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Abstract
We study query and computationally efficient planning algorithms for discounted Markov deci-
sion processes (MDPs) with linear function approximation and a simulator. The agent is assumed
to have local access to the simulator, meaning that the simulator can be queried only at states that
have been encountered in previous steps. We propose two new algorithms for this setting, which we
call confident Monte Carlo least-squares policy iteration (CONFIDENT MC-LSPI), and confident
Monte Carlo Politex (CONFIDENT MC-POLITEX), respectively. The main novelty in our algo-
rithms is that they gradually build a set of state-action pairs (“core set”) with which it can control
the extrapolation errors. We show that our algorithms have polynomial query and computational
cost in the dimension of the features, the effective planning horizon and the targeted sub-optimality,
while the cost remains independent of the size of the state space. An interesting technical contri-
bution of our work is the introduction of a novel proof technique that makes use of a virtual policy
iteration algorithm. We use this method to leverage existing results on approximate policy iteration
with `∞-bounded error to show that our algorithm can learn the optimal policy for the given initial
state even only with local access to the simulator. We believe that this technique can be extended
to broader settings beyond this work.
Keywords: local access, planning, linear function approximation, policy iteration

1. Introduction

Efficient planning lies at the heart of modern reinforcement learning (RL). In the simulation-based
RL, the agent has access to a simulator which it uses to query a state-action pair to obtain the
reward of the queried pair and the next state. When planning with large state spaces in the presence
of features, the agent can also compute the feature vector associated with a state or a state-action
pair. Planning efficiency is measured in two ways: using query cost, the number of calls to the
simulator, and using computation cost, the total number of logical and arithmetic operations that
the agent uses. In Markov decision processes (MDPs) with a large state space, we call a planning
algorithm query-efficient (computationally-efficient) if its query (respectively, computational) cost
is independent of the size of the state space and polynomial in other parameters of the problem such
as the dimension of the feature space, the effective planning horizon, the number of actions and the
targeted sub-optimality.

Prior works on planning in MDPs often assume that the agent has access to a generative model
which allows the agent to query the simulator with any arbitrary state-action pair (Kakade, 2003;
Sidford et al., 2018; Yang and Wang, 2019; Lattimore et al., 2020). In what follows, we will call
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this the random access model. The random access model is often difficult to support. To illustrate
this, consider a problem where the goal is to move the joints of a robot arm so that it moves objects
around. The simulation state in this scenario is then completely described by the position, orienta-
tion and associated velocities of the various rigid objects involved. To access a state, a planner can
then try to choose some values for each of the variables involved. Unfortunately, given only box
constraints on the variable values (as is typically the case), a generic planner will often choose value
combinations that are invalid based on physics, for example with objects penetrating each other in
space. This problem is not specific to robotic applications but also arises in MDPs corresponding to
combinatorial search, just to mention a second example.

To address this challenge, we replace the random access model with a local access model, where
the only states at which the agent can query the simulator are the initial states provided to the agent,
or states returned in response to previously issued queries. This access model can be implemented
with any simulator that supports resetting its internal state to a previously stored such state. This
type of checkpointing is widely supported, and if a simulator does not support it, there are general
techniques that can be applied to achieve this functionality. As such, this access model significantly
expands the scope of planners.

Definition 1 (Local access to the simulator) We say the agent has local access to the simulator if
the agent is allowed to query the simulator with a state that the agent has previously seen paired
with an arbitrary action.

Our work relies on linear function approximation. Very recently, Weisz et al. (2021b) showed
that linear realizability assumption of the optimal state-action value function (Q∗-realizability) alone
is not sufficient to develop a query-efficient planner. In this paper, we assume linear realizability of
all policies (Qπ-realizability). We discuss several drawbacks of previous works (Lattimore et al.,
2020; Du et al., 2020a) under the same realizability assumption. First, these works require the
knowledge of the features of all state-action pairs; otherwise, the agent has to spend O(|S||A|)
query cost to extract the features of all possible state-action pairs, where |S| and |A| are the sizes
of the state space and action space, respectively. Second, these algorithms require the computation
of either an approximation of the global optimal design (Lattimore et al., 2020) or a barycentric
spanner (Du et al., 2020a) of the matrix of all features. Although there exists algorithms to approx-
imate the optimal design (Todd, 2016) or barycentric spanner (Awerbuch and Kleinberg, 2008), the
computational complexities for these algorithms are polynomial in the total number of all possible
feature vectors, i.e., |S||A|, which is impractical for large MDPs.

We summarize our contributions as follows:

• With local access to the simulator, we propose two policy optimization algorithms—confident
Monte Carlo least-squares policy iteration (CONFIDENT MC-LSPI), and its regularized (see
e.g. Even-Dar et al. (2009); Abbasi-Yadkori et al. (2019)) version confident Monte Carlo Po-
litex (CONFIDENT MC-POLITEX). Both of our algorithms maintain a core set of state-action
pairs and run Monte Carlo rollouts from these pairs using the simulator. The algorithms then
use the rollout results to estimate the Q-function values and then apply policy improvement.
During each rollout procedure, whenever the algorithm observes a state-action pair that it
is less confident about (with large uncertainty), the algorithm adds this pair to the core set
and restarts. Compared to several prior works that use additive bonus (Jin et al., 2020; Cai
et al., 2020), our algorithm design demonstrates that in the local access setting, core-set-based
exploration is an effective approach.
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• Under theQπ-realizability assumption, we prove that both CONFIDENT MC-LSPI and CON-
FIDENT MC-POLITEX can learn a κ-optimal policy with query cost of poly(d, 1

1−γ ,
1
κ , log(1δ ), log(b))

and computational costs of poly(d, 1
1−γ ,

1
κ , |A|, log(1δ ), log(b)), where d is the dimension of

the feature of state-action pairs, γ is the discount factor, δ is the error probability, and b is
the bound on the `2 norm of the linear coefficients for the Q-functions. In the presence of
a model misspecification error ε, we show that CONFIDENT MC-LSPI achieves a final sub-
optimality of Õ( ε

√
d

(1−γ)2 ), whereas CONFIDENT MC-POLITEX can improve the sub-optimality

to Õ( ε
√
d

1−γ ) with a higher query cost.

• We develop a novel proof technique that makes use of a virtual policy iteration algorithm. We
use this method to leverage existing results on approximate policy iteration which assumes
that in each iteration, the approximation of the Q-function has a bounded `∞ error (Munos,
2003; Farahmand et al., 2010) (see Section 5 for details).

2. Related work

Simulators or generative models have been considered in early studies of reinforcement learn-
ing (Kearns and Singh, 1999; Kakade, 2003). Recently, it has been shown empirically that in the
local access setting, core-set-based exploration has strong performance in hard-exploration prob-
lems (Ecoffet et al., 2019). In this section, we mostly focus on related theoretical works. We
distinguish among random access, local access, and online access.

• Random access means that the agent is given a list of all possible state action pairs and can
query any of them to get the reward and a sample of the next state.

• Local access means that the agent can access previously encountered states, which can be
implemented with checkpointing. The local access model that we consider in this paper is a
more practical version of planning with a simulator.

• Online access means that the simulation state can only be reset to the initial state (or distri-
bution) or moved to a next random state given an action. The online access setting is more
restrictive compared to local access, since the agent can only follow the MDP dynamics dur-
ing the learning process.

We also distinguish between offline and online planning. In the offline planning problem, the agent
only has access to the simulator during the training phase, and once the training is finished, the agent
outputs a policy and executes the policy in the environment without access to a simulator. This is
the setting that we consider in this paper. On the other hand, in the online planning problem, the
agent can use the simulator during both the training and inference phases, meaning that the agent
can use the simulator to choose the action when executing the policy. Usually, online RL algorithms
with sublinear regret can be converted to an offline planning algorithm under the online access
model with standard online-to-batch conversion (Cesa-Bianchi et al., 2004). While most of the
prior works that we discuss in this section are for the offline planning problem, the TENSORPLAN

algorithm (Weisz et al., 2021a) considers online planning.
In terms of notation, some works considers finite-horizon MDPs, in which case we use H to

denote the episode length (similar to the effective planning horizon (1 − γ)−1 in infinite-horizon
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discounted MDPs). Our discussion mainly focuses on the results with linear function approxima-
tion. We summarize some of the recent advances on efficient planning in large MDPs in Table
1.

Table 1: Recent advances on RL algorithms with linear function approximation under different
assumptions. Positive results mean query cost depends only polynomially on the relative
parameter while negative results refer an exponential lower bound on the query complexity.
CE stands for computational efficiency and “no” for CE means no computational efficient
algorithm is provided.
†: The algorithms in these works are not query or computationally efficient unless the agent
is provided with an approximate optimal design (Lattimore et al., 2020) or barycentric
spanner (Du et al., 2020a) or “core states” (Shariff and Szepesvári, 2020) for free.
‡: Weisz et al. (2021a) consider the online planning problem whereas other works in this
table consider (or can be converted to) the offline planning problem.

