23d and no query to the abstract game is required.
Otherwise, let 𝑙 = 𝑘 + I{𝑖 = 𝑝 − 1} > 0, and query the abstract game with (𝑙, (𝑤𝑘′)𝑘′∈[𝑙 ]). This
is a valid query as (𝑤𝑘′)𝑘′∈[𝑙 ] ∈ 𝑊◦𝑘 . The result to this query allows to determine which case the
transition falls under, and it also contains 𝑍 (with the required distribution) when the case calls for
it.

As alluded to before, Case 23a is somewhat pathological: the transitions are such that if at the
end of round 𝑘 the newly “compiled” weight 𝑤𝑘+1,0 is close to 𝑤★ (diff (𝑤𝑘+1,0, 𝑤★) < 𝑝/4) then the
next state is ⊥. This means that by following the transitions, it is impossible to arrive at a state 𝑠 ∈ S,
where Case 23a would apply.

Lemma 4.7 (Case 23a is unreachable in 𝑀). In MDP 𝑀 , for all 𝑠 ∈ Sr and 𝑠′ ∈ S¬r,

𝑠′ ∉ Reach𝑀 (𝑠)

where

S¬r = {𝑠 ∈ S : 𝑠 ≠ ⊥ and diff (𝑤last(𝑠), 𝑤★) < 𝑝/4} , Sr = S \ S¬r . (24)

We will find some further notation useful to describe essential properties of the MDP states. Take
any path in the MDP and the corresponding states (𝑠𝑘𝑖). Pick 𝑘 and 𝑖 such that 𝑠𝑘𝑖 ≠ ⊥. Let the “bit
mask” fix𝑘𝑖 ∈ {0, 1}𝑝 indicate for each component of 𝑤𝑘𝑖 whether it is fixed (1) in round 𝑘 at step 𝑖
or not (0). Recall that a component is fixed if either the corresponding action is performed in round 𝑘
before step 𝑖, or there was a legal repeated action, in which case all the components are frozen. Let
ctflip
𝑘𝑖

be the number of components flipped in round 𝑘 by step 𝑖. Because each component can only
be flipped at most once in a round, this satisfies

ctflip
𝑘𝑖

= diff (𝑤𝑘0, 𝑤𝑘𝑖) .

Let efix
𝑘𝑖

(and e¬fix
𝑘𝑖

) be the number of components that are fixed (and not fixed, respectively) at step 𝑖
and have the opposite sign of the respective components of 𝑤★. These are “error counts”. (As opposed
to ctflip

𝑘𝑖
and fix𝑘𝑖, the error counts obviously depend on 𝑤★). Let the operator · : R𝑑 × R𝑑 → R𝑑

return the componentwise product of its inputs. For 𝑖 ∈ {0, 1}, let ¬𝑖 = 1 − 𝑖, which is also extended
to binary-valued vectors in a componentwise manner. The definitions imply the following identities:

efix
𝑘𝑖 =

1
2

(
〈1, fix𝑘𝑖〉 −

〈
fix𝑘𝑖 · 𝑤𝑘𝑖 , 𝑤★

〉)
, (25)

e¬fix
𝑘𝑖 =

1
2

(
〈1,¬fix𝑘𝑖〉 −

〈
¬fix𝑘𝑖 · 𝑤𝑘𝑖, 𝑤★

〉)
. (26)

Consider the case when fix𝑘𝑖 ≠ 1. Thanks to 𝑠𝑘𝑖 ≠ ⊥, the first 𝑖 actions of round 𝑘 are unique.
Therefore, in this case, ctflip

𝑘𝑖
= 𝑖. Furthermore, each unique action adds 1 to 〈1, fix𝑘𝑖〉, thus efix

𝑘𝑖
≤

〈1, fix𝑘𝑖〉 = 𝑖 = ctflip
𝑘𝑖

. Similarly, e¬fix
𝑘𝑖
≤ 〈1,¬fix𝑘𝑖〉 = 𝑝 − 𝑖 = 𝑝 − ctflip

𝑘𝑖
. If on the other hand, fix𝑘𝑖 = 1,

then e¬fix
𝑘𝑖

= 0. This leads to the following result, which will be useful for our calculations:

Lemma 4.8. Assuming 𝑠𝑘𝑖 ≠ ⊥, e¬fix
𝑘𝑖
≤ 𝑝 − ctflip

𝑘𝑖
, and e¬fix

𝑘𝑖
≤ 𝑝 − 𝑖. Furthermore, if fix𝑘𝑖 ≠ 1, then

the following also hold: ctflip
𝑘𝑖

= 𝑖 = 〈1, fix𝑘𝑖〉, and efix
𝑘𝑖
≤ ctflip

𝑘𝑖
.
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4.5. Defining a policy and calculating its value function

We now define a deterministic policy 𝜋𝑤★ : S → [𝐴], which later will be shown to be the optimal
policy. The purpose of the current section is merely to compute the value function of this policy. The
policy is defined as follows: Let 𝑠𝑘𝑖 ∈ Sr be a state along step 𝑖 of round 𝑘 and assume that 𝑠𝑘𝑖 ≠ ⊥.
Then 𝜋𝑤★ greedily flips all the components of 𝑤𝑘𝑖 that have the wrong sign and are not fixed yet.
Once this is done, 𝜋𝑤★ freezes the round by repeating an action. Ties are resolved in a systematic
fashion.

More formally, let A1 be the set of actions where the component of 𝑤𝑘𝑖 has not been fixed yet
and where 𝑤𝑘𝑖 disagrees in sign with 𝑤★; let A2 be the set of actions where the component has been
fixed:

A1 = {𝑎 ∈ [𝐴] : (fix𝑘𝑖)𝑎 = 0 and (𝑤𝑘𝑖)𝑎 ≠ 𝑤★𝑎}
A2 = {𝑎 ∈ [𝐴] : (fix𝑘𝑖)𝑎 = 1}

(27)

Then,

𝜋𝑤★ (𝑠𝑘𝑖, ·) =



1 , if 𝑠𝑘𝑖 = ⊥ ; (28a)

arg max
𝑎∈[𝑝]

〈
𝜑𝑞 (𝑠𝑘𝑖 , 𝑎), 𝜃★

〉
, else if diff (𝑤𝑘0, 𝑤

★) > 𝑝/4 ; (28b)

minA1 , else if |A1 | = e¬fix
𝑘𝑖

> 0 ; (28c)

minA2 , else if |A2 | = ctflip
𝑘𝑖
> 0 , (28d)

where 𝜑𝑞 is the state-action feature-map defined in Eq. 37, and 𝜃★ is defined in Eq 31. Note that
𝑠𝑘𝑖 ∈ Sr and 𝑠𝑘𝑖 ≠ ⊥ implies that either Case 28c or 28d must apply.

With this, the promised result of the section is as follows.

Lemma 4.9. Assuming 𝑠𝑘𝑖 ∈ Sr and 𝑠𝑘𝑖 ≠ ⊥, we have

𝑣𝜋𝑤★ (𝑠𝑘𝑖) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0))
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) .

The high level argument underlying this lemma is that the policy reaches the end state ⊥, either
after reaching the last step of the current, or the next round. In either cases, the only reward incurred
from the current state to the end is when the transition to the end state happens. The definition of this
reward can then be invoked to show the result. The detailed proof is as follows:

Proof. Starting from round 𝑘 step 𝑖 and letting A1 be as in Eq. 27, the policy 𝜋𝑤★ flips all the
components inA1 (that have the wrong sign and are not fixed yet). We note thatA1 = {} if there was
a repeated action in this round (which freezes the components). In this case, e¬fix

𝑘𝑖
= 0 and 𝑠𝑘𝑖 ≠ ⊥

implies the repeated action was legal, i.e., 𝑖 = 𝑖 + e¬fix
𝑘𝑖
≥ d𝑝/4e, and therefore 𝑤𝑘𝑖 is frozen, thus

regardless of 𝜋𝑤★, 𝑤𝑘+1,0 = 𝑤𝑘𝑖, so diff (𝑤𝑘0, 𝑤𝑘+1,0) = ctflip
𝑘𝑖

= ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖
.

Otherwise, by definition the first 𝑖 + |A1 | = 𝑖 + e¬fix
𝑘𝑖

= ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖
≤ 𝑝 actions in round

𝑘 are unique (noting the inequality comes from Lemma 4.8). Furthermore, in this case observe
that all components where 𝑤𝑘0 differs in sign from 𝑤★ are flipped in round 𝑘 by step 𝑖 + e¬fix

𝑘𝑖
:

either because it was flipped in the first 𝑖 steps (and thus setting the relevant component of fix𝑘𝑖
to 1), or because the action corresponding to the component is in A1, and thus flipped by 𝜋𝑤★.
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Therefore 𝑖 + e¬fix
𝑘𝑖
≥ diff (𝑤𝑘0, 𝑤

★) As ⊥ ≠ 𝑠𝑘𝑖 ∈ Sr, diff (𝑤𝑘0, 𝑤
★) ≥ 𝑝/4. As 𝑖 + e¬fix

𝑘𝑖
is an integer,

𝑖 + e¬fix
𝑘𝑖
≥ d𝑝/4e. At step 𝑖 + e¬fix

𝑘𝑖
≥ d𝑝/4e, all the actions in A1 are exhausted, and if there are any

remaining steps in the round, 𝜋𝑤★ freezes the round by repeating an action (Case 28d). This is a
legal action as 𝑖 + e¬fix

𝑘𝑖
≥ d𝑝/4e. Therefore 𝑤𝑘+1,0 = 𝑤𝑘,𝑖+e¬fix

𝑘𝑖
.

