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Abstract
Given the capability to handle diverse resource constraints, such as communication, memory, or
privacy, the noisy power method (Hardt and Price, 2014), as a meta algorithm for computing the
dominant eigenspace of a matrix, has found wide applications in data analysis and statistics (e.g.,
PCA). For an input data matrix, the performance of the algorithm, as with the noiseless case, is
characterized by the spectral gap, which largely dictates the convergence rate and affects the noise
tolerance level as well (Hardt and Price, 2014). A recent analysis (Balcan et al., 2016) improved
the dependency over the consecutive spectral gap (λk − λk+1) (Hardt and Price, 2014) to the
dependency over (λk − λq+1), where q could be much greater than the target rank k and thus result
in better performance by a significantly larger gap. However, (λk − λq+1) could still be quite small
and potentially limit the applicability. In this paper, we further improve the dependency of the
convergence rate over O(λk − λq+1) to dependency over Õ(

√
λk − λq+1) in a certain regime of a

new parameter, for a faster noise-tolerant algorithm. To achieve this goal, we propose faster noisy
power method which introduces the momentum acceleration into the noisy power iteration, and
present a novel analysis that differs from previous ones (Hardt and Price, 2014; Balcan et al., 2016).
We also extend our algorithm to the distributed PCA and memory-efficient streaming PCA and get
improved results accordingly in terms of the gap dependence.

Keywords: Noisy power method, spectral gap dependency, momentum acceleration

1. Introduction

In data analysis and statistics, it often needs to find the dominant eigenspace of a matrix, which can
be done by the classic power method or Krylov subspace method (e.g., Lanczos algorithm, known
as a faster counterpart of the power method) (Golub and Van Loan, 2013). One of emerging trends
is that many applications arising recently require to approximately compute dominant eigenspace
in the presence of noise of various forms such as missing entries, sampling error, approximation
error, privacy constraint, or adversarial attack (Mitliagkas et al., 2013; Hardt and Roth, 2013; Hardt
and Price, 2014; Liu et al., 2015; Xu and Li, 2019, 2020, 2021). In this case, the noisy power
method (Hardt and Price, 2014) turns out to be a meta algorithm that can fulfill a wide range of
resource constraints like the above, given that it is a fast general purpose method for the dominant
eigenspace computation under noise-corrupted matrix-vector multiplications. As with the noiseless
setting, the convergence rate of the noisy power method is inversely proportional to and largely
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dominated by the spectral gap. Particularly, Hardt and Price (2014) showed the dependence of
the convergence on the consecutive spectral gap (λk − λk+1), where λi represents the i-th largest
eigenvalue of the given real symmetric data matrix A ∈ Rn×n and k is the target rank (i.e., the goal
to find a top-k eigenspace of A, denoted as Uk). However, the consecutive spectral gaps are too
small for real large data (Musco and Musco, 2015). For faster convergence and numerical stability,
in practice, one can use an iteration rank p (i.e., matrix iterate Xt ∈ Rn×p) larger than the target rank
k (Hardt and Price, 2014; Musco and Musco, 2015; Wang et al., 2015). This implies the possibility of
dependence on a larger spectral gap (λk − λp+1), which was conjectured in Hardt and Price (2014).
This remedy can’t be theoretically justified by their proof technique even in the noiseless setting
until Gu (2015) and Balcan et al. (2016). In the noiseless setting, Gu (2015) presented a theoretical
justification for the remedy of a larger iteration rank with a rigourous proof that under mild conditions
the dependency over (λk − λk+1) can be improved to be over (λk − λq+1) for some k ≤ q ≤ p,
which may be significantly greater. Given the increasing practical value of the noise setting and
growing attention from both machine learning and theoretical computer science communities, Balcan
et al. (2016) further showed similar results for the noisy power method by a different analysis.

In fact, the spectral gap (λk − λq+1), albeit larger than the consecutive one, could still be small
and limit the applicability of the noisy power method. One natural question then is:

Can we further improve the dependency over the spectral gap (λk − λq+1)?

Indeed, Balcan et al. (2016) noted that Krylov iteration (Golub and Van Loan, 2013) has an improved
dependency in the noiseless setting (Musco and Musco, 2015), but only expected interesting results
for the noisy Krylov subspace method without further analysis. This noisy Krylov iteration seems
quite difficult to analyze directly. In this work, we equip the noisy power method with momentum
acceleration (Xu et al., 2018) instead to give a faster noisy power method:

Xt+1Rt+1 = AXt − βXt−1R
−1
t + ξt ∈ Rn×p, (1)

where β > 0 is the momentum parameter, ξt is the noise matrix for iteration t, and the left-hand
side represents the QR factorization (Golub and Van Loan, 2013) of the right-hand side such that
Xt ∈ Rn×p remains column-orthonormal and Rt ∈ Rp×p. The initials include X−1 = 0 ∈ Rn×p,
random column-orthonormal X0 ∈ Rn×p obtained from the QR factorization of an entrywise i.i.d.
standard normal matrix X̂0 ∈ Rn×p, i.e., X0R0 = X̂0. When β = 0, Eq.(1) recovers the noisy
power method (Hardt and Price, 2014; Balcan et al., 2016). Note that the noise matrix ξt could
model a variety of resource constraints as mentioned previously, including stochastic sampling errors
considered in Xu et al. (2018). The analysis in Xu et al. (2018) is specific to ξt ≡ 0 with p = k
or stochastic errors with p = k = 1, and is inapplicable to our general noise model with a larger
iteration rank p > k ≥ 1 than the target rank k.

We give a novel analysis different from Hardt and Price (2014); Gu (2015); Balcan et al. (2016)
to show an improved spectral gap dependency of the convergence of our faster noisy power method
in Eq. (1) over the noisy power method, i.e., Õ(

√
λk − λq+1). To analyze the convergence of Eq.

(1), we first have it paired with the identity equation Xt = Xt to get an equivalent augmented update
equation of iterate Yt ∈ R2n×p formed by two consecutive original iterates Xt and Xt−1, in a form
very similar to the noisy power method. Despite a similar form, a key difference from the previous
noisy power method (Hardt and Price, 2014; Gu, 2015; Balcan et al., 2016) lies at the asymmetry of
the augmented data matrix B ∈ R2n×2n associated with the matrix-vector product, which causes
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significant complications of analysis due to the Schur decomposition, instead of the commonly used
eigenvalue decomposition for real symmetric matrices, as we shall see in the sequel. We then need to
show the rate of the convergence of Yt, or the newly minted and augmented noisy power iteration, to
the dominant k-dimensional invariant subspace of B (denoted as Vk). To this end, we build upon
the so-called rank-k perturbation on Vq by Yt, i.e., ht, proposed in Balcan et al. (2016), which
is a characterization between a rank-p subspace Yt and the rank-k target subspace Vk through an
intermediate subspace Vq. We adapt the rank-k perturbation on Vq by Yt to our case and denote it
as our potential function Φt. Except for that, however, the proof idea of Balcan et al. (2016) can’t be
applied in our case, as it will lead to an even worse noise tolerance bound in terms of spectral gap
dependence. In contrast to Balcan et al. (2016) showing the constant contraction of ht −O(ϵ) over
iterations, we directly establish Φt’s geometric shrinkage across iterations under mild conditions on
the momentum parameter, which turns out to give improved noise tolerance. Finally, based on the
convergence of Yt, we show the rate of the convergence of Xt or Eq. (1) to Uk.

We further apply our meta algorithm to the distributed PCA and memory-efficient streaming
PCA, and get improved results accordingly in terms of the gap dependence.

2. Notions and Notations

Given a positive semi-definite data matrix A ∈ Rn×n, let uj represent A’s eigenvector of unit
length corresponding to the j-th largest eigenvalue λj ≥ 0. Denote Σj = diag(λ1, · · · , λj),Σ−j =
diag(λj+1, · · · , λn),Uj =

[
u1, · · · ,uj

]
, and U−j =

[
uj+1, · · · ,un

]
. For any j ∈ {1, 2, · · · , n},

A =
[
Uj ,U−j

]
diag(Σj ,Σ−j)

[
Uj ,U−j

]⊤ is A’s full eigenvalue decomposition, where
[
Uj ,U−j

]
is orthogonal. With a bit abuse of notation, we also use Uj to represent its column space for brevity,
e.g., Uk is a top-k eigenspace of A. For later convenience, let i exclusively represent the imaginary
unit equal to

√
−1, □ solely represent the conjugate of a matrix, and □H ≜ □

⊤ the conjugate
transpose of a matrix, throughout the paper. Ij represents the identity matrix of size j × j, and the
identity matrix of appropriate size if the subscript is missing (i.e., I). In addition, □† represents
the pseudo-inverse of a matrix, and col(□) stands for the column space of a matrix. Let Z1 ∈
Cm×d1 ,Z2 ∈ Cm×d2 (dj ≤ m for j = 1, 2) and d = min{d1, d2}. The vector of principal angles
between Z1 and Z2 then is defined as θ(Z1,Z2) ≜

[
cos−1

(
σd(Z

H
1 Z2)

)
, · · · , cos−1

(
σ1(Z

H
1 Z2)

)]⊤,
where σj(□) represents the j-th largest singular value of a matrix, and naturally π

2 ≥ θ1(Z1,Z2) ≥
· · · ≥ θd(Z1,Z2) ≥ 0. In addition, let θmax(Z1,Z2) ≜ θ1(Z1,Z2), and θmin(Z1,Z2) ≜ θd(Z1,Z2).
Distance between subspaces can be characterized by their largest principal angle, i.e., θmax(·, ·).

3. Faster Noisy Power Method

The pseudo code of the faster noisy power method is described in Algorithm 1. In this section,
we give our main results and proof for Algorithm 1. The missing proofs can be found in Appendix.

3.1. Main Results

Theorem 1 Let k ≤ q ≤ p and assume that λq > 2
√
β ≥ λq+1 for A ∈ Rn×n ≽ 0. Define

B =

[
A −βI
I 0

]
, Yt =

[
Xt

Xt−1R
−1
t

]
St, Et =

[
ξt
0

]
St, St =

{
(I+R−⊤

t R−1
t )−

1
2 , t ≥ 1

I, t = 0
.
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Algorithm 1 FNPM
1: Input: positive semi-definite matrix A ∈ Rn×n, momentum parameter β > 0, target rank k,

iteration rank p ≥ k, iteration number T .
2: Output: approximate top-k eigenspace XT .