Positive Results Assumption CE Access Model

Yang and Wang (2019) linear MDP yes random access
Lattimore et al. (2020); Du et al. (2020a) Qπ-realizability no † random access

Shariff and Szepesvári (2020) V ∗-realizability no † random access
This work Qπ-realizability yes local access

Weisz et al. (2021a) ‡ V ∗-realizability, O(1) actions no local access
Li et al. (2021) Q∗-realizability, constant gap yes local access

Jiang et al. (2017) low Bellman rank no online access
Zanette et al. (2020) low inherent Bellman error no online access

Du et al. (2021) bilinear class no online access
Lazic et al. (2021); Wei et al. (2021) Qπ-realizability, feature excitation yes online access

Jin et al. (2020); Agarwal et al. (2020a) linear MDP yes online access
Zhou et al. (2020); Cai et al. (2020) linear mixture MDP ? online access

Negative Results Assumption CE Access Model

Du et al. (2020a) Qπ-realizability, ε = Ω(
√
H/d) N/A random access

Weisz et al. (2021b) Q∗-realizability, exp(d) actions N/A random access
Wang et al. (2021) Q∗-realizability, constant gap N/A online access

Random access Theoretical guarantees for the random access model have been obtained for the
tabular setting (Sidford et al., 2018; Agarwal et al., 2020b; Li et al., 2020; Azar et al., 2013). As for
linear function approximation, different assumptions have been made for theoretical analysis. Under
the linear MDP assumption, Yang and Wang (2019) derived an optimal O(dκ−2(1 − γ)−3) query
complexity bound by a variance-reduction Q-learning type algorithm. Under the Qπ-realizability
of all determinstic policies (a strictly weaker assumption than linear MDP (Zanette et al., 2020)),
Du et al. (2020a) showed a negative result for the settings with model misspecification error ε =
Ω(
√
H/d) (see also Van Roy and Dong (2019); Lattimore et al. (2020)). When ε = o((1−γ)2/

√
d),

assuming the access to the full feature matrix, Lattimore et al. (2020) proposed algorithms with
polynomial query costs, and Du et al. (2020a) proposed similar algorithm for the exact Qπ realiz-
ability setting. Since these works need to find a globally optimal design or barycentric spanner, their
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computational costs depend polynomially on the size of the state space. Under the V ∗-realizability
assumption (i.e., the optimal value function is linear in some feature map), Shariff and Szepesvári
(2020) proposed a planning algorithm assuming the availability of a set of core states but obtaining
such core states can still be computationally inefficient. Zanette et al. (2019) proposed an algorithm
that uses a similar concept named anchor points but only provided a greedy heuristic to generate
these points. A notable negative result is established in Weisz et al. (2021b) that shows that with
only Q∗-realizability, any agent requires min(exp(Ω(d)), exp(Ω(H))) queries to learn an optimal
policy.

Local access Many prior studies have used simulators in tree-search style algorithms (Kearns
et al., 2002; Munos, 2014). Under this setting, for the online planning problem, recently Weisz
et al. (2021a) established an O((dH/κ)|A|) query cost bound to learn an κ-optimal policy by the
TENSORPLAN algorithm assuming the V ∗-realizability. Whenever the action set is small, TEN-
SORPLAN is query efficient, but its computational efficiency is left as an open problem. Under
Q∗-realizability and constant sub-optimality gap, for the offline planning problem, Li et al. (2021)
proposed an algorithm with poly(d,H, κ−1,∆−1gap) query and computational costs.

Online access As mentioned, many online RL algorithms can be converted to a policy optimiza-
tion algorithm under the online access model using online-to-batch conversion. There is a large
body of literature on online RL with linear function approximation and here we discuss a non-
exhaustive list of prior works. Under the Q∗-realizability assumption, assuming that the probability
transition of the MDP is deterministic, Wen and Van Roy (2013) proposed a sample and compu-
tationally efficient algorithm via the eluder dimension (Russo and Van Roy, 2013). Assuming the
MDP has low Bellman rank, Jiang et al. (2017) proposed an algorithm that is sample efficient but
computationally inefficient, and similar issues arise in Zanette et al. (2020) under the low inherent
Bellman error assumption. Du et al. (2021) proposed a more general MDP class named bilinear
class and provided a sample efficient algorithm, but the computational efficiency is unclear.

Under Qπ-realizability, several algorithms, such as POLITEX (Abbasi-Yadkori et al., 2019;
Lazic et al., 2021), AAPI (Hao et al., 2021), and MDP-EXP2 (Wei et al., 2021) achieved sublinear
regret in the infinite horizon average reward setting and are also computationally efficient. However,
the corresponding analysis avoids the exploration issue by imposing a feature excitation assumption
which may not be satisfied in many problems. Under the linear MDP assumption, Jin et al. (2020)
established a O(

√
d3H3T ) regret bound for an optimistic least-square value iteration algorithm.

Agarwal et al. (2020a) derived a poly(d,H, κ−1) sample cost bound for the policy cover-policy
gradient algorithm, which can also be applied in the state aggregation setting; the algorithm and
sample cost were subsequently improved in Zanette et al. (2021). Under the linear mixture MDP
assumption (Yang and Wang, 2020; Zhou et al., 2020), Cai et al. (2020) proved an O(

√
d3H3T )

regret bound for an optimistic least square policy iteration (LSPI) type algorithm. A notable nega-
tive result for the online RL setting by Wang et al. (2021) shows that an exponentially large number
of samples are needed if we only assume Q∗-realizability and constant sub-optimality gap. Other
related works include Ayoub et al. (2020); Jin et al. (2021); Du et al. (2019); Wang et al. (2019),
and references therein.
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3. Preliminaries

We use ∆S to denote the set of probability distributions defined on the set S. Consider an infinite-
horizon discounted MDP that is specified by a tuple (S,A, r, P, ρ, γ), where S is the state space,
A is the finite action space, r : S × A → [0, 1] is the reward function, P : S × A → ∆S is
the probability transition kernel, ρ ∈ S is the initial state, and γ ∈ (0, 1) is the discount factor.
For simplicity, in the main sections of this paper, we assume that the initial state ρ is deterministic
and known to the agent. Our algorithm can also be extended to the setting where the initial state
is random and the agent is allowed to sample from the initial state distribution. We discuss this
extension in Appendix E. Throughout this paper, we write [N ] := {1, 2, . . . , N} for any positive
integer N and use log(·) to denote natural logarithm.

A policy π : S → ∆A is a mapping from a state to a distribution over actions. We only consider
stationary policies, i.e., they do not change according to the time step. The value function Vπ(s) of
a policy is the expected return when we start running the policy π from state s, i.e.,

Vπ(s) = Eat∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at) | s0 = s

]
,

and the state-action value function Qπ(s, a), also known as the Q-function, is the expected return
following policy π conditioned on s0 = s, a0 = a, i.e.,

Qπ(s, a) = Est+1∼P (·|st,at),at+1∼π(·|st+1)

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

We assume that the agent interacts with a simulator using the local access protocol defined in Defi-
nition 1, i.e, for any state s that the agent has visited and any action a ∈ A, the agent can query the
simulator and obtain a sample s′ ∼ P (·|s, a) and the reward r(s, a).

Our general goal is to find a policy that maximizes the expected return starting from the ini-
tial state ρ, i.e., maxπ Vπ(ρ). We let π∗ be the optimal policy, V ∗(·) := Vπ∗(·), and Q∗(·, ·) :=
Qπ∗(·, ·). We also aim to learn a good policy efficiently, i.e., the query and computational costs
should not depend on the size of the state space S , which can be large in many problems.

Linear function approximation Let φ : S × A → Rd be a feature map which assigns to each
state-action pair a d-dimensional feature vector. For any (s, a) ∈ S × A, the agent can obtain
φ(s, a) with a computational cost of poly(d). Here, we emphasize that the computation of the
feature vectors does not lead to a query cost. Without loss of generality, we impose the following
bounded features assumption.

Assumption 2 (Bounded features) We assume that ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A.

We consider the following two different assumptions on the linear realizability of the Q-functions:

Assumption 3 (Qπ-realizability) There exists b > 0 such that for every policy π, there exists a
weight vector wπ ∈ Rd, ‖wπ‖2 ≤ b, that ensures Qπ(s, a) = w>π φ(s, a) for all (s, a) ∈ S ×A.

Assumption 4 (Approximate Qπ-realizability) There exists b > 0 and model misspecification
error ε > 0 such that for every policy π, there exists a weight vector wπ ∈ Rd, ‖wπ‖2 ≤ b, that
ensures |Qπ(s, a)− w>π φ(s, a)| ≤ ε for all (s, a) ∈ S ×A.
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4. Algorithm

We first introduce some basic concepts used in our algorithms.

Core set We use a concept called core set. A core set C is a set of tuples z = (s, a, φ(s, a), q) ∈
S × A × Rd × (R ∪ {none}). The first three elements in the tuple denote a state, an action, and
the feature vector corresponding to the state-action pair, respectively. The last element q ∈ R in
the tuple denotes an estimate of Qπ(s, a) for a policy π. During the algorithm, we may not always
have such an estimate, in which case we write q = none. For a tuple z, we use zs, za, zφ, and zq
to denote the s, a, φ, and q coordinates of z, respectively. We note that in prior works, the core set
usually consists of the state-action pairs and their features (Lattimore et al., 2020; Du et al., 2020a;
Shariff and Szepesvári, 2020); whereas in this paper, for the convenience of notation, we also have
the target values (Q-function estimates) in the core set elements. We denote by ΦC ∈ R|C|×d the
feature matrix of all the elements in C, i.e., each row of ΦC is the feature vector of an element in C.
Similarly, we define qC ∈ R|C| as the vector for the Qπ estimate of all the tuples in C.

Good set It is also useful to introduce a notion of good set.

Definition 5 Given λ, τ > 0, and feature matrix ΦC ∈ R|C|×d, the good setH ⊂ Rd is defined as

H := {φ ∈ Rd : φ>(Φ>C ΦC + λI)−1φ ≤ τ}.

Intuitively, the good set is a set of vectors that are well-covered by the rows of ΦC ; in other words,
these vectors are not closely aligned with the eigenvectors associated with the small eigenvalues of
the covariance matrix of all the features in the core set.