Regardless of whether 𝑤𝑘𝑖 is fixed at step 𝑖, the number of components that have the wrong sign
that are not flipped in round 𝑘 is exactly efix

𝑘𝑖
, and therefore

diff (𝑤𝑘0, 𝑤𝑘+1,0) = ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖

diff (𝑤𝑘+1,0, 𝑤★) = efix
𝑘𝑖

At the end of round 𝑘 , at step 𝑝 − 1, either Case 23b or 23c applies and the expectation of the
reward is

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝑘+1]

)
=

©­«
∏

𝑘′∈[𝑘+1]
𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)

ª®¬ 𝑔(diff (𝑤𝑘+1,0, 𝑤★))

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) ,

or Case 23d applies and the episode continues with round 𝑘 + 1. In this latter case, fix𝑘+1,0 = 0,
ctflip
𝑘+1,0 = 0, e¬fix

𝑘+1,0 = diff (𝑤𝑘+1,0, 𝑤★) = efix
𝑘𝑖

, and so in round 𝑘 + 1, 𝜋𝑤★ sets all the remaining
components to match 𝑤★, i.e., 𝑤𝑘+2,0 = 𝑤★. The transition at the end of round 𝑘 + 1, at step 𝑝 − 1,
then falls either under Case 23b or 23c, and the expectation of the reward is the same as before as
𝑔(0) = 1:

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝑘+2]

)
=

©­«
∏

𝑘′∈[𝑘+2]
𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)

ª®¬ 𝑔(diff (𝑤𝑘+2,0, 𝑤★))

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 )𝑔(0) ,

As in MDP 𝑀 any transition with a positive reward expectation transitions to state ⊥, the value of
𝜋𝑤★, the expected sum of rewards along the episode, reduces to the expectation of this single reward
in the episode.

4.6. Showing that 𝜋𝑤★ is an optimal policy

We start with a lemma that will be used to optimize the attainable reward, given the constraints of the
MDP.

Lemma 4.10. For 𝑝 ≥ 2, 𝑙 ≥ 2 integer, let (𝑥 𝑗) 𝑗∈[𝑙 ] be integers 0 ≤ 𝑥 𝑗 ≤ 𝑝, and let 0 ≤ 𝑐1, 𝑐2, 𝑐3 ≤
𝑝 be further integers such that the following all hold:

• 𝑐2 ≤ 𝑐1 or 𝑐3 = 0;
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• 𝑐1 + 𝑐3 ≤ 𝑝;

• 𝑐1 + 𝑐2 + 𝑐3 ≤
∑
𝑗∈[𝑙 ] 𝑥 𝑗;

• 𝑐2 ≤
∑
𝑗∈[2:𝑙 ] 𝑥 𝑗;

• 𝑐1 ≤ 𝑥1.

Then, ∏
𝑗∈[𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) .

Proof. Note that 𝑔(𝑥) > 0 and decreases monotonically for 𝑥 ∈ [0, 𝑝]. First we prove for integers
𝑥 ≥ 𝑦 such that 1 ≤ 𝑥, 𝑦 ≤ 𝑝 − 1, it holds that

𝑔(𝑥)𝑔(𝑦) ≤ 𝑔(𝑥 + 1)𝑔(𝑦 − 1) . (29)

Note that 𝑔(𝑥)𝑔(𝑦) − 𝑔(𝑥 + 1)𝑔(𝑦 − 1) = − 𝑥−𝑦+12𝑝4 (𝑝(𝑥 − 2) + 𝑦(𝑝 − 𝑥) + 𝑥), and as 𝑥 ≥ 𝑦, it only
remains to prove that 𝑝(𝑥 − 2) + 𝑦(𝑝 − 𝑥) + 𝑥 ≥ 0. If 𝑥 = 1 then 𝑦 = 1 and the above holds with
equality. Otherwise 𝑥 ≥ 2 and all terms are non-negative, finishing the proof of Eq. 29.

We now claim that for any 0 ≤ 𝑦 ≤ 𝑥 ≤ 𝑝 integers, 𝑔(𝑥)𝑔(𝑦) ≤ 𝑔((𝑥 + 𝑦) ∧ 𝑝). Since over
[0, 𝑝], 𝑔 takes values in [0, 1], this clearly holds when either 𝑦 = 0 or when 𝑥 = 𝑝. Furthermore, if
1 ≤ 𝑦 ≤ 𝑥 ≤ 𝑝−1, then from Eq. 29 it follows that 𝑔(𝑥)𝑔(𝑦) ≤ 𝑔(𝑥+1)𝑔(𝑦−1) ≤ 𝑔(𝑥+2)𝑔(𝑦−2) ≤
𝑔((𝑥 + 𝑦) ∧ 𝑝)𝑔((𝑥 + 𝑦 − 𝑝) ∨ 0) ≤ 𝑔((𝑥 + 𝑦) ∧ 𝑝) where the last inequality follows again because
𝑔(𝑢) ∈ [0, 1] when 𝑢 ∈ [0, 𝑝].

Now, 𝑔(𝑥2)𝑔(𝑥3)𝑔(𝑥4) ≤ 𝑔((𝑥2+𝑥3)∧𝑝)𝑔(𝑥4) ≤ 𝑔((((𝑥2+𝑥3)∧𝑝)+𝑥4)∧𝑝) = 𝑔((𝑥2+𝑥3+𝑥4)∧𝑝).
Continuing this way, letting 𝑥≥2 =

∑
𝑗∈[2:𝑙 ] 𝑥 𝑗 , we get∏
𝑗∈[2:𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑥≥2 ∧ 𝑝) .

Thus,
∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑥1)𝑔(𝑥≥2 ∧ 𝑝).

Consider first the case when 𝑐3 = 0. Then, by monotonicity of 𝑔, as 𝑥1 ≥ 𝑐1 = 𝑐1 + 𝑐3 and
𝑐2 ≤ 𝑥≥2,

∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) and we are done.

Now, if 𝑐3 > 0, by assumption 𝑐2 ≤ 𝑐1. In this case, 𝑐1+𝑐2+𝑐3−(𝑥1∧(𝑐1+𝑐3)) ≤ 𝑥≥2∧ 𝑝, as (1)
𝑐1 ≤ (𝑥1∧ (𝑐1 + 𝑐3)) and thus 𝑐1 + 𝑐2 + 𝑐3− (𝑥1∧ (𝑐1 + 𝑐3)) ≤ 𝑐2 + 𝑐3 ≤ 𝑐1 + 𝑐3 ≤ 𝑝, while (2) by our
assumptions, 𝑥≥2 ≥ 𝑐2 and 𝑥1 + 𝑥≥2 ≥ 𝑐1 + 𝑐2 + 𝑐3, and therefore (𝑥1∧ (𝑐1 + 𝑐3)) + 𝑥≥2 ≥ 𝑐1 + 𝑐2 + 𝑐3.
By the monotonicity of 𝑔, we can then conclude that∏

𝑗∈[𝑙 ]
𝑔(𝑥 𝑗) ≤ 𝑔(𝑥1 ∧ (𝑐1 + 𝑐3))𝑔(𝑐1 + 𝑐2 + 𝑐3 − (𝑥1 ∧ (𝑐1 + 𝑐3))) .

Let 𝑥 ′1 and 𝑥 ′2 be the above arguments of 𝑔 in decreasing order, i.e., 𝑥 ′1 = (𝑥1 ∧ (𝑐1 + 𝑐3)) ∨ (𝑐1 + 𝑐2 +
𝑐3 − (𝑥1 ∧ (𝑐1 + 𝑐3))) and 𝑥 ′2 = (𝑥1 ∧ (𝑐1 + 𝑐3)) ∧ (𝑐1 + 𝑐2 + 𝑐3 − (𝑥1 ∧ (𝑐1 + 𝑐3))), so that we have∏
𝑗∈[𝑙 ] 𝑔(𝑥 𝑗) ≤ 𝑔(𝑥 ′1)𝑔(𝑥

′
2) with 𝑥 ′1 ≤ 𝑐1 + 𝑐3 and 𝑥 ′1 + 𝑥

′
2 = 𝑐1 + 𝑐2 + 𝑐3. Applying Eq. 29 on this

product 𝑐1 + 𝑐3 − 𝑥 ′1 times, we get that∏
𝑗∈[𝑙 ]

𝑔(𝑥 𝑗) ≤ 𝑔(𝑥 ′1)𝑔(𝑥
′
2) ≤ 𝑔(𝑐1 + 𝑐3)𝑔(𝑐2) .
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We now show that 𝜋𝑤★ is an optimal policy by arguing that its value function matches the optimal
value function.

Lemma 4.11 (𝜋𝑤★ is an optimal policy). In MDP 𝑀 ,

∀𝑠 ∈ S, 𝑎 ∈ [𝐴], 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) .

Proof. For 𝑠 = ⊥, the claim holds by definition as 𝑣𝜋𝑤★ (⊥) = 𝑣★(⊥) = 0. Otherwise, let 𝑠 = 𝑠𝑘𝑖
be a state along step 𝑖 of round 𝑘 . Let us first consider the case when 𝑠𝑘𝑖 ∈ S¬r. For any action 𝑎
performed, the transition will happen under Case 23a, and the deterministic reward given equals
𝑞★(𝑠𝑘𝑖, 𝑎). If we are in the 𝑣★-realizable setting (for MDP 𝑀 𝑣

𝑤★), this reward does not depend on the
action and therefore 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) regardless of 𝜋𝑤★. Otherwise, 𝜋𝑤★ chooses an action under
Case 28b, which by definition maximizes the reward, so again 𝑣𝜋𝑤★ (𝑠) = 𝑣★(𝑠) in this case as well.

