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Abstract

Given the capability to handle diverse resource constraints, such as communication, memory, or
privacy, the noisy power method (Hardt and Price, 2014), as a meta algorithm for computing the
dominant eigenspace of a matrix, has found wide applications in data analysis and statistics (e.g.,
PCA). For an input data matrix, the performance of the algorithm, as with the noiseless case, is
characterized by the spectral gap, which largely dictates the convergence rate and affects the noise
tolerance level as well (Hardt and Price, 2014). A recent analysis (Balcan et al., 2016) improved
the dependency over the consecutive spectral gap (A — Ag+1) (Hardt and Price, 2014) to the
dependency over (A — Ag+1), where ¢ could be much greater than the target rank % and thus result
in better performance by a significantly larger gap. However, (A, — Ag41) could still be quite small
and potentially limit the applicability. In this paper, we further improve the dependency of the
convergence rate over O(\, — Ag4+1) to dependency over O(y/Ar — Ag+1) in a certain regime of a
new parameter, for a faster noise-tolerant algorithm. To achieve this goal, we propose faster noisy
power method which introduces the momentum acceleration into the noisy power iteration, and
present a novel analysis that differs from previous ones (Hardt and Price, 2014; Balcan et al., 2016).
We also extend our algorithm to the distributed PCA and memory-efficient streaming PCA and get
improved results accordingly in terms of the gap dependence.

Keywords: Noisy power method, spectral gap dependency, momentum acceleration

1. Introduction

In data analysis and statistics, it often needs to find the dominant eigenspace of a matrix, which can
be done by the classic power method or Krylov subspace method (e.g., Lanczos algorithm, known
as a faster counterpart of the power method) (Golub and Van Loan, 2013). One of emerging trends
is that many applications arising recently require to approximately compute dominant eigenspace
in the presence of noise of various forms such as missing entries, sampling error, approximation
error, privacy constraint, or adversarial attack (Mitliagkas et al., 2013; Hardt and Roth, 2013; Hardt
and Price, 2014; Liu et al., 2015; Xu and Li, 2019, 2020, 2021). In this case, the noisy power
method (Hardt and Price, 2014) turns out to be a meta algorithm that can fulfill a wide range of
resource constraints like the above, given that it is a fast general purpose method for the dominant
eigenspace computation under noise-corrupted matrix-vector multiplications. As with the noiseless
setting, the convergence rate of the noisy power method is inversely proportional to and largely
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dominated by the spectral gap. Particularly, Hardt and Price (2014) showed the dependence of
the convergence on the consecutive spectral gap (Ax — Ag+1), where \; represents the i-th largest
eigenvalue of the given real symmetric data matrix A € R™*" and k is the target rank (i.e., the goal
to find a top-k eigenspace of A, denoted as Uy). However, the consecutive spectral gaps are too
small for real large data (Musco and Musco, 2015). For faster convergence and numerical stability,
in practice, one can use an iteration rank p (i.e., matrix iterate X; € R™*P) larger than the target rank
k (Hardt and Price, 2014; Musco and Musco, 2015; Wang et al., 2015). This implies the possibility of
dependence on a larger spectral gap (A, — A\p41), which was conjectured in Hardt and Price (2014).
This remedy can’t be theoretically justified by their proof technique even in the noiseless setting
until Gu (2015) and Balcan et al. (2016). In the noiseless setting, Gu (2015) presented a theoretical
justification for the remedy of a larger iteration rank with a rigourous proof that under mild conditions
the dependency over (A, — A1) can be improved to be over (A — Ag41) for some k < ¢ < p,
which may be significantly greater. Given the increasing practical value of the noise setting and
growing attention from both machine learning and theoretical computer science communities, Balcan
et al. (2016) further showed similar results for the noisy power method by a different analysis.

In fact, the spectral gap (A — A\g+1), albeit larger than the consecutive one, could still be small
and limit the applicability of the noisy power method. One natural question then is:

Can we further improve the dependency over the spectral gap (A, — Ag+1)?

Indeed, Balcan et al. (2016) noted that Krylov iteration (Golub and Van Loan, 2013) has an improved
dependency in the noiseless setting (Musco and Musco, 2015), but only expected interesting results
for the noisy Krylov subspace method without further analysis. This noisy Krylov iteration seems
quite difficult to analyze directly. In this work, we equip the noisy power method with momentum
acceleration (Xu et al., 2018) instead to give a faster noisy power method:

X;11Ri1 = AX, — X, R+ € € R™P, (1)

where $ > 0 is the momentum parameter, &, is the noise matrix for iteration ¢, and the left-hand
side represents the QR factorization (Golub and Van Loan, 2013) of the right-hand side such that
X; € R™*P remains column-orthonormal and R; € RP*P, The initials include X_; = 0 € R"*P,
random column-orthonormal X, € R™*P obtained from the QR factorization of an entrywise i.i.d.
standard normal matrix XO € R"P ie., XoRg = XO When 5 = 0, Eq.(1) recovers the noisy
power method (Hardt and Price, 2014; Balcan et al., 2016). Note that the noise matrix &, could
model a variety of resource constraints as mentioned previously, including stochastic sampling errors
considered in Xu et al. (2018). The analysis in Xu et al. (2018) is specific to §, = 0 withp = k
or stochastic errors with p = k = 1, and is inapplicable to our general noise model with a larger
iteration rank p > k > 1 than the target rank k.

We give a novel analysis different from Hardt and Price (2014); Gu (2015); Balcan et al. (2016)
to show an improved spectral gap dependency of the convergence of our faster noisy power method
in Eq. (1) over the noisy power method, i.e., O( Ak — Ag+1). To analyze the convergence of Eq.
(1), we first have it paired with the identity equation X; = X, to get an equivalent augmented update
equation of iterate Y; € R?"*P formed by two consecutive original iterates X; and X;_1, in a form
very similar to the noisy power method. Despite a similar form, a key difference from the previous
noisy power method (Hardt and Price, 2014; Gu, 2015; Balcan et al., 2016) lies at the asymmetry of
the augmented data matrix B € R2"*2" agsociated with the matrix-vector product, which causes
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significant complications of analysis due to the Schur decomposition, instead of the commonly used
eigenvalue decomposition for real symmetric matrices, as we shall see in the sequel. We then need to
show the rate of the convergence of Y, or the newly minted and augmented noisy power iteration, to
the dominant k-dimensional invariant subspace of B (denoted as V). To this end, we build upon
the so-called rank-£ perturbation on V, by Yy, i.e., hy, proposed in Balcan et al. (2016), which
is a characterization between a rank-p subspace Y, and the rank-k target subspace V. through an
intermediate subspace V. We adapt the rank-k perturbation on V, by Y, to our case and denote it
as our potential function ®;. Except for that, however, the proof idea of Balcan et al. (2016) can’t be
applied in our case, as it will lead to an even worse noise tolerance bound in terms of spectral gap
dependence. In contrast to Balcan et al. (2016) showing the constant contraction of h; — O(e) over
iterations, we directly establish ®;’s geometric shrinkage across iterations under mild conditions on
the momentum parameter, which turns out to give improved noise tolerance. Finally, based on the
convergence of Y;, we show the rate of the convergence of X; or Eq. (1) to Uy.

We further apply our meta algorithm to the distributed PCA and memory-efficient streaming
PCA, and get improved results accordingly in terms of the gap dependence.