As an overview, our algorithm CONFIDENT MC-LSPI works as follows. First, we initialize
the core set using the initial state ρ paired with all actions. Then, the algorithm runs least-squares
policy iteration (Munos, 2003) to optimize the policy. This means that in each iteration, we estimate
the Q-function value for every state-action pair in C using Monte Carlo rollout with the simulator,
and learn a linear function to approximate the Q-function of the rollout policy, and the next policy
is chosen to be greedy with respect to this linear function. Our second algorithm CONFIDENT MC-
POLITEX works similarly, with the only difference being that instead of using the greedy policy
iteration update rule, we use the mirror descent update rule with KL regularization between adjacent
rollout policies (Even-Dar et al., 2009; Abbasi-Yadkori et al., 2019). Moreover, in both algorithms,
whenever we observe a state-action pair whose feature is not in the good set during Monte Carlo
rollout, we add the pair to the core set and restart the policy iteration process. We name the rollout
subroutine CONFIDENTROLLOUT. We discuss details in the following.

4.1. Subroutine: CONFIDENTROLLOUT

We first introduce the CONFIDENTROLLOUT subroutine, whose purpose is to estimate Qπ(s0, a0)
for a given state-action pair (s0, a0) using Monte Carlo rollouts. During a rollout, for each state s
that we encounter and all actions a ∈ A, the subroutine checks whether the feature vector φ(s, a)
is in the good set. If not, we know that we have discovered a new feature direction, i.e. a direc-
tion which is not well aligned with eigenvectors corresponding to the the largest eigenvalues of the
covariance matrix of the core features. In this case the subroutine terminates and returns the tuple
(s, a, φ(s, a), none) along with the uncertain status. If the algorithm does not discover a new direc-
tion, it returns an estimate q of the desired value Qπ(s0, a0) and the done status. This subroutine
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is formally presented in Algorithm 1. We also note that a similar procedure is used in Du et al.
(2020b) for a value-iteration-based algorithm.

Algorithm 1 CONFIDENTROLLOUT

1: Input: number of rollouts m, length of rollout n, rollout policy π, discount γ, initial state s0,
initial action a0, feature matrix ΦC , regularization coefficient λ, threshold τ .

2: for i = 1, . . . ,m do
3: si,0 ← s0, ai,0 ← a0, query the simulator, obtain reward ri,0 ← r(si,0, ai,0), and next state

si,1.
4: for t = 1, . . . , n do
5: for a ∈ A do
6: Compute feature φ(si,t, a).
7: if φ(si,t, a)>(Φ>C ΦC + λI)−1φ(si,t, a) > τ then
8: status← uncertain, result← (si,t, a, φ(si,t, a), none)
9: return status, result

10: end if
11: end for
12: Sample ai,t ∼ π(·|si,t).
13: Query the simulator with si,t, ai,t, obtain reward ri,t ← r(si,t, ai,t), and next state si,t+1.
14: end for
15: end for
16: status← done, result← 1

m

∑m
i=1

∑n
t=0 γ

tri,t
17: return status, result

4.2. Policy iteration

With the subroutine, now we are ready to present our main algorithms. Both of our algorithms
maintain a core set C. We first initialize the core set using the initial state ρ and all actions a ∈ A.
More specifically, we check all the feature vectors φ(ρ, a), a ∈ A. If the feature vector is not in
the good set of the current core set, we add the tuple {(ρ, a, φ(ρ, a), none)} to the core set. Then
we start the policy iteration process. Both algorithms start with an arbitrary initial policy π0 and
run K iterations. Let πk−1 be the rollout policy in the k-th iteration. We try to estimate the state-
action values for the state-action pairs in C under the current policy πk−1, i.e., Qπk−1

(zs, za) for
z ∈ C, using CONFIDENTROLLOUT. In this Q-function estimation procedure, we may encounter
two scenarios:

(a) If the rollout subroutine always returns the done status with an estimate of the state-action
value, once we finish the estimation for all the state-action pairs in C, we can estimate the Q-
function of πk−1 using least squares with input features ΦC and targets qC and regularization
coefficient λ. Let wk be the solution to the least squares problem, i.e.,

wk = (Φ>C ΦC + λI)−1Φ>C qC . (1)

Then, for CONFIDENT MC-LSPI, we choose the rollout policy of the next iteration, i.e., πk,
as the greedy policy with respect to the linear function w>k φ(s, a):

πk(a|s) = 1
(
a = arg max

a′∈A
w>k φ(s, a′)

)
. (2)
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For CONFIDENT MC-POLITEX, we construct a truncated Q-function Qk−1 : S × A 7→
[0, (1− γ)−1] using linear function with clipping:

Qk−1(s, a) := Π[0,(1−γ)−1](w
>
k φ(s, a)), (3)

where Π[a,b](x) := min{max{x, a}, b}. The rollout policy of the next iteration is then

πk(a|s) ∝ exp
(
α
k−1∑
j=1

Qj(s, a)
)
, (4)

where α > 0 is an algorithm parameter.

(b) It could also happen that the CONFIDENTROLLOUT subroutine returns the uncertain status.
In this case, we add the state-action pair with new feature direction found by the subroutine
to the core set and restart the policy iteration process with the latest core set.

As a final note, for CONFIDENT MC-LSPI, we output the rollout policy of the last iteration
πK−1, whereas for CONFIDENT MC-POLITEX, we output a mixture policy πK , which is a pol-
icy chosen from {πk}K−1k=0 uniformly at random. The reason that this algorithm needs to output a
mixture policy is that POLITEX (Szepesvári, 2021) uses the regret analysis of expert learning (Cesa-
Bianchi and Lugosi, 2006), and to obtain a single output policy, we need to use the standard online-
to-batch conversion argument (Cesa-Bianchi et al., 2004). Our algorithms are formally presented in
Algorithm 2. In the next section, we present theoretical guarantees for our algorithms.

Algorithm 2 CONFIDENT MC-LSPI / POLITEX

1: Input: initial state ρ, initial policy π0, number of iterations K, regularization coefficient λ,
threshold τ , discount γ, number of rollouts m, length of rollout n, POLITEX parameter α.

2: C ← ∅ // Initialize core set.
3: for a ∈ A do
4: if C = ∅ or φ(ρ, a)>(Φ>C ΦC + λI)−1φ(ρ, a) > τ then
5: C ← C ∪ {(ρ, a, φ(ρ, a), none)}
6: end if
7: end for
8: zq ← none, ∀z ∈ C // Policy iteration starts. (∗)
9: for k = 1, . . . ,K do

10: for z ∈ C do
11: status, result← CONFIDENTROLLOUT(m,n, πk−1, γ, zs, za,ΦC , λ, τ)
12: if status = done, then zq ← result; else C ← C ∪ {result} and goto line (∗)
13: end for
14: wk ← (Φ>C ΦC + λI)−1Φ>C qC ; Qk−1(s, a)← Π[0,(1−γ)−1](w

>
k φ(s, a)) (POLITEX only)

15: πk(a|s)←

{
1
(
a = arg maxa′∈Aw

>
k φ(s, a′)

)
, LSPI

exp
(
α
∑k−1

j=1 Qj(s, a)
)
/
∑

a′∈A exp
(
α
∑k−1

j=1 Qj(s, a
′)
)

POLITEX

16: end for
17: return wK−1 for LSPI, or πK ∼ Unif{πk}K−1k=0 for POLITEX.

9
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5. Theoretical guarantees

In this section, we present theoretical guarantees for our algorithms. First, we have the following
main result for CONFIDENT MC-LSPI.

Theorem 6 (Main result for CONFIDENT MC-LSPI) If Assumption 3 holds, then for an ar-
bitrarily small κ > 0, by choosing τ = 1, λ = κ2(1−γ)4

1024b2
, n = 3

1−γ log(4(1+log(1+λ−1)d)
κ(1−γ) ),

K = 2 + 2
1−γ log( 3

κ(1−γ)), m = 4096d(1+log(1+λ−1))
κ2(1−γ)6 log(8Kd(1+log(1+λ−1))

δ ), we have with proba-
bility at least 1− δ, the policy πK−1 that CONFIDENT MC-LSPI outputs satisfies

V ∗(ρ)− VπK−1(ρ) ≤ κ.

Moreover, the query and computational costs for the algorithm are poly(d, 1
1−γ ,

1
κ , log(1δ ), log(b))

and poly(d, 1
1−γ ,

1
κ , |A|, log(1δ ), log(b)), respectively.

Alternatively, if Assumption 4 holds, then by choosing τ = 1, λ = ε2d
b2

, n = 1
1−γ log( 1

ε(1−γ)),

K = 2 + 1
1−γ log

(
1
ε
√
d

)
, m = 1

ε2(1−γ)2 log(8Kd(1+log(1+λ−1))
δ ), we have with probability at least

1− δ, the policy πK−1 that CONFIDENT MC-LSPI outputs satisfies

V ∗(ρ)− VπK−1(ρ) ≤ 74ε
√
d

(1− γ)2
(1 + log(1 + b2ε−2d−1)).

Moreover, the query and computational costs for the algorithm are poly(d, 1
1−γ ,

1
ε , log(1δ ), log(b))

and poly(d, 1
1−γ ,

1
ε , |A|, log(1δ ), log(b)), respectively.

We prove Theorem 6 in Appendix B. For CONFIDENT MC-POLITEX, since we output a mixture
policy, we prove guarantees for the expected value of the mixture policy, i.e., VπK := 1

K

∑K−1
k=0 Vπk .

We have the following result.