Let us turn to the case where 𝑠𝑘𝑖 ∈ Sr. There is at most one reward with positive expectation
in any round (or none, if an illegal action is taken). As no state in S¬r is reachable from 𝑠𝑘𝑖 (by
Lemma 4.7), this reward is collected at the end of some round 𝐾 ′ ∈ [0 : 𝐾 − 1], at step 𝑝 − 1, and
has expectation

𝑓𝑤★

(
(𝑤𝑘′0)𝑘′∈[𝐾 ′+1]

)
=

©­«
∏

𝑘′∈[𝐾 ′+1]
𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0))

ª®¬ 𝑔(diff (𝑤𝐾 ′+1,0, 𝑤★))

=
∏

𝑘′∈[𝐾+1]
𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)) ,

where, for convenience, we let 𝑤𝑘′0 = 𝑤★ for 𝑘 ′ ≥ 𝐾 ′ + 2 (as 𝑔(0) = 0). This reward expectation is
strictly positive (by Lemma 4.2), so the optimal policy will never take an illegal action.

At round 𝑘 , 𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)) is fixed for 𝑘 ′ ∈ [𝑘], and the policy can only influence the
terms 𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)) for 𝑘 ′ ∈ [𝑘 + 1 : 𝐾 + 1]. We have by definition that 0 ≤ diff (·, ·) ≤ 𝑝.
In any round, once a component is flipped it cannot be flipped back in the same round. This implies
that

diff (𝑤𝑘0, 𝑤𝑘+1,0) = diff (𝑤𝑘0, 𝑤𝑘𝑖) + diff (𝑤𝑘𝑖 , 𝑤𝑘+1,0) ≥ diff (𝑤𝑘0, 𝑤𝑘𝑖) = ctflip
𝑘𝑖
.

On top of this, efix
𝑘𝑖
+ e¬fix

𝑘𝑖
components differ in sign between 𝑤𝑘𝑖 and 𝑤★. By the triangle inequality,

as 𝑤𝐾+1,0 = 𝑤★, this implies that∑︁
𝑘′∈[𝑘+1:𝐾+1]

diff (𝑤𝑘′−1,0, 𝑤𝑘′,0) ≥ diff (𝑤𝑘0, 𝑤𝑘𝑖) + diff (𝑤𝑘𝑖, 𝑤★) = ctflip
𝑘𝑖
+ efix

𝑘𝑖 + e¬fix
𝑘𝑖 .

Finally, efix
𝑘𝑖

of these have already been flipped in round 𝑘 by step 𝑖. These cannot be flipped again in
the same round 𝑘 , so they need to be included in some future round, i.e., in diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)) for
𝑘 ′ ≥ 𝑘 + 2: ∑︁

𝑘′∈[𝑘+2:𝐾+1]
diff (𝑤𝑘′−1,0, 𝑤𝑘′,0) ≥ diff (𝑤𝑘+1,1, 𝑤★) ≥ efix

𝑘𝑖 .

By Lemma 4.8,
e¬fix
𝑘𝑖 ≤ 𝑝 − ctflip

𝑘𝑖
,

and either fix𝑘𝑖 = 1, implying e¬fix
𝑘𝑖

= 0, or efix
𝑘𝑖
≤ ctflip

𝑘𝑖
:

efix
𝑘𝑖 ≤ ctflip

𝑘𝑖
or e¬fix

𝑘𝑖 = 0 .
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Therefore, we can apply Lemma 4.10 with 𝑐1 = ctflip
𝑘𝑖
, 𝑐2 = efix

𝑘𝑖
, 𝑐3 = e¬fix

𝑘𝑖
to optimize the parameters

(𝑥 𝑗) 𝑗∈[𝐾−𝑘+1] where 𝑥 𝑗 = diff (𝑤 𝑗+𝑘−1, 𝑤 𝑗+𝑘), to get that∏
𝑘′∈[𝑘+1:𝐾+1]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)) ≤ 𝑔(ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) .

Therefore, the optimal policy’s expected value (which equals the expectation of the only reward in
the episode) is upper bounded as:

𝑣★(𝑠𝑘𝑖) ≥
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) = 𝑣

𝜋𝑤★ (𝑠𝑘𝑖) ,

by Lemma 4.9. Therefore 𝑣𝜋𝑤★ (𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖).

4.7. Defining 𝜃★, 𝜑𝑣 , and 𝜑𝑞, and showing realizability

For (column) vectors 𝑀1, 𝑀2, . . ., let us denote by [𝑀1, 𝑀2, . . .] their concatenation (𝑀>1 , 𝑀
>
2 , . . .)

>.
Let ♭(𝑀) map a tensor of any rank 𝑚 and any shape 𝑑1 × 𝑑2 × . . . × 𝑑𝑚 to the vector of dimension∏
𝑖∈[𝑚] 𝑑𝑖 by laying out its elements in a canonical order. Let ⊗ denote the tensor product.

We will use the following result to linearize products of vectors:

Lemma 4.12. For any positive integer 𝑛 and any vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑏1, 𝑏2, . . . , 𝑏𝑛 of equal
dimension:

〈𝑎1, 𝑏1〉 〈𝑎2, 𝑏2〉 . . . 〈𝑎𝑛, 𝑏𝑛〉 = 〈♭(𝑎1 ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛), ♭(𝑏1 ⊗ 𝑏2 ⊗ · · · ⊗ 𝑏𝑛)〉 .

By Lemma 4.7, and because 𝑀 𝑣
𝑤★ and 𝑀𝑞

𝑤★ have the same transitions and rewards for any state
𝑠 ∈ Sr, we do not notationally distinguish between 𝑀 𝑣

𝑤★ and 𝑀𝑞

𝑤★ when describing the value or
action-value functions of these MDPs on states 𝑠 ∈ Sr, as these are the same in the two MDPs.

We define the feature-map 𝜑𝑣 : S → B𝑑 (1) and 𝜑𝑞 : S × [𝐴] → B𝑑 (1). For state ⊥,
let 𝜑𝑣 (⊥) = 0 and for all actions 𝑎 ∈ [𝐴], 𝜑𝑞 (⊥, 𝑎) = 0. Realizability immediately holds as
𝑣★(⊥) = 𝑞★(⊥, 𝑎) = 0 = 〈0, 𝜃★〉. For any state 𝑠 ∈ S, 𝑠 ≠ ⊥, let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of
round 𝑘 . Let us introduce the function

𝑣′(𝑠𝑘𝑖) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) . (30)

By Lemmas 4.11 and 4.9, it holds that 𝑣′(𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖) if 𝑠𝑘𝑖 ∈ Sr. Observe that out of the
terms above, only e¬fix

𝑘𝑖
and efix

𝑘𝑖
depends on 𝑤★, and this dependence is linear. In particular, recall

that ctflip
𝑘𝑖

depends only on the actions, and not on 𝑤★. Combined with the fact that 𝑔 is a second-
order polynomial, 𝑣′(𝑠𝑘𝑖) is a fourth-order expression in 𝑤★, which can thus be linearized in
1 + 𝑝 + 𝑝2 + 𝑝3 + 𝑝4 ≤ 𝑑 dimensions. Let 𝑤̄★ = 𝑤★/‖𝑤★‖2 = 𝑤★/√𝑝, and

𝜃★ = 63
[
1 , 𝑤̄★ , (𝑤̄★)⊗2 , (𝑤̄★)⊗3 , (𝑤̄★)⊗4, 0𝑑−(1+𝑝+𝑝

2+𝑝3+𝑝4)
]
, (31)
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where 0𝑑−(1+𝑝+𝑝2+𝑝3+𝑝4) is a vector of zeros of dimensionality 𝑑 − (1 + 𝑝 + 𝑝2 + 𝑝3 + 𝑝4), serving
the purpose to pad the vector to exactly 𝑑 dimensions, as required by the definition. As ‖𝑤̄★‖2 = 1,
we have that 

𝜃★

2 ≤ 63 · 5 = 315 := 𝐵 .

Finally, for 𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) calculated in Appendix A.1, if we let

𝜑𝑣 (𝑠𝑘𝑖) =
1
63

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0))
ª®¬
[
𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) , 0𝑑−(1+𝑝+𝑝

2+𝑝3+𝑝4)
]
,

(32)

then by Eq. 46,〈
𝜑𝑣 (𝑠𝑘𝑖), 𝜃★

〉
=

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) = 𝑣

′(𝑠𝑘𝑖) (33)

(34)

Eq. 32 completes the definition of 𝜑𝑣 , while Eq. 33 implies that

0 ≤
〈
𝜑𝑣 (𝑠𝑘𝑖), 𝜃★

〉
≤ 1 , (35)

as 𝑣′(𝑠𝑘𝑖) is a product of 𝑔(·) ∈ [0, 1] terms (as diff (·, ·) ∈ [0, 𝑝]). Furthermore, combining this
with



[𝑍 (0) , 𝑍 (1) , 𝑍 (2) , 𝑍 (3) , 𝑍 (4) ]

2 ≤ 63 (by Eq. 46), we have that

‖𝜑𝑣 (𝑠)‖2 ≤ 1 for all 𝑠 ∈ S ,

which ensures that 𝜑𝑣 : S → B𝑑 (1). We stress that, as required, 𝜑𝑣 (𝑠𝑘𝑖) does not depend on 𝑤★.
To show 𝑣★-realizability with these features, i.e., that 𝑣★(𝑠𝑘𝑖) = 〈𝜑𝑣 (𝑠𝑘𝑖), 𝜃★〉, we start by

pointing out that if 𝑠𝑘𝑖 ∈ S¬r then this immediately holds:

Lemma 4.13. For any state 𝑠 ∈ S¬r and action 𝑎 ∈ [𝐴], regardless of the values of 𝜑𝑣 (𝑠), 𝜑𝑞 (𝑠, 𝑎),
and 𝜃★, 𝑣★-realizability for 𝑀 𝑣

𝑤★ and 𝑞★-realizability for 𝑀𝑞

𝑤★ immediately holds as the transition
falls under Case 23a:

𝑣★
𝑀 𝑣

𝑤★
(𝑠) =

〈
𝜑𝑣 (𝑠), 𝜃★

〉
𝑞★
𝑀

𝑞

𝑤★

(𝑠, 𝑎) =
〈
𝜑𝑞 (𝑠, 𝑎), 𝜃★

〉
Otherwise 𝑠𝑘𝑖 ∈ Sr, and 𝑣★-realizability follows from Eq. 33 by recalling that 𝑣′(𝑠𝑘𝑖) = 𝑣★(𝑠𝑘𝑖)

in this case. We conclude the following lemma from this:

Lemma 4.14. 𝑀 𝑣
𝑤★ is 𝑣★-realizable with features 𝜑𝑣 : (𝑀 𝑣

𝑤★, 𝜑𝑣 ) ∈ M𝑣★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet.