2. Notions and Notations

Given a positive semi-definite data matrix A € R™*", let u; represent A’s eigenvector of unit
length corresponding to the j-th largest eigenvalue A; > 0. Denote X; = diag(Ai,--- ,Aj), X, =
diag(Nj41, -, M), Uj = [ul,-~ ,uj], andU_; = [ujH,-u ,un]. Forany j € {1,2,--- ,n},
A= [Uj, U_j} diag(X;,X_j) [Uj, U_j]T is A’s full eigenvalue decomposition, where [Uj, U_j]
is orthogonal. With a bit abuse of notation, we also use U to represent its column space for brevity,
e.g., Uy is a top-k eigenspace of A. For later convenience, let ¢ exclusively represent the imaginary
unit equal to v/—1, O solely represent the conjugate of a matrix, and O £ ' the conjugate
transpose of a matrix, throughout the paper. I represents the identity matrix of size j x j, and the
identity matrix of appropriate size if the subscript is missing (i.e., I). In addition, (' represents
the pseudo-inverse of a matrix, and col(0J) stands for the column space of a matrix. Let Z; €
(Cdel, Zo € Cmxd2 (d; < mforj =1,2)and d = min{d;, d>}. The vector of principal angles
between Z; and Zy then is defined as 8(Z1, Zo) = [COS_I(O'd(ZII_IZQ)) o ,COS_l(Ul(le_IZQ))} T,
where o;(J) represents the j-th largest singular value of a matrix, and naturally 3 > 01(Z1, Z) >
oo > 04(Z1,Z2) > 0. In addition, let Oyax (Z1, Zo) = 01(Z1, Z2), and Onin(Z1, Z2) = 04(Z1, Zs).
Distance between subspaces can be characterized by their largest principal angle, i.e., Opax (-, -).

3. Faster Noisy Power Method

The pseudo code of the faster noisy power method is described in Algorithm 1. In this section,
we give our main results and proof for Algorithm 1. The missing proofs can be found in Appendix.

3.1. Main Results
Theorem 1 Let k < q < p and assume that \; > 2B > Ag+1 for A € R™™ = 0. Define

A -1 X [¢, A+ R TR Y2, 1
B = [I 0 ]7 Y;: = [thRt1:| St, Er = [0 St, S = 1 i 0

?
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Algorithm 1 FNPM
1: Input: positive semi-definite matrix A € R™*", momentum parameter 5 > 0, target rank £,
iteration rank p > k, iteration number 7.
2: Output: approximate top-k eigenspace X .

b

Set X_; = 0 € R™*P and QR factorize an entry-wise i.i.d. standard Gaussian matrix )A(() €
R™*P such that XgRg = Xj

4: fort=0,1,--- , T —1do

5: Xt_i'_l AXt 68X 1R + &, for some noise matrix &,
6: QR factorize Xt+1 such that X; 1 R;4+1 = Xt+1

7: end for

If the noise matrix &, € R"™P satisfies that ||€, |2 < s (( VB in Omax (Y, V),

1+11)(148)
1 AF(A=VB)

.
IU7Ed < G A

€08 Omax (Y, W),

and

col(WH'Y, + diag ™ (AT, -+, AN ) WIE,)! [I(f] ) C col((WYy)! [Ig] ), 2)

where V4 and W ; are the dominant q-dimensional invariant subspaces of B and BT, respectively,

. AsEry/A2—4 0. Y.,V

whose eigenvalues are \¥ = e Vi (see Lemma 2), and l; = max $in fmax (Y, Vg) Iy =
S 2 0<t<T sin emm(Yf:Vq)

€08 Omin (Y¢,Wyg)

max , then after Algorithm 1 runs for
0<t<T 08 Omax(Yt,Wyq) L 8 f

T>4
A — 2

i T+ A2+ (W2 14+8+)0, 148 32kry/n 1
7\/31%( )

W2 0?2 oM - VBV Vi Te

iterations, we have that sin Oy, (X7, Uy) < € with probability at least 1 — 7 Upt1=g) _ o=Q(n)

Remark 1 Note in the above theorem that A" — /B = O(\/Ar, — Ag+1) when 24/B is close to
Ag+1 (see the proof of Theorem 1). Table 1 shows the comparison of our results with existing
ones (Hardt and Price, 2014; Balcan et al., 2016). When 2+/73 is close to )\q+1, our Convergence rate

T =0(,/ py )\ - ), up to log factors, which significantly improves over O( log ) (Balcan

etal., 2016). Our noise tolerance also has significant improvement on the spectral gap dependency,
ie., O(v/Ak — Agr1)> over O(A\x — A\g11) (Balcan et al., 2016), in terms of HUqTEtHQ. But in
terms of ||€,]|2, it has the same dependency as Balcan et al. (2016), i.e., O(A;y — Ag4+1). Due to
||UJ£tH2 < ||&]|2, this may worsen the gap dependence of ||U(;r€t|]2 to be the same as that of ||&,||2
when /A, — A\g41 is very small. Nevertheless, in general, sin 0iax (Y, V) and cos Omax (Y, W)
are significantly larger than € before convergence. Thus, overall our noise tolerance bounds are better
than those of Balcan et al. (2016). In addition, another noise condition in Eq. (2), which is important
to achieve geometric shrinkage across iterations without needing the noise level to be as small as the
accuracy, seems quite restrictive, but it should be satisfied by two settings considered in Section 4,
i.e., distributed or streaming PCA, because §, = 0 or &, = (A; — A)X,.
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Table 1: Comparison with existing results.

T €12 U &ll2 or [U &;ll2
Hardt and Price (2014)  O( v :\fkﬂ ) O((Ag — Ak41)e) O((Ag — A1) €08 Omax(Xo, Ug))
Balcan et al. (2016) O~()\k j;\“qﬂ ) O((Ag — Ag+1)€) O((Ag — Ag+1)€cos Omax(Xo, Uq))
Ours (When 2\/B O( )‘kj;\chrl ) O((/\k — )\q+1) sin Omax(Yt, Vq)) O(\ / >\k' — /\q+1 COSs Gmax(Yt7 Wq))

is close to Ag41)

Remark 2 To further understand the improvement of the convergence rate, we revisit the power law
example with decaying spectrum given in Balcan et al. (2016), i.e., \; < k~< for some parameter
a > 1. This spectral decay property is common in many data matrices arising in practical data
applications (Liu et al., 2015). By setting ¢ = ck for some constant ¢ > 1, the linear dependence
on the relative spectral gap gives factor A’“j\i);q“ =1 — ¢~ for the noisy power method, and thus

total number of flops is O( lflﬁa ). For our FNPM, the nearly square-root dependence gives factor

close to v/1 — ¢~ which could be much larger than (1 — ¢~¢) and then yield a much smaller total
nk?

Vi)

Remark 3 The convergence results for other values of 5 are easy to get by the proof of Theorem 1

with a slight change (see Remark 5). There are three cases: 1) when 21/3 > A, Algorithm 1 may not

converge; 2) when A\, > 21/ > Ay, sin Opax (X, U) < e holds for T' = O~(1 / /\k:\;ﬂ ) (the same

~ +
form as Theorem 1); 3) when A\g41 > 21/, sin Opmax (X7, Ug) < € holds for T' = O(Ai’“+ ).

+
AL = A1

number of flops at O(

+ A

k
Note that we always have N A v v

. The noise tolerance can be derived accordingly as

well.

Remark 4 There is no need to worry about if we will get 21/3 > A\, which makes Algorithm 1
either possibly diverge or converge slowly (how slow it is depends on how close 2+//3 is to \y). This
is because we could simply use varying 3 by setting 21//3; to be the (g + 1)-th largest diagonal entry
of ﬁp = X/ (AX; + &) € RP*P and 21/B; < A 41 always holds approximately. However, it is
difficult to set £ to meet the noise condition in practice, because it involves not only a lot of ground
truth information but also the current progress of the iterate to the solution. Nonetheless, our results
show that the noise could be much larger at initial stage than later stage, but eventually the noise
needs to be at least as small as the desired accuracy in order for convergence. Moreover, in a safe
noise range, our algorithm could converge faster than the plain noisy power method (i.e., 8 = 0).