Theorem 7 (Main result for CONFIDENT MC-POLITEX) If Assumption 3 holds, then for an ar-

bitrarily small κ > 0, by choosing τ = 1, α = (1 − γ)

√
2 log(|A|)

K , λ = κ2(1−γ)2
256b2

, K = 32 log(|A|)
κ2(1−γ)4 ,

n = 1
1−γ log(32

√
d(1+log(1+λ−1))

(1−γ)2κ ), and m = 1024d(1+log(1+λ−1))
κ2(1−γ)4 log(8Kd(1+log(1+λ−1))

δ ), we have
with probability at least 1− δ, the mixture policy πK that CONFIDENT MC-POLITEX outputs sat-
isfies

V ∗(ρ)− VπK (ρ) ≤ κ.
Moreover, the query and computational costs for the algorithm are poly(d, 1

1−γ ,
1
κ , log(1δ ), log(b))

and poly(d, 1
1−γ ,

1
κ , |A|, log(1δ ), log(b)), respectively.

Alternatively, if Assumption 4 holds, then by choosing τ = 1, α = (1− γ)

√
2 log(|A|)

K , λ = ε2d
b2

,

K = 2 log(|A|)
ε2d(1−γ)2 , n = 1

1−γ log( 1
ε(1−γ)), and m = 1

ε2(1−γ)2 log(8Kd(1+log(1+λ−1))
δ ), we have with

probability at least 1− δ, the mixture policy πK that CONFIDENT MC-POLITEX outputs satisfies

V ∗(ρ)− VπK (ρ) ≤ 42ε
√
d

1− γ
(1 + log(1 + b2ε−2b−1)).

Moreover, the query and computational costs for the algorithm are poly(d, 1
1−γ ,

1
ε , log(1δ ), log(b))

and poly(d, 1
1−γ ,

1
ε , |A|, log(1δ ), log(b)), respectively.

10
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We prove Theorem 7 in Appendix D. Here, we first discuss the query and computational costs
of both algorithms and then provide a sketch of our proof.

Query and computational costs In our analysis, we say that we start a new loop whenever we
start (or restart) the policy iteration process, i.e., going to line (∗) in Algorithm 2. By definition,
when we start a new loop, the size of the core set C is increased by 1. First, in Lemma 8 below,
we show that the size of the core set will never exceed Cmax = Õ(d). Therefore, the total number
of loops is at most Cmax. In each loop, we run K policy iterations; in each iteration, we run
Algorithm 1 from at most Cmax points from the core set; and each time when we run Algorithm 1,
we query the simulator at mostO(mn) times. Thus, for both algorithms, the total number of queries
that we make is at most C2

maxKmn. Therefore, using the parameter choice in Theorems 6 and 7 and
omitting logarithmic factors, we can obtain the query costs of CONFIDENT MC-LSPI and POLITEX

in Table 2. As we can see, when ε = 0 or ε 6= 0 but ε = o(1/
√
d) (the regime we care about in

this paper), the query cost of CONFIDENT MC-LSPI is lower than POLITEX. As for computational
cost, since our policy improvement steps only involve matrix multiplication and matrix inversion,
the computational cost is also polynomial in the aforementioned factors. One thing to notice is that
during the rollout process, in each step, the agent needs to compute the features of a state paired
with all actions, and thus the computational cost linearly depends on |A|; on the contrary the query
cost does not depend on |A| since in each step the agent only needs to query the simulator with the
action sampled according to the policy.

Sub-optimality We also note that when Assumption 4 holds, i.e., ε 6= 0, the sub-optimality of
the output policy is Õ( ε

√
d

(1−γ)2 ) for LSPI and Õ( ε
√
d

1−γ ) for POLITEX. Therefore, in the presence of a
model misspecification error, CONFIDENT MC-POLITEX can achieve a better final sub-optimality
than CONFIDENT MC-LSPI, although it’s query cost is higher.

Table 2: Comparison of CONFIDENT MC-LSPI and POLITEX

Query (ε = 0) Query (ε 6= 0) Sub-optimality (ε 6= 0)

LSPI Õ
(

d3

κ2(1−γ)8
)

Õ
(

d2

ε2(1−γ)4
)

Õ
(

ε
√
d

(1−γ)2
)

POLITEX Õ
(

d3

κ4(1−γ)9
)

Õ
(

d
ε4(1−γ)5

)
Õ
(
ε
√
d

1−γ
)

Proof sketch We now discuss our proof strategy, focusing on LSPI for simplicity.

Step 1: Bound the size of the core set The first step is to show that our algorithm will terminate.
This is equivalent to showing that the size of the core set C will not exceed certain finite quantity,
since whenever we receive the uncertain status from CONFIDENTROLLOUT, we increase the size
of the core set by 1, go back to line (∗) in Algorithm 2, and start a new loop. The following lemma
shows that the size of the core set is always bounded, and thus the algorithm will always terminate.

Lemma 8 Under Assumption 2, the size of the core set C will not exceed

Cmax :=
e

e− 1

1 + τ

τ
d

(
log(1 +

1

τ
) + log(1 +

1

λ
)

)
.

This result first appears in Russo and Van Roy (2013) as the eluder dimension of linear function
class. We present the proof of this lemma in Appendix A for completeness.

11
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Step 2: Virtual policy iteration The next step is to analyze the gap between the value of the
optimal policy and the policy π parameterized by the vector wK−1 that the algorithm outputs in
the final loop, i.e., V ∗(ρ) − VπK−1(ρ). For ease of exposition, here we only consider the case
of deterministic probability transition kernel P . Our full proof in Appendix B considers general
stochastic dynamics.

To analyze our algorithm, we note that for approximate policy iteration (API) algorithms, if
in every iteration (say the k-th iteration), we have an approximate Q-function that is close to the
true Q-function of the rollout policy (say πk−1) in `∞ norm, i.e., ‖Qk−1 − Qπk−1

‖∞ ≤ η, then
existing results (Munos, 2003; Farahmand et al., 2010) ensure that we can learn a good policy
if in every iteration we choose the new policy to be greedy with respect to the approximate Q-
function. However, since we only have local access to the simulator, we cannot have such `∞
guarantee. In fact, as we show in the proof, we can only ensure that when φ(s, a) is in the good
set H, our linear function approximation is accurate, i.e., |Qk−1(s, a) − Qπk−1

(s, a)| ≤ η where
Qk−1(s, a) = w>k φ(s, a). To overcome the lack of `∞ guarantee, we introduce the notion of virtual
policy iteration algorithm. In the virtual algorithm, we start with the same initial policy π̃0 = π0.
In the k-th iteration of the virtual algorithm, we assume that we have access to the true Q-function
of the rollout policy π̃k−1 when φ(s, a) /∈ H, and construct

Q̃k−1(s, a) =

{
w̃>k φ(s, a) if φ(s, a) ∈ H
Qπ̃k−1

(s, a) otherwise,

where w̃k is the linear coefficient that we learn in the virtual algorithm in the same way as in
Eq. (1). Then π̃k is chosen to be greedy with respect to Q̃k−1(s, a). In this way, we can ensure that
Q̃k−1(s, a) is close to the true Q-function Qπ̃k−1

(s, a) in `∞ norm and thus the output policy, say
π̃K−1, of the virtual algorithm is good in the sense that V ∗(ρ)− Vπ̃K−1(ρ) is small.

To connect the output policy of the virtual algorithm and our actual algorithm, we note that by
definition, in the final loop of our algorithm, in any iteration, for any state s that the agent visits in
CONFIDENTROLLOUT, and any action a ∈ A, we have that φ(s, a) ∈ H since the subroutine never
returns uncertain status. Further, because the initial state, probability transition kernel, and the
policies are all deterministic, we know that the rollout trajectories of the virtual algorithm and our
actual algorithm are always the same in the final loop (the virtual algorithm does not get a chance to
use the true Q-function Qπ̃k−1

). With rollout length n, we know that when we start with state ρ, the
output of the virtual algorithm π̃K−1 and our actual algorithm πK−1 take exactly the same actions
for n steps, and thus |VπK−1(ρ) − Vπ̃K−1(ρ)| ≤ γn+1

1−γ , which implies that V ∗(ρ) − VπK−1(ρ) is
small. To extend this argument to the setting with stochastic transitions, we need to use a coupling
argument which we elaborate in the Appendix.

6. Conclusion

We propose the CONFIDENT MC-LSPI and CONFIDENT MC-POLITEX algorithms, for local plan-
ning with linear function approximation. Under the assumption that the Q-functions of all policies
are linear in some features of the state-action pairs, we show that our algorithm is query and com-
putationally efficient. We introduce a novel analysis technique based on a virtual policy iteration
algorithm, which can be used to leverage existing guarantees on approximate policy iteration with
`∞-bounded evaluation error. We use this technique to show that our algorithm can learn the opti-
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mal policy for the given initial state even only with local access to the simulator. Future directions
include extending our analysis technique to broader settings.
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Rémi Munos. Error bounds for approximate policy iteration. In International Conference on Ma-
chine Learning, volume 3, pages 560–567, 2003.
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Csaba Szepesvári. RL Theory lecture notes: POLITEX. https://rltheory.github.io/
lecture-notes/planning-in-mdps/lec14/, 2021.

Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

Benjamin Van Roy and Shi Dong. Comments on the Du-Kakade-Wang-Yang lower bounds. arXiv
preprint arXiv:1911.07910, 2019.

Yining Wang, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy. Optimism in reinforcement
learning with generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An exponential lower bound for linearly-
realizable MDPs with constant suboptimality gap. arXiv preprint arXiv:2103.12690, 2021.

Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, and Rahul Jain. Learning infinite-horizon
average-reward MDPs with linear function approximation. In International Conference on Arti-
ficial Intelligence and Statistics, pages 3007–3015. PMLR, 2021.

Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang, and Csaba
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Appendix

Appendix A. Proof of Lemma 8

This proof essentially follows the proof of the upper bound for the eluder dimension of a linear
function class in Russo and Van Roy (2013). We present the proof here for completeness.