3: Set X−1 = 0 ∈ Rn×p and QR factorize an entry-wise i.i.d. standard Gaussian matrix X̂0 ∈
Rn×p such that X0R0 = X̂0

4: for t = 0, 1, · · · , T − 1 do
5: X̂t+1 = AXt − βXt−1R

−1
t + ξt for some noise matrix ξt

6: QR factorize X̂t+1 such that Xt+1Rt+1 = X̂t+1

7: end for

If the noise matrix ξt ∈ Rn×p satisfies that ∥ξt∥2 ≤ 1
256

(λ+
k −

√
β)2

(1+l1)(1+β) sin θmax(Yt,Vq),

∥U⊤
q ξt∥2 ≤

1

16

λ+
q (λ

+
k −

√
β)

(1 + l2)(1 + λ+
k )

cos θmax(Yt,Wq),

and

col((WH
q Yt + diag−1(λ+

1 , · · · , λ
+
q )W

H
q Et)

†
[
Ik
0

]
) ⊂ col((WH

q Yt)
†
[
Ik
0

]
), (2)

where Vq and Wq are the dominant q-dimensional invariant subspaces of B and B⊤, respectively,

whose eigenvalues are λ±
s =

λs±
√

λ2
s−4β

2 (see Lemma 2), and l1 = max
0≤t≤T

sin θmax(Yt,Vq)
sin θmin(Yt,Vq)

, l2 =

max
0≤t≤T

cos θmin(Yt,Wq)
cos θmax(Yt,Wq)

, then after Algorithm 1 runs for

T ≥ 4

√
λk

λk − 2
√
β
log(

√
1 + (λ+

k )
2

(λ+
k )

2

β2 + (λ+
k )

2

(λ+
k )

2

1 + β + λq√
λ2
q − 4β

1 + β

λ+
k −

√
β

32kτ
√
n

√
p−

√
q − 1

1

ϵ
)

iterations, we have that sin θmax(XT ,Uk) < ϵ with probability at least 1− τ−Ω(p+1−q) − e−Ω(n).

Remark 1 Note in the above theorem that λ+
k −

√
β = O(

√
λk − λq+1) when 2

√
β is close to

λq+1 (see the proof of Theorem 1). Table 1 shows the comparison of our results with existing
ones (Hardt and Price, 2014; Balcan et al., 2016). When 2

√
β is close to λq+1, our convergence rate

T = Õ(
√

λk
λk−λq+1

), up to log factors, which significantly improves over O( λk
λk−λq+1

log 1
ϵ ) (Balcan

et al., 2016). Our noise tolerance also has significant improvement on the spectral gap dependency,
i.e., Õ(

√
λk − λq+1), over Õ(λk − λq+1) (Balcan et al., 2016), in terms of ∥U⊤

q ξt∥2. But in
terms of ∥ξt∥2, it has the same dependency as Balcan et al. (2016), i.e., O(λk − λq+1). Due to
∥U⊤

q ξt∥2 ≤ ∥ξt∥2, this may worsen the gap dependence of ∥U⊤
q ξt∥2 to be the same as that of ∥ξt∥2

when
√

λk − λq+1 is very small. Nevertheless, in general, sin θmax(Yt,Vq) and cos θmax(Yt,Wq)
are significantly larger than ϵ before convergence. Thus, overall our noise tolerance bounds are better
than those of Balcan et al. (2016). In addition, another noise condition in Eq. (2), which is important
to achieve geometric shrinkage across iterations without needing the noise level to be as small as the
accuracy, seems quite restrictive, but it should be satisfied by two settings considered in Section 4,
i.e., distributed or streaming PCA, because ξt = 0 or ξt = (At −A)Xt.
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Table 1: Comparison with existing results.
T ∥ξt∥2 ∥U⊤

k ξt∥2 or ∥U⊤
q ξt∥2

Hardt and Price (2014) Õ( λk
λk−λk+1

) O((λk − λk+1)ϵ) O((λk − λk+1) cos θmax(X0,Uk))

Balcan et al. (2016) Õ( λk
λk−λq+1

) O((λk − λq+1)ϵ) O((λk − λq+1)ϵ cos θmax(X0,Uq))

Ours (when 2
√
β Õ(

√
λk

λk−λq+1
) O((λk − λq+1) sin θmax(Yt,Vq)) O(

√
λk − λq+1 cos θmax(Yt,Wq))

is close to λq+1)

Remark 2 To further understand the improvement of the convergence rate, we revisit the power law
example with decaying spectrum given in Balcan et al. (2016), i.e., λk ≍ k−α for some parameter
α > 1. This spectral decay property is common in many data matrices arising in practical data
applications (Liu et al., 2015). By setting q = ck for some constant c > 1, the linear dependence
on the relative spectral gap gives factor λk−λq+1

λk
= 1− c−α for the noisy power method, and thus

total number of flops is Õ( nk2

1−c−α ). For our FNPM, the nearly square-root dependence gives factor
close to

√
1− c−α which could be much larger than (1− c−α) and then yield a much smaller total

number of flops at Õ( nk2√
1−c−α

).

Remark 3 The convergence results for other values of β are easy to get by the proof of Theorem 1
with a slight change (see Remark 5). There are three cases: 1) when 2

√
β ≥ λk, Algorithm 1 may not

converge; 2) when λk > 2
√
β ≥ λq, sin θmax(XT ,Uk) < ϵ holds for T = Õ(

√
λk

λk−2
√
β
) (the same

form as Theorem 1); 3) when λq+1 > 2
√
β, sin θmax(XT ,Uk) < ϵ holds for T = Õ(

λ+
k

λ+
k −λ+

q+1

).

Note that we always have λ+
k

λ+
k −λ+

q+1

< λk
λk−λq+1

. The noise tolerance can be derived accordingly as

well.

Remark 4 There is no need to worry about if we will get 2
√
β ≥ λq which makes Algorithm 1

either possibly diverge or converge slowly (how slow it is depends on how close 2
√
β is to λk). This

is because we could simply use varying β by setting 2
√
βt to be the (q + 1)-th largest diagonal entry

of Σ̂p = X⊤
t (AXt + ξt) ∈ Rp×p and 2

√
βt ≤ λq+1 always holds approximately. However, it is

difficult to set ξ to meet the noise condition in practice, because it involves not only a lot of ground
truth information but also the current progress of the iterate to the solution. Nonetheless, our results
show that the noise could be much larger at initial stage than later stage, but eventually the noise
needs to be at least as small as the desired accuracy in order for convergence. Moreover, in a safe
noise range, our algorithm could converge faster than the plain noisy power method (i.e., β = 0).

3.2. Proof of Theorem 1

We start from pairing Eq. (1) with the identity equation Xt = Xt to get an augmented update
equation: [

Xt+1

XtR
−1
t+1

]
Rt+1 =

[
A −βI
I 0

] [
Xt

Xt−1R
−1
t

]
+

[
ξt
0

]
.

5



FASTER NOISY POWER METHOD

Post-multiplying both sides of the equation above by St and letting R̂t = S−1
t RtSt−1 for t ≥ 1,

with notations given in Theorem 1, we arrive at an equivalent update equation of the same form as
the noisy power iteration:

Yt+1R̂t+1 = BYt +Et, (3)

where Yt is column-orthonormal, i.e., Y⊤
t Yt = I. Despite the simple form, however, the established

theories for the noisy power method in Hardt and Price (2014); Balcan et al. (2016) can’t be applied
here, as they only work for real symmetric target matrices (e.g., A). In our case, the target matrix B
is asymmetric. To continue, we need the following lemma about the Schur decompositions of real
asymmetric matrices B and B⊤:

Lemma 2 If there exists an integer j such that λj > 2
√
β ≥ λj+1, then we have the following

Schur decompositions:
B = J(1,−1,−1), B⊤ = J(β, β, 1),

where

J(a, b, c) =

[
UjDj(a) U−jD−j(a) cU−jK−j(a) cUjKj(a)

−cUjKj(a) −cU−jK−j(a) U−jD−j(a) UjDj(a)

]
×


Σ+

j 0 0 F(c)

0 Σ+
−j T(b) 0

0 0 Σ−
−j 0

0 0 0 Σ−
j


[

UjDj(a) U−jD−j(a) cU−jK−j(a) cUjKj(a)

−cUjKj(a) −cU−jK−j(a) U−jD−j(a) UjDj(a)

]H

with notations

λ±
s =

λs ±
√
λ2
s − 4β

2
,

Σ+
j = diag(λ+

1 , · · · , λ
+
j ), Σ+

−j = diag(λ+
j+1, · · · , λ+

n ),

Σ−
j = diag(λ−

1 , · · · , λ
−
j ), Σ−

−j = diag(λ−
j+1, · · · , λ−

n ),

Dj(a) = diag(
λ+
1√

a2+|λ+
1 |2

, · · · , λ+
j√

a2+|λ+
j |2

), D−j(a) = diag(
λ+
j+1√

a2+|λ+
j+1|2

, · · · , λ+
n√

a2+|λ+
n |2

),

Kj(a) = diag( a√
a2+|λ+

1 |2
, · · · , a√

a2+|λ+
j |2

), K−j(a) = diag( a√
a2+|λ+

j+1|2
, · · · , a√

a2+|λ+
n |2

),

T(b) = bI+ 1
b (Σ

−
−j)

2, and F(c) = c(1 + β)I. If there exists any s > j such that λs = 2
√
β, then

λ±
s =

√
β and the corresponding diagonal entry in the block T(b) is replaced with (1 + β).