3.2. Proof of Theorem 1

We start from pairing Eq. (1) with the identity equation X; = X, to get an augmented update

equation:
Xit1 Ry — A —p41 X . &
R TN 0 ] [XeaRy! 0]
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Post-multiplying both sides of the equation above by S; and letting ﬁt =S, 'R,S, 1 fort > 1,
with notations given in Theorem 1, we arrive at an equivalent update equation of the same form as
the noisy power iteration: R

Yi1Rip1 = BY: + Ey, 3)

where Y} is column-orthonormal, i.e., YtT Y, = L. Despite the simple form, however, the established
theories for the noisy power method in Hardt and Price (2014); Balcan et al. (2016) can’t be applied
here, as they only work for real symmetric target matrices (e.g., A). In our case, the target matrix B
is asymmetric. To continue, we need the following lemma about the Schur decompositions of real
asymmetric matrices B and B':

Lemma 2 If there exists an integer j such that \j > 2/ > \; i1, then we have the following
Schur decompositions:

B=J(1,-1,-1), B" =J(8,5,1),

where

J(a,b,c) = U;Dj(@)  UD-j(@) U- K- (a) UK;a)|
U UK @ UKo ULDS@ D
= 0 0 F(
0 Xt T(b)

0 U;Dj(a) U ;D_j(a) U ;K _j(a) CUjKj(a)]H
0 (a)

—cU;K;(a) —cU_ ;K _j(a) U_;D_j(a) U;Dj(a

with notations

At /AN2—4B  Ef =diag(A\[,--,A)), B =diag(A g, A,

Ar =
B X7 =diag(A] - ,A;), X, = diag(A;H,-.- A7),
Af AT \+
D = dia J D _d J‘H M
i) =GB e e el i " Vaer
a

K dia K_ — dia R S
() = el Tmimrm gy K = el E)

(b) =0l + (22 ) and F(c) = ¢(1 + B)L If there exists any s > j such that \s = 2+/[, then
=B and the correspondmg diagonal entry in the block T (b) is replaced with (1 + ().

Note that AT is a conjugate pair of eigenvalues of B when A2 < 443, and all the eigenvalues of B are
on the diagonal of the upper triangular factor matrix of J(1, —1, —1), arranged in descending order of
magnitude except for those with the lower right block Ej_ where ascending order applies. The above
lemma is a unified form of Lemmas 2.1 and 2.2 given in Appendix about Schur decompositions of
Band BT, respectively. For other values of 5 > 0, i.e., 2,/8 > A\ and 0 < 24/8 < A, the Schur
decompositions of B and BT are straightforward based on the proof of Lemma 2.

By Lemma 2 and the assumption that A, > 21/ > \s11, the Schur decomposition of the real
asymmetric matrix B can be rewritten as:

= [V, V_] [%q j}f’_q‘f] [V, Vo', (4)
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where V_, represents the orthogonal complement of V,, in C*", and V,, = [Uqu(l)]

UK,1)]”

»f, T(-1) o0
Ag=3F Ap_g=[0 0 —(1+P8)I], A= 0 -, 0/, (5)

o 0 3

and V, spans the unique dominant ¢g-dimensional invariant subspace of B corresponding to top-¢q
eigenvalues of B in magnitude which are on the diagonal of Ej;. Since A, and A_, don’t have
eigenvalues in common, by Lemma 7.1.5 in Golub and Van Loan (2013), there exists a matrix
Q € C9*(2n=9) guch that A2 —QA_, = —A,_4 and thus

Ay Ag_g] 1 Ql[A, 0][1 Q" ©
0 A,| |0 I|]|O0 A, |0 I '
Partlcularly, by Theorem 7.3.1 of Golub and Van Loan (2013) it holds that BTWq =W gy,

where Wq =V, — V_,Q Thus, orthonormal W, = W I+ Q0t)~ 3 spans the dominant
g-dimensional invariant subspace of B'. By Lemma 2, it then holds that

U,D,(B) }
col(W,) = col a4 ) 7
W = Gn)
In addition, €2 has the following closed-form expression:
Lemma3 Q = —(1 + 6)[ gx(n—q) Ogx(n—q) dlag(m T )\31,45)} and |||z =
145
A2—43"

Plugging Eq. (4) and Eq. (6) into Eq.(3) gives us that

-1
o I Q[A, 0][I @ H
YR = [V Vo] [0 I] [0‘1 Aq] [0 I] Vo Vo] Y, +E;.

Pre-multiplying both sides of the above equation by
—1 - =
I Q u_ [I -Q][VH vil—avi wh

o I F I R v R

we get that

—

Wil - A, 0 [WH )
[Vi] YRy = [0 Aq] [V}_?q_ Y+ [Vi Eq,

{ WY Re = A WY, + WIE,
VHE Y 1R =A_ VI Y, + VILE,.
To make the non-diagonal (upper triangular) matrix A _, amenable to the analysis in the sequel,

we adapt the trick used in Lemma 7.3.2 of Golub and Van Loan (2013) to the noisy setting. First,
there exists one permutation matrix Q such that

R AWH) S e TS

i.e.,

(®)
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where, if \} = /[ for ¢ < s < n then the corresponding 2 x 2 upper triangular matrix is replaced

with [‘/B 1+ 5]. Let T = diag(diag(1,1+7), - ,diag(1, 1 +7),I,) with 1 + v = 280+5)
— —

0 VB MN=vB)'
s=q+1 s=n
We then have that
A MO A HEOR)?
TQA_,Q T = diag(|at! Ty |-, |0n 7 [LAD 0 Ay). (9)
0 Agi1 0 b

Pre-multiplying both sides of the upper equation by (I + QQH)_% and the lower equation by I'Q in
Eq.(8), we get that

{ WHY, Ry = AWIY, + WHE, 10

FQVI—{th+1ﬁt+1 =TQA_, VI, Y, +TQVI E,

where the upper equation has used that (I+ QQH)_%Aq = A (I+ QQH)_% because (I+ QQH)_%
is diagonal by Lemma 3.

We are now in a position to define our potential function ®; and show its geometric shrinkage
across iterations, in order to establish the convergence rate of Algorithm 1. Previous potential
functions consider characterizations between Uy, or U, and X; (i.e., subspaces of R"), while we
need to consider a characterization between V, and Y, (i.e., subspaces of R2") instead. Hardt and
Price (2014) used as the potential function the tangent of the largest principal angle between Uy,
and X¢: tan Opmax (U, X¢) = [|(UT, X¢) (U] X;)T||2, which admits geometric shrinkage. However,
the geometric shrinkage might not hold under a higher level of noise (Hardt and Price, 2014) which

can be allowed by using a larger iteration rank p than the target rank k. Gu (2015) considered
—t

||2t_q(U1—qX0)(U;rXO)T [269 ] |l2 as the potential function for analyzing the noiseless power

method and demonstrated the improved spectral gap (A — A\g+1) dependence of the convergence.
Since this function can’t handle noises across iterations, Balcan et al. (2016) proposed a variant, i.e.,

he = (UL Xe) (Ug Xo)f [Ig]

2, to adapt the analysis to the presence of the noises per iteration.

To serve our purpose, we further propose the following calibrated variant:

5~ (CQV YWY ]

We call our potential function ®; the calibrated rank-£ perturbation on V, by Y}, and have the
following key lemma about ®,.

Lemma 4 Under the noise conditions given in Theorem I on &, it holds that

1 X —2
By < (1— - M)@t‘
A\

Note that the geometric shrinkage of the potential function g = h;y — % (for a sufficiently small
constant 0 < C < 1) in Balcan et al. (2016) does not hold under our noise conditions, because
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the O(e) term in g; will inevitably require the norm of the noise term to be as small as O(e) across
iterations (see the proof of their Lemma 2 1 or A.1). Moreover, if we follow the analysis of Balcan
et al. (2016) including the use of ($; — 1= C ) as our potential function, it will end up with an even
worse spectral gap dependence O((A\; — Ag+1)?%€) of the noise tolerance. On the other hand, the
noise tolerance of Balcan et al. (2016) can be improved similarly if our analysis technique is applied
there (see the proof of our Lemma 4 in Appendix).