We restate the core set construction process in the following way with slightly different notation.
We begin with Φ0 = 0. In the t-th step, we have a core set with feature matrix Φt−1 ∈ R(t−1)×d.
Suppose that we can find φt ∈ Rd, ‖φt‖2 ≤ 1, such that

φ>t (Φ>t−1Φt−1 + λI)−1φt > τ, (5)

then we let Φt := [Φ>t−1 φt]
> ∈ Rt×d, i.e., we add a row at the bottom of Φt−1. If we cannot find

such φt, we terminate this process. We define Σt := Φ>t Φt + λI . It is easy to see that Σ0 = λI and
Σt = Σt−1 + φtφ

>
t .

According to matrix determinant lemma (Harville, 1998), we have

det(Σt) = (1 + φ>t Σ−1t−1φt) det(Σt−1) > (1 + τ) det(Σt−1)

> · · · > (1 + τ)t det(Σ0) = (1 + τ)tλd, (6)
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where the inequality is due to (5). Since det(Σt) is the product of all the eigenvalues of Σt, accord-
ing to the AM-GM inequality, we have

det(Σt) ≤
(

tr(Σt)

d

)d
=

(
tr(
∑t

i=1 φiφ
>
i ) + tr(λI)

d

)d
≤ (

t

d
+ λ)d, (7)

where in the second inequality we use the fact that ‖φi‖2 ≤ 1. Combining (6) and (7), we know
that t must satisfy

(1 + τ)tλd < (
t

d
+ λ)d,

which is equivalent to

(1 + τ)
t
d <

t

λd
+ 1. (8)

We note that if t ≤ d, the result of the size of the core set in Lemma 8 automatically holds. Thus,
we only consider the situation here t > d. In this case, the condition (8) implies

t

d
log(1 + τ) < log(1 +

t

λd
) < log(

t

d
(1 +

1

λ
)) = log(

t

d
) + log(1 +

1

λ
)

= log

(
tτ

d(1 + τ)

)
+ log(

1 + τ

τ
) + log(1 +

1

λ
).

(9)

Using the fact that for any x > 0, log(1 +x) > x
1+x , and that for any x > 0, log(x) ≤ x

e , we obtain

tτ

d(1 + τ)
<

tτ

ed(1 + τ)
+ log(

1 + τ

τ
) + log(1 +

1

λ
), (10)

which implies

t <
e

e− 1

1 + τ

τ
d

(
log(1 +

1

τ
) + log(1 +

1

λ
)

)
.

Appendix B. Proof of Theorem 6

In this proof, we say that we start a new loop whenever we start (or restart) the policy iteration
process, i.e., going to line (∗) in Algorithm 2. In each loop, we have at most K iterations of policy
iteration steps. By definition, we also know that when we start a new loop, the size of the core
set C increases by 1 compared with the previous loop. We first introduce the notion of virtual
policy iteration algorithm. This virtual algorithm is designed to leverage the existing results on
approximate policy iteration with `∞ bounded error in the approximate Q-functions (Munos, 2003;
Farahmand et al., 2010). We first present the details of the virtual algorithm, and then provide
performance guarantees for the main algorithm.

B.1. Virtual approximate policy iteration with coupling

The virtual policy iteration algorithm is a virtual algorithm that we use for the purpose of proof. It
is a version of approximate policy iteration (API) with a simulator. An important factor is that the
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simulators of the virtual algorithm and the main algorithm need to be coupled, which we explain in
this section.

The virtual algorithm is defined as follows. Unlike the main algorithm, the virtual algorithm
runs exactly Cmax loops, where Cmax is the upper bound for the size of the core set defined in
Lemma 8. In the virtual algorithm, we let the initial policy be the same as the main algorithm,
i.e., π̃0 = π0. Unlike the main algorithm, the virtual algorithm runs exactly K iterations of policy
iteration. In the k-th iteration (k ≥ 1), the virtual algorithm runs rollouts from each element in the
core set C (we will discuss how the virtual algorithm constructs the core set later) with π̃k−1 with a
simulator where π̃k−1 is in the form of Eq. (13) (Q̃k−1 will be defined once we present the details
of the virtual algorithm).

We now describe the rollout process of the virtual algorithm. We still use a subroutine similar
to CONFIDENTROLLOUT. The simulator of the virtual algorithm can still generate samples of next
state given a state-action pair according to the probability transition kernel P . The major difference
from the main algorithm is that during the rollout process, when we find a state-action pair whose
feature is outside of the good setH (defined in Definition 5), i.e., (s, a) such that φ(s, a)>(Φ>C ΦC+
λI)φ(s, a) > τ , we do not terminate the subroutine, instead we record this state-action pair along
with its feature (we call it the recorded element), and then keep running the rollout process using
π̃k−1. Two situations can occur at the end of each loop: 1) We did not record any element, in
which case we use the same core set C in the next loop, and 2) We have at least one recorded
element in a particular loop, in which case we add the first element to the core set and discard any
other recorded elements. In other words, in each loop of the virtual algorithm, we find the first
state-action pair (if any) whose feature is outside of the good set and add this pair to the core set.
Another difference from the main algorithm is that in the virtual algorithm, we do not end the rollout
subroutine when we identify an uncertain state-action pair, and as a result, the rollout subroutine in
the virtual algorithm always returns an estimation of the Q-function.

We now proceed to present the virtual policy iteration process. In the k-th iteration, the virtual
algorithm runs m trajectories of n-step rollout using the policy π̃k−1 from each element z ∈ C,
obtains the empirical average of the discounted return zq in the same way as in Algorithm 1. Then
we concatenate them, obtain the vector q̃C , and compute

w̃k = (Φ>C ΦC + λI)−1Φ>C q̃C . (11)

We use the notion of good setH defined in Definition 5, and define the virtual Q-function as follows:

Q̃k−1(s, a) :=

{
w̃>k φ(s, a), φ(s, a) ∈ H,
Qπ̃k−1

(s, a), φ(s, a) /∈ H,
(12)

by assuming the access to the true Q-function Qπ̃k−1
(s, a). The next policy π̃k is defined as the

greedy policy with respect to Q̃k−1(s, a), i.e.,

π̃k(a|s) = 1

(
a = arg max

a′∈A
Q̃k−1(s, a

′))

)
. (13)

Recall that for the main algorithm, once we learn the parameter vector wk, the next policy πk is
greedy with respect to the linear function w>k φ(s, a), i.e.,

πk(a|s) = 1

(
a = arg max

a′∈A
w>k φ(s, a′))

)
.
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For comparison, the key difference is that when we observe a feature vector φ(s, a) that is not in
the good setH, our actual algorithm terminates the rollout and returns the state-action pair with the
new direction, whereas the virtual algorithm uses the true Q-function of the state-action pair.

Coupling The major remaining issue now is how the main algorithm is connected to the virtual
algorithm. We describe this connection with a coupling argument. In a particular loop, for any pos-
itive integer N , when the virtual algorithm makes its N -th query in the k-th iteration to the virtual
simulator with a state-action pair, say (svirtual, avirtual), if the main algorithm has not returned due to
encountering an uncertain state-action pair, we assume that at the same time the main algorithm also
makes itsN -th query to the simulator, with a state-action pair, say (smain, amain). We let the two sim-
ulators be coupled: When they are queried with the same pair, i.e., (smain, amain) = (svirtual, avirtual),
the next states that they return are also the same. In other words, the simulator for the main algorithm
samples s′main ∼ P (·|smain, amain), and the virtual algorithm samples s′virtual ∼ P (·|svirtual, avirtual),
and s′main and s′virtual satisfy the joint distribution such that P

(
s′main = s′virtual

)
= 1. In the cases

where (smain, amain) 6= (svirtual, avirtual) or the main algorithm has already returned due to the dis-
covery of a new feature direction, the virtual algorithm samples from P independently from the
main algorithm. Note that this setup guarantees that both the virtual algorithm and the main algo-
rithm have valid simulators which can sample from the same probability transition kernel P .

There are a few direct consequences of this coupling design. First, since the virtual and main
algorithms start with the same initial core set elements (constructed using the initial state), we
know that in any loop, when starting from the same core set element z, both algorithms will have
exactly the same rollout trajectories until the main algorithm identifies an uncertain state-action
pair and returns. This is due to the coupling of the simulators and the fact that within the good set
H, the policies for the main algorithm and the virtual algorithm take the same action. Later, we
will discuss this point more in Lemma 13. Second, the core set elements that the virtual and main
algorithms use are exactly the same for any loop. This is because when the main algorithm identifies
an uncertain state-action pair, it adds it to the core set and start a new loop, and the virtual algorithm
also only adds the first recorded element to the core set. Since the simulators are the coupled, the
first uncertain state-action pair that they encounter will be the same, meaning that both algorithms
always add the same element to the core set, until the main algorithm finishes its final loop. We
note that the core set elements on our algorithm are stored as ordered list so the virtual and main
algorithm always run rollouts with the same ordering of the core set elements. Another observation
is that while the virtual algorithm has a deterministic number of loops Cmax, the total number of
loops that the main algorithms may run is a random variable whose value cannot exceed Cmax.

The next steps of the proof are the following:

• We show that in each loop, with high probability, the virtual algorithm proceeds as an ap-
proximate policy iteration algorithm with a bounded `∞ error in the approximate Q-function.
Thus the virtual algorithm produces a good policy at the end of each loop. Then, since by
Lemma 8, we have at most

Cmax :=
e

e− 1

1 + τ

τ
d

(
log(1 +

1

τ
) + log(1 +

1

λ
)

)
(14)

loops, with a union bound, we know that with high probability, the virtual algorithm produces
a good policy in all the loops.