Note that λ±
s is a conjugate pair of eigenvalues of B when λ2

s < 4β, and all the eigenvalues of B are
on the diagonal of the upper triangular factor matrix of J(1,−1,−1), arranged in descending order of
magnitude except for those with the lower right block Σ−

j where ascending order applies. The above
lemma is a unified form of Lemmas 2.1 and 2.2 given in Appendix about Schur decompositions of
B and B⊤, respectively. For other values of β > 0, i.e., 2

√
β ≥ λ1 and 0 < 2

√
β < λn, the Schur

decompositions of B and B⊤ are straightforward based on the proof of Lemma 2.
By Lemma 2 and the assumption that λq > 2

√
β ≥ λq+1, the Schur decomposition of the real

asymmetric matrix B can be rewritten as:

B =
[
Vq V−q

] [Λq Λq,−q

0 Λ−q

] [
Vq V−q

]H
, (4)

6
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where V−q represents the orthogonal complement of Vq in C2n, and Vq =

[
UqDq(1)
UqKq(1)

]
,

Λq = Σ+
q , Λq,−q =

[
0 0 −(1 + β)I

]
, Λ−q =

Σ+
−q T(−1) 0

0 Σ−
−q 0

0 0 Σ−
q

 , (5)

and Vq spans the unique dominant q-dimensional invariant subspace of B corresponding to top-q
eigenvalues of B in magnitude which are on the diagonal of Σ+

q . Since Λq and Λ−q don’t have
eigenvalues in common, by Lemma 7.1.5 in Golub and Van Loan (2013), there exists a matrix
Ω ∈ Cq×(2n−q) such that ΛqΩ−ΩΛ−q = −Λq,−q and thus[

Λq Λq,−q

0 Λ−q

]
=

[
I Ω
0 I

] [
Λq 0
0 Λ−q

] [
I Ω
0 I

]−1

. (6)

Particularly, by Theorem 7.3.1 of Golub and Van Loan (2013), it holds that B⊤Ŵq = ŴqΛq,
where Ŵq = Vq − V−qΩ

H. Thus, orthonormal Wq = Ŵq(I + ΩΩH)−
1
2 spans the dominant

q-dimensional invariant subspace of B⊤. By Lemma 2, it then holds that

col(Wq) = col(

[
UqDq(β)
−UqKq(β)

]
). (7)

In addition, Ω has the following closed-form expression:

Lemma 3 Ω = −(1 + β)
[
0q×(n−q) 0q×(n−q) diag( 1√

λ2
1−4β

, · · · , 1√
λ2
q−4β

)
]

and ∥Ω∥2 =
1+β√
λ2
q−4β

.

Plugging Eq. (4) and Eq. (6) into Eq.(3) gives us that

Yt+1R̂t+1 =
[
Vq V−q

] [I Ω
0 I

] [
Λq 0
0 Λ−q

] [
I Ω
0 I

]−1 [
Vq V−q

]H
Yt +Et.

Pre-multiplying both sides of the above equation by[
I Ω
0 I

]−1 [
Vq V−q

]H
=

[
I −Ω
0 I

] [
VH

q

VH
−q

]
=

[
VH

q −ΩVH
−q

VH
−q

]
=

[
ŴH

q

VH
−q

]
,

we get that [
ŴH

q

VH
−q

]
Yt+1R̂t+1 =

[
Λq 0
0 Λ−q

] [
ŴH

q

VH
−q

]
Yt +

[
ŴH

q

VH
−q

]
Et,

i.e., {
ŴH

q Yt+1R̂t+1 = ΛqŴ
H
q Yt + ŴH

q Et,

VH
−qYt+1R̂t+1 = Λ−qV

H
−qYt +VH

−qEt.
(8)

To make the non-diagonal (upper triangular) matrix Λ−q amenable to the analysis in the sequel,
we adapt the trick used in Lemma 7.3.2 of Golub and Van Loan (2013) to the noisy setting. First,
there exists one permutation matrix Q such that

QΛ−qQ
⊤ = diag(

[
λ+
q+1 −(1 + (λ−

q+1)
2)

0 λ−
q+1

]
, · · · ,

[
λ+
n −(1 + (λ−

n )
2)

0 λ−
n

]
, λ−

1 , · · · , λ
−
q ),

7
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where, if λ+
s =

√
β for q < s ≤ n then the corresponding 2× 2 upper triangular matrix is replaced

with
[√

β 1 + β
0

√
β

]
. Let Γ = diag(diag(1, 1 + γ)︸ ︷︷ ︸

s=q+1

, · · · ,diag(1, 1 + γ)︸ ︷︷ ︸
s=n

, Iq) with 1 + γ = 16(1+β)

(λ+
k −

√
β)

.

We then have that

ΓQΛ−qQ
⊤Γ−1 = diag(

[
λ+
q+1 −1+(λ−

q+1)
2

1+γ

0 λ−
q+1

]
, · · · ,

[
λ+
n −1+(λ−

n )2

1+γ

0 λ−
n

]
, λ−

1 , · · · , λ
−
q ). (9)

Pre-multiplying both sides of the upper equation by (I+ΩΩH)−
1
2 and the lower equation by ΓQ in

Eq.(8), we get that {
WH

q Yt+1R̂t+1 = ΛqW
H
q Yt +WH

q Et

ΓQVH
−qYt+1R̂t+1 = ΓQΛ−qV

H
−qYt + ΓQVH

−qEt

, (10)

where the upper equation has used that (I+ΩΩH)−
1
2Λq = Λq(I+ΩΩH)−

1
2 because (I+ΩΩH)−

1
2

is diagonal by Lemma 3.
We are now in a position to define our potential function Φt and show its geometric shrinkage

across iterations, in order to establish the convergence rate of Algorithm 1. Previous potential
functions consider characterizations between Uk or Uq and Xt (i.e., subspaces of Rn), while we
need to consider a characterization between Vq and Yt (i.e., subspaces of R2n) instead. Hardt and
Price (2014) used as the potential function the tangent of the largest principal angle between Uk

and Xt: tan θmax(Uk,Xt) = ∥(U⊤
−kXt)(U

⊤
k Xt)

†∥2, which admits geometric shrinkage. However,
the geometric shrinkage might not hold under a higher level of noise (Hardt and Price, 2014) which
can be allowed by using a larger iteration rank p than the target rank k. Gu (2015) considered

∥Σt
−q(U

⊤
−qX0)(U

⊤
q X0)

†
[
Σ−t

k

0

]
∥2 as the potential function for analyzing the noiseless power

method and demonstrated the improved spectral gap (λk − λq+1) dependence of the convergence.
Since this function can’t handle noises across iterations, Balcan et al. (2016) proposed a variant, i.e.,

ht = ∥(U⊤
−qXt)(U

⊤
q Xt)

†
[
Ik
0

]
∥2, to adapt the analysis to the presence of the noises per iteration.

To serve our purpose, we further propose the following calibrated variant:

Φt = ∥(ΓQVH
−qYt)(W

H
q Yt)

†
[
Ik
0

]
∥2.

We call our potential function Φt the calibrated rank-k perturbation on Vq by Yt, and have the
following key lemma about Φt.

Lemma 4 Under the noise conditions given in Theorem 1 on ξt, it holds that

Φt+1 ≤ (1− 1

4

√
λk − 2

√
β

λk
)Φt.

Note that the geometric shrinkage of the potential function gt = ht − Cϵ
1−Cϵ (for a sufficiently small

constant 0 < C < 1) in Balcan et al. (2016) does not hold under our noise conditions, because

8
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the O(ϵ) term in gt will inevitably require the norm of the noise term to be as small as O(ϵ) across
iterations (see the proof of their Lemma 2.1 or A.1). Moreover, if we follow the analysis of Balcan
et al. (2016) including the use of (Φt − Cϵ

1−Cϵ) as our potential function, it will end up with an even
worse spectral gap dependence O((λk − λq+1)

2ϵ) of the noise tolerance. On the other hand, the
noise tolerance of Balcan et al. (2016) can be improved similarly if our analysis technique is applied
there (see the proof of our Lemma 4 in Appendix).

To state the convergence results of Algorithm 1 in terms of sin θmax(Xt,Uk), we can relate
sin θmax(Xt,Uk) to Φt via sin θmax(Yt,Vk), based on the following two lemmas about the re-
lation between Φt and sin θmax(Yt,Vk) as well as the relation between sin θmax(Yt,Vk) and
sin θmax(Xt,Uk), respectively. Here Vk represents the dominant k-dimensional invariant subspace
of B spanned by the first k columns of Vq.

Lemma 5 sin θmax(Yt,Vk) = ∥(I−YtY
⊤
t )Vk∥2 ≤ (1 + 2 1+β√

λ2
q−4β

)Φt.

Lemma 6 If sin θmax(Yt,Vk) <
λ+
k

k
√

1+(λ+
k )2

ϵ, then sin θmax(Xt,Uk) < ϵ.

By Lemma 4, it holds that ΦT ≤ (1− 1
4

√
λk−2

√
β

λk
)TΦ0 < exp{−T

4

√
λk−2

√
β

λk
}Φ0. In order to

have that sin θmax(XT ,Uk) < ϵ, by Lemma 5 and Lemma 6, it suffices to make T satisfy that

(1 + 2
1 + β√
λ2
q − 4β

) exp{−T

4

√
λk − 2

√
β

λk
}Φ0 ≤

λ+
k

k
√
1 + (λ+

k )
2
ϵ.

Thus, we have T ≥ T̂ = 4
√

λk

λk−2
√
β
log(2k

√
1+(λ+

k )2

(λ+
k )2

1+β+λq√
λ2
q−4β

Φ0
ϵ ). Moreover,

log Φ0 = log ∥ΓQVH
−q

[
X̂0

0

]
(OH

[
UqDq(β)
−UqKq(β)

]H [
X̂0

0

]
)†
[
Ik
0

]
∥2

≤ log(∥Γ∥2∥Q∥2) + log(∥VH
−q∥2∥X̂0∥2) + log(∥(ODq(β)U

⊤
q X̂0)

†∥2∥
[
Ik
0

]
∥2)

≤ log(1 + γ) + log ∥X̂0∥2 − log σmin(Dq(β)U
⊤
q X̂0)

≤ log(1 + γ)− log σmin(Dq(β)) + log
∥X̂0∥2

σmin(U⊤
q X̂0)

≤ log
16(1 + β)

λ+
k −

√
β

+ log

√
β2 + (λ+

k )
2

(λ+
k )

2
+ log

τ
√
n

√
p−

√
q − 1

,

where the first equality (R0 in Y0 has been cancelled there) has used that Wq =

[
UqDq(β)
−UqKq(β)

]
O

for a certain unitary matrix O ∈ Cq×q by Eq. (7), the second last inequality has used the inequality
that σmin(Dq(β)U

⊤
q X̂0) ≥ σmin(Dq(β))σmin(U

⊤
q X̂0), and the last inequality has used Lemma 2

and that ∥X̂0∥2
σmin(U⊤

q X̂0)
≤ τ

√
n√

p−
√
q−1

with probability at least 1− τ−Ω(p+1−q) − e−Ω(n) by Lemma 2.5

9
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in Hardt and Price (2014). Hence,

T̂ ≤ 4

√
λk

λk − 2
√
β
log(

√
1 + (λ+

k )
2

(λ+
k )

2

β2 + (λ+
k )

2

(λ+
k )

2

1 + β + λq√
λ2
q − 4β

1 + β

λ+
k −

√
β

32kτ
√
n

√
p−

√
q − 1

1

ϵ
) ≜ T̃ .