To state the convergence results of Algorithm 1 in terms of sin Oy.x (X, Ug), we can relate
Sin Opax (X, Ug) to @4 via sin Oyax(Ye, Vi), based on the following two lemmas about the re-
lation between ®; and sin Op,ax (Y, Vi) as well as the relation between sin 0pax (Y, Vi) and
sin Opax (Xy, Uy ), respectively. Here Vi, represents the dominant k-dimensional invariant subspace
of B spanned by the first & columns of V.

Lemma 5 sin 6., (Ye, Vi) = (I =Y, Y ) V|2 < (1%%)@.

+
Lemma 6 [fsin 6. (Y, Vi) < S €, then sin Oy (X, Ug) < €
ky/14+(A1)2

By Lemma 4, it holds that &7 < (1 — 14/ W )Ty < exp{—L ’\"72}@)0 In order to
have that sin Oy,.x (X7, Ug) < €, by Lemma 5 and Lemma 6, it suffices to make 7" satisfy that

1+,8 /)\k }%
,/A? /ﬂ/1+ )\+

[ +O0)? 14840 @
Thus, we have T > T = 4 - ’2“\/3 log(2k )\+)2 N1 =0). Moreover,

~ H r~
5] S50 5
< log(IT211QUl2) + log([VY, 12[Koll2) + log(| (0D, (8)U Ko) 1| [ ] 1)

< log(1+7) +log || Xo|l2 — log omin(Dg(B)U, Xo)

log @

1Xoll2
] — log opin (D log — 2002
< log(1+7) —log omin(Dy(8)) + log o (U1 o)
16(1 + p) B2+ (\))? T
< log——"F) 1 E k) 4 og
= 08 Ne =B s (Af)? i \f NN

U,D,(8) ] o
—U,K ()
for a certain unitary matrix O € C?*9 by Eq. (7), the second last inequality has used the inequality
that oin (Dg( B)UqT)ACO) > amm(Dq(ﬁ))amm(UTf(o) and the last inequality has used Lemma 2

[ Xoll2 TV/n ~—Qp+1-q) _ ,—(n)
and that o (U K0) < NN with probability at least 1 — e by Lemma 2.5

where the first equality (R in Y has been cancelled there) has used that W, = [
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in Hardt and Price (2014). Hence,

Y 10(\/1+(A;)252+(A;)21+,8+Aq 1+5__ 32%TvA 1), 7
WA BN TN N e M VBB VaTe

Therefore, sin Opax (X, Ug) < € is guaranteed by 7' > T with high probability, which completes
the proof of Theorem 1.

Remark 5 The proofs of the results under other values of 5 mentioned in Remark 3 are straightfor-
ward, once we note the non-zero block shape changes of three matrices (A4, Ay 4, and A_,) in Eq.
(4) and the consequent change of €2 based on Lemma 2.

4. Applications

In this section, we propose faster distributed or streaming PCA (Hardt and Price, 2014; Liang et al.,
2014; Balcan et al., 2016) algorithm as downstream applications of our Algorithm 1, and show their
improved communication or sample complexity over the plain counterpart based on Theorem 1. It is
worth noting that £, = O for the distributed setting! and &, # 0 for the streaming setting considered
here.

4.1. Distributed PCA

We consider the distributed PCA model of .S > 1 computing nodes and a central computing node.
Each computing node j stores either a positive semi-definite matrix AU) or a set of sample data
points with sample covariance matrix being AU, while the central node has no data stored. The
goal is to estimate the top-k eigenspace Uy, of the aggregated data matrix A = Zle A under
the constraint that there is only a public channel for communication between computing nodes and
the central node. Liang et al. (2014) gave an O(@) communication complexity for this distributed
PCA model, which was improved exponentially by Balcan et al. (2016). We further propose faster
distributed PCA algorithm with pseudo codes given in Algorithm 2.

Theorem 7 For 2\/P close to A\gy1, intermediate rank q satisfying k < q¢ < p, and T =
O(+/ Akf/’{qﬂ log (/\q_fqﬂ)e), Algorithm 2 outputs X such that sin Oyax (X7, Ug) < € with high
probability (w.h.p.) and communication complexity at O(pnT'S) = O(pnS/ )\k_)‘/’\“q - log (}\q_” )e).

+ )\q+1

The proof is straightforward as it is the simplest case of Theorem 1 with £, = 0. Theorem 7
significantly improves over the communication complexity bound O (pnS by _)‘/’\Cqﬂ log %) in Balcan

et al. (2016). For this application, we can use varying 3 by setting 21/f; to be the (¢ + 1)-th largest
diagonal entry of 3, = X[ Ele XY ¢ RpxP,

1. As opposed to Balcan et al. (2016), privacy is not considered here as it has not been clear yet if the noise condition in
Eq. (2) can be met by the privacy constraint.

10
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Algorithm 2 Faster distributed PCA

1: Input: Data matrices A ... | A(5) ¢ R"*" distributed over S computing nodes, momentum
parameter 3 > 0, target rank k, iteration rank p > k, iteration number 7.
2: Output: approximate top-k eigenspace Xr.

b

The central node sets X_1 = 0 € R™*P and QR factorize an entry-wise i.i.d. standard Gaussian
matrix }ACO € R™*P such that XoRg = io
fort=0,1,--- , T —1do

The central node broadcasts X; to all .S computing nodes

forj=1,---,5do

Computing node j computes ng ) = AU )X, and send ng ) back to the central node

end for '

The central node computes }A(Hl = 25:1 XEJ ) _ BXi—1R, 1
10:  The central node QR factorizes Xt+1 such that X; 1 R41 = Xt+1
11: end for

e A A

Algorithm 3 Faster streaming PCA
1: Input: LID. data stream z1, - - - , Z,,, ~ D, momentum parameter 3 > 0, target rank k, iteration
rank p > k, iteration number 7.
2: Output: approximate top-k eigenspace Xr.

b

Set M = 7], X_1 = 0 € R"*P and QR factorize an entry-wise i.i.d. standard Gaussian
matrix }ACO € R™*P such that XoRg = io

4: fort=0,1,--- , T —1do

500 X1 = AXy — 5Xt_1Rt_1 where A; = Zz']\:/[(tfl)MH zjij
6: QR factorizes X471 such that X; 1Ry = Xy

7: end for

4.2. Memory-Efficient Streaming PCA

Given a stream of i.i.d. samples z1,--- , 2z, € R™! drawn from an unknown distribution D,
the goal of the streaming PCA is to estimate the top-k eigenspace of the population covariance
matrix A = E,_p[zz'] € R™*" with O(kn) memory. Under the framework of the noisy power
method, a natural algorithm was introduced for this problem with the spiking covariance model
in Mitliagkas et al. (2013), while Hardt and Price (2014) analyzed this algorithm for a broader class
of distributions (i.e., (B, p)-round distributions) that have fast tail decay based on their analysis of
the noisy power method. Balcan et al. (2016) improved the results of Hardt and Price (2014) in terms
of gap dependency. In this work, we further improve the results of Balcan et al. (2016) in terms of
gap dependency by a faster streaming PCA algorithm described in Algorithm 3. There are other
analyses on streaming PCA (Allen-Zhu and Li, 2017), but for a different setting where the iteration
rank p and the target rank k are the same.

11
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Definition 8 ((B, p)-round distributions,Hardt and Price (2014)) A distribution D over R" is said
to be (B, p)-round, if it holds for every p-dimension projection Il and all t > 1 that

B
mac{ Pry-pllzlle > t], Propl[Tlaz > 1/ =] } < exp{—t}.