19



EFFICIENT LOCAL PLANNING WITH LINEAR FUNCTION APPROXIMATION

• We show that due to the coupling argument, the output parameter vector in the main and the
virtual algorithms, i.e., wK−1 and w̃K−1 in the final loop are the same. This leads to the
conclusion that with the same initial state ρ, the value of the outputs of the main algorithm
and the virtual algorithm are close, and thus the main algorithm also outputs a good policy.

We prove these two points in Sections B.2 and B.3, respectively.

B.2. Analysis of the virtual algorithm

Throughout this section, we will consider a fixed loop of the virtual algorithm, say the `-th loop.
We assume that at the beginning of this loop, the virtual algorithm has a core set C`. Notice that C`
is a random variable that only depends on the filtration of the first ` − 1 loops. In this section, we
will first condition on the filtration of all the first `− 1 loops and only consider the filtration of the
`-th loop. Thus we will first treat C` as a deterministic quantity. For simplicity, we write C := C`.

Consider the k-th iteration of a particular loop of the virtual algorithm with core set C. We
would like to bound ‖Q̃k−1 − Qπ̃k−1

‖∞. First, we have the following lemma for the accuracy of
the Q-function for any element in the core set. To simplify notation, in this lemma, we omit the
subscript and use π to denote a policy that we run rollout with in an arbitrary iteration of the virtual
algorithm.

Lemma 9 Let π be a policy that we run rollout with in an iteration of the virtual algorithm. Then,
for any element z ∈ C and any θ > 0, we have with probability at least 1−2 exp(−2θ2(1−γ)2m),

|zq −Qπ(zs, za)| ≤
γn+1

1− γ
+ θ. (15)

Proof By the definition of Qπ(zs, za):

Qπ(zs, za) = Est+1∼P (·|st,at),at+1∼π(·|st+1)

[ ∞∑
t=0

γtr(st, at) | s0 = zs, a0 = za

]
,

and define the n-step truncated Q-function:

Qnπ(zs, za) = Est+1∼P (·|st,at),at+1∼π(·|st+1)

[
n∑
t=0

γtr(st, at) | s0 = zs, a0 = za

]
.

Then we have |Qnπ(s, a) − Qπ(s, a)| ≤ γn+1

1−γ . Moreover, the Q-function estimate zq is an average
of m independent and unbiased estimates of Qnπ(s, a), which are all bounded in [0, 1/(1 − γ)].
By Hoeffding’s inequality we have with probability at least 1 − 2 exp(−2θ2(1 − γ)2m), |zq −
Qnπ(s, a)| ≤ θ, which completes the proof.

By a union bound over the |C| elements in the core set, we know that

P
(
∀ z ∈ C, |zq −Qπ̃k−1

(zs, za)| ≤
γn+1

1− γ
+ θ

)
≥ 1− 2Cmax exp(−2θ2(1− γ)2m). (16)

The following lemma provides a bound on |Q̃k−1(s, a)−Qπ̃k−1
(s, a)|, ∀ (s, a) such that φ(s, a) ∈

H.
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Lemma 10 Suppose that Assumption 4 holds. Then, with probability at least

1− 2Cmax exp(−2θ2(1− γ)2m),

for any (s, a) pair such that φ(s, a) ∈ H, we have

|Q̃k−1(s, a)−Qπ̃k−1
(s, a)| ≤ b

√
λτ +

(
ε+

γn+1

1− γ
+ θ
)√

τCmax + ε := η. (17)

We prove this lemma in Appendix C. Since when φ(s, a) /∈ H, Q̃k−1(s, a) = Qπ̃k−1
(s, a), we

know that ‖Q̃k−1(s, a)−Qπ̃k−1
(s, a)‖∞ ≤ η. With another union bound over the K iterations, we

know that with probability at least

1− 2KCmax exp(−2θ2(1− γ)2m),

the virtual algorithm is an approximate policy iteration algorithm with `∞ bound η for the approxi-
mation error on the Q-functions. We use the following results for API, which is a direct consequence
of the results in Munos (2003); Farahmand et al. (2010), and is also stated in Lattimore et al. (2020).

Lemma 11 Suppose that we run K approximate policy iterations and generate a sequence of
policies π0, π1, . . . , πK . Suppose that for every k = 1, 2, . . . ,K, in the k-th iteration, we obtain a
function Q̃k−1 such that, ‖Q̃k−1−Qπk−1

‖∞ ≤ η, and choose πk to be greedy with respect to Q̃k−1.
Then

‖Q∗ −QπK‖∞ ≤
2η

1− γ
+

γK

1− γ
.

According to Lemma 11,

‖Q∗ −Qπ̃K−2‖∞ ≤
2η

1− γ
+
γK−2

1− γ
. (18)

Then, since ‖Qπ̃K−2 − Q̃K−2‖∞ ≤ η, we know that

‖Q∗ − Q̃K−2‖∞ ≤
3η

1− γ
+
γK−2

1− γ
. (19)

The following lemma translates the gap in Q-functions to the gap in value.

Lemma 12 (Singh and Yee, 1994) Let π be greedy with respect to a function Q. Then for any state
s,

V ∗(s)− Vπ(s) ≤ 2

1− γ
‖Q∗ −Q‖∞.

Since π̃K−1 is greedy with respect to Q̃K−2, we know that

V ∗(ρ)− Vπ̃K−1(ρ) ≤ 6η

(1− γ)2
+

2γK−2

(1− γ)2
. (20)

We notice that this result is obtained by conditioning on all the previous `−1 loops and only consider
the filtration of the `-th loop. More specifically, given any core set C` at the beginning of the `-th
loop, we have

P
(
V ∗(ρ)− Vπ̃K−1(ρ) ≤ 6η

(1− γ)2
+

2γK−2

(1− γ)2
| C`
)
≥ 1− 2KCmax exp(−2θ2(1− γ)2m).
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By law of total probability we have

P
(
V ∗(ρ)− Vπ̃K−1(ρ) ≤ 6η

(1− γ)2
+

2γK−2

(1− γ)2

)
=
∑
C`

P
(
V ∗(ρ)− Vπ̃K−1(ρ) ≤ 6η

(1− γ)2
+

2γK−2

(1− γ)2
| C`
)
P (C`)

≥1− 2KCmax exp(−2θ2(1− γ)2m)
∑
C`

P (C`)

=1− 2KCmax exp(−2θ2(1− γ)2m).

With another union bound over the Cmax loops of the virtual algorithm, we know that with proba-
bility at least

1− 2KC2
max exp(−2θ2(1− γ)2m), (21)

Eq. (20) holds for all the loops. We call this event E1 in the following.

B.3. Analysis of the main algorithm

We now move to the analysis of the main algorithm. Throughout this section, when we mention the
final loop, we mean the final loop of the main algorithm, which may not be the final loop of the
virtual algorithm. We have the following result.

Lemma 13 In the final loop of the main algorithm, all the rollout trajectories in the virtual al-
gorithm are exactly the same as those in the main algorithm, and therefore wk = w̃k for all
1 ≤ k ≤ K.

Proof We notice that since we only consider the final loop, in any iteration, for any state s in all the
rollout trajectories in the main algorithm, and all action a ∈ A, φ(s, a) ∈ H. In the first iteration,
since π0 = π̃0, and the simulators are coupled, we know that all the rollout trajectories are the same
between the main algorithm and the virtual algorithm, and as a result, all the Q-function estimates
are the same, and thus w1 = w̃1. If we have wk = w̃k, we know that by the definition in (12),
the policies πk and π̃k always take the same action given s if for all a ∈ A, φ(s, a) ∈ H. Again
using the fact that the simulators are coupled, the rollout trajectories by πk and π̃k are also the same
between the main algorithm and the virtual algorithm, and thus wk+1 = w̃k+1.

Since ‖φ(s, a)‖2 ≤ 1 for all s, a, we can verify that if we set τ ≥ 1, then after adding a state-
action pair s, a to the core set, then its feature vector φ(s, a) stays in the good set H. Recall that
in the core set initialization stage of Algorithm 2, if for an action a ∈ A, φ(ρ, a) is not in H, we
add ρ, a to C. Thus, after the core set initialization stage, we have φ(ρ, a) ∈ H for all a. Thus
πK−1(ρ) = π̃K−1(ρ) := aρ. Moreover, according to Lemma 10, we also know that when E1
happens,

|Vπ̃K−1(ρ)− w̃>Kφ(ρ, aρ)| = |Qπ̃K−1(ρ, aρ)− w̃>Kφ(ρ, aρ)| ≤ η. (22)

In the following, we bound the difference of the values of the output policy of the main algorithm
πK−1 and the output policy of the virtual algorithm π̃K−1 in the final loop of the main algorithm,
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i.e., |VπK−1(ρ)− Vπ̃K−1(ρ)|. To do this, we use another auxiliary virtual policy iteration algorithm,
which we call virtual-2 in the following. Virtual-2 is similar to the virtual policy iteration algorithm
in Appendix B.1. The simulator of virtual-2 is coupled with the virtual algorithm, and virtual-2
also uses the same initial policy π̂0 := π0 as the main algorithm. Virtual-2 also uses Monte-Carlo
rollouts with the simulator and obtains the estimated Q-function values q̂C , and the linear regression
coefficients are computed in the same way as (11), i.e., ŵk = (Φ>C ΦC + λI)−1Φ>C q̂C . The virtual-2
algorithm also conducts uncertainty check in the rollout subroutine. Similar to the virtual algorithm,
when it identifies an uncertain state-action pair, it records the pair and keeps running the rollout
process. At the end of each loop, the virtual-2 algorithm still adds the first recorded element to the
core set and discard other recorded elements. The only difference is that in virtual-2, we choose the
virtual Q-function to be Q̂k−1(s, a) := ŵ>k φ(s, a) for all (s, a) ∈ S×A. Using the same arguments
in Appendix B.2, we know that with probability at least 1− 2KC2

max exp(−2θ2(1− γ)2m), for all
the loops and all the policy iteration steps in every loop, we have |Q̂k−1(s, a) − Qπ̂k−1