Therefore, sin θmax(Xt,Uk) < ϵ is guaranteed by T ≥ T̃ with high probability, which completes
the proof of Theorem 1.

Remark 5 The proofs of the results under other values of β mentioned in Remark 3 are straightfor-
ward, once we note the non-zero block shape changes of three matrices (Λq, Λq,−q, and Λ−q) in Eq.
(4) and the consequent change of Ω based on Lemma 2.

4. Applications

In this section, we propose faster distributed or streaming PCA (Hardt and Price, 2014; Liang et al.,
2014; Balcan et al., 2016) algorithm as downstream applications of our Algorithm 1, and show their
improved communication or sample complexity over the plain counterpart based on Theorem 1. It is
worth noting that ξt = 0 for the distributed setting1 and ξt ̸= 0 for the streaming setting considered
here.

4.1. Distributed PCA

We consider the distributed PCA model of S ≥ 1 computing nodes and a central computing node.
Each computing node j stores either a positive semi-definite matrix A(j) or a set of sample data
points with sample covariance matrix being A(j), while the central node has no data stored. The
goal is to estimate the top-k eigenspace Uk of the aggregated data matrix A =

∑S
j=1A

(j), under
the constraint that there is only a public channel for communication between computing nodes and
the central node. Liang et al. (2014) gave an O(pnSϵ ) communication complexity for this distributed
PCA model, which was improved exponentially by Balcan et al. (2016). We further propose faster
distributed PCA algorithm with pseudo codes given in Algorithm 2.

Theorem 7 For 2
√
β close to λq+1, intermediate rank q satisfying k ≤ q ≤ p, and T =

O(
√

λk
λk−λq+1

log n
(λq−λq+1)ϵ

), Algorithm 2 outputs XT such that sin θmax(XT ,Uk) < ϵ with high

probability (w.h.p.) and communication complexity at O(pnTS) = O(pnS
√

λk
λk−λq+1

log n
(λq−λq+1)ϵ

).

The proof is straightforward as it is the simplest case of Theorem 1 with ξt = 0. Theorem 7
significantly improves over the communication complexity bound O(pnS λk

λk−λq+1
log n

ϵ ) in Balcan
et al. (2016). For this application, we can use varying β by setting 2

√
βt to be the (q + 1)-th largest

diagonal entry of Σ̂p = X⊤
t

∑S
j=1X

(j)
t ∈ Rp×p.

1. As opposed to Balcan et al. (2016), privacy is not considered here as it has not been clear yet if the noise condition in
Eq. (2) can be met by the privacy constraint.
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Algorithm 2 Faster distributed PCA

1: Input: Data matrices A(1), · · · ,A(S) ∈ Rn×n distributed over S computing nodes, momentum
parameter β > 0, target rank k, iteration rank p ≥ k, iteration number T .

2: Output: approximate top-k eigenspace XT .

3: The central node sets X−1 = 0 ∈ Rn×p and QR factorize an entry-wise i.i.d. standard Gaussian
matrix X̂0 ∈ Rn×p such that X0R0 = X̂0

4: for t = 0, 1, · · · , T − 1 do
5: The central node broadcasts Xt to all S computing nodes
6: for j = 1, · · · , S do
7: Computing node j computes X(j)

t = A(j)Xt and send X
(j)
t back to the central node

8: end for
9: The central node computes X̂t+1 =

∑S
j=1X

(j)
t − βXt−1R

−1
t

10: The central node QR factorizes X̂t+1 such that Xt+1Rt+1 = X̂t+1

11: end for

Algorithm 3 Faster streaming PCA
1: Input: I.I.D. data stream z1, · · · , zm ∼ D, momentum parameter β > 0, target rank k, iteration

rank p ≥ k, iteration number T .
2: Output: approximate top-k eigenspace XT .

3: Set M = ⌊mT ⌋, X−1 = 0 ∈ Rn×p and QR factorize an entry-wise i.i.d. standard Gaussian
matrix X̂0 ∈ Rn×p such that X0R0 = X̂0

4: for t = 0, 1, · · · , T − 1 do
5: X̂t+1 = AtXt − βXt−1R

−1
t where At =

∑tM
j=(t−1)M+1 zjz

⊤
j

6: QR factorizes X̂t+1 such that Xt+1Rt+1 = X̂t+1

7: end for

4.2. Memory-Efficient Streaming PCA

Given a stream of i.i.d. samples z1, · · · , zm ∈ Rn×1 drawn from an unknown distribution D,
the goal of the streaming PCA is to estimate the top-k eigenspace of the population covariance
matrix A = Ez∼D[zz

⊤] ∈ Rn×n with O(kn) memory. Under the framework of the noisy power
method, a natural algorithm was introduced for this problem with the spiking covariance model
in Mitliagkas et al. (2013), while Hardt and Price (2014) analyzed this algorithm for a broader class
of distributions (i.e., (B, p)-round distributions) that have fast tail decay based on their analysis of
the noisy power method. Balcan et al. (2016) improved the results of Hardt and Price (2014) in terms
of gap dependency. In this work, we further improve the results of Balcan et al. (2016) in terms of
gap dependency by a faster streaming PCA algorithm described in Algorithm 3. There are other
analyses on streaming PCA (Allen-Zhu and Li, 2017), but for a different setting where the iteration
rank p and the target rank k are the same.

11
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Definition 8 ((B, p)-round distributions,Hardt and Price (2014)) A distribution D over Rn is said
to be (B, p)-round, if it holds for every p-dimension projection Π and all t ≥ 1 that

max{ Prz∼D[∥z∥2 ≥ t],Prz∼D[∥Πz∥2 ≥ t

√
Bp

n
] } ≤ exp{−t}.

Theorem 9 Suppose D is a (B, p)-round distribution. For 2
√
β close to λq+1, intermediate rank

q satisfying k ≤ q ≤ p, and T = O(
√

λk
λk−λq+1

log n
(λq−λq+1)ϵ

), Algorithm 3 outputs XT such

that sin θmax(XT ,Uk) < ϵ with probability at least 0.9 and sample complexity at m = MT =

Ω̃( B2p log2 n
ϵ2(λk−λq+1)2n

√
λk

λk−λq+1
), where Ω̃(·) hides logarithmic factors.

Proof The proof is similar to that of Theorem 4.2 in Balcan et al. (2016). Setting ξt = (At−A)Xt,
then by Lemma 3.5 of Hardt and Price (2014), M = Ω̃( B2p log2 n

ϵ2(λk−λq+1)2n
) suffices to guarantee that ξt

satisfies the noise conditions in Theorem 1 w.h.p. as it satisfies conditions of Theorem 2.2 in Balcan
et al. (2016) w.h.p. (see Table 1 and Remark 1). Thus, the total number of data points needed is
m = MT = Ω̃( B2p log2 n

ϵ2(λk−λq+1)2n

√
λk

λk−λq+1
). □

Theorem 9 improves over the sample complexity Ω̃( λkB
2p log2 n

ϵ2(λk−λq+1)3n
) given in Balcan et al. (2016).

For this application, we may use varying β by setting 2
√
βt to be the (q + 1)-th largest diagonal

entry of Σ̂p =
1
tM

∑t
t′=1X

⊤
t′At′Xt′ ∈ Rp×p.

5. Conclusion

In this work, we presented faster noisy power method and gave a novel analysis to show further
improved spectral gap dependency over state-of-the-art results for the noisy power method by Balcan
et al. (2016). Our Algorithm 1 can serve as a faster meta algorithm with applications to downstream
tasks such as distributed PCA and streaming PCA, and have their theoretical guarantees improved
in terms of spectral gap dependence. Limitations of our analysis lie at its inherent gap-dependency,
due to the condition that λq > λq+1 though it is not the harsher condition that λk > λk+1, and
additionally logarithmic gap dependence, i.e., log 1

λq−λq+1
. Particularly, it remains unknown if

the spectral gap dependency of the noise tolerance can be improved to be the same as that of the
convergence rate in terms of ∥ξt∥2. These may be the artifacts of our analysis technique, and it will
be interesting to consider removing them in future.
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Lemma 2.1 If there exists an integer s such that λs > 2
√
β ≥ λs+1 and λn > 0, we then have the

following Schur decomposition for B =

[
A −βI
I 0

]
:

[
A −βI
I 0

]
=

[
UsDs(1) U−sD−s(1) −U−sK−s(1) −UsKs(1)

UsKs(1) U−sK−s(1) U−sD−s(1) UsDs(1)

]
×

Σ+
s 0 0 −(1 + β)I
0 Σ+

−s T(−1) 0
0 0 Σ−

−s 0
0 0 0 Σ−

s


[
UsDs(1) U−sD−s(1) −U−sK−s(1) −UsKs(1)

UsKs(1) U−sK−s(1) U−sD−s(1) UsDs(1)

]H
,

where

λ±
j =

λj ±
√
λ2
j − 4β

2
,

Σ+
s = diag(λ+

1 , · · · , λ+
s ), Σ+

−s = diag(λ+
s+1, · · · , λ+

n ),

Σ−
s = diag(λ−

1 , · · · , λ−
s ), Σ−

−s = diag(λ−
s+1, · · · , λ−

n ),

D(a) = diag(
λ+
1√

a2+|λ+
1 |2

, · · · , λ+
s√

a2+|λ+
s |2

), D−s(a) = diag(
λ+
s+1√

a2+|λ+
s+1|2

, · · · , λ+
n√

a2+|λ+
n |2

),

K(a) = diag( a√
a2+|λ+

1 |2
, · · · , a√

a2+|λ+
s |2

), K−s(a) = diag( a√
a2+|λ+

s+1|2
, · · · , a√

a2+|λ+
n |2

),

and T(b) = bI+ 1
b (Σ

−
−s)

2. In addition, if there exists any j > s such that λj = 2
√
β, then λ±

j =
√
β

and the corresponding diagonal entry in the block T(−1) is replaced with (1 + β).