Theorem 9 Suppose D is a (B, p)-round distribution. For 2,/ close to \g+1, intermediate rank

q satisfying k < q < p, and T = O(,/ Ak3§q+1 log (Aqif\L +1)E), Algorithm 3 outputs X such
q
that sin Op,.x (X7, Ug) < € with probability at least 0.9 and sample complexity at m = MT =

ﬁ( B2plog®n Ak
EAr—Ag+1)?n \ Ak—Ag41

), where Q(-) hides logarithmic factors.

Proof The proof is similar to that of Theorem 4.2 in Balcan et al. (2016). Setting &, = (A;— A)X,,
~ 2
then by Lemma 3.5 of Hardt and Price (2014), M = Q(m) suffices to guarantee that &,

e2(Ag—Ag+1)%n
satisfies the noise conditions in Theorem 1 w.h.p. as it satisfies conditions of Theorem 2.2 in Balcan
et al. (2016) w.h.p. (see Table 1 and Remark 1). Thus, the total number of data points needed is
o/ __ B%plog? A
m=MT = Q(GQ(M{;iSQn /\k_/’\“qﬂ). U
A\ B2p log2 n
eQ(Ak—Aq+1)3n
For this application, we may use varying /5 by setting 24/P; to be the (q + 1)-th largest diagonal
entry of 3, = 4 30 XJ Ay Xy € RPXP,

Theorem 9 improves over the sample complexity fvl( ) given in Balcan et al. (2016).

5. Conclusion

In this work, we presented faster noisy power method and gave a novel analysis to show further
improved spectral gap dependency over state-of-the-art results for the noisy power method by Balcan
et al. (2016). Our Algorithm 1 can serve as a faster meta algorithm with applications to downstream
tasks such as distributed PCA and streaming PCA, and have their theoretical guarantees improved
in terms of spectral gap dependence. Limitations of our analysis lie at its inherent gap-dependency,
due to the condition that A; > A,41 though it is not the harsher condition that \;, > A1, and
additionally logarithmic gap dependence, i.e., log m Particularly, it remains unknown if
the spectral gap dependency of the noise tolerance can be improved to be the same as that of the
convergence rate in terms of ||&,||2. These may be the artifacts of our analysis technique, and it will
be interesting to consider removing them in future.
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Lemma 2.1 If there exists an integer s such that A\; > 2/8 > A1 and \,, > 0, we then have the
A —ﬁI] )

following Schur decomposition for B = [ I 0

[A —51] _ [Ust(l)

U_.D
I o0 U;Ks(1) U_K 4(1) U_D_4(1) UsD4(1)
0 0 -1+ /)X -
O Eis T(*l) 0 Ust 1) U—sD—s(l) _U—sK—s(l) _UsKs(l)
0 0 X 0 U,K,(1) U K (1) U_D (1) U,D,1) | ’
0 o 0 )3
where
2 . .
)\i — )\]:I: V )\] 74B 2: :dla‘g(/\ih 7)‘;r)7 z]—l—s :dlag(A;:-la"' 7)\7J1r)7
J 2 LBy =diag(\, 0, Ay), B, =diag(Ap . An),
D(a) = diag(—=— -, —2_)  D_,(a) = diag(——— ..., M__)
VP Ve p IR ’ Va2 Ve
K(a) = di a a K_,(a) = diag(—2&—u, ..., —9 ),
(a) lag(\/m7 b W)? (a) lag( CL2+|)\:+1‘2 QQ—H)\:‘Z)

and T(b) = bI+ (3,)?. In addition, if there exists any j > s such that \; = 21/, then /\jE =B
and the corresponding diagonal entry in the block T(—1) is replaced with (1 + ).

Proof The full eigenvalue decomposition of the given real symmetric matrix is
. T
A= [Us U,S} diag(Xs, X _g) [Us U,s] .

See Section 2 in the main paper for notations. Suppose one eigenpair of A is (\;, u;). By Proposition

Ny A2ap | Aty AT 48
91in Xu et al. (2018), a double eigenpair of B then can be written as (;2]’ [2Juj .
u;
For \s > 2v/B > A1, all the eigenvectors of B in the above double eigenpairs together (i.e.,
j =1,---,n) will span the whole Euclidean complex vector space C>" as long as there exists no
J > s such that \; = 24/, otherwise the double eigenpair collapses into a single one for each j of

the kind. In fact, B has the following characteristic polynomial:

det(B — uI)
— A_:U’I _BI _ diag(ESaE—s) _,U/I _51
= det [ I —MI} = det [ I —MI}
_ det(diag({)\ll_'u :,ﬂ e [Asl—ﬂ :ﬂ ’ {)\sﬂl—ﬂ :i] e {)\nl—ﬂ :ﬂ))
— det |:)\1_U _6:|-~~det |:)\5_M _6:| det |:)\s+1_ﬂ _B:|-~det |:)\n_ﬂ _6:|
1 —l 1 —u 1 — 1 -l

Thus, B’s eigenvalue 1 = +/}3 has algebraic multiplicity 2m corresponding to A’s eigenvalue 2+/3
of multiplicity m, i.e., \j = -+ = X\j_m+1 = 2v/B > \j_,, when it happens. Meanwhile, the
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corresponding geometric multiplicity is as follows:
dim(ker(B — 1/BI)) = 2n — dim(col(B — /BI)) = 2n — rank(B — /1)

= 2n—;rank{ j_lfﬁ __ﬁ} =m,

where dim(-) represents the dimensionality of a space, ker(CJ) represents the kernel space of a matrix,
and col([J) represents the column space of a matrix. This shows that, in addition to the collapsed
single eigenpair, for each j of the kind, we need to derive one generalized eigenvector z; € R22x1

of B from the collapsed single eigenpair to span C?", i.e., (B — /BI)z; = [\/Eu] ] . It is easy
j

u; . . . .
to see that z; = [ OJ } which keeps orthogonal to all the eigenvectors or generalized eigenvectors

of B corresponding to A;s for j* # j. We then can list B’s eigenvalues as well as corresponding
eigenvectors or generalized eigenvectors in descending order of eigenvalues’ magnitude in Table 3
where, if there is any j > s such that A\; = 2+/0 then the corresponding row in the middle is replaced
by the following one:

R VA N I

u;
Bu =\ uf
Thus, we have BujE = )\fu}t for j such that \; # 21/, otherwise { B j, _ ujj _i ;\;U; In
matrix form, it can be written as B\A/'Eg = \A/'EKEE, where
Va = [uf uy - uwl ouw,] Ag = diag(A1, -+, An) | jAXj = diag()\j,)\])

where for all j such that \; = 2+/[3, each of the corresponding 2 x 2 diagonal blocks is replaced
AT

J

0 A7
we need to orthonormalize all the (generalized) eigenvectors of B. For this purpose, in fact, we only
need to orthonormalize the pair (u Hu?

with the 2 x 2 upper triangular block _/ij = [ ] . In order to derive B’s Schur decomposition,

u/,u;) foreach j = 1,--- ,n, because (u jE) u;; = 0 for any

J # j'. There are two cases. If \; # Z\f 5, then we have the orthonormalization:

12727
/ +)2
+o Y=o T W gL W 1+ |)\ | ——==
[t ur] = Ajug Ajugl \/1+\>\ | \/1+I>\ \ ./1++\>\7\2
i u; u; A ‘ AF-)
\/1+\A+|2 i \/1+|>\+|2 Y VIHAT2
2 (v2j-1,v2)) 28,

If \; = 24/ then the orthonormalization is

B\ .
[uf uj] = [\/Buj uj] - \/%u] \/11T5“J

J uj 0

2 (v2j-1,v2y)
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Table 2: B’s eigenpairs in descending order of eigenvalues’ magnitude.