We move on to defining 𝜑𝑞 and showing 𝑞★-realizability for 𝑀𝑞

𝑤★. For any state 𝑠 ∈ S, 𝑠 ≠ ⊥
and action 𝑎 ∈ [𝐴], let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of round 𝑘 . Let 𝑠𝑎

𝑘,𝑖+1 denote the value taken by
𝑠𝑘,𝑖+1 if 𝑎𝑘𝑖 = 𝑎, and similarly for 𝑤𝑎

𝑘,𝑖+1. For 𝑖 = 𝑝 − 1 only, let us introduce

𝑞′(𝑠𝑘, 𝑝−1, 𝑎) =
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(diff (𝑤𝑘0, 𝑤

𝑎
𝑘+1,0))𝑔(diff (𝑤𝑎𝑘+1,0, 𝑤

★)) . (36)
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Let

𝑐(𝑠𝑘𝑖 , 𝑎) =
1
63

©­«
∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(diff (𝑤𝑘0, 𝑤

𝑎
𝑘+1,0)) .,

which is a scalar that does not depend on 𝑤★. The only remaining term in 𝑞′ has a second-order
dependence on 𝑤★. For 𝑋(0) , 𝑋(1) , 𝑋(2) calculated in Appendix A.2, we let

𝜑𝑞 (𝑠𝑘𝑖 , 𝑎) =
{
𝜑𝑣 (𝑠𝑎𝑘,𝑖+1) else if 𝑖 < 𝑝; (37a)

𝑐(𝑠𝑘𝑖, 𝑎)
[
𝑋(0) , 𝑋(1) , 𝑋(2) , 0𝑑−(1+𝑝+𝑝

2)
]

otherwise, (37b)

where 0𝑑−(1+𝑝+𝑝2) is a vector of zeros of dimensionality 𝑑 − (1 + 𝑝 + 𝑝2). Then by Eq. 49, for 𝜃★ set
according to Eq. 31, 〈

𝜑𝑞 (𝑠𝑘, 𝑝−1, 𝑎), 𝜃★
〉
= 𝑞′(𝑠𝑘, 𝑝−1, 𝑎) . (38)

Eq 37 completes the definition of 𝜑𝑞, while Eq. 38 together with Eq. 35 implies that

0 ≤
〈
𝜑𝑞 (𝑠𝑘𝑖, 𝑎), 𝜃★

〉
≤ 1 for all 𝑎 ∈ [𝐴], 𝑠𝑘𝑖 ∈ S, 𝑠𝑘𝑖 ≠ ⊥ , (39)

as 𝑞′(𝑠𝑘, 𝑝−1, 𝑎) is a product of 𝑔(diff (·, ·)) ∈ [0, 1] terms. Furthermore, combining this with

[𝑋(0) , 𝑋(1) , 𝑋(2) ]

2 ≤ 8 (by Eq. 49), we have that.

𝜑𝑞 (𝑠, 𝑎)

2 ≤ 1 for all 𝑠, 𝑎 ∈ S × [𝐴] ,

which ensures that 𝜑𝑞 : S × [𝐴] → B𝑑 (1), as required. Again we stress that 𝜑𝑣 (𝑠𝑘𝑖) does not
depend on 𝑤★.

To show 𝑞★-realizability, we first consider the case when 𝑠𝑘𝑖 ∈ Sr and 𝑖 = 𝑝 − 1 i.e., 𝜑𝑞 (𝑠𝑘𝑖, 𝑎)
falls under Case 37b. In this case,〈

𝜑𝑞 (𝑠𝑘, 𝑝−1, 𝑎), 𝜃★
〉
= 𝑞′(𝑠𝑘, 𝑝−1, 𝑎)

=
©­«

∏
𝑘′∈[𝑘 ]

𝑔(diff (𝑤𝑘′−1,0, 𝑤𝑘′,0)
ª®¬ 𝑔(diff (𝑤𝑘0, 𝑤

𝑎
𝑘+1,0))𝑔(diff (𝑤𝑎𝑘+1,0, 𝑤

★))

= 𝑞★(𝑠𝑘, 𝑝−1, 𝑎) ,

where the first equality comes from Eq 38. The last equality holds by definition if the transition and
reward follows Case 23b or 23c; otherwise under Case 23d, it holds since

𝑞★(𝑠𝑘, 𝑝−1, 𝑎) = 𝑣★(𝑠𝑎𝑘+1,0) = 𝑞
′(𝑠𝑘, 𝑝−1, 𝑎) ,

where the second equality follows from Lemmas 4.9 and 4.11.
Turning to the case where 𝑠𝑘𝑖 ∈ Sr and 𝑖 < 𝑝 − 1, we note that 𝜑𝑞 (𝑠𝑘𝑖 , 𝑎) falls under Case 37a,

while the transition and reward follows Case 23d. Therefore

𝑞★(𝑠𝑘𝑖 , 𝑎) = 𝑣★(𝑠𝑎𝑘,𝑖+1) =
〈
𝜑𝑣 (𝑠𝑎𝑘,𝑖+1), 𝜃

★
〉
=

〈
𝜑𝑞 (𝑠𝑘,𝑖+1, 𝑎), 𝜃★

〉
,

where the second equality follows from Lemma. 4.14.
Together with Lemma 4.13 that proves 𝑞★-realizability for the case of 𝑠𝑘𝑖 ∈ S¬r, we conclude

that the following holds:
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Lemma 4.15. 𝑀𝑞

𝑤★ is 𝑞★-realizable with features 𝜑𝑞: (𝑀𝑞

𝑤★, 𝜑𝑞) ∈ M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet.

Recall that Reach(𝑠00) ⊆ Sr under either MDP 𝑀 𝑣
𝑤★ or 𝑀𝑞

𝑤★ (by Lemma 4.7), and that value
and action-value functions on such states take the same value for the two MDPs. Then, combining
Lemmas 4.14 and 4.15, we have the following result:

Lemma 4.16. 𝑀 𝑣
𝑤★ is reachable-𝑣★/𝑞★-realizable with features 𝜑𝑣 and 𝜑𝑞: (𝑀 𝑣

𝑤★, 𝜑𝑣 , 𝜑𝑞) ∈
M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴
∩MPdet.

4.8. Reduction to planning in the abstract game

Proof of Theorem 1.1. Let 𝛿 ≥ 0.01, 𝐵 ≥ 315, 𝑑 ≥ 31, 𝐻 ≥ 81. In what follows, we prove
the theorem only for 𝐴 (and 𝑝) set according to Eq. 21. This is sufficient to prove the result for
𝐴 ≥

⌊√
𝐻

⌋
∧0.8𝑑14 ≥ 𝑝 (Eq. 21) as soundness with a lower action count cannot be harder to achieve,

since it is always possible to duplicate some actions without changing the difficulty of the problem.
Let P be any 𝛿-sound planner with worst-case query cost 𝑁̄ for some class classM ∩MPdet,

where
M ∈ {M𝑣★

𝐵,𝑑,𝐻 ,𝐴,M
𝑞★

𝐵,𝑑,𝐻 ,𝐴
,M𝑣★/𝑞★reach

𝐵,𝑑,𝐻 ,𝐴
} .

We show that P gives rise to a sound abstract planner for the abstract game of Section 4.2 and
therefore, by Theorem 4.1, it must use exponentially many queries.

