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Abstract

We provide a data-driven approach equipped with a formal guarantee for verifying the safety
of stochastic systems with unknown dynamics. First, using a notion of barrier certificates, the
safety verification for a stochastic system is cast as a robust convex program (RCP). Solving this
optimization program is hard because the model of the stochastic system, which is unknown, appears
in one of the constraints. Therefore, we construct a scenario convex program (SCP) by collecting a
number of samples from trajectories of the system. Then, under some condition over the optimal
value of the resulted SCP, we are able to relate its optimal decision variables to the safety of the
original stochastic system and provide a formal out-of-sample performance guarantee. Particularly,
we propose a so-called wait-and-judge approach which a posteriori checks some condition over the
optimal value of the SCP for a fixed number of sampled data. If the condition is satisfied, then
the safety specification is satisfied with some probability lower bound and a desired confidence.
The effectiveness of our approach in requiring only a low number of samples compared to existing
results in the literature is illustrated on a two-tank system by ensuring that the water levels in both
tanks never reach a critical zone within a specific time horizon.

Keywords: Data-driven approach, Stochastic systems, Safety specification, Formal verification,
Barrier certificate, Robust convex program, Scenario convex program.

1. Introduction

Safety-critical application are becoming more and more ubiquitous due to recent advances in com-
putation and communication devices. Examples of such applications include self-driving cars,
power grids, traffic networks, and integrated medical devices. In order to deploy these safety-critical
systems, rigorous safety analysis is required to ensure the correctness of their functionalities.

In order to ensure safety of such applications, there have been many results in the past two decades
on developing discretization-based or discretization-free techniques to either verify safety specifica-
tions or synthesize controllers ensuring them. In abstraction-based techniques, e.g., Tabuada (2009);
Belta et al. (2017); Girard et al. (2010); Zamani et al. (2014), finite approximations are constructed
by discretizing state and input sets. Those approximations are then utilized for verification and
synthesis purposes. Unfortunately, those abstraction-based techniques suffer from the curse of di-
mensionality due to discretizing state and input sets and, hence, they are not amenable to large-scale
systems. One of the abstraction-free techniques leveraged in the past decade is to utilize a notion
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of barrier certificates (BC). The main advantage of using barrier certificates in comparison with
the abstraction-based techniques is that we do not need to discretize state and input sets to verify
safety specifications or synthesize controllers ensuring them (Prajna and Jadbabaie, 2004; Ames
et al., 2017; Jagtap et al., 2020b). Unfortunately, all of the above-mentioned discretization-based or
discretization-free results require a model of the system which may not be available or too complex
to be of any use.

In the last few years, there have been some investigations on verifying the safety of dynamical
systems by collecting data from their trajectories, see, e.g, Sadraddini and Belta (2018), Wijesuriya
and Abate (2019); Lavaei et al. (2020); Wang and Jungers (2020). There are also some results that
combine notions of barrier certificates and collected data from the systems in order to provide a
formal guarantee on the safety verification, see, e.g, Han et al. (2015); Robey et al. (2020); Jagtap
et al. (2020a); Lindemann et al. (2020); Salamati et al. (2021). However, those results either need a
complete or partial knowledge of a model of the system, suffer from sample complexity to provide
out-of-sample performance guarantees, may not provide any out-of-sample performance guarantees,
require some stability assumptions, or treat only non-stochastic systems.

Inspired by the results in Campi and Garatti (2018), in this paper we propose a so-called wait-and-
judge approach which provides a data-driven scheme for the safety verification of stochastic systems
with unknown models while providing an out-of-sample performance guarantee and at the same time
alleviating the sample complexity issue. In particular, we use a notion of barrier certificates and
use it to cast the safety problem as a robust convex program (RCP). Since solving this optimization
program is not tractable due to the unknown model of which appears in one of the constraints,
instead we propose a scenario convex program (SCP) corresponding to the original RCP by using an
arbitrary number of samples collected from the system’s trajectories. Then, we derive a condition
over the optimal value of the obtained SCP under which the original unknown stochastic system is
safe with some probability lower bound and a guaranteed confidence. This condition is related to
the number of support constraints. For a given amount of data, support constraints are the ones
whose elimination affects the optimal value substantially. Since, we relate the desired confidence,
probability of violation of constraints, and the number of samples a posteriori, the required amount
of data reduces dramatically compared to other approaches which require this relation a priori,
see the results in Salamati et al. (2021). We finally apply our approach to a two-tank system in
order to verify that the water levels in both tanks never reach a critical zone within a specific time
horizon. We refer the interested readers to this case study showing the effectiveness of our approach
in comparison with the one in Salamati et al. (2021) in terms of sample complexity.