Magnitude Eigenvalue (generalized) Eigenvector
|)\+’ _ )\1-1—\/ —4 )\+ é )\1-&-\/)\%—4,8 u+ é )\ii_u1
1 2 1 u
n )\s+\/ 2_43 4o Aty/A2-48 4 oa [Adug
|>\ ’_ )\S - 5 '[].'S =
Us
. +
L A Asy1Ein/4B—N2 1A [AgpUst
|)‘s+1 \/B )‘s+1 2 = W = 5'11‘1
s+1
. M\£
A Anti/48-22 A [ATu
Xt = VB ap 2 I e ]
L n
AT] = N A AemV/N24P _ s [Ajus
>\2 45 s 2 u, = | u,
_ A Mi—y/A2—4 _ A [Mu
|>\1|:726 A2 - up = |7 !
A1+4/A2—43 | u1
Let Vg = [vi -+ va,] € C¥2" which then is unitary, i.e., VE Vg = VgV = L Thus,

we can write that BYEEdiag(Sl, -++,8S,) = Vgdiag(Sy,--- ,Sn)Kag, and consequently B =
VEE\diag(Slv T Sn)AEEdiag71<Sla ) Sn)Vg Let

As 2 diag(S1,---,Sn)Amdiag ! (S1, -+, Sn)
= diag(S1A:1S7", -, SuALS ).

If \; # 2+/B, it then holds that

\/m ECNEv o \/m L A
S;A;S;" = VI diag(0F, A VI
I N N
_ AR P
_ v —<1+m>] R
L 0 /\j [)8 (1 t\;)\j ) )} , else

. N
otherwise SjAij =

S»)‘jlsﬂ:m a5 VB L] |VI+B i _[VB 1+8
Lo AT 0 i) L0 VB 0 = 0 VB
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Thus, Am =
diag([xof —(1/\?5)]7'”’[/\0; —<1§/3>]7[A%1 -1 A@;H) )][AJ —<1+A£An>2>]),

where the j-th 2 x 2 upper triangular matrix for j > s is replaced by [\{)B 1\}_3ﬂ] if \j = 2v/B.

After certain permutations by a permutation matrix P, B’s Schur decomposition can be written as

B = VaAg Vi = VgP ' PAgP 'PVE = (VP ) (PAgP ") (VgP DY,

where
VopT U.Dy(1) U_;D_4(1) -U_K_4(1) —-U;K,(1)
7 |uk() UK.,(1) UD,{I) UD(I
[~ o 0 —(1+p)I
T |0 I —(I+(25,)? 0
PAzP™ = 1o ¥, 0 ’
0 0 0 DI
. AT AT \F
D — 1 .. s D_ S+1 Ce n
«(0) = ding( G Vaapap) De() = dinel R Vel
KS :d = y " a ) K _d y T = )
2;_ :diag()\f,--- ’)‘j)’ —dlag()\s+1,"' ’)‘X)a
Zg :dlag(Al_a >A§)7 7s:d1ag()‘s+17"' a)‘;)
O

Lemma 2.2 If there exists an integer s such that Ay > 21/8 > \g41 and )\, > 0, we then have the
following Schur decomposition for B = [—%I 0

(8)

] with notations given in Lemma 2.1:
I]
— ﬁI 0 K, ()

)]
X
)
Ej 0 0 (1—1-5)1 H
Efs T(B) 0 U;D;(B) U_D 4(8) UK 4(8) UK(B)
U_K U_D ’

0
0 0 X, 0 ~U,K,(B) ~s(B) U_sD_4(8) U,D4(B)
0 0 0 =5

U_ D _(8) U_ K s(8) UK
U—sK—s(B) U—sD—s(ﬁ) Ust(

B
B

where, if there exists any j > s such that A\; = 2+/0, then )\i /3 and the corresponding diagonal
entry in the block T(3) is replaced with (1 + ).
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Proof The proof is almost the same as the above one. We only present the differences. First of all,
note that B and B have exactly the same spectrum. Suppose one eigenpair of A is (Aj,u;). We
then have B™’s eigenvalue )\3-'[ which are the roots of the quadratic equation ;2 — A jit+ B =0in

. We then have that [ A I] [ puy } =pu [ puy } Thus, a double eigenpair of B then can

- ﬁI 0 - Bu]' - ,Bu]‘
Nj AZ—ap | Ay /A48
be written as <J2J, [ —Y5"—u;| | For s > 2/B > Ay41, all the eigenvectors of BH
in the above double eigenpairs together (i.e., 7 = 1,--- , n) will span the whole Euclidean complex

vector space C?" as long as there exists no j > s such that \; = 24/3. In the collapsed case, for

each j of the kind, we additionally derive one generalized eigenvector z; € R?"*1 of BH from the

collapsed single eigenpair to span C?", i.e., (B! — /BI)z; = [\/gzj} . Again, z; = [Ig} . B’s
—PY

eigenvalues as well as corresponding eigenvectors or generalized eigenvectors in descending order of

eigenvalues’ magnitude are listed in Table 3 where, if there is any j > s such that \; = 2+/f then

the corresponding row in the middle is replaced by the following one:

A A\/B' —a |Y
MI=VE 2 VB ure VOl ey,

Hyt — ytqgt
Thus, we have BRu® = ATu? for j such that \; # 21/, otherwise B uj =2Auy,
’ J 7 J ’ B'u; =u/ + )\ uj.
Table 3: BH’s eigenpairs in descending order of eigenvalues’ magnitude.
Magnitude Eigenvalue (generalized) Eigenvector
|>\+’ — )\1+\/>\%—4B )\+ é )\1"!‘\/ )\%—4,8 u+ é |:)\i’—u1:|
1 2 1 2 1 _5111
| = As+y/A2—48 N+ 8 Asty/A2-48 SN [)\jus}
s 2 s 2 S _6115
in/4B—N2 A u
AzE = A\E o2 Ast1Ei/48—A7 £ A [Asp1Usl
Al = VB s+1 2 Ug g —Bugiq
An-tin/2B—NZ [Atu
Xt = VB e
A= 2 A 2 AoV uy & [N
s As+/A2—48 s 2 s —Bu,
AT| = 28 N A MoV N AT w
U NS 1T v b
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In matrix form, BH\Afgg = VEJAXEE, where

Ve =[uf u - ul u,| , Ag=diag(Ay,---,A,) , Aj=diag(\], ),
where for all j such that A\; = 2+/8, each of the corresponding 2 x 2 diagonal blocks is replaced
+
with the 2 x 2 upper triangular block A; = { 6 )\_] . We now orthonormalize the pair (u;r7 uj_)
J
foreach j = 1,--- ,n. If \; # 24/[3, then we have the orthonormalization:
A u; B u; B2 + |\F2 B2AT A
+iq. - + + j
fut ] = MNug Aw] | B R Wiﬁj E J q/ﬁf—&-l)jrj.T?
o —Pu; —Pu; B N w 0 N —AB
P Y P e NS
2 (vaj-1,v2)) £8;
If \; = 24/ then the orthonormalization is
1 A [ B . 1
[u+ u] = VBu; wi| | g% T3 W B+ 5) V18
J —4 /===, u 0 1
+8-  ixB J +5
2 (v2j-1,v2)) =85
Let Vg = [vi -+ va,] € C¥2" which then is unitary, i.e., VEVg = VgVl = L Thus,

we can write that BHyagdiag(Sl, -+, S,) = Vgdiag(Sy,- -, Sn)KEE, and consequently BH =
Vgdiag(S1, - -+, Sn)Amdiag ' (S1, -+ ,S,)VE. Let

Am 2 diag(S, - ,Sn)Amdiag "' (S1,- - ,Sp) = diag(S1A187 %, -+, S, ALS, ).