Lemmas 4.14, 4.15, and 4.16 show that MDPs
(
𝑀 𝑣
𝑤★

)
𝑤★∈𝑊★

,
(
𝑀
𝑞

𝑤★

)
𝑤★∈𝑊★

, and
(
𝑀 𝑣
𝑤★

)
𝑤★∈𝑊★

respectively, together with feature-maps 𝜑𝑣 and 𝜑𝑞 , belong to these classes. Therefore, the 𝛿-sound
planner P satisfies, for any MDP 𝑀 with parameter 𝑤★ in its class:

𝑣
𝜋𝑀
𝑀
(𝑠00) ≥ 𝑣★𝑀 (𝑠00) − 0.01 ,

where 𝑠00 is the initial state in 𝑀 and 𝜋𝑀 is the policy induced by the interconnection of P and
MDP 𝑀. Let P and E be the probability measure and expectation, respectively, induced by this
interconnection (as defined in Section 3.3). Then,

𝑣
𝜋𝑀
𝑀
(𝑠00) = E

[
𝐻∑︁
𝑡=1

𝑅𝑡
�� 𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) − 0.01

E

[ 8𝑝∑︁
𝑡=1

𝑅𝑡 + 𝑣★(𝑆8·𝑝)
�� 𝑆0 = 𝑠00

]
≥ E

[
𝐻∑︁
𝑡=1

𝑅𝑡
�� 𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) − 0.01 ,

where we put · in the index of 𝑆 to signify multiplication: as opposed to 𝑠, 𝑆 only has a single
index. It is valid to refer to the state 𝑆8·𝑝 as 𝐾 ≥ 9 by Eq. 22. Let us map any partial trajectory
𝑆0, 𝐴0, 𝑆1, 𝐴1, . . . , 𝑆8·𝑝−1, 𝐴8·𝑝−1 to the sequence (𝑤̃𝑖)𝑖∈[8] ∈ 𝑊◦8 as follows. Let 𝑗 ∈ [8] be the
smallest index for which 𝑆 𝑗 ·𝑝−1 = ⊥, or let 𝑗 = 9 if no such index exist in [8]. For 𝑖 ∈ [ 𝑗 − 1], let
𝑤̃𝑖 = 𝑤(𝑆𝑖 ·𝑝−1, 𝐴𝑖 ·𝑝−1); for 𝑖 ∈ [ 𝑗 : 8], let 𝑤̃𝑖 be any values such that (𝑤̃𝑖)𝑖∈[8] ∈ 𝑊◦8 (which is
always possible as (𝑤̃𝑖)𝑖∈[ 𝑗−1] ∈ 𝑊◦ 𝑗−1 when 𝑗 > 1). Let

𝑘★ = min{𝑖 ∈ [8] : 𝑖 = 8 or diff (𝑤̃𝑖 , 𝑤★) < 𝑝/4} .
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Let 𝑅 be the final reward of an abstract game (with the same parameters 𝐾, 𝑝, 𝑤★) for this sequence
(𝑤̃𝑖)𝑖∈[8] . By Eq. 10,

𝑅 = 𝑓𝑤★ (𝑤(𝑆𝑖 ·𝑝))𝑖∈[𝑘★] .

Observe that if there is an illegal action in the sequence 𝐴0, . . . , 𝐴8·𝑝−1, then
∑8𝑝
𝑡=1 𝑅𝑡 + 𝑣

★(𝑆8·𝑝) = 0.
Otherwise, if diff (𝑤̃𝑖 , 𝑤★) ≥ 𝑝/4 for all 𝑖 ∈ [8], then all transitions leading to 𝑆8·𝑝 fall under
Case 23d as 𝐾 ≥ 9, and by Lemmas 4.9 and 4.11, 𝑅 = 𝑣★(𝑆8·𝑝) =

∑8𝑝
𝑡=1 𝑅𝑡 + 𝑣

★(𝑆8·𝑝). Finally, if
diff (𝑤̃𝑘★, 𝑤★) < 𝑝/4, then 𝑆𝑘★ ·𝑝 = ⊥, 𝑣★(𝑆𝑘★ ·𝑝) = 0, 𝑅 = 𝑅𝑘★ ·𝑝, and the rest of the rewards are
zero. Therefore, either way,

E[𝑅] ≥ E
[ 8𝑝∑︁
𝑡=1

𝑅𝑡 + 𝑣★(𝑆8·𝑝)
�� 𝑆0 = 𝑠00

]
≥ 𝑣★(𝑠00) − 0.01 = 𝑓𝑤★ (()) . (40)

Recall that each response to P’s query to the MDP’s simulator, as well as the transitions
(𝑅𝑡+1, 𝑆𝑡+1) ∼ 𝑄(·|𝑆𝑡 , 𝐴𝑡 ) (for 𝑡 ∈ [0 : 𝐻 − 1]) can be implemented with at most one simulator
call (respectively) to the abstract game (with the same parameters 𝐾, 𝑝, 𝑤★; see Lemma 4.6). In
expectation, this results in at most 8𝑝𝑁̄ + 8𝑝 such queries to the abstract game simulator. Together
with Eq. 40, and noting that the choice of 𝑤★ ∈ 𝑊★ was arbitrary, we see that P can be used to
construct an abstract planner A that is sound with worst-case query cost 8𝑝𝑁̄ + 8𝑝. Therefore, by
Theorem 4.1, and using Eq. 22,

8𝑝𝑁̄ + 8𝑝 = 2Ω(𝑝∧𝐾 )

𝑁̄ = 2Ω(𝐻 1/2∧𝑑1/4) .

5. Extending the guarantees of TensorPlan: the Proof of Theorem 1.2

The purpose of this section is to provide a proof of Theorem 1.2. As this theorem has three parts
depending on the choice of the class of featurized MDPsM, we proceed based on this choice.

As mentioned beforehand, Weisz et al. (2021a) already proved the theorem forM =M𝑣★

𝐵,𝑑,𝐻 ,𝐴
.

Hence, it remains to show the theorem for

M =M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

and M =M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet .

We start with the former case.
First, for easy reference, we include the pseudocode of TENSORPLAN, the planner from Weisz

et al. (2021a), which establishes the claim forM =M𝑣★

𝐵,𝑑,𝐻 ,𝐴
. The pseudocode, which can be found

in Appendix B, is adjusted in minor ways to fit our conventions.
In the pseudocode, the simulator oracle is represented through the function SIMULATE, which

returns a reward, next-state, associated-feature triplet as the response to a call (query) of a state and
action tuple, as defined in Section 3.3. TENSORPLAN (TP), as a planner, is defined through the call
to function GetAction. An input to this function indicates whether this function is called for the
first state of an episode. The significance of this is that for the first state, TENSORPLAN runs a more
expensive planning step, the result of which is reused in subsequent calls to GetAction within the
episode.

From Weisz et al. (2021a), we have the following result:
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Theorem 5.1 (Weisz et al. (2021a), Theorem 4.2 with Corollary 4.3). For arbitrary positive reals
𝛿, 𝐵 and arbitrary positive integers 𝑑, 𝐻, it holds that

C★LA(M
𝑣★

𝐵,𝑑,𝐻 ,𝐴, 𝛿) = 𝑂
(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
.

and TENSORPLAN is a planner that achieves this.

Let us now show that the same result also holds forM = M𝑣★/𝑞★reach
𝐵,𝑑,𝐻 ,𝐴

. We actually state and
show this result for the case when 𝑞★ realizability over the reachable states is dropped, leading to the
classM𝑣★reach

𝐵,𝑑,𝐻 ,𝐴
. Clearly, it suffices to show the polynomial query complexity bound forM𝑣★reach

𝐵,𝑑,𝐻 ,𝐴
.

Lemma 5.2. For arbitrary positive reals 𝛿, 𝐵 and arbitrary positive integers 𝑑, 𝐻, it holds that

C★LA(M
𝑣★reach
𝐵,𝑑,𝐻 ,𝐴, 𝛿) = 𝑂

(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
.

and TENSORPLAN is a planner that achieves this.

Proof. This result is based on the observation that when TENSORPLAN is used with an MDP 𝑀

from some initial state 𝑠0 of the MDP, it only collects data from transitions for states in Reach𝑀 (𝑠0),
the set of states that are reachable from 𝑠0. As such, running TENSORPLAN in 𝑀 from 𝑠0 generates
the same joint distribution over queries and transitions as running it in an MDP 𝑀 ′ whose state
space is restricted to Reach𝑀 (𝑠0). Since in 𝑀 there are no transitions from Reach𝑀 (𝑠0) to outside
of this set, MDP 𝑀 ′ is well-defined and its optimal value function matches that of 𝑀 on the states in
Reach𝑀 (𝑠0). Therefore (𝑀 ′, 𝜑𝑣 |Reach𝑀 (𝑠0) ) ∈ M𝑣★

𝐵,𝑑,𝐻 ,𝐴
. Since TENSORPLAN is 𝛿-optimal with

the required polynomial complexity over the latter class, it induces a 𝛿-optimal policy in 𝑀 ′ with
polynomial query cost, while, based on the relationship between 𝑀 and 𝑀 ′, this policy is also
𝛿-optimal in 𝑀 .

To prove Theorem 1.2, it remains to show that the query complexity ofM𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet is

also polynomial.

Lemma 5.3. For arbitrary positive reals 𝛿, 𝐵 and arbitrary positive integers 𝑑, 𝐻, it holds that

C★LA(M
𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet, 𝛿) = 𝑂

(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
.

and TENSORPLAN can be adjusted to achieve this.

Proof. Take any featurized MDP (𝑀, 𝜑𝑞) ∈ M𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet. Let 𝑀 = (S, [𝐴], 𝑄) for some set

of states S and reward-transition kernel 𝑄 and let 𝑞★ be the optimal action-value function in 𝑀 . Let
𝑃 and 𝑅 be the transition and reward kernels respectively, corresponding to 𝑄. Let 𝑓 : S × A → S
be such that 𝑃( 𝑓 (𝑠, 𝑎) |𝑠, 𝑎) = 1. This function exists because 𝑀 has deterministic transitions. Let
S = {⊥} ∪ ⋃𝐻−1

ℎ=0 Sℎ be the decomposition of the state-space of 𝑀 from Assumption 3.1, noting
that Sℎ are pairwise disjoint. Fix an initial state 𝑠0 ∈ S0.

The idea of the proof is to construct a new MDP 𝑀̄ from 𝑀 such that (i) acting near-optimally in
the new MDP implies acting near-optimally in 𝑀; (ii) the optimal value function 𝑣̄★ of 𝑀̄ is linearly
realizable with some feature-map 𝜑̄𝑣 with a “small parameter vector” 𝜃★; (iii) transitions in the new
MDP can be simulated by using a simulator of 𝑀 , while this simulator can also provide access to 𝜑̄𝑣 .
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Then, one can use TENSORPLAN with the new MDP to get a good policy in 𝑀 while keeping the
query cost under control.