2. Problem Statement and Preliminaries
2.1. Notation

The set of positive integers, non-negative integers, real numbers, non-negative real numbers, and
positive real numbers are denoted by N := {1,2,3,...}, Ny := {0,1,2,...}, R, R{, and R",
respectively. We denote the indicator function by 1.,(X) : X — {0, 1}, where 1,(x) is 1 if
and only if x € &7, and 0 otherwise. Notation 1,,, is used to indicate a column vector of ones in
R™. We denote by ||x|| the Euclidean norm of any x € R”. We also denote the induced norm
of any matrix A € R"™" by ||Al| = sup,.q |Ax||/||x]|. Given N vectors x; € R™, n; € N, and
ie{l,...,N},weuse [x1;...;xn] and [x1,...,xn] to denote the corresponding column and row
vectors, respectively, with dimension }}; n;. Considering a random variable z, Var(z) denotes its



DATA-DRIVEN SAFETY VERIFICATION OF STOCHASTIC SYSTEMS VIA BARRIER CERTIFICATES

variance. The absolute value of a real number x € R is denoted by |x|. We use the notation S |y ¥
to denote that system S satisfies a property ¥ during a time horizon H. We also use |= in this paper
to show that a solution is feasible for an optimization problem.

The sample space of random variables is denoted by €. The Borel o-algebra on a set X is
denoted by B(X). The measurable space on X is denoted by (X, B(X)). We have two probability
spaces in this work. The first one is represented by (X, B(X),P) which is the probability space
defined over the state set X with P as a probability measure. The second one, (V,, B(V,),Py),
defines the probability space over V,, for the random variable w affecting the stochastic system as
process noise with P, as its probability measure. With a slight abuse of notation, we use the same
notation for P and P,, when the product measures are needed in the formulations.

2.2. System Definition

In this work, we deal with discrete-time stochastic systems as formalized in the next definition.

Definition 1 Consider a discrete-time stochastic system (dt-SS), denoted by S = (X, Vy,w, f),
described by:
S:x(t+1) = f(x(2),w(r)), te€Ny, (1)

where X and V,, are Borel o-algebras on the set R and uncertainty spaces, respectively. Here, x
denotes the state sequence of the system as x := {x(t) : Q — X,t € Ny}, and w denotes a sequence
of i.i.d random variables over V,, as w .= {w(t) : Q = Vy,,t € No}. Map f : X XV, —> X isa
measurable function characterizing the state evolution of the system. A finite trajectory of the system

in (1) is denoted by &£(t) := x(0)x(1) ...x(z),t € Ny.

2.3. Problem Statement

In order to define the main problem we are interested to solve in this paper, we introduce the following
definition.

Definition 2 Consider a safety specification denoted by ¥ and a dt-SS S. System S is called safe
for a finite time horizon H € Ny, denoted by S =g W, if all trajectories of S started from a given
initial set X;;, C X never reach a given unsafe set X,, C X within time horizon H.

Now, we state the main problem we aim at solving in this paper.

Problem 3 Consider a dt-SS S as in Definition 1, where f and P, are unknown. With
a confidence of at least (1 — B) € [0, 1], provide a lower bound (1 — A) € [0, 1] on the
probability with which S satisfies safety specification Y, i.e., Py, (S Ep W) = 1 — A, using a
finite number of samples collected from the system’s trajectories.