(s, a)| ≤ η
for all (s, a) such that φ(s, a) ∈ H. We call this event E2. Since the simulators of virtual-2 is also
coupled with that of the main algorithm, by the same argument as in Lemma 13, we know that in
the last iteration of the final loop of the main algorithm, we have π̂K−1 = πK−1 and ŵK = wK .
We also know that when event E2 happens, in the last iteration of the all the loops of virtual-2,

|Vπ̂K−1
(ρ)− ŵ>Kφ(ρ, aρ)| ≤ η. (23)

Therefore, when both events E1 and E2 happen, combining (22) and (23), and using the fact that
w̃K = wK = ŵK , we know that

|VπK−1(ρ)− Vπ̃K−1(ρ)| = |Vπ̂K−1
(ρ)− Vπ̃K−1(ρ)|

≤|Vπ̂K−1
(ρ)− ŵ>Kφ(ρ, aρ)|+ |ŵ>Kφ(ρ, aρ)− w̃>Kφ(ρ, aρ)|+ |w̃>Kφ(ρ, aρ)− Vπ̃K−1(ρ)|

≤η + 0 + η = 2η.

Combining this fact with (20) and using union bound, we know that with probability at least

1− 4KC2
max exp(−2θ2(1− γ)2m), (24)

with Cmax defined as in (14), we have

V ∗(ρ)− VπK−1(ρ) ≤ 8η

(1− γ)2
+

2γK−2

(1− γ)2
. (25)

Finally, we choose the appropriate parameters. Note that we would like to ensure that the
success probability in Eq. (24) is at least 1− δ and at the same time, the sub-optimality (right hand
side of Eq. (25)) to be as small as possible. Suppose that Assumption 3 holds, i.e, ε = 0 in (17).
It can be verified that by choosing τ = 1, λ = κ2(1−γ)4

1024b2
, n = 3

1−γ log(4(1+log(1+λ−1)d)
κ(1−γ) ), θ =

κ(1−γ)2

64
√
d(1+log(1+λ−1))

, K = 2 + 2
1−γ log( 3

κ(1−γ)), m = 4096d(1+log(1+λ−1))
κ2(1−γ)6 log(8Kd(1+log(1+λ−1))

δ ),

we can ensure that the error probability is at most 1− δ and V ∗(ρ)− VπK−1(ρ) ≤ κ. Suppose that
Assumption 4 holds. It can be verified that by choosing τ = 1, λ = ε2d

b2
, n = 1

1−γ log( 1
ε(1−γ)),

θ = ε, K = 2 + 1
1−γ log

(
1
ε
√
d

)
, m = 1

ε2(1−γ)2 log(8Kd(1+log(1+λ−1))
δ ), we can ensure that with

probability at least 1− δ,

V ∗(ρ)− VπK−1(ρ) ≤ 74ε
√
d

(1− γ)2
(1 + log(1 + λ−1)).
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Appendix C. Proof of Lemma 10

To simplify notation, we write π := π̃k−1, Q̃(·, ·) := Q̃k−1(·, ·), and w̃ = w̃k in this proof.
According to Eq. (16), with probability at least 1− 2Cmax exp(−2θ2(1− γ)2m),

|zq −Qπ(zs, za)| ≤
γn+1

1− γ
+ θ

holds for all z ∈ C. We condition on this event in the following derivation. Suppose that Assump-
tion 4 holds. We know that there exists wπ ∈ Rd with ‖wπ‖2 ≤ b such that for any s, a,

|Qπ(s, a)− w>π φ(s, a)| ≤ ε.

Let ξ := q̃C − ΦCwπ. Then we have

‖ξ‖∞ ≤ ε+
γn+1

1− γ
+ θ. (26)

Suppose that for a state-action pair s, a, the feature vector φ := φ(s, a) ∈ H, withH defined in
Definition 5. Then we have

|Q̃(s, a)−Qπ(s, a)| ≤ |φ>w̃ − φ>wπ|+ ε

= |φ>(Φ>C ΦC + λI)−1Φ>C (ΦCwπ + ξ)− φ>wπ|+ ε

≤ |φ>
(
I − (Φ>C ΦC + λI)−1Φ>C ΦC

)
wπ|︸ ︷︷ ︸

E1

+ |φ>(Φ>C ΦC + λI)−1Φ>C ξ|︸ ︷︷ ︸
E2

+ε.

(27)

We then bound E1 and E2 in (27). Similar to Appendix A, let Φ>C ΦC + λI := V ΛV > be the
eigendecomposition of Φ>C ΦC+λI with Λ = diag(λ1, . . . , λd) and V being an orthonormal matrix.
Notice that for all i, λi ≥ λ. Let α = V >φ. Then for E1, we have

E1 = |φ>V
(
I − Λ−1(Λ− λI)

)
V >wπ| = λ|φ>V Λ−1V >wπ|

≤ λb‖α>Λ−1‖2 = λb

√√√√ d∑
i=1

α2
i

λ2i

≤ b
√
λ

√√√√ d∑
i=1

α2
i

λi
, (28)

where for the first inequality we use Cauchy-Schwarz inequality and the assumption that ‖wπk−1
‖2 ≤

b, and for the second inequality we use the fact that λi ≥ λ. On the other hand, since we know that
φ ∈ H, we know that α>Λ−1α ≤ τ , i.e.,

∑d
i=1 α

2
iλ
−1
i ≤ τ . Combining this fact with (28), we

obtain

E1 ≤ b
√
λτ. (29)
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We now bound E2. According to Hölder’s inequality, we have

E2 ≤ ‖φ>(Φ>C ΦC + λI)−1Φ>C ‖1‖ξ‖∞
≤ ‖φ>(Φ>C ΦC + λI)−1Φ>C ‖2‖ξ‖∞

√
|C|

=
(
φ>(Φ>C ΦC + λI)−1Φ>C ΦC(Φ

>
C ΦC + λI)−1φ

)1/2‖ξ‖∞√|C|
=
(
α>Λ−1(Λ− λI)Λ−1α

)1/2‖ξ‖∞√|C|
=

√√√√ d∑
i=1

α2
i

λi − λ
λ2i
‖ξ‖∞

√
|C|

≤ (ε+
γn+1

1− γ
+ θ)

√
τCmax, (30)

where in the last inequality we use the facts that
∑d

i=1 α
2
iλ
−1
i ≤ τ , Eq. (26), and Lemma 8. We can

then complete the proof by combining (29) and (30).

Appendix D. Proof of Theorem 7

First, we state a general result in Szepesvári (2021) on POLITEX. Notice that in this result, we
consider an arbitrary sequence of approximate Q-functions Qk, k = 0, . . . ,K − 1, which do not
have to take the form of (3).

Lemma 14 (Szepesvári (2021)) Given an initial policy π0 and a sequence of functions Qk : S ×
A 7→ [0, (1 − γ)−1], k = 0, . . . ,K − 1, construct a sequence of policies π1, . . . , πK−1 according

to (4) with α = (1− γ)

√
2 log(|A|)

K , then, for any s ∈ S, the mixture policy πK satisfies

V ∗(s)− VπK (s) ≤ 1

(1− γ)2

√
2 log(|A|)

K
+

2 max0≤k≤K−1 ‖Qk −Qπk‖∞
1− γ

.

We then consider a virtual POLITEX algorithm. Similar to the vanilla policy iteration algorithm, in
the virtual POLITEX algorithm, we begin with π̃0 := π0. In the k-th iteration, we run Monte Carlo
rollout with policy π̃k−1, and obtain the estimates of the Q-function values q̃C . We then compute
the weight vector

w̃k = (Φ>C ΦC + λI)−1Φ>C q̃C ,

and according to Lemma 10, for any θ > 0, with probability at least 1−2Cmax exp(−2θ2(1−γ)2m),
for all (s, a) such that φ(s, a) ∈ H,

|w̃>k φ(s, a)−Qπ̃k−1
(s, a)| ≤ b

√
λτ +

(
ε+

γn+1

1− γ
+ θ
)√

τCmax + ε := η. (31)

Then we define the virtual Q-function as

Q̃k−1(s, a) :=

{
Π[0,(1−γ)−1](w̃

>
k φ(s, a)), φ(s, a) ∈ H,

Qπ̃k−1
(s, a), φ(s, a) /∈ H,
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assuming we have access to the true Q-function Qπ̃k−1
(s, a) when φ(s, a) /∈ H. We let the policy

of the (k + 1)-th iteration π̃k be

π̃k(a|s) ∝ exp

α k−1∑
j=1

Q̃k−1(s, a)

 . (32)

Since we always have Qπ̃k−1
(s, a) ∈ [0, (1 − γ)−1], the clipping at 0 and (1 − γ)−1 can only

improve the accuracy of the estimation of the Q-function. Therefore, we know that with probability
at least 1−2Cmax exp(−2θ2(1−γ)2m), we have ‖Q̃k−1−Qπ̃k−1

‖∞ ≤ η. Then, by taking a union
bound over the K iterations and using the result in Lemma 14, we know that with probability at
least 1− 2KCmax exp(−2θ2(1− γ)2m), for any s ∈ S, the virtual POLITEX algorithm satisfies

V ∗(s)− Vπ̃K
(s) ≤ 1

(1− γ)2

√
2 log(|A|)

K
+

2η

1− γ
, (33)

where π̃K is the mixture policy of π̃0, . . . , π̃K−1. Using another union bound over the Cmax loops,
we know that with probability at least 1 − 2KC2

max exp(−2θ2(1 − γ)2m), (33) holds for all the
loops. We call this event E1 in the following.