Proof The full eigenvalue decomposition of the given real symmetric matrix is

A =
[
Us U−s

]
diag(Σs,Σ−s)

[
Us U−s

]⊤
.

See Section 2 in the main paper for notations. Suppose one eigenpair of A is (λj ,uj). By Proposition

9 in Xu et al. (2018), a double eigenpair of B then can be written as

(
λj±

√
λ2
j−4β

2 ,

[
λj±

√
λ2
j−4β

2 uj

uj

])
.

For λs > 2
√
β ≥ λs+1, all the eigenvectors of B in the above double eigenpairs together (i.e.,

j = 1, · · · , n) will span the whole Euclidean complex vector space C2n as long as there exists no
j > s such that λj = 2

√
β, otherwise the double eigenpair collapses into a single one for each j of

the kind. In fact, B has the following characteristic polynomial:

det(B− µI)

= det

[
A− µI −βI

I −µI

]
= det

[
diag(Σs,Σ−s)− µI −βI

I −µI

]
= det(diag(

[
λ1 − µ −β

1 −µ

]
, · · · ,

[
λs − µ −β

1 −µ

]
,

[
λs+1 − µ −β

1 −µ

]
, · · · ,

[
λn − µ −β

1 −µ

]
))

= det

[
λ1 − µ −β

1 −µ

]
· · · det

[
λs − µ −β

1 −µ

]
det

[
λs+1 − µ −β

1 −µ

]
· · · det

[
λn − µ −β

1 −µ

]
.

Thus, B’s eigenvalue µ =
√
β has algebraic multiplicity 2m corresponding to A’s eigenvalue 2

√
β

of multiplicity m, i.e., λj = · · · = λj−m+1 = 2
√
β > λj−m, when it happens. Meanwhile, the
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corresponding geometric multiplicity is as follows:

dim(ker(B−
√

βI)) = 2n− dim(col(B−
√
βI)) = 2n− rank(B−

√
βI)

= 2n−
n∑

j=1

rank

[
λj −

√
β −β

1 −
√
β

]
= m,

where dim(·) represents the dimensionality of a space, ker(□) represents the kernel space of a matrix,
and col(□) represents the column space of a matrix. This shows that, in addition to the collapsed
single eigenpair, for each j of the kind, we need to derive one generalized eigenvector zj ∈ R2n×1

of B from the collapsed single eigenpair to span C2n, i.e., (B −
√
βI)zj =

[√
βuj

uj

]
. It is easy

to see that zj =

[
uj

0

]
which keeps orthogonal to all the eigenvectors or generalized eigenvectors

of B corresponding to λj′ for j′ ̸= j. We then can list B’s eigenvalues as well as corresponding
eigenvectors or generalized eigenvectors in descending order of eigenvalues’ magnitude in Table 3
where, if there is any j > s such that λj = 2

√
β then the corresponding row in the middle is replaced

by the following one:

|λ±
j | =

√
β, λ±

j ≜
√
β, u+

j ≜

[√
βuj

uj

]
, u−

j ≜

[
uj

0

]
.

Thus, we have Bu±
j = λ±

j u
±
j for j such that λj ̸= 2

√
β, otherwise

{
Bu+

j = λ+
j u

+
j ,

Bu−
j = u+

j + λ−
j u

−
j .

In

matrix form, it can be written as BV̂⊞ = V̂⊞Λ̂⊞, where

V̂⊞ =
[
u+
1 u−

1 · · · u+
n u−

n

]
, Λ̂⊞ = diag(Λ̂1, · · · , Λ̂n) , Λ̂j = diag(λ+

j , λ
−
j )

where for all j such that λj = 2
√
β, each of the corresponding 2 × 2 diagonal blocks is replaced

with the 2× 2 upper triangular block Λ̂j =

[
λ+
j 1

0 λ−
j

]
. In order to derive B’s Schur decomposition,

we need to orthonormalize all the (generalized) eigenvectors of B. For this purpose, in fact, we only
need to orthonormalize the pair (u+

j ,u
−
j ) for each j = 1, · · · , n, because (u±

j )
Hu±

j′ = 0 for any
j ̸= j′. There are two cases. If λj ̸= 2

√
β, then we have the orthonormalization:

[
u+
j u−

j

]
=

[
λ+
j uj λ−

j uj

uj uj

]
=


λ+
j√

1+|λ+
j |2

uj − 1√
1+|λ+

j |2
uj

1√
1+|λ+

j |2
uj

λ+
j√

1+|λ+
j |2

uj


︸ ︷︷ ︸

≜ (v2j−1,v2j)


√
1 + |λ+

j |2
1+λ+

j λ−
j√

1+|λ+
j |2

0
λ+
j −λ−

j√
1+|λ+

j |2


︸ ︷︷ ︸

≜ Sj

.

If λj = 2
√
β then the orthonormalization is

[
u+
j u−

j

]
=

[√
βuj uj

uj 0

]
=

√ β
1+βuj

1√
1+β

uj

1√
1+β

uj −
√

β
1+βuj


︸ ︷︷ ︸

≜ (v2j−1,v2j)

[√
1 + β

√
β

1+β

0 1√
1+β

]
︸ ︷︷ ︸

≜ Sj

.
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Table 2: B’s eigenpairs in descending order of eigenvalues’ magnitude.

Magnitude Eigenvalue (generalized) Eigenvector

|λ+
1 | =

λ1+
√

λ2
1−4β

2 λ+
1 ≜

λ1+
√

λ2
1−4β

2 u+
1 ≜

[
λ+
1 u1

u1

]
· · · · · · · · ·

|λ+
s | =

λs+
√

λ2
s−4β

2 λ+
s ≜

λs+
√

λ2
s−4β

2 u+
s ≜

[
λ+
s us

us

]

|λ±
s+1| =

√
β λ±

s+1 ≜
λs+1±i

√
4β−λ2

s+1

2 u±
s+1 ≜

[
λ±
s+1us+1

us+1

]
· · · · · · · · ·

|λ±
n | =

√
β λ±

n ≜
λn±i

√
4β−λ2

n

2 u±
n ≜

[
λ±
nun

un

]

|λ−
s | =

2β

λs+
√

λ2
s−4β

λ−
s ≜

λs−
√

λ2
s−4β

2 u−
s ≜

[
λ−
s us

us

]
· · · · · · · · ·

|λ−
1 | =

2β

λ1+
√

λ2
1−4β

λ−
1 ≜

λ1−
√

λ2
1−4β

2 u−
1 ≜

[
λ−
1 u1

u1

]

Let V⊞ =
[
v1 · · · v2n

]
∈ C2n×2n which then is unitary, i.e., VH

⊞V⊞ = V⊞V
H
⊞ = I. Thus,

we can write that BV⊞diag(S1, · · · ,Sn) = V⊞diag(S1, · · · ,Sn)Λ̂⊞, and consequently B =
V⊞diag(S1, · · · ,Sn)Λ̂⊞diag

−1(S1, · · · ,Sn)V
H
⊞. Let

Λ⊞ ≜ diag(S1, · · · ,Sn)Λ̂⊞diag
−1(S1, · · · ,Sn)

= diag(S1Λ̂1S
−1
1 , · · · ,SnΛ̂nS

−1
n ).

If λj ̸= 2
√
β, it then holds that

SjΛ̂jS
−1
j =


√

1 + |λ+
j |2

1+λ+
j λ−

j√
1+|λ+

j |2

0
λ+
j −λ−

j√
1+|λ+

j |2

diag(λ+
j , λ

−
j )


√
1 + |λ+

j |2
1+λ+

j λ−
j√

1+|λ+
j |2

0
λ+
j −λ−

j√
1+|λ+

j |2


−1

=

[
λ+
j −(1 + λ+

j λ
−
j )

0 λ−
j

]
=


[
λ+
j −(1 + β)

0 λ−
j

]
, j ≤ s[

λ+
j −(1 + (λ−

j )
2)

0 λ−
j

]
, else

,

otherwise SjΛ̂jS
−1
j =

Sj

[
λ+
j 1

0 λ−
j

]
S−1
j =

[√
1 + β

√
β

1+β

0 1√
1+β

][√
β 1
0

√
β

][√
1 + β

√
β

1+β

0 1√
1+β

]−1

=

[√
β 1 + β
0

√
β

]
.
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Thus, Λ⊞ =

diag(

[
λ+
1 −(1 + β)
0 λ−

1

]
, · · · ,

[
λ+
s −(1 + β)
0 λ−

s

]
,

[
λ+
s+1 −(1 + (λ−

s+1)
2)

0 λ−
s+1

]
, · · · ,

[
λ+
n −(1 + (λ−

n )
2)

0 λ−
n

]
),

where the j-th 2× 2 upper triangular matrix for j > s is replaced by
[√

β 1 + β
0

√
β

]
if λj = 2

√
β.

After certain permutations by a permutation matrix P, B’s Schur decomposition can be written as

B = V⊞Λ⊞V
H
⊞ = V⊞P

⊤PΛ⊞P
⊤PVH

⊞ = (V⊞P
⊤)(PΛ⊞P

⊤)(V⊞P
⊤)H,

where

V⊞P
⊤ =

[
UsDs(1) U−sD−s(1) −U−sK−s(1) −UsKs(1)

UsKs(1) U−sK−s(1) U−sD−s(1) UsDs(1)

]
,

PΛ⊞P
⊤ =


Σ+

s 0 0 −(1 + β)I
0 Σ+

−s −(I+ (Σ−
−s)

2) 0
0 0 Σ−

−s 0
0 0 0 Σ−

s

 ,

Ds(α) = diag(
λ+
1√

α2+|λ+
1 |2

, · · · , λ+
s√

α2+|λ+
s |2

), D−s(α) = diag(
λ+
s+1√

α2+|λ+
s+1|2

, · · · , λ+
n√

α2+|λ+
n |2

),

Ks(α) = diag( α√
α2+|λ+

1 |2
, · · · , α√

α2+|λ+
s |2

), K−s(α) = diag( α√
α2+|λ+

s+1|2
, · · · , α√

α2+|λ+
n |2

),

Σ+
s = diag(λ+

1 , · · · , λ+
s ), Σ+

−s = diag(λ+
s+1, · · · , λ+

n ),

Σ−
s = diag(λ−

1 , · · · , λ−
s ), Σ−

−s = diag(λ−
s+1, · · · , λ−

n ).