The new MDP 𝑀̄ = (S̄, [𝐴], 𝑄̄) is an 𝐻 +1-horizon MDP which ‘delays’ rewards and transitions
by one step. This will allow us to satisfy all three requirements listed above. In particular, the key to
this is that states in the new MDP will be of the form (𝑠, 𝑎) where (𝑠, 𝑎) is a “generic” state-action
pair in 𝑀 and we will ensure that 𝑣̄★((𝑠, 𝑎)) = 𝑞★(𝑠, 𝑎). The state features in the new MDP can then
be essentially chosen to be 𝜑̄𝑣 ((𝑠, 𝑎)) = 𝜑𝑞 (𝑠, 𝑎).

The details are as follows: Apart from some special cases, the states in this new MDP are pairs of
the original MDP’s states and actions, of the form (𝑠, 𝑎), with the action component corresponding
to an action taken in the “previous step” in the new MDP. Then, when action 𝑎′ is used in state (𝑠, 𝑎),
unless 𝑓 (𝑠, 𝑎) = ⊥ the next state is ( 𝑓 (𝑠, 𝑎), 𝑎′), while the reward incurred comes from 𝑅(·|𝑠, 𝑎)
where 𝑅 is the reward kernel underlying 𝑄. When 𝑓 (𝑠, 𝑎) = ⊥, the next state is simply ⊥, while the
reward still comes from 𝑅(·|𝑠, 𝑎)). At state ⊥, as before, any action still transitions to ⊥ with no
reward incurred. Finally, we add another state, (𝑠0, 0), to the state of the new MDP so that {(𝑠0, 0)}
becomes the set of initial states. The transitions here are as follows: if action 𝑎 is taken in state
(𝑠0, 0), the next state becomes (𝑠0, 𝑎) with no reward incurred. (The reason for not adding all states
from S1 × {0} to 𝑀̄ will become clear later.) In summary, in the new MDP, when an action is taken,
the action chosen in the previous time step (and stored as part of the state) is carried out and the new
action is stored to be used in the next step.

Let 𝑟 (𝑠, 𝑎) be the expected immediate reward when action 𝑎 is taken in state 𝑠. We claim that by
the construction of 𝑀̄ ,

𝑣̄★((𝑠, 𝑎)) = 𝑞★(𝑠, 𝑎) , (𝑠, 𝑎) ∈ Sℎ × [𝐴] , 0 ≤ ℎ ≤ 𝐻 − 1 . (41)

Indeed, this is trivial for ℎ = 𝐻 − 1 as here as 𝑞★(𝑠, 𝑎) = 𝑣̄★((𝑠, 𝑎)) = 𝑟 (𝑠, 𝑎), as the final step of the
episode transitions to ⊥. Now, recall that the optimal value functions satisfy the Bellman-optimality
equations. In the case of 𝑀 , these take the form

𝑣★(𝑠) = max
𝑎
𝑞★(𝑠, 𝑎) , (42)

𝑞★(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝑣★( 𝑓 (𝑠, 𝑎)) , (𝑠, 𝑎) ∈ S × [𝐴] . (43)

Denote the same reward for 𝑀̄ and state (𝑠, 𝑎) and action 𝑎′ by 𝑟 ((𝑠, 𝑎), 𝑎′). Of course, the
Bellman-optimality equations also hold for 𝑣̄★. With this, if Eq. 41 holds up to ℎ + 1, for (𝑠, 𝑎) ∈
Sℎ × [𝐴] we have

𝑣̄★((𝑠, 𝑎)) = max
𝑎′∈[𝐴]

𝑟 ((𝑠, 𝑎), 𝑎′) + 𝑣̄★(( 𝑓 (𝑠, 𝑎), 𝑎′)) (Bellman optimality equations for 𝑣̄★)

= max
𝑎′∈[𝐴]

𝑟 (𝑠, 𝑎) + 𝑞★( 𝑓 (𝑠, 𝑎), 𝑎′) (definition of 𝑟 and induction hypothesis)

= 𝑟 (𝑠, 𝑎) + 𝑣★( 𝑓 (𝑠, 𝑎)) (Eq. 42)

= 𝑞★(𝑠, 𝑎) , (Eq. 43)

finishing the proof of Eq. 41.
Now, Eq. 41 suggests just to define 𝜑̄𝑣 ((𝑠, 𝑎)) = 𝜑𝑞 (𝑠, 𝑎) and 𝜑̄𝑣 (⊥) = 0. This almost works

except that we also need to define 𝜑̄𝑣 at (𝑠0, 0). To deal with this case, we extend the dimension
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of the feature space by one, setting 𝜑̄𝑣 ((𝑠0, 0)) = [1, 0].8 Now, using that 𝑟 ((𝑠0, 0), 𝑎) = 0 for all
𝑎 ∈ [𝐴], we have

𝑣̄★((𝑠0, 0)) = max
𝑎
𝑟 ((𝑠0, 0), 𝑎) + 𝑣̄★((𝑠0, 𝑎)) = max

𝑎
𝑞★(𝑠0, 𝑎) = 𝑣★(𝑠0) , (44)

where the second equality used Eq. 41 with (𝑠, 𝑎) = (𝑠0, 𝑎). Using this, we set 𝜃★ = (𝑣★(𝑠0), 𝜃★)
so that 𝑣̄★ is linearly realizable with the new features. (This is the point where we exploit that in 𝑀̄
there is only a single new initial state: this is why it suffices to add a single extra dimension to the
feature space.)

As 𝜑𝑞 ∈ S × [𝐴] → B𝑑 (1) and 𝜃★ ∈ B𝑑 (𝐵) we have that 𝑣★(𝑠0) ≤ 𝐵, therefore, by the triangle
inequality, 𝜃★ ∈ B𝑑+1(2𝐵). Using (𝑀, 𝜑𝑞) ∈ M𝑞★

𝐵,𝑑,𝐻 ,𝐴
, it follows that

(𝑀̄, 𝜑̄𝑣 ) ∈ M𝑣★

2𝐵,𝑑+1,𝐻+1,𝐴 .

The planning method TP′ for the classM𝑞★

𝐵,𝑑,𝐻 ,𝐴
∩MPdet is designed as follows: When TP′

is called with 𝑠0, 𝜑𝑞 (𝑠0, ·) at the beginning of an episode, TP′ calls the GetAction method of
TENSORPLAN with

((𝑠0, 0), (1, 0),true, 𝐴, 𝐻 + 1, 𝑑 + 1, SIMULATE′, 𝛿, 2𝐵)

where the pseudocode of SIMULATE′ is given in Algorithm 1.

Algorithm 1 SIMULATE’
1: Inputs: 𝑠, 𝑎′; returns: rewards, next-states, associated features
2: if 𝑠 = ⊥ then
3: return (0,⊥, 0)
4: else if 𝑠 = (𝑠, 0) for some 𝑠 ∈ S then
5: return (0, (𝑠, 𝑎′), (0, 𝜑𝑞 (𝑠, 𝑎′))) ⊲ Note: 𝜑̄𝑣 ((𝑠, 𝑎′)) = (0, 𝜑𝑞 (𝑠, 𝑎′))
6: else
7: (𝑠, 𝑎) ← 𝑠

8: (𝑅, 𝑆′) ← SIMULATE(𝑠, 𝑎)
9: if 𝑆′ = ⊥ then

10: return (𝑅,⊥, 0)
11: else
12: return (𝑅, (𝑆′, 𝑎′), (0, 𝜑𝑞 (𝑆′, 𝑎′))) ⊲ Note: 𝜑̄𝑣 ((𝑆′, 𝑎′)) = (0, 𝜑𝑞 (𝑆′, 𝑎′))
13: end if
14: end if

The action 𝐴0 returned by GetAction is returned by TP′, which is then executed in 𝑀,
transitioning to state 𝑆1 while incurring reward 𝑅1 (we set 𝑆0 = 𝑠0). More generally, for 1 ≤ 𝑡 ≤ 𝐻
let 𝑆𝑡 be the 𝑡th state of MDP 𝑀, 𝑅𝑡 be the reward associated with transitioning to 𝑆𝑡 , and 𝐴𝑡−1
be the action that led to this transition. Let 𝑆0 = (𝑠0, 0) be the corresponding state in 𝑀̄, and for
1 ≤ 𝑡 ≤ 𝐻 − 1 let 𝑆𝑡 = (𝑆𝑡 , 𝐴𝑡−1) when 𝑆𝑡 ≠ ⊥, and 𝑆𝑡 = ⊥ when 𝑆𝑡 = ⊥. We also let 𝑆𝐻 = ⊥.

8. 0 is a 𝑑-dimensional vector of zeros, and recall that [1, 0] = (1, 0𝑇 )𝑇 .
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As the interaction between 𝑀̄ and TP′ continues, for 1 ≤ 𝑡 ≤ 𝐻, TP′ is called with 𝑆𝑡 , 𝜑𝑞 (𝑆𝑡 , ·).
TP′ then calls GetAction of TENSORPLAN with

(𝑆𝑡 , 𝜑̄𝑣 (𝑆𝑡 ),false, 𝐴, 𝐻 + 1, 𝑑 + 1, SIMULATE′, 𝛿, 2𝐵) ,

where 𝑆𝑡 is constructed as described above, from 𝑆𝑡 and from 𝐴𝑡−1, the action returned by the last
call to TENSORPLAN.GetAction, which is stored by TP′ in the global memory. For 1 ≤ 𝑡 ≤ 𝐻−1,
the action 𝐴𝑡 returned by GetAction is used in 𝑀 .