To tackle this problem, we first need to present a safety analysis of stochastic systems via barrier
certificates as in the next subsection. Afterwards in Section 3, we show how the proposed safety
problem can be cast as a robust convex program (RCP) and consequently as a scenario convex
program (SCP) with the help of data collected from the system. Eventually, we provide a result
in Section 4 which addresses Problem 3. Fig. 1 shows an overview of our approach for solving
Problem 3 by connecting the related optimizations and results in the paper.
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‘Wait-and-judge Approach

Theorem 7

Figure 1: An overview of the proposed wait-and-judge approach in this work

2.4. Safety Verification for Stochastic Systems

Here, we introduce a concept of barrier certificates and its application in the safety verification of
stochastic systems. Let us start with the formal definition of barrier certificates.

Definition 4 Consider a safety specification ¥ and a dt-SS S as in Definition 1. A non-negative
function B : X — R{ is called a barrier certificate (BC) for S if there exist constants 1 > 1, and ¢ €
R{ such that

B(x) <1, Vx € Xin, ()
B(x) > 4, Vx € X,,, 3)
E|B(f(x,w)) | x| <B(x) +c, Vx € X, 4

where X;, C X and X,, C X are initial and unsafe sets, respectively, corresponding to W.

Next theorem, borrowed from Jagtap et al. (2020b), provides a lower bound on the probability
of safety satisfaction for a dt-SS.

Theorem 5 Consider a dt-SS S as in Definition 1, and a safety specification Y. Suppose that there
exists a barrier certificate B satisfying conditions (2)-(4). Then one obtains

Bl b W) 2 1 - 0 5)

where H € Ny is the finite time horizon associated with P.

In this work, we fix the structure of barrier certificates as B(b, x) = ;:1 bjp(x) with some user-
defined (possibly nonlinear) basis functions p ;(x) and unknown coefficients b = [by;--- ;b,] € R".
For the sake of simplicity of the presentation, we consider polynomial-type barrier certificates with
degree k € Ny, where basis functions p ;(x) are monomials over x.
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3. Data-driven Safety Verification for Stochastic Systems

According to Salamati et al. (2021), a barrier-based safety verification as in Theorem 5 together with
Definition (4) can be reformulated as a robust convex program as follows:

ngn K
RCP: | st max (g, (x,d)) <0,ze{l,...,4},VxeX, 6)
d = [K;A;c;b],

KeR,A>1,¢c>0,
where,

gl(x9 d) = _B(b7x) —K,
g2(x9 d) = B(b,x)]lxm(x) -1-K,
g3(x,d) = -B(b,x)1x,(x) +1 - K,

ga(x,d) =E|B(b, f(x,w)) | x| =B(b,x) —c - K. @)

An extra constraint can be added to the above optimization problem in order to enforce a desired
probability lower bound of 1 — A using the relation in (5) according to Salamati et al. (2021).
In general, finding an optimal solution for the RCP in (6) is hard because the map f and the
probability measure P, are both unknown. Furthermore, there are infinitely many constraints in
the RCP since x € X, where X is a continuous set. To tackle this issue, we collect N i.i.d samples
Dy = {x;, f(x;,w)} € X2, fori € {1,...,N}, using an assigned probability distribution over
the state set. Substituting these samples in the RCP in (6) results in the following scenario convex
program denoted by SCP,:

m}n K
SCPN . S.t. maX(gZ(x,,d))SO,ZE{l,,4},Vl€{1,,N}, (8)
d=[K;a;¢;b],

KeR,A1>1,c>0,

where g,(x,d), z € {1,...,4}, are as in (7). To address the issue of not knowing P, and the
expectation term in g4 (7), we replace the expectation term with its empirical mean approximation
by sampling N i.i.d. values w; from P, for each x;: Dy = {x;, wj, f(x;,wj)} C XXV, xX, Vj€
{1,..., N}, which results in the following SCP denoted by SCP, :

rrgn K
S‘t‘ max (gz(xi, d)’g4(xl’d))go9 Z€{1’2’3}’
SCPyx: Vx; € X,Vie{l,---,N}, )
d=[K;A;¢;b],
KeR, A>1,¢c>0,
where
N
_ 1
(i d) = = > B(b, f(xi,w))) = B(b,x;) —c - K +6. (10)
N H
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We denote by K}, and B(b,x|Dy, Dy ), respectively, the optimal value of SCP, x and the
barrier function constructed based on solution of SCP,, x. Note that the expectation term in g4 (8)
is approximated by the empirical mean in (10). This approximation introduces an error which is
denoted by ¢ in (10).