□

Lemma 2.2 If there exists an integer s such that λs > 2
√
β ≥ λs+1 and λn > 0, we then have the

following Schur decomposition for BH =

[
A I
−βI 0

]
with notations given in Lemma 2.1:

[
A I
−βI 0

]
=

[
UsDs(β) U−sD−s(β) U−sK−s(β) UsKs(β)

−UsKs(β) −U−sK−s(β) U−sD−s(β) UsDs(β)

]
×

Σ+
s 0 0 (1 + β)I
0 Σ+

−s T(β) 0
0 0 Σ−

−s 0
0 0 0 Σ−

s


[
UsDs(β) U−sD−s(β) U−sK−s(β) UsKs(β)

−UsKs(β) −U−sK−s(β) U−sD−s(β) UsDs(β)

]H
,

where, if there exists any j > s such that λj = 2
√
β, then λ±

j =
√
β and the corresponding diagonal

entry in the block T(β) is replaced with (1 + β).
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Proof The proof is almost the same as the above one. We only present the differences. First of all,
note that B and BH have exactly the same spectrum. Suppose one eigenpair of A is (λj ,uj). We
then have BH’s eigenvalue λ±

j which are the roots of the quadratic equation µ2 − λjµ+ β = 0 in

µ. We then have that
[

A I
−βI 0

] [
µuj

−βuj

]
= µ

[
µuj

−βuj

]
. Thus, a double eigenpair of BH then can

be written as

(
λj±

√
λ2
j−4β

2 ,

[
λj±

√
λ2
j−4β

2 uj

−βuj

])
. For λs > 2

√
β ≥ λs+1, all the eigenvectors of BH

in the above double eigenpairs together (i.e., j = 1, · · · , n) will span the whole Euclidean complex
vector space C2n as long as there exists no j > s such that λj = 2

√
β. In the collapsed case, for

each j of the kind, we additionally derive one generalized eigenvector zj ∈ R2n×1 of BH from the

collapsed single eigenpair to span C2n, i.e., (BH −
√
βI)zj =

[√
βuj

−βuj

]
. Again, zj =

[
uj

0

]
. BH’s

eigenvalues as well as corresponding eigenvectors or generalized eigenvectors in descending order of
eigenvalues’ magnitude are listed in Table 3 where, if there is any j > s such that λj = 2

√
β then

the corresponding row in the middle is replaced by the following one:

|λ±
j | =

√
β, λ±

j ≜
√
β, u+

j ≜

[√
βuj

−βuj

]
, u−

j ≜

[
uj

0

]
.

Thus, we have BHu±
j = λ±

j u
±
j for j such that λj ̸= 2

√
β, otherwise

{
BHu+

j = λ+
j u

+
j ,

BHu−
j = u+

j + λ−
j u

−
j .

Table 3: BH’s eigenpairs in descending order of eigenvalues’ magnitude.

Magnitude Eigenvalue (generalized) Eigenvector

|λ+
1 | =

λ1+
√

λ2
1−4β

2 λ+
1 ≜

λ1+
√

λ2
1−4β

2 u+
1 ≜

[
λ+
1 u1

−βu1

]
· · · · · · · · ·

|λ+
s | =

λs+
√

λ2
s−4β

2 λ+
s ≜

λs+
√

λ2
s−4β

2 u+
s ≜

[
λ+
s us

−βus

]

|λ±
s+1| =

√
β λ±

s+1 ≜
λs+1±i

√
4β−λ2

s+1

2 u±
s+1 ≜

[
λ±
s+1us+1

−βus+1

]
· · · · · · · · ·

|λ±
n | =

√
β λ±

n ≜
λn±i

√
4β−λ2

n

2 u±
n ≜

[
λ±
nun

−βun

]

|λ−
s | =

2β

λs+
√

λ2
s−4β

λ−
s ≜

λs−
√

λ2
s−4β

2 u−
s ≜

[
λ−
s us

−βus

]
· · · · · · · · ·

|λ−
1 | =

2β

λ1+
√

λ2
1−4β

λ−
1 ≜

λ1−
√

λ2
1−4β

2 u−
1 ≜

[
λ−
1 u1

−βu1

]
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In matrix form, BHV̂⊞ = V̂⊞Λ̂⊞, where

V̂⊞ =
[
u+
1 u−

1 · · · u+
n u−

n

]
, Λ̂⊞ = diag(Λ̂1, · · · , Λ̂n) , Λ̂j = diag(λ+

j , λ
−
j ),

where for all j such that λj = 2
√
β, each of the corresponding 2 × 2 diagonal blocks is replaced

with the 2× 2 upper triangular block Λ̂j =

[
λ+
j 1

0 λ−
j

]
. We now orthonormalize the pair (u+

j ,u
−
j )

for each j = 1, · · · , n. If λj ̸= 2
√
β, then we have the orthonormalization:

[
u+
j u−

j

]
=

[
λ+
j uj λ−

j uj

−βuj −βuj

]
=


λ+
j√

β2+|λ+
j |2

uj
β√

β2+|λ+
j |2

uj

− β√
β2+|λ+

j |2
uj

λ+
j√

β2+|λ+
j |2

uj


︸ ︷︷ ︸

≜ (v2j−1,v2j)


√
β2 + |λ+

j |2
β2+λ+

j λ−
j√

β2+|λ+
j |2

0
(λ−

j −λ+
j )β√

β2+|λ+
j |2


︸ ︷︷ ︸

≜ Sj

.

If λj = 2
√
β then the orthonormalization is

[
u+
j u−

j

]
=

[√
βuj uj

−βuj 0

]
=

 1√
1+β

uj

√
β

1+βuj

−
√

β
1+βuj

1√
1+β

uj


︸ ︷︷ ︸

≜ (v2j−1,v2j)

√β(1 + β) 1√
1+β

0
√

β
1+β


︸ ︷︷ ︸

≜ Sj

.

Let V⊞ =
[
v1 · · · v2n

]
∈ C2n×2n which then is unitary, i.e., VH

⊞V⊞ = V⊞V
H
⊞ = I. Thus,

we can write that BHV⊞diag(S1, · · · ,Sn) = V⊞diag(S1, · · · ,Sn)Λ̂⊞, and consequently BH =
V⊞diag(S1, · · · ,Sn)Λ̂⊞diag

−1(S1, · · · ,Sn)V
H
⊞. Let

Λ⊞ ≜ diag(S1, · · · ,Sn)Λ̂⊞diag
−1(S1, · · · ,Sn) = diag(S1Λ̂1S

−1
1 , · · · ,SnΛ̂nS

−1
n ).

If λj ̸= 2
√
β, it then holds that

SjΛ̂jS
−1
j =


√
β2 + |λ+

j |2
β2+λ+

j λ−
j√

β2+|λ+
j |2

0
(λ−

j −λ+
j )β√

β2+|λ+
j |2

diag(λ+
j , λ

−
j )


√
β2 + |λ+

j |2
β2+λ+

j λ−
j√

β2+|λ+
j |2

0
(λ−

j −λ+
j )β√

β2+|λ+
j |2


−1

=

[
λ+
j β + 1

βλ
+
j λ

−
j

0 λ−
j

]
=


[
λ+
j 1 + β

0 λ−
j

]
, j ≤ s[

λ+
j β + 1

β (λ
−
j )

2

0 λ−
j

]
, else

,

otherwise SjΛ̂jS
−1
j =

Sj

[
λ+
j 1

0 λ−
j

]
S−1
j =

√β(1 + β) 1√
1+β

0
√

β
1+β

[√β 1
0

√
β

]√β(1 + β) 1√
1+β

0
√

β
1+β

−1

=

[√
β 1 + β
0

√
β

]
.
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Thus,

Λ⊞ = diag(

[
λ+
1 1 + β
0 λ−

1

]
, · · · ,

[
λ+
s 1 + β
0 λ−

s

]
,

[
λ+
s+1 β + 1

β (λ
−
s+1)

2

0 λ−
s+1

]
, · · · ,

[
λ+
n β + 1

β (λ
−
n )

2

0 λ−
n

]
),

where the j-th 2× 2 upper triangular matrix for j > s is replaced by
[√

β 1 + β
0

√
β

]
if λj = 2

√
β.

Therefore, BH’s Schur decomposition can be written as

BH = V⊞Λ⊞V
H
⊞ = V⊞P

⊤PΛ⊞P
⊤PVH

⊞ = (V⊞P
⊤)(PΛ⊞P

⊤)(V⊞P
⊤)H,

where

V⊞P
⊤ =

[
UsDs(β) U−sD−s(β) U−sK−s(β) UsKs(β)

−UsKs(β) −U−sK−s(β) U−sD−s(β) UsDs(β)

]
,

PΛ⊞P
⊤ =


Σ+

s 0 0 (1 + β)I
0 Σ+

−s T(β) 0
0 0 Σ−

−s 0
0 0 0 Σ−

s

 .

□

Lemma 3 Ω = −(1 + β)
[
0q×(n−q) 0q×(n−q) diag( 1√

λ2
1−4β

, · · · , 1√
λ2
q−4β

)
]

and ∥Ω∥2 =
1+β√
λ2
q−4β

.

Proof Since Λq and Λ−q have their spectra divided by
√
β in magnitude, by Theorem VII.2.2

in Bhatia (1997), the equation ΛqΩ−ΩΛ−q = −Λq,−q has the solution Ω = −
∑∞

j=0Λ
−j−1
q Λq,−qΛ

j
−q,

which can be simplified as follows. Noting Lemma 2 and Eq. (5) about expressions of Λq,Λ−q, and
Λq,−q, we have that

Ω = −
∞∑
j=0

Λ−j−1
q Λq,−qΛ

j
−q = −(1 + β)

∞∑
j=0

Λ−j−1
q (

[
0 0 I

]
Λj

−q)

= −(1 + β)
∞∑
j=0

[
0 0 (Σ+

q )
−j−1(Σ−

q )
j
]
= −(1 + β)(Σ+

q )
−1

∞∑
j=0

[
0 0 ((Σ+

q )
−1(Σ−

q ))
j
]

= −(1 + β)
[
0 0 diag( 1

λ+
1

∑∞
j=0(

λ−
1

λ+
1

)j , · · · , 1
λ+
q

∑∞
j=0(

λ−
q

λ+
q
)j)
]

= −(1 + β)

0 0 diag(

1

λ+1

1−
λ−1
λ+1

, · · · ,
1

λ+q

1−λ−q
λ+q

)

 = −(1 + β)
[
0 0 diag( 1

λ+
1 −λ−

1

, · · · , 1
λ+
q −λ−

q
)
]

= −(1 + β)
[
0 0 diag( 1√

λ2
1−4β

, · · · , 1√
λ2
q−4β

)
]
.