Note that (𝑅𝑡+1, 𝑆𝑡+1) ∼ 𝑄̄(·|𝑆𝑡 , 𝐴𝑡 ) holds for 0 ≤ 𝑡 ≤ 𝐻 − 1: Formally, if P denotes the
distribution induced over interaction sequences and F𝑡 is the smallest 𝜎-algebra that makes the
history leading up to the choice of 𝐴𝑡 (and including 𝐴𝑡 ) measurable, then

P(𝑅𝑡+1, 𝑆𝑡+1 ∈ · | F𝑡 ) = 𝑄̄(· | 𝑆𝑡 , 𝐴𝑡 ) (45)

holds P-almost surely for 0 ≤ 𝑡 ≤ 𝐻 − 1. This relation follows directly from the definitions. Due to
Eq. 45, from the perspective of TENSORPLAN, the environment is exactly 𝑀̄ . Hence, letting 𝜋̄ denote
the policy induced in 𝑀̄ by these calls, and 𝑣̄ 𝜋̄ denote the corresponding value function in 𝑀̄, by
Theorem 5.1 and Eq. 44, 𝑣̄ 𝜋̄ ((𝑠0, 0)) ≥ 𝑣̄★((𝑠0, 0)) − 𝛿 = 𝑣★(𝑠0) − 𝛿, while the total expected number
of queries issued to SIMULATE’ is 𝑂

(
poly

( ( (𝑑+1) (𝐻+1)
𝛿

)𝐴
, 2𝐵

))
= 𝑂

(
poly

( (
𝑑𝐻
𝛿

)𝐴
, 𝐵

))
. Since in

each call to SIMULATE’, SIMULATE is called at most once, the total number of queries issued to
SIMULATE during the course of an episode satisfies the same bound. It follows that the query cost of
the new planner also enjoys this bound. Hence, it remains to show that the new planner is also sound.

To see this, let 𝜋 denote the policy induced by TP′, the planner constructed above for 𝑀 . Then,
because rewards after 𝐻 steps in 𝑀 are by definition zero,

𝑣𝜋 (𝑠0) = E[
∑𝐻
𝑡=1 𝑅𝑡 | 𝑆0 = 𝑠0] = 𝑣̄ 𝜋̄ ((𝑠0, 0)) ,

where E is the expectation corresponding to P and the second equality holds because of Eq. 45 (as
noted before, from the point of view of TENSORPLAN, the environment is 𝑀̄ thanks to this identity).
Putting things together thus finishes the proof.

Proof of Theorem 1.2. The theorem follows directly from Theorem 5.1 and Lemmas 5.2 and 5.3.
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Appendix A. Calculating the linear features

A.1. Calculating feature components of 𝜑𝑣
We follow the notation of Section 4.7. In particular, for any state 𝑠 ∈ S, 𝑠 ≠ ⊥, let 𝑠 = 𝑠𝑘𝑖 be a state
along step 𝑖 of round 𝑘 . We intend to linearize the expression 𝑔(ctflip

𝑘𝑖
+ e¬fix

𝑘𝑖
)𝑔(efix

𝑘𝑖
).

Let 𝑥 = ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖
and 𝑦 = efix

𝑘𝑖
. Then, 𝑥 and 𝑦 can be written according to Eqs. 25, 26 as:

𝑦 =
1
2

(
〈1, fix𝑘𝑖〉 −

〈
fix𝑘𝑖 · 𝑤̄𝑘𝑖, 𝑤̄★

〉)
=

〈
𝑦 (1,0) , 1

〉
+

〈
𝑦 (1,1) , 𝑤̄

★
〉

for 𝑦 (1,0) =
1
2
〈1, fix𝑘𝑖〉 and 𝑦 (1,1) = −

√
𝑝

2
fix𝑘𝑖 · 𝑤̄𝑘𝑖

with


𝑦 (1,0)

2 ,



𝑦 (1,1)

2 ≤ 𝑝

𝑥 = ctflip
𝑘𝑖
+ 1

2
(
〈1,¬fix𝑘𝑖〉 −

〈
¬fix𝑘𝑖 · 𝑤̄𝑘𝑖 , 𝑤̄★

〉)
=

〈
𝑥 (1,0) , 1

〉
+

〈
𝑥 (1,1) , 𝑤̄

★
〉

for 𝑥 (1,0) = ctflip
𝑘𝑖
+ 1

2
〈1,¬fix𝑘𝑖〉 and 𝑥 (1,1) = −

√
𝑝

2
¬fix𝑘𝑖 · 𝑤̄𝑘𝑖

with


𝑥 (1,0)

2 ,



𝑥 (1,1)

2 ≤ 𝑝

Notice that 𝑥 ( ·, ·) and 𝑦 ( ·, ·) do not depend on 𝑤★, only on the current state 𝑠𝑘𝑖. Furthermore, using
Lemma 4.12

𝑥2 =

〈
𝑥2
(1,0) , 1

〉
+

〈
2𝑥 (1,0)𝑥 (1,1) , 𝑤̄★

〉
+

〈
♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ), ♭(𝑤̄★ ⊗ 𝑤̄★)

〉
=

〈
𝑥 (2,0) , 1

〉
+

〈
𝑥 (2,1) , 𝑤̄

★
〉
+

〈
𝑥 (2,2) , (𝑤̄★)2

〉
for 𝑥 (2,0) = 𝑥2

(1,0) , 𝑥 (2,1) = 2𝑥 (1,0)𝑥 (1,1) , 𝑥 (2,2) = ♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ),
and (𝑤̄★)⊗2 = ♭(𝑤̄★ ⊗ 𝑤̄★)

with


𝑥 (2,0)

2 ,



𝑥 (2,1)

2 ,


𝑥 (2,2)

2 ≤ 2𝑝2

𝑔(𝑥) = 1 + 𝑥−2𝑝 − 1
2𝑝2 + 𝑥2 1

2𝑝2 =
〈
𝑋(0) , 1

〉
+

〈
𝑋(1) , 𝑤̄

★
〉
+

〈
𝑋(2) , (𝑤̄★)2

〉
for 𝑋(0) = 1 + −2𝑝 − 1

2𝑝2 𝑥 (1,0) +
1

2𝑝2 𝑥 (2,0) ,

𝑋(1) =
−2𝑝 − 1

2𝑝2 𝑥 (1,1) +
1

2𝑝2 𝑥 (2,1) , and 𝑋(2) =
1

2𝑝2 𝑥 (2,2)

with


𝑋(0)

2 ≤ 4,



𝑋(1)

2 ≤ 3,


𝑋(2)

2 ≤ 1.
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and by a similar calculation,

𝑦2 =
〈
𝑦 (2,0) , 1

〉
+

〈
𝑦 (2,1) , 𝑤̄

★
〉
+

〈
𝑦 (2,2) , (𝑤̄★)2

〉
for 𝑦 (2,0) = 𝑦2

(1,0) , 𝑦 (2,1) = 2𝑦 (1,0) 𝑦 (1,1) , 𝑦 (2,2) = ♭(𝑦 (1,1) ⊗ 𝑦 (1,1) )
with



𝑦 (2,0)

2 ,


𝑦 (2,1)

2 ,



𝑦 (2,2)

2 ≤ 2𝑝2

𝑔(𝑦) =
〈
𝑌(0) , 1

〉
+

〈
𝑌(1) , 𝑤̄

★
〉
+

〈
𝑌(2) , (𝑤̄★)2

〉
for 𝑌(0) = 1 + −2𝑝 − 1

2𝑝2 𝑦 (1,0) +
1

2𝑝2 𝑦 (2,0) ,

𝑌(1) =
−2𝑝 − 1

2𝑝2 𝑦 (1,1) +
1

2𝑝2 𝑦 (2,1) , and 𝑌(2) =
1

2𝑝2 𝑦 (2,2)

with


𝑌(0)

2 ≤ 4,



𝑌(1)

2 ≤ 3,


𝑌(2)

2 ≤ 1.

Therefore, again using Lemma 4.12,

𝑔(ctflip
𝑘𝑖
+ e¬fix

𝑘𝑖 )𝑔(e
fix
𝑘𝑖 ) = 𝑔(𝑥)𝑔(𝑦)

=
〈
♭
(
𝑋(0) ⊗ 𝑌(0)

)
, 1

〉
+

〈
♭
(
𝑋(0) ⊗ 𝑌(1) + 𝑋(1) ⊗ 𝑌(0)

)
, 𝑤̄★

〉
+

〈
♭
(
𝑋(0) ⊗ 𝑌(2) + 𝑋(1) ⊗ 𝑌(1) + 𝑋(2) ⊗ 𝑌(0)

)
, (𝑤̄★)⊗2〉

+
〈
♭
(
𝑋(1) ⊗ 𝑌(2) + 𝑋(2) ⊗ 𝑌(1)

)
, (𝑤̄★)⊗3〉 + 〈

♭
(
𝑋(2) ⊗ 𝑌(2)

)
, (𝑤̄★)⊗4〉

=
〈
𝑍 (0) , 1

〉
+

〈
𝑍 (1) , 𝑤̄

★
〉
+

〈
𝑍 (2) , (𝑤̄★)⊗2〉 + 〈

𝑍 (3) , (𝑤̄★)⊗3〉 + 〈
𝑍 (4) , (𝑤̄★)⊗4〉

for 𝑍 (0) = ♭
(
𝑋(0) ⊗ 𝑌(0)

)
,

𝑍 (1) = ♭
(
𝑋(0) ⊗ 𝑌(1) + 𝑋(1) ⊗ 𝑌(0)

)
,

𝑍 (2) = ♭
(
𝑋(0) ⊗ 𝑌(2) + 𝑋(1) ⊗ 𝑌(1) + 𝑋(2) ⊗ 𝑌(0)

)
,

𝑍 (3) = ♭
(
𝑋(1) ⊗ 𝑌(2) + 𝑋(2) ⊗ 𝑌(1)

)
,

(𝑤̄★)⊗3 = ♭
(
𝑤̄★ ⊗ 𝑤̄★ ⊗ 𝑤̄★

)
,

(𝑤̄★)⊗4 = ♭
(
𝑤̄★ ⊗ 𝑤̄★ ⊗ 𝑤̄★ ⊗ 𝑤̄★

)
with



𝑍 (0)

2 ≤ 16,


𝑍 (1)

2 ≤ 24,



𝑍 (2)

2 ≤ 17,


𝑍 (3)

2 ≤ 6.