If \; # 24/P, it then holds that

I B2HATAT B4atar 1
/ﬂ2+’/\;“2 I e I 62+’/\j-‘2 i B
S a1 VBRHTI2 | L. + - J B2HAT 2
S;A;S; = . (A;*Af)ﬁ dlag()\j,/\j) . (A;fAj])ﬁ
L VBEHAT 2 BRI
| O
Y ﬁ%%]_ T
- — - + 1/y—)2 )
_O )‘J' )\j ﬁ+f3£)\j ) else
0 A ’
J
otherwise Sj./AXij_l =
-1
S [V 1]51 BU+B) i [\/B 1] BU+8) i [\/B 1+/a]
0 A 0 s L0 VB 0 s 0 VB
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Thus,

A 148 [N B 00D A 5"‘%0\5)2)
) 0 )\7 ) 0 A; ) ) 0 AE )

s

As = diag( [Af 1+ ﬂ

0 A

sy

where the j-th 2 x 2 upper triangular matrix for j > s is replaced by [\OF 1\}_35] if \j = 2v/B.

Therefore, BH’s Schur decomposition can be written as

BY = VgAgVE = VaP TPAgP TPV = (VP ") (PAgP ") (VeP ),

where
vepT — | UDs®)  ULD(5) ULK.(f) Ussz)]’
—UsK(8) —U_K_s(8) U_sD_s(8) UDs(B)
(=5 0 0 (1491
S
0 0 0 ol
g
Lemma3 Q = —(1+ 3) |Ogx(n—) Ogx(n—g diag(\//\%l_w,"wm) and |22 =

Proof Since A, and A_, have their spectra divided by /3 in magnitude, by Theorem VII.2.2

in Bhatia (1997), the equation A, Q—QA_, = —A, _, has the solution 2 = Ej o A_J 1A A{q,
which can be simplified as follows. Noting Lemma 2 and Eq. (5) about expressions of Aq, A_q, and
A4 4, we have that

Q = —iA;j_lA%_qu_q— (1+5) ZA 7(Jo 0 IJAL)
j=0 Jj=0
- <1+mio[o 0 <z;>f'1<zq>j]:—<1+ﬁ><z;>12[0 0 (=) =)
Jj= Jj=
= (A0 0 ding(E SEGE i TG
= —(1+p)1]0 0 diag( ;{i - AT}:(i) :_(1+5)[0 0 diag(ﬁ,--~,ﬁ)]

= —(1‘1‘5) |:O 0 dlag(\/@av Agl—4ﬂ):|'

It is easy to see that |||y = 52—, O
N
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L 4 Under the noi diti < L VB G YLV
emma nder the noise conditions ||&,[|2 < 356 (1411 5) S max(Yt, V),

1 A —VB)
16 (1+12)(1+A})

UqTEtH2 <
€08 Omax (Y, W), and

I
0

1 [Ap—2
By < (1—- M)@t‘
A\

Proof LetH; = (I‘QVEI(IYt)(W}]{Yt)Jr [I(ﬂ . We start from expanding H; 1 in a way different

col(WYy +diag ' (A, -+, A ) WIEy)] [ 0

]) C col(WHY,)f [I’f] ),

it holds that

from Balcan et al. (2016) to analyze ®;+1 = ||H¢+1]|2. By Eq. (10), we have that

I
Hiyn = (TQVY YY) (WHY ) [(ﬂ

1
= (FQquVIqut + FQVIqut)(AquIYt * W(I]{Et)T |:(;{| ‘
For brevity, let
Z1 — qul;qut7 Z2 = W?Yt

Then H; = Z1Z£ [I(ﬂ . For the above equation about H; 1, on one hand,

rQA VI Y, +TQVL E; = (TQA ,(TQ)~' +TQVY E/(VE, Y)(TQ)™")Z,
where (VE, Y;)T(VH Y,) = I,,. On the other hand,

Ik — _ Ik
(AGWY, + WHE) [ ] = (Zo+ A" WHE)TA! [0

_ L] .-
. = (Zo+ A;'WHE,)T [ ’f} Al

0

where Ay is the k x £ leading principal submatrix of A,. To proceed, let

0 0

(Zo + A;'WHE,)f [I’“} — 7! I’“} .

By the last noise assumption, the above equation has a solution for ¥ € R¥**, Pre-multiplying both
sides of the above equation by [Ik 0] Z5, we get that

- I
U =[I; 0]Zy(Zy+A;"WIE)f [(;“] :

where we have used that Zo z§ = I,. We thus can write that

I
Hiyn = (TQA_ VY Y, +TQVY E)(AW'Y, + W/E,)! [ S]

— (TQA_,(TQ) + TQVM . E,(VP Y,) (rQ)")Z,Z] [Ig] ~

- L] -
I 0] Zy(Zo + A, 'WE,) [;] A
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FASTER NOISY POWER METHOD

= (TQA_,(TQ) ' +IQVH E/(VE Y,)I(TQ)™)H,

_ I.] . _
(I 0] Za(Zy + AJTWEHE)T [’f] A,

By the definition of the pseudo inverse of a matrix, we have that

Hellz < [[Hel2l AL 2 [TQA—,(TQ) ™! + TQVEE, (VE Y)I(TQ) |2 x

L

w1

_ _ _ |1
| [T 0] Zo(Zo + A WEE) T ((Zo + AJ'WIE) (2o + A WHE,) 7)™ [ ’“} 2.

L

w2

Noting that [|(VH, Y)T|l2 = ||diag ™" (sin 8(Y¢, Vi) |l2 = sin™ Omin (Y, V) and

1Bl < | [ } lalSell2 < | H I = €l

one gets that

e1 < ITQA_((TQ) o + T[T Y2l (VE, Y ) [l2]1€, 12
\er 1+ B 1 sinOmax(Ye, V) ()‘;: - \/3)2(1 +7)

< ing Eq. (9) and ti
= T+ T 356 sin b (Y, Vy)  (L+0)(14+5)  ingBa- (9) and assumption on [i€,l2)
\f N - VB 148 XN —VB
< _ _
< \f —|— 16 (usmg1 e T )
On the other hand,

P2 < 1 Zo(Zo+ A WIE) T ((Zo + A WIE) (Zo + A WIE) )72
= (Z2Zg + Zo(WE)) TA, ) (222 + Zo(WHE) TA, ! +
AJ'WHEZ + A WIE(WIE) TAL ) |
= T+ Zo(WIEy) "A; N (2225 ) ) (T + Zo(W'E) T A (22Z5) 7!
AJWHEZS (222]) 7 + A WEE(WHE) TA(Z225) ) 7 o
< (14| Z2(WEE) TAL  (Z2Z3) 7 o) (1 = | Zo(WEy) TA, N (Z2Z5) 72 —
1A WEEZg (ZoZ3) 7 o — A W E(WIE) AL (ZoZ5) 1) l2) ™!
< (L 1 Z2l2IWEE 2 AL 2l (Z2Zg )~ HI2) (1 = (| Zallo [ W Edll2[| A |2l (Z2Z5 )72
—|AG 2 W E|2l|1Z3 (Z2Z3 ) Hl2 — [|AG I3 I W E3][(Z2Z2 )1~ 12) ™
Observe that || Zz||2 = 08 Omin (Y, Wy), [|(Z2Zg ) ~|l2 = cos™2 Omax(Yt, W), and

123 (Z2Z3 ) 7|2 = cos™" Omax(Ye, Wy).
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Particularly, it holds by Eq. (7) that

"Tu,D
IWiEl: = IEEWl =18 5] | ) |1 = I8 Upu@)l:

< IISel211€, Ugll2lDy ()12 < U, & l2.
We then get that

c08 Omin (Y, W) ||U¢;5t!|2)(1_ <08 Ounin (Y1, Wo) U4 &ll2
€082 Omax (Y1, Wy)  Af €082 Omax (Y1, Wy)  Af