It is easy to see that ∥Ω∥2 = 1+β√
λ2
q−4β

. □
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Lemma 4 Under the noise conditions ∥ξt∥2 ≤ 1
256

(λ+
k −

√
β)2

(1+l1)(1+β) sin θmax(Yt,Vq), ∥U⊤
q ξt∥2 ≤

1
16

λ+
q (λ+

k −
√
β)

(1+l2)(1+λ+
k )

cos θmax(Yt,Wq), and

col((WH
q Yt + diag−1(λ+

1 , · · · , λ
+
q )W

H
q Et)

†
[
Ik
0

]
) ⊂ col((WH

q Yt)
†
[
Ik
0

]
),

it holds that

Φt+1 ≤ (1− 1

4

√
λk − 2

√
β

λk
)Φt.

Proof Let Ht = (ΓQVH
−qYt)(W

H
q Yt)

†
[
Ik
0

]
. We start from expanding Ht+1 in a way different

from Balcan et al. (2016) to analyze Φt+1 = ∥Ht+1∥2. By Eq. (10), we have that

Ht+1 = (ΓQVH
−qYt+1)(W

H
q Yt+1)

†
[
Ik
0

]
= (ΓQΛ−qV

H
−qYt + ΓQVH

−qEt)(ΛqW
H
q Yt +WH

q Et)
†
[
Ik
0

]
.

For brevity, let
Z1 = ΓQVH

−qYt, Z2 = WH
q Yt.

Then Ht = Z1Z
†
2

[
Ik
0

]
. For the above equation about Ht+1, on one hand,

ΓQΛ−qV
H
−qYt + ΓQVH

−qEt = (ΓQΛ−q(ΓQ)−1 + ΓQVH
−qEt(V

H
−qYt)

†(ΓQ)−1)Z1,

where (VH
−qYt)

†(VH
−qYt) = Ip. On the other hand,

(ΛqW
H
q Yt +WH

q Et)
†
[
Ik
0

]
= (Z2 +Λ−1

q WH
q Et)

†Λ−1
q

[
Ik
0

]
= (Z2 +Λ−1

q WH
q Et)

†
[
Ik
0

]
Λ−1

k

where Λk is the k × k leading principal submatrix of Λq. To proceed, let

(Z2 +Λ−1
q WH

q Et)
†
[
Ik
0

]
= Z†

2

[
Ik
0

]
Ψ.

By the last noise assumption, the above equation has a solution for Ψ ∈ Rk×k. Pre-multiplying both
sides of the above equation by

[
Ik 0

]
Z2, we get that

Ψ =
[
Ik 0

]
Z2(Z2 +Λ−1

q WH
q Et)

†
[
Ik
0

]
,

where we have used that Z2Z
†
2 = Iq. We thus can write that

Ht+1 = (ΓQΛ−qV
H
−qYt + ΓQVH

−qEt)(ΛqW
H
q Yt +WH

q Et)
†
[
Ik
0

]
= (ΓQΛ−q(ΓQ)−1 + ΓQVH

−qEt(V
H
−qYt)

†(ΓQ)−1)Z1Z
†
2

[
Ik
0

]
·

[
Ik 0

]
Z2(Z2 +Λ−1

q WH
q Et)

†
[
Ik
0

]
Λ−1

k
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= (ΓQΛ−q(ΓQ)−1 + ΓQVH
−qEt(V

H
−qYt)

†(ΓQ)−1)Ht

·
[
Ik 0

]
Z2(Z2 +Λ−1

q WH
q Et)

†
[
Ik
0

]
Λ−1

k .

By the definition of the pseudo inverse of a matrix, we have that

∥Ht+1∥2 ≤ ∥Ht∥2∥Λ−1
k ∥2 ∥ΓQΛ−q(ΓQ)−1 + ΓQVH

−qEt(V
H
−qYt)

†(ΓQ)−1∥2︸ ︷︷ ︸
≜ φ1

×

∥
[
Ik 0

]
Z2(Z2 +Λ−1

q WH
q Et)

⊤((Z2 +Λ−1
q WH

q Et)(Z2 +Λ−1
q WH

q Et)
⊤)−1

[
Ik
0

]
∥2︸ ︷︷ ︸

≜ φ2

.

Noting that ∥(VH
−qYt)

†∥2 = ∥diag−1(sinθ(Yt,Vq))∥2 = sin−1 θmin(Yt,Vq) and

∥Et∥2 ≤ ∥
[
ξt
0

]
∥2∥St∥2 ≤ ∥

[
ξt
0

]
∥2 = ∥ξt∥2,

one gets that

φ1 ≤ ∥ΓQΛ−q(ΓQ)−1∥2 + ∥Γ∥2∥Γ−1∥2∥(VH
−qYt)

†∥2∥ξt∥2

≤
√

β +
1 + β

1 + γ
+

1

256

sin θmax(Yt,Vq)

sin θmin(Yt,Vq)

(λ+
k −

√
β)2(1 + γ)

(1 + l1)(1 + β)
(using Eq. (9) and assumption on ∥ξt∥2)

≤
√
β +

λ+
k −

√
β

16
+

λ+
k −

√
β

16
. (using

1 + β

1 + γ
=

λ+
k −

√
β

16
)

On the other hand,

φ2 ≤ ∥Z2(Z2 +Λ−1
q WH

q Et)
⊤((Z2 +Λ−1

q WH
q Et)(Z2 +Λ−1

q WH
q Et)

⊤)−1∥2

= ∥(Z2Z
⊤
2 + Z2(W

H
q Et)

⊤Λ−1
q )(Z2Z

⊤
2 + Z2(W

H
q Et)

⊤Λ−1
q +

Λ−1
q WH

q EtZ
⊤
2 +Λ−1

q WH
q Et(W

H
q Et)

⊤Λ−1
q )−1∥2

= ∥(I+ Z2(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1)(I+ Z2(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1 +

Λ−1
q WH

q EtZ
⊤
2 (Z2Z

⊤
2 )

−1 +Λ−1
q WH

q Et(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1)−1∥2

≤ (1 + ∥Z2(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1∥2)(1− ∥Z2(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1∥2 −

∥Λ−1
q WH

q EtZ
⊤
2 (Z2Z

⊤
2 )

−1∥2 − ∥Λ−1
q WH

q Et(W
H
q Et)

⊤Λ−1
q (Z2Z

⊤
2 )

−1)−1∥2)−1.

≤ (1 + ∥Z2∥2∥WH
q Et∥2∥Λ−1

q ∥2∥(Z2Z
⊤
2 )

−1∥2)(1− ∥Z2∥2∥WH
q Et∥2∥Λ−1

q ∥2∥(Z2Z
⊤
2 )

−1∥2

−∥Λ−1
q ∥2∥WH

q Et∥2∥Z⊤
2 (Z2Z

⊤
2 )

−1∥2 − ∥Λ−1
q ∥22∥WH

q Et∥22∥(Z2Z
⊤
2 )

−1)−1∥2)−1.

Observe that ∥Z2∥2 = cos θmin(Yt,Wq), ∥(Z2Z
⊤
2 )

−1∥2 = cos−2 θmax(Yt,Wq), and

∥Z⊤
2 (Z2Z

⊤
2 )

−1∥2 = cos−1 θmax(Yt,Wq).
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Particularly, it holds by Eq. (7) that

∥WH
q Et∥2 = ∥EH

t Wq∥2 = ∥St

[
ξt
0

]⊤ [
UqDq(β)
−UqKq(β)

]
∥2 = ∥Stξ

⊤
t UqDq(β)∥2

≤ ∥St∥2∥ξ⊤t Uq∥2∥Dq(β)∥2 ≤ ∥U⊤
q ξt∥2.

We then get that

φ2 ≤ (1 +
cos θmin(Yt,Wq)

cos2 θmax(Yt,Wq)

∥U⊤
q ξt∥2
λ+
q

)(1− cos θmin(Yt,Wq)

cos2 θmax(Yt,Wq)

∥U⊤
q ξt∥2
λ+
q

−
∥U⊤

q ξt∥2
λ+
q cos θmax(Yt,Wq)

− (
∥U⊤

q ξt∥2
λ+
q cos θmax(Yt,Wq)

)2)−1,

Further by the assumption on ∥U⊤
q ξt∥2, it holds that

φ2 ≤ (1 +
l2(λ

+
k −

√
β)

16(1 + l2)(1 + λ+
k )

)(1−
l2(λ

+
k −

√
β)

16(1 + l2)(1 + λ+
k )

−
λ+
k −

√
β

16(1 + l2)(1 + λ+
k )

− (
λ+
k −

√
β

16(1 + l2)(1 + λ+
k )

)2)−1

≤ (1 +
λ+
k −

√
β

16(1 + λ+
k )

)(1−
3(λ+

k −
√
β)

16(1 + λ+
k )

)−1.

We now can write that

∥Ht+1∥2 ≤ φ1φ2∥Ht∥2∥Λ−1
k ∥2

≤ (
√
β +

λ+
k −

√
β

8
)(1 +

λ+
k −

√
β

16(1 + λ+
k )

)(λ+
k −

3λ+
k (λ

+
k −

√
β)

16(1 + λ+
k )

)−1∥Ht∥2

=

√
β +

λ+
k −

√
β

8 + (
√
β +

λ+
k −

√
β

8 )
λ+
k −

√
β

16(1+λ+
k )

λ+
k − 3λ+

k (λ+
k −

√
β)

16(1+λ+
k )

∥Ht∥2

≤
√
β +

λ+
k −

√
β

8 +
λ+
k −

√
β

8

λ+
k − 3λ+

k (λ+
k −

√
β)

16(1+λ+
k )

∥Ht∥2 (using
√
β < λ+

q ≤ λ+
k )

≤
√
β +

λ+
k −

√
β

4

λ+
k − λ+

k −
√
β

4

∥Ht∥2 =
λ+
k + 3

√
β

3λ+
k +

√
β
∥Ht∥2 = (1−

2(λ+
k −

√
β)

3λ+
k +

√
β

)∥Ht∥2

≤ (1−
λ+
k −

√
β

2λ+
k

)∥Ht∥2,
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where

λ+
k −

√
β

λ+
k

=
λk − 2

√
β +

√
λ2
k − 4β

λk +
√
λ2
k − 4β

=

√
λk − 2

√
β(
√
λk − 2

√
β +

√
λk + 2

√
β

λk +
√
λ2
k − 4β

>

√
λk − 2

√
β
√
λk

2λk
=

1

2

√
λk − 2

√
β

λk
.