(46)

A.2. Calculating feature components of 𝜑𝑞
We follow the notation of Section 4.7. In particular, for any state 𝑠 ∈ S, 𝑠 ≠ ⊥ and action 𝑎 ∈ [𝐴],
let 𝑠 = 𝑠𝑘𝑖 be a state along step 𝑖 of round 𝑘 . Let 𝑠𝑎

𝑘,𝑖+1 denote the value taken by 𝑠𝑘,𝑖+1 if 𝑎𝑘𝑖 = 𝑎,
and similarly for 𝑤𝑎

𝑘,𝑖+1. We intend to linearize the expression 𝑔(diff (𝑤𝑎
𝑘+1,0, 𝑤

★)).
Let 𝑥 = diff

(
𝑤𝑎
𝑘+1,0, 𝑤

★
)
. By Eq. 7,

𝑥 =
1
2

(
𝑝 −

〈
𝑤𝑎𝑘+1,1, 𝑤★

〉)
=

〈
𝑥 (1,0) , 1

〉
+

〈
𝑥 (1,1) , 𝑤

★
〉

for 𝑥 (1,0) =
1
2
𝑝 and 𝑥 (1,1) = −

1
2
𝑤𝑎𝑘+1,1

with


𝑥 (1,0)

2 ,



𝑥 (1,1)

2 ≤ 𝑝

(47)
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By a similar calculation to the previous case,

𝑥2 =

〈
𝑥2
(1,0) , 1

〉
+

〈
2𝑥 (1,0)𝑥 (1,1) , 𝑤★

〉
+

〈
♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ), ♭(𝑤★ ⊗ 𝑤★)

〉
=

〈
𝑥 (2,0) , 1

〉
+

〈
𝑥 (2,1) , 𝑤

★
〉
+

〈
𝑥 (2,2) , (𝑤★)2

〉
for 𝑥 (2,0) = 𝑥2

(1,0) , 𝑥 (2,1) = 2𝑥 (1,0)𝑥 (1,1) , 𝑥 (2,2) = ♭(𝑥 (1,1) ⊗ 𝑥 (1,1) ),
and (𝑤★)⊗2 = ♭(𝑤★ ⊗ 𝑤★)

with


𝑥 (2,0)

2 ,



𝑥 (2,1)

2 ,


𝑥 (2,2)

2 ≤ 2𝑝2

(48)

𝑔(𝑥) = 1 + 𝑥−2𝑝 − 1
2𝑝2 + 𝑥2 1

2𝑝2 =
〈
𝑋(0) , 1

〉
+

〈
𝑋(1) , 𝑤

★
〉
+

〈
𝑋(2) , (𝑤★)2

〉
for 𝑋(0) = 1 + −2𝑝 − 1

2𝑝2 𝑥 (1,0) +
1

2𝑝2 𝑥 (2,0) ,

𝑋(1) =
−2𝑝 − 1

2𝑝2 𝑥 (1,1) +
1

2𝑝2 𝑥 (2,1) , and 𝑋(2) =
1

2𝑝2 𝑥 (2,2)

with


𝑋(0)

2 ≤ 4,



𝑋(1)

2 ≤ 3,


𝑋(2)

2 ≤ 1.

(49)

Appendix B. Pseudocode and constants of TENSORPLAN

Algorithm 2 TENSORPLAN.GetAction
1: Inputs: 𝑠, 𝜑𝑣 ,EpisodeStart,
2: 𝐴, 𝐻, 𝑑, SIMULATE, 𝛿, 𝐵

3: if EpisodeStart then ⊲ Initialize global 𝜃+

4: TENSORPLAN.Init(
𝑠, 𝜑𝑣 (𝑠), 𝐴, 𝐻, 𝑑, SIMULATE, 𝛿)

5: end if
6: Δ· ← ApproxTD(𝑠, 𝜑𝑣 (𝑠), 𝐴, 𝑛2, SIMULATE)
7: Access 𝜃+ saved by TENSORPLAN.Init
8: return arg min𝑎∈[𝐴]

���〈Δ𝑎, [1, 𝜃+]〉���

Algorithm 3 APPROXTD

1: Inputs: 𝑠, 𝜑𝑣 (𝑠), 𝐴, 𝑛, SIMULATE

2: for 𝑎 = 1 to 𝐴 do
3: for 𝑙 = 1 to 𝑛 do
4: (𝑅𝑙, 𝑆′𝑙 , 𝜑𝑣 (𝑆

′
𝑙
)) ←

5: SIMULATE(𝑠, 𝑎)
6: Δ̃𝑙 ←

[
𝑅𝑙,

(
𝜑𝑣 (𝑆′𝑙) − 𝜑𝑣 (𝑠)

) ]
7: end for
8: Δ𝑎 := 1

𝑛

∑
𝑙∈[𝑛] Δ̃𝑙

9: end for
10: return (Δ𝑎)𝑎∈[𝐴]
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Algorithm 4 TENSORPLAN.Init

1: Inputs: 𝑠0, 𝜑𝑣 (𝑠0), 𝐴, 𝐻, 𝑑, SIMULATE, 𝛿

2: 𝑋 ← {} ⊲ 𝑋 is a list
3: Initialize 𝜁, 𝜀, 𝑛1, 𝑛2, 𝑛3 via equations (52), (53), (54), (55), (56), respectively.
4: for 𝜏 = 1 to 𝐸𝑑 + 2 do
5: Choose any 𝜃𝜏 ∈ arg max𝜃 ∈Sol(𝑋 ) 〈𝜑𝑣 (𝑠0), 𝜃〉 ⊲ Optimistic choice
6: CleanTest← true
7: for 𝑡 = 1 to 𝑛1 do ⊲ 𝑛1 rollouts with 𝜃𝜏-induced policy
8: 𝑆𝜏𝑡1 = 𝑠0 ⊲ Initialize rollout
9: for 𝑗 = 1 to 𝐻 do ⊲ Stages in episode

10: Δ𝜏𝑡 𝑗, · ← ApproxTD(𝑆𝜏𝑡 𝑗 , 𝜑𝑣 (𝑆𝜏𝑡 𝑗), 𝐴, 𝑛2, SIMULATE)
11: if CleanTest and min𝑎∈[𝐴]

���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉��� > 𝛿
4𝐻 then ⊲ Consistency failure?

12: Δ̂𝜏𝑡 𝑗, · ← ApproxTD(𝑆𝜏𝑡 𝑗 , 𝜑𝑣 (𝑆𝜏𝑡 𝑗), 𝐴, 𝑛3, SIMULATE) ⊲ Refined data

13: 𝑋.append
(
⊗𝑎∈[𝐴]Δ̂𝜏𝑡 𝑗𝑎

)
⊲ Save failure data

14: CleanTest← false ⊲ Not clean anymore
15: end if
16: 𝐴𝜏𝑡 𝑗 ← arg min𝑎∈[𝐴]

���〈Δ𝜏𝑡 𝑗𝑎, [1, 𝜃]𝜏〉��� ⊲ Find most consistent action
17: (𝑅𝜏𝑡 𝑗 , 𝑆𝜏𝑡 𝑗+1, 𝜑𝑣 (𝑆𝜏𝑡 𝑗+1)) ← SIMULATE(𝑆𝜏𝑡 𝑗 , 𝐴𝜏𝑡 𝑗) ⊲ Roll forward
18: end for
19: end for
20: if CleanTest then break ⊲ Success?
21: end for
22: Save into global memory 𝜃+ ← 𝜃𝜏

𝐸𝑑 =

⌊
3(𝑑 + 1)𝐴 𝑒

𝑒 − 1
ln

{
3 + 3

(
2(𝐵 + 1)𝐴3𝐴

𝐻𝐴𝜀

)2}
+ 1

⌋
(50)

Sol (Δ1, . . . ,Δ𝜏) =
{
𝜃 ∈ R𝑑 : ‖𝜃‖2 ≤ 𝐵,∀𝑖 ∈ [𝜏] :

���〈Δ𝑖 , ⊗𝑎∈[𝐴]1𝜃〉��� ≤ 𝐻𝐴𝜀

2
√
𝐸𝑑

}
(51)

𝜁 =
1

4𝐻
𝛿 (52)

𝜀 =

(
𝛿

12𝐻2

)𝐴
/
(
1 + 1

2
√
𝐸𝑑

)
(53)

𝑛1 =

⌈
32(1 + 2𝐵)2

𝛿2 log
𝐸𝑑 + 1
𝜁

⌉
(54)

𝑛2 =

⌈
1867𝐻2(𝐵 + 1)2(𝑑 + 1)

2𝛿2 log(4(𝐸𝑑 + 1)𝑛1𝐻𝐴(𝑑 + 1)/𝜁)
⌉

(55)

𝑛3 =

⌈
max

{
𝑛2,

32(𝐻 + 1)2𝐸𝑑
𝜀2 log((2(𝐸𝑑 + 1)𝑛1𝐻𝐴))/𝜁

}⌉
(56)
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