Remark 6 In this paper, N is selected arbitrarily. According to Salamati et al. (2021), N can be
62&'& for a desired confidence value Bs; € (0,1). This is the confidence that a
solution of SCP,, x is a feasible solution for SCP,, i.e., Pw(ﬁ(b,xlﬂN, Dy) E SCPy) = 1 - Bs.
In this inequality, M is a positive constant defined as Var(B(b, f(x,w)) < M, Vx € X, and 6 is the
approximation error in (10).

computed as N >

In the next section, we show how the solution of a SCP, x for an N and N is related to the safety of
a stochastic system with an unknown model.

4. Safety Verification of Stochastic Systems via Wait-and-judge Approach

In this section, we aim to establish a probabilistic bridge between the solution of the SCP in (9) and
the safety of a dt-SS as in Definition (1). To do so, we need to assume that all constraints in (7) are
Lipschitz continuous with respect to x. Next theorem connects the safety of a stochastic system to
the optimal solution of the SCP resulted from substituting N number of samples by the number of
so-called support constraints. Given N number of constraints, support constraints are those whose
elimination affects the optimal value considerably.

Theorem 7 Consider a stochastic system S as in (1), where f and Py, are unknown, a safety
specification P, and a finite time horizon H. Assume that all constraints in (7) are Lipschitz
continuous with respect to x with a Lipschitz constant Ly. Select an arbitrary number of
samples N and confidence 8 € (0, 1). Choose N as in Remark 6 to achieve a given confidence
1= Bs, Bs € (0,1). Let us denote by K, , and dy, = [1";c*; b*], the optimal value and the
optimal solution of SCP,  in (9), respectively. If

K}y +Ly (1= Ty)7 <0, (11)
where Ty~ is the unique solution of
B i (m)TT-N*—(N)TZY-N*:o (12)
N+1 & \N*| "7 NN ’

with N* as the number of support constraints, then the following statement holds true with a
confidence of at least 1 — B — Bs:

1+c*H
A7

Pu(SEn YY) 21~ 13)

Remark 8 There is an upper-bound on the number of support constraints, i.e, N* < |d| + 1, where
|d| is the number of decision variables in SCPy x (9). Note that the value of 1 — Tn- is increasing
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with respect to N*. As a result, one can use this upper-bound instead of the actual number of support
constraints N* in Theorem 7.

The proof of the theorem in provided in the Appendix. The steps required for applying Theorem 7
are presented in Algorithm 1. The inputs are the desired confidence, and the Lipschitz constant of
constraints in (7). The output is a lower bound on the safety of the stochastic system in (1) based on
the solution of the SCP in (9) with an a priori guaranteed confidence. The coefficients of the barrier
certificate satisfying conditions (2)-(4) are obtained in step 5 of Algorithm 1.

Algorithm 1 Data-driven safety verification of a stochastic system via wait-and-judge approach
Require: Parameters 8 € (0,1), 85 € (0,1), Ly € R*, and the degree of the barrier certificate
1: Compute the number of noise realization N according to Remark 6
Choose an arbitrary number of samples N
Select a probability measure P over the state set X
Collect NN pairs (x;, f(x;, w; N)ij€X 2 from the system
Solve the SCP, y in (9) with the data-set in Step 4 and obtain K,
Compute the actual number of support constraints N* or the upper bound on it (see Remark 8)
: Compute the parameter Tn+ according to (12)
Ensure: If K  + Ly (1 - TN*)% <0,thenP,(SEg ¥) > 1- 1+/C1:H with a confidence of at least
1- ﬁ - ,85-

N RN

5. Case Study

Consider a two-tank system characterized by the following discrete-time stochastic system:

1) = (1= 750 o)+ 2

+ wl(t)

a 1% ¢t
(4 1) = 150 0 () + (1= 7, 52) () + 7,220

+wy (1), 14)

where h; () and h; () are heights of two tanks, respectively. Terms w (¢) and w; (¢) are additive zero-
mean Gaussian noises with standard deviations of 0.01, which model the environmental uncertainties.
Parameters a; and A;, i € {1, 2}, are valve coefficients and the area of tank i. Variables ¢;(¢) and go(t)
are inflow rate entering the first tank and outflow rate exiting the second one at time ¢, respectively.
The model for this two-tank system is adapted from Ramos and Dos Santos (2007) discretized by
7¢ = 0.1 seconds. We consider [hy(z+1);ha(r+1)] = A [h1(#);ha2(2)] + b+ + [w1(2); wa(2)], where
Ar =[1-1,0;75,1 —75] and b, = [4.57,; =37,] in the situation in which input and output valves
are fully open, and two constant-rate feeding and retaining pumps ensure constant flows of ¢g;(¢)
and g, (1) with values of 4.5m?/s and 3m3 /s, respectively. Let us consider X;, = [1.75m, 2.25m]?,
X, = [9m, lOm]z, and X = [1m, lOm]2 as the initial, unsafe and the overall state sets, respectively.
We assume the model of the system and the distribution of the noise are unknown. The main goal
is to verify that the heights of tanks stay away from the unsafe region within the time horizon H = 5
with an a priori confidence 99%. Let us consider a barrier certificate with degree k = 2 in the



DATA-DRIVEN SAFETY VERIFICATION OF STOCHASTIC SYSTEMS VIA BARRIER CERTIFICATES

polynomial form as [hy;hy; 1]7P[hy; ho; 1] = boh? + b1h3 + bohyhy + bshy + bshy + bs, where

P=|% b 5. (15)
7 3 bs

By having ||x|| < V2 x 10 and enforcing ||P|| < 0.2, the Lipschitz constant can be computed as
L, = 11.03 using (Salamati et al., 2021, Lemma 1). The value of empirical approximation error
in (10) is selected as & = 0.05. By enforcing M = 0.001, the required number of samples for the
approximation of the expected value in (9) is computed as N = 400 according to Remark 6 in order
to provide a confidence of 1 — S5, where 85 = 0.001.

To show the effectiveness of our approach in allowing us to have a much lower number of
samples, we first solve the safety verification problem for the two-tank system via the approach
proposed in the literature and then we apply our proposed wait-and-judge approach here. We show
that our approach provides the same formal guarantee with a significantly lower number of samples.

Data-driven safety verification using the method proposed in Salamati et al. (2021)

We choose € = 0.04 and A = 0.1 in (Salamati et al., 2021, Algorithm 1). We also select the
confidence parameter S as 0.009. The minimum number of samples needed for solving SCP,, s in
(9) is computed as N = 1337297 using (Salamati et al., 2021, equation (17)). N is computed as 400
for a confidence value of 8; = 0.001. Now, we solve the scenario problem SCP, x with acquired
values of N and N which gives us the optimal value K, =-0.1025. Since K , +€ = —=0.0625 < 0,
according to (Salamati et al., 2021, Theorem 4), one can conclude: P, (S s ¥) = 1 - A =0.90
with a confidence of at least 1 — 8 — B = 99%.

Data-driven safety verification via the proposed wait-and-judge approach

We select the desired confidence parameter 5 = 0.009. There is no need to fix € a priori in our
proposed approach here. We initially select an arbitrary number of samples N = 500. Number of
support constraints is computed as N* = 7. Parameter 1 — T+ is computed using (12) as 0.0087. The
optimal value K , is computed for N = 500 and N =400 as —0.1871. Then, the condition in (11) is

not satisfied, i.e., K, . + L (1 - TN*)% = 0.8417 £ 0. Therefore, we cannot say anything about the
safety of the two-tank system based on Theorem 7. By computing T+ for several numbers of samples
according to (12), the appropriate number of samples to satisfy (11) is computed as N = 70000.
Since the value of 1 — T+ is increasing with respect to the number of support constraints N*, and
there is an upper-bound on it, we use this upper-bound in our experiment. One has N* < |d| + 1,
where |d| is the number of decision variables in (9). Here, we select the upper-bound on N* as 10,
given that the number of decision variables is 9. The optimal value K ; is computed for N = 70000
and N = 400 as —0.1065. In this case, 1 — Ty is computed as 0.6653 x 10~*. Now the condition in
(11) is satisfied, i.e., K, , + L (1 - TN»«)% = —0.0165 < 0, hence one can obtain P, (S 5 ¥) > 0.90
with a confidence of at least 1 — 8 — 85 = 99%. The barrier certificate constructed from solving
SCP, x is as follows:

B(b.p1.p2| Dn. D) =0.0648p? +0.1784p3 + 0.0145p; py — 0.1687p; — 0.0321p, + 0.0486.
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Tank 1 Tank 2

_ Go(t)
Figure 2: Two-tank system

The computed optimal values for ¢ and A are 0.1804 and 19.1280, respectively. It should be noted
that the same desired confidence is achieved here as in the approach proposed in Salamati et al.
(2021) using a significantly lower number of samples, i.e., 70000 compared to 1337297, which is
the main benefit of our approach. In terms of computation time, our approach is much more faster
than the one in Salamati et al. (2021). Computing the optimal value and checking the condition over
the optimal value for the approach in Salamati et al. (2021) takes about 2 hours on a MacBook 2.8
GHz Quad-Core Intel Core i7, while it only takes less than 30 seconds using our proposed approach.
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Appendix

Proof of Theorem 7:
From the robust convex program in (6), one can construct a chance constraint program (CCP) as
follows:

rrbin K
CCPe . s.Lt. P(max (gZ(x’d))SO) 2 1 — €, ZG{],. "’4}5 (16)
d=[K;A;c;b],

KeR, A>1,c>0,

for some € > 0, where g, (x,d), z € {1,...,4}, are defined in (7). According to (Campi and Garatti,
2018, Theorem?2), for any 8 € (0, 1) and an arbitrary number of samples N, one has:

P(d}, £ CCP. (1)) = 1 -, (17)

where d7, is the optimal solution of the SCP, in (8) and €(k) := 1 — t(k), with #(k) as the unique

solution of
B X (m N
pmk tNk=0 18
i ()= () et =o as)

m=k
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for k = {0,...,]|d|}, where |d| is the number of decision variables d. Let us construct a relaxed
version of RCP in (6) in amount of %(e€) as the following:

ngn K
RCPp (e (k) : s.t. ;njx[gz/gc;‘dz}Sh(e(k)),ze{l,- .4}, VxeX, 19)

KeR,A>1,¢>0,

where A (€) is a uniform level-set bound as defied in (Esfahani et al., 2014, Definition 3.1). According
to (Esfahani et al., 2014, Lemma 3.2), one can deduce from (17) that P(dj‘\, = RCPh(E(k))) >1-p
which leads to:

P(Kg,

Py S KN 2 1=, (20)

where K7, is the optimal value of SCP,, in (8). Using Lemma 3.4 in Esfahani et al. (2014), we have:
Ky < Kgcp < Kgep,. ) + Lsph(e(k)), @D

where L), is the slater constant which is defined in (Esfahani et al., 2014, Assumption 3.3).
Combination of (20) and (21) results in:

B(Kyy < Kicp < Kio + Loph(e(k)) 2 1- 8. 22)

Since the optimization problem in (6) is a min-max problem, L, can be chosen as 1 according to

Remark 3.5 in Esfahani et al. (2014). Uniform level-set bound /(e(k)) can be computed as Ly /e (k)
as stated in (Esfahani et al., 2014, Remark 3.8), where Ly is the Lipschitz constant of constraints
in (7). From now on, we use € instead of €(k) for k = N*, where N* is the number of support
constraints. Therefore, (22) can be written as:

P(Ky < Kicp < Ki+Lye7) 2 1- 5. 23)
By writing 1 — T~ instead of € = 1 — #(k) for k = N*, the above inequality can be re-written as:
P(Ky < Kicp < Kpy+ Ly (1= Ty)7) 2 1= . 24)

By denoting the optimal solution of the SCP,, x in (9) by d;’N, one obtains P(d;ﬁ = SCPN) > 1-8;
according to (Salamati et al., 2021, Theorem 3.3) which implies:

P(Ky <K} ¢) 2 1-Bs. (25)
By defining two events A := {K} < Kzp < Ky, +Lx (1 