Therefore, it holds that

Φt+1 ≤ (1− 1

4

√
λk − 2

√
β

λk
)Φt.

□

Lemma 5 sin θmax(Yt,Vk) = ∥(I−YtY
⊤
t )Vk∥2 ≤ (1 + 2 1+β√

λ2
q−4β

)Φt.

Proof Let Ξk = diag( 1√
1+α2

1

, · · · , 1√
1+α2

k

) with αj = 1+β√
λ2
j−4β

, i.e., Ξk =
[
Ik 0

]
(I +

ΩΩH)−
1
2

[
Ik
0

]
is the k × k leading principal submatrix of (I+ΩΩH)−

1
2 . We then have that

∥(I−YtY
⊤
t )Vk∥2 = ∥(I−YtY

⊤
t )VkΞ

−1
k Ξk∥2 ≤ ∥(I−YtY

⊤
t )VkΞ

−1
k ∥2∥Ξk∥2

≤ ∥(I−YtY
⊤
t )VkΞ

−1
k ∥2 = max

x∈Rk×1:∥x∥2=1
∥(I−YtY

⊤
t )VkΞ

−1
k x∥2

= max
x∈Rk×1:∥x∥2=1

∥VkΞ
−1
k x−YtY

⊤
t VkΞ

−1
k x∥2

≤ max
x∈Rk×1:∥x∥2=1

∥VkΞ
−1
k x−Yt(W

H
q Yt)

†
[
Ik
0

]
x∥2

= max
x∈Rk×1:∥x∥2=1

∥(VkΞ
−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
)x∥2

= ∥VkΞ
−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
∥2,

where the second and last equalities are by the definition of matrix 2-norm, and the last inequality
is by the definition of vector projection onto a column space of a matrix (see the second proof of
Lemma 2.3 or A.4 in Balcan et al. (2016)). To proceed, we can write that

∥(I−YtY
⊤
t )Vk∥2 ≤ ∥VkΞ

−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
∥2

= ∥
[
Wq V−q

]−H [
Wq V−q

]H
(VkΞ

−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
)∥2

≤ ∥
[
Wq V−q

]−H ∥2∥
[
Wq V−q

]H
(VkΞ

−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
)∥2

=
1

σmin(
[
Wq V−q

]
)
∥
[
Wq V−q

]H
(VkΞ

−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
)∥2.
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Noting that Wq = (Vq −V−qΩ
H)(I +ΩΩH)−

1
2 , it holds that

WH
q VkΞ

−1
k = (I +ΩΩH)−

1
2VH

q VkΞ
−1
k = (I +ΩΩH)−

1
2

[
Ik
0

]
Ξ−1

k =

[
Ξk

0

]
Ξ−1

k =

[
Ik
0

]
.

Thus, we have that

∥
[
Wq V−q

]H
(VkΞ

−1
k −Yt(W

H
q Yt)

†
[
Ik
0

]
)∥2

≤ ∥WH
q VkΞ

−1
k − (WH

q Yt)(W
H
q Yt)

†
[
Ik
0

]
∥2 + ∥VH

−qVkΞ
−1
k −VH

−qYt(W
H
q Yt)

†
[
Ik
0

]
∥2

= ∥VH
−qYt(W

H
q Yt)

†
[
Ik
0

]
∥2 = ∥(ΓQ)−1(ΓQVH

−qYt)(W
H
q Yt)

†
[
Ik
0

]
∥2

≤ ∥(ΓQ)−1∥2∥(ΓQVH
−qYt)(W

H
q Yt)

†
[
Ik
0

]
∥2 ≤ ∥(ΓQVH

−qYt)(W
H
q Yt)

†
[
Ik
0

]
∥2 = Φt,

arriving at

∥(I−YtY
⊤
t )Vk∥2 ≤

Φt

σmin(
[
Wq V−q

]
)
.

It remains to figure out σmin(
[
Wq V−q

]
) as follows.

σ2
min(

[
Wq V−q

]
) = λmin(

[
Wq V−q

]H [
Wq V−q

]
) = λmin(

[
I WH

q V−q

VH
−qWq I

]
)

= λmin(

[
I −(I+ΩΩH)−

1
2Ω

−((I+ΩΩH)−
1
2Ω)⊤ I

]
)

= λmin(diag(

 1 − α1√
1+α2

1

− α1√
1+α2

1

1

 , · · · ,

 1 − αq√
1+α2

q

− αq√
1+α2

q

1

 , I2(n−q)))

= min
1≤j≤q

λmin(

 1 − αj√
1+α2

j

− αj√
1+α2

j

1

),
where αj = 1+β√

λ2
j−4β

, and the second last equality has used Lemma 3 and orthogonal invariance

of eigenvalues (the left and right permutation matrices we have used here are orthogonal). The

eigenvalues of

 1 − αj√
1+α2

j

− αj√
1+α2

j

1

 are 1± αj√
1+α2

j

which are the roots of the following equation:

x2−tr(

 1 − αj√
1+α2

j

− αj√
1+α2

j

1

)x+det(

 1 − αj√
1+α2

j

− αj√
1+α2

j

1

) = 0, i.e., x2−2x+
1

1 + α2
j

= 0.
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Thus, we have that

σ2
min(

[
Wq V−q

]
) = 1− αq√

1 + α2
q

= 1− 1 + β√
λ2
q − 4β + (1 + β)2

=

√
λ2
q − 4β + (1 + β)2 − (1 + β)√

λ2
q − 4β + (1 + β)2

=
λ2
q − 4β + (1 + β)2 − (1 + β)2√

λ2
q − 4β + (1 + β)2(

√
λ2
q − 4β + (1 + β)2 + 1 + β)

=
λ2
q − 4β√

λ2
q − 4β + (1 + β)2(

√
λ2
q − 4β + (1 + β)2 + 1 + β)

≥
λ2
q − 4β

(
√
λ2
q − 4β + (1 + β)2 + 1 + β)2

≥
λ2
q − 4β

(
√

λ2
q − 4β + 2(1 + β))2

.

Therefore, it holds that

∥(I−YtY
⊤
t )Vk∥2 ≤ (1 + 2

1 + β√
λ2
q − 4β

)Φt.

□

Lemma 6 If sin θmax(Yt,Vk) <
λ+
k

k
√

1+(λ+
k )2

ϵ, then sin θmax(Xt,Uk) < ϵ.

Proof Since we now have that

k − ∥V⊤
k Yt∥2F = k − ∥diag(cos θ1(Yt,Vk), · · · , cos θk(Yt,Vk))∥2F

=
k∑

j=1

sin2 θj(Yt,Vk) ≤ k sin2 θmax(Yt,Vk) <
(λ+

k )
2ϵ2

k(1 + (λ+
k )

2)
,

it holds that ∥V⊤
k Yt∥2F > k − (λ+

k )2ϵ2

k(1+(λ+
k )2)

. Recall that (λj ,uj) is an eigenpair of A indexed in

descending order of its eigenvalues, Uk =
[
u1 · · · uk

]
, and Vk =

[
UkDk(1)
UkKk(1)

]
(see notations

in Lemma 2, Eq. (4) as well as the paragraph right before Lemma 5). Let vj be the j-th column of

Vk, i.e.,
[
ajuj

bjuj

]
, where aj =

λ+
j√

1+|λ+
j |2

and bj =
1√

1+|λ+
j |2

, for j = 1, · · · , k. We then have for any
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j = 1, · · · , k that

∥v⊤
j Yt∥22 = ∥

[
ajuj

bjuj

]⊤ [
Xt

Xt−1R
−1
t

]
(I+R−⊤

t R−1
t )−

1
2 ∥22

= ∥
[
ajX

⊤
t uj

bjX
⊤
t−1uj

]⊤ [
I

R−1
t

]
(I+R−⊤

t R−1
t )−

1
2 ∥22

≤ ∥
[
ajX

⊤
t uj

bjX
⊤
t−1uj

]⊤
∥22∥

[
I

R−1
t

]
(I+R−⊤

t R−1
t )−

1
2 ∥22 = ∥

[
ajX

⊤
t uj

bjX
⊤
t−1uj

]⊤
∥22

= a2j∥X⊤
t uj∥22 + b2j∥X⊤

t−1uj∥22,

where the second last equality is due to that
[

I

R−1
t

]
(I+R−⊤

t R−1
t )−

1
2 is orthonormal. Thus, if there

exists a certain j ∈ {1, · · · , k} such that ∥X⊤
t uj∥22 ≤ 1− ϵ2

k , noting that ∥X⊤
t−1uj∥2 ≤ 1 we then

would have that

∥v⊤
j Yt∥22 ≤ a2j (1−

ϵ2

k
) + b2j = (a2j + b2j )− a2j

ϵ2

k
≤ 1− a2k

ϵ2

k
.

Consequently, it would hold that

∥V⊤
k Yt∥2F =

k∑
s=1

∥v⊤
s Yt∥22 = ∥v⊤

j Yt∥22 +
k∑

s=1
s ̸=j

∥v⊤
s Yt∥22 ≤ 1− a2k

ϵ2

k
+ k − 1 = k − a2k

ϵ2

k
,

which contradicts the fact at the beginning that ∥V⊤
k Yt∥2F > k − a2k

ϵ2

k . Therefore, it must hold
for any j = 1, · · · , k that ∥u⊤

j Xt∥22 > 1 − ϵ2

k , and thus ∥U⊤
k Xt∥2F =

∑k
j=1 ∥u⊤

j Xt∥22 > k − ϵ2.
Finally, we get that

sin θmax(Xt,Uk) ≤ ∥diag(sin θ1(Xt,Uk), · · · , sin θk(Xt,Uk))∥F

=
√

k − ∥U⊤
k Xt∥2F < ϵ.

□
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