U, &2 U &2

w2 < (1+

_ _ 2\—1
Ay €08 Omax (Y, W) " AJ cos Hmax(Yt,Wq)) )™
Further by the assumption on ||UqT£t||2, it holds that
< e BOEVD) B0V
- 16(1+ 1) (1 + X)) 16(1 + 1o) (1 + A{)
_ )\2—_\/’3 _( )\;:_\/B )2)—1
16(14+1o)(L+A5)  "16(1+ 1) (1 + Af)
16(1+ A)) 16(1+ X)) "
We now can write that
Higlle < @roalHll2ll AL l2
N — N — 3TN —
< (Vg 2o VB o SO VD) oy,
8 16(1 4+ A) 16(1 + A;))
Aﬁ‘*i A+7\/B A+7\/B
= Tt HHtHQ
)\+ . 3\, ()‘k —VB)
k 16(1+X])
AN =VB | A —VB
VB + T 4 Ty - + +
< - 3/\z(/\:7\/3) ||HtH2 (USIHg B < )‘q < )‘k;)
k 16(1+A7)
+_
VB + 2P A;+3VE 20\ — V)
< T\/BHHHD = FHHt\b =(1- W)”Ht\b
; _ kT g+ \/E g T B
N —VB
< (1= Y5 H, .,
< 0= H
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FASTER NOISY POWER METHOD

where

No-VB AT WBEYN AP AN e B N —2VB Ve +2VB

. _
Al Mo+ /A2 — 48 Ao+ /A2 — 48

Me = 2VBVAe 1 [Ae—2VB
2k 2 Ak '
Therefore, it holds that
1 A —2
Py < (1— - M)cpt.
4 Ak

([l
Lemma 5  sin 0., (Y, Vi) = [T - YY) Vil < (1+ 2%)@.
2
= — di 1. 1 i = B e B, =
Proof Let E dlag(\/@, , 1+a%) with o ey ie., By I, o] (I+
QQH)fé [I(f] is the k x k leading principal submatrix of (I + QQH)fé We then have that
T YYWVile = =YY WViE Sl < (1= VoY, )ViEf falExle
< J@-Y, Y)ViE =  max  |I-Y,Y/))V,E; x>
x€RFX1:||x||2=1
= max VLB, 'x — YtY;rVkEIZIXHQ

x€RFX1:||x]]2=1

IN

I
max V.E 'x — Y, (WHY )T [ TF] x
xer o |V HE (W) [0 I

—_ I
= max  ||[(ViE;! — Y (WHY,)T m )x |2

x€RFX1:||x]]2=1

—_ I
— IViS - YWY o] e
where the second and last equalities are by the definition of matrix 2-norm, and the last inequality
is by the definition of vector projection onto a column space of a matrix (see the second proof of
Lemma 2.3 or A.4 in Balcan et al. (2016)). To proceed, we can write that

—_— I
-Vl < V= = Yuwiyo' [5] Ie

=W, VoW, Vot (ViE - YWY M)Ilz

< W, Vo Tl W, VT (ViR - Yl (WY [I"f]wz

= ([Wl v_])H (W, V_ " (ViE' - Y (WiY,)f M)HQ.
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FASTER NOISY POWER METHOD

Noting that W, = (V, — V_,QH)(I + QQH) "2 it holds that
o 1 o BT P P -7 P |
wiv,g ! = (1+eoh2vivg ! = (1+ ") 2[k]:k1:[ k]:klz [ﬂ.
Thus, we have that

H _ I
W, V- it = vawp v [l

< ngvk:‘kl _ (W?Yt)(W?Yt)T [6‘3] llo + HVEIqVk.:,kl _ VIqut(W(IJ{Yt)T [(ﬂ 2
I 3 I

= Vw1 = et eavi yowiva! [ 1.

< [(0Q) L (TQVH, Y, ) (WHY ) [(’;} l> < IPQVY, Y ) (Wi'Y,)f m 2 = .

arriving at
Py

omin([Wg  V_g])’

1@ — YY)Vl <

It remains to figure out omin ([W4  V_4]) as follows.

2 H I WHV_
Tmin([We Vo) = Xuin([Wg Vo] [Wg V_g]) = Ain( [VHqu qI ")
— I —4L+99Hr%n)
(14 oot 0)T I
1 — 1 -2 =
: V1t V1t
= )\min(dlag( o 1 “ s | ag 1 e 712(n—q)>)
1 —
. \/1+a?
= mln )\mln( (&7 a] )?
1<j<q — 1
A /1+o¢?
where a; = /1\:6 , and the second last equality has used Lemma 3 and orthogonal invariance
2_
of eigenvalues (the left and right permutation matrices we have used here are orthogonal). The
1 -
/14?2 )
eigenvaluesof | o, 1 | arel+ = which are the roots of the following equation:

,71_’_&]2 A /1+a].

14a? \J1+a2 1
2 —tr( q 1 K Jr+det(| 1 “ ) =0, ie., 2> —2z+ =0.

1+ o?
2 2
1+a? 1+ J

25



FASTER NOISY POWER METHOD

Thus, we have that
g 1+06
Ji+a VA= 4B+ (14 5)?
VM —48+ (1487 = (1+5)
\/Ag—4ﬁ+(1+5)2

A2 =48+ (1+ )2 — (1+B)?

\/Ag—45+(1+5)2(\/Ag—45+(1+5)2+1+ﬁ)
Ao —4f

\/)\g—4B+(1+,8)2(\/)\3—4ﬁ+(1+5)2+1+ﬁ)

A2 —4p N N — 48 '
(P—48+1+87+1+8? (/N —48+2(1+5))

orn([We Vo]) = 1-

min

v

Therefore, it holds that

1+ 8

A2 — 48

(I = Y, Y, )Vill2 < (1+2 )Py

O
+
Lemma 6 If sin 6, (Y, Vi) < ST S €, then sin 0,5 (X, Ug) < €.
ky/14+(A)2
Proof Since we now have that
k— HV,IY,:H% = k — ||diag(cos01(Y¢, Vi), - ,cos Gk(Yt,Vk))H%

()\;)262

k
— sin2 0;(Yy, Vi) < ksin? O (Yi, Vi) < ——k2 "

J=1

. T 2 (Az)262 . . . . .
it holds that ||V, Yy[|7. > k — —~E-——. Recall that (\;, u;) is an eigenpair of A indexed in

k(1+(A1)2)

U, Dy (1)
UKk (1)
in Lemma 2, Eq. (4) as well as the paragraph right before Lemma 5). Let v; be the j-th column of

a;u; At
Vi, ie., |7 7|, where aj = ———— and b; = ———, for j = 1,- - - , k. We then have for an
[ u SRVITTPED RV TTED o Y

descending order of its eigenvalues, Uy = [ul e uk], and V;, = { ] (see notations

bjuy
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j=1,--k that

- T
T 2 _ a;u; Xt T —-1\—%2
MY = 1] K] @R TR g

= | _an:uj T
X R

r T T T
antTuj 9 I CTo—1v—12 a; X, u;j 9
o | Bl g | RETREY TR = | Y |

] 1+ R TR 2

<

= aZl|X] w3+ 031X, uyl3,

RIl] (I+R; 'R, 1)_% is orthonormal. Thus, if there
t

exists a certain j € {1,---,k} such that || X, u;|3 <1 - %, noting that || X, ;u;[|2 < 1 we then
would have that

where the second last equality is due to that [

2 2 62

€ €
VY3 < af(1 = 5) + 07 = (af +0) —a} - < 1-ap

Consequently, it would hold that

k k 2 2
T T T T € €
IVEY =D v Y3 = vy Yul3+) vy Y3 <1~ ahp th—1=k—air,
s=1 s=1
s#j

which contradicts the fact at the beginning that ||V Y¢||2 > k — ai%. Therefore, it must hold
. 2 k

forany j = 1,---, k that [[u/ X;(|3 > 1 — &, and thus U} X¢[|3 = Y75 lu] Xe[|5 > k — €%

Finally, we get that

SinemaX(Xt,Uk) S ||diag(sin61(Xt,Uk),-~,sin@k(Xt,Uk))Hp

= e IUX <.
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