We then consider the virtual-2 POLITEX algorithm. Similar to LSPI, the virtual-2 algorithm
begins with π̂0 := π0. In the k-th iteration, we run Monte Carlo rollout with policy π̂k−1, and
obtain the estimates of the Q-function values q̂C . We then compute the weight vector

ŵk = (Φ>C ΦC + λI)−1Φ>C q̂C ,

and according to Lemma 10, for any θ > 0, with probability at least 1−2Cmax exp(−2θ2(1−γ)2m),
for all (s, a) such that φ(s, a) ∈ H,

|ŵ>k φ(s, a)−Qπ̂k−1
(s, a)| ≤ η, (34)

where η is defined as in (31). We also note that in the rollout process of the virtual-2 algorithm, we
do not conduct the uncertainty check, i.e., we do not check whether the features are in the good set
H. By union bound, we know that with probability at least 1−2KC2

max exp(−2θ2(1−γ)2m), (34)
holds for all the K iterations of all the Cmax loops. We call this event E2 in the following. In the
virtual-2 algorithm, we define the approximate Q-function in the same way as the main algorithm,
i.e., we define

Q̂k−1(s, a) := Π[0,(1−γ)−1](ŵ
>
k φ(s, a)),

and we let the policy of the (k + 1)-th iteration be

π̂k(a|s) ∝ exp

α k−1∑
j=1

Q̂k−1(s, a)

 . (35)

We still let the simulators of all the algorithms be coupled in the same way described as in Ap-
pendix B.1. In addition, we also let the agent in the main algorithm be coupled with the virtual and
virtual-2 algorithm. Take the main algorithm and the virtual algorithm as an example. Recall that
in the k-th iteration of a particular loop, the main algorithm and the virtual algorithm use rollout

26



EFFICIENT LOCAL PLANNING WITH LINEAR FUNCTION APPROXIMATION

policies πk−1 and π̃k−1, respectively. In the CONFIDENTROLLOUT subroutine, the agent needs to
sample actions according to the policies given a state. Suppose that in the N -th time that the agent
needs to take an action, the main algorithm is at state smain and the virtual algorithm is at state svirtual.
If the two states are the same, i.e., smain = svirtual and two distributions of actions given this state
are also the same, i.e., πk−1(·|smain) = π̃k−1(·|svirtual), then the actions that the agent samples in
the main algorithm and the virtual algorithm are also the same. This means that the main algorithm
samples amain ∼ πk−1(·|smain) and the virtual algorithm samples avirtual ∼ πk−1(·|svirtual), and with
probability 1, amain = avirtual. Otherwise, when smain 6= svirtual or πk−1(·|smain) 6= π̃k−1(·|svirtual),
the main algorithm and the virtual algorithm samples a new action independently. The main algo-
rithm and the virtual-2 algorithm are coupled in the same way. We note that using the same argument
as in Lemma 13, for the final loop of the main algorithm, all the rollout trajectories of the main, vir-
tual, and virtual-2 algorithms are the same, which implies that wk = w̃k = ŵk for all 1 ≤ k ≤ K.
This also implies that in the final loop of the main algorithm, all the policies in the K iterations are
the same between the main and the virtual-2 algorithm, i.e., πk = π̂k, 0 ≤ k ≤ K−1. Moreover, for
any state s such that φ(s, a) ∈ H for all a ∈ A, we have πk(·|s) = π̃(·|s) = π̂k(·|s). Since the initial
state ρ satisfies the condition that φ(ρ, a) ∈ H for all a ∈ A, we have πk(·|ρ) = π̃(·|ρ) = π̂k(·|ρ).

Let π̂K be the policy that is uniformly chosen from π̂0, . . . , π̂K−1 in the virtual-2 algorithm
in the final loop of the main algorithm, and πK be the policy that is uniformly chosen from
π0, . . . , πK−1 in the final loop of the main algorithm. Then we have

|Vπ̂K
(ρ)− VπK (ρ)| =

∣∣∣∣∣ 1

K

K−1∑
k=0

(Vπ̂k(ρ)− Vπk(ρ))

∣∣∣∣∣ = 0, (36)

and when events E1 and E2 happen,

|Vπ̂K
(ρ)− Vπ̃K

(ρ)|

≤ 1

K

K−1∑
k=0

|Vπ̂k(ρ)− Vπ̃k(ρ)|

=
1

K

K−1∑
k=0

∣∣∣∣∣∑
a∈A

(π̂k(a|ρ)Qπ̂k(ρ, a)− π̃k(a|ρ)Qπ̃k(ρ, a))

∣∣∣∣∣
≤ 1

K

K−1∑
k=0

∑
a∈A

πk(a|ρ) |Qπ̂k(ρ, a)−Qπ̃k(ρ, a))|

≤ 1

K

K−1∑
k=0

∑
a∈A

πk(a|ρ)
∣∣∣Qπ̂k(ρ, a)− ŵ>k φ(ρ, a) + ŵ>k φ(ρ, a)− w̃>k φ(ρ, a) + w̃>k φ(ρ, a)−Qπ̃k(ρ, a))

∣∣∣
≤ 1

K

K−1∑
k=0

∑
a∈A

πk(a|ρ)
(
|Qπ̂k(ρ, a)− ŵ>k φ(ρ, a)|+ |ŵ>k φ(ρ, a)− w̃>k φ(ρ, a)|+ |w̃>k φ(ρ, a)−Qπ̃k(ρ, a))|

)

≤ 1

K

K−1∑
k=0

∑
a∈A

πk(a|ρ)(η + 0 + η) = 2η. (37)
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By combining (33), (36), and (37), and using a union bound, we obtain that with probability at least
1− 4KC2

max exp(−2θ2(1− γ)2m),

V ∗(ρ)− VπK (ρ) ≤ 1

(1− γ)2

√
2 log(|A|)

K
+

4η

1− γ
. (38)

Now we choose appropriate parameters to obtain the final result. When Assumption 3 holds,
i.e., ε = 0, one can verify that when we choose τ = 1, λ = (1−γ)2κ2

256b2
, K = 32 log(|A|)

κ2(1−γ)4 , n =

1
1−γ log(32

√
d(1+log(1+λ−1))

(1−γ)2κ ), θ = (1−γ)κ
32
√
d(1+log(1+λ−1))

, andm = 1024d(1+log(1+λ−1))
(1−γ)4κ2 log(8Kd(1+log(1+λ−1))

δ ),

we can ensure that with probability at least 1− δ, V ∗(ρ)−VπK (s) ≤ κ. When Assumption 4 holds,
one can verify that when we choose τ = 1, λ = ε2d

b2
, K = 2 log(|A|)

ε2d(1−γ)2 , θ = ε, n = 1
1−γ log( 1

ε(1−γ)),

and m = 1
ε2(1−γ)2 log(8Kd(1+log(1+λ−1))

δ ), we can ensure that with probability at least 1− δ,

V ∗(ρ)− VπK (ρ) ≤ 42ε
√
d

1− γ
(1 + log(1 + λ−1)).

Appendix E. Random initial state

We have shown that with a deterministic initial state ρ, our algorithm can learn a good policy. In
fact, if the initial state is random, and the agent is allowed to sample from a distribution of the initial
state, denoted by ρ in this section, then we can use a simple reduction to show that our algorithm
can still learn a good policy. In this case, the optimality gap is defined as the difference between the
expected value of the optimal policy and the learned policy, where the expectation is taken over the
initial state distribution, i.e., we hope to guarantee that Es∼ρ[V ∗(s)− Vπ(s)] is small.

The reduction argument works as follows. First, we add an auxiliary state sinit to the state space
S and assume that the algorithm starts from sinit. From sinit and any action a ∈ A, we let the
distribution of the next state be ρ ∈ ∆S , i.e., P (·|sinit, a) = ρ. We also let r(sinit, a) = 0. Then, for
any policy π, we have Es∼ρ[Vπ(s)] = 1

γVπ(sinit). As for the features, for any (s, a) ∈ S × A, we
add an extra 0 as the last dimension of the feature vector, i.e., we use φ+(s, a) = [φ(s, a)> 0]> ∈
Rd+1. For any a ∈ A, we let φ+(sinit, a) = [0 · · · 0 1]> ∈ Rd+1. Note that this does not affect
linear realizability except a change in the upper bound on the `2 norm of the linear coefficients.
Suppose that Asumption 3 holds. Suppose that in the original MDP, we haveQπ(s, a) = w>π φ(s, a)
with wπ ∈ Rd. Let us define w+

π = [w>π Vπ(sinit)]
> ∈ Rd+1. Then, for any s 6= sinit, we still

have Qπ(s, a) = (w+
π )>φ+(s, a) since the last coordinate of φ+(s, a) is zero. For sinit, we have

Qπ(sinit, a) = Vπ(sinit) = (w+
π )>φ+(s, a). The only difference is that we now have ‖w+

π ‖2 ≤√
b2 + ( γ

1−γ )2 since we always have 0 ≤ Vπ(sinit) ≤ γ
1−γ .

Then the problem reduces to the deterministic initial state case with initial state sinit. In the first
step of the algorithm, we let C = {(sinit, a, φ

+(sinit, a), none)}. During the algorithm, to run rollout
from any core set element z with zs ∈ S , we can use the current version of Algorithm 1. To run
rollout from (sinit, a), we simply sample from ρ as the first “next state” and then use the simulator
to keep running the following trajectory of the rollout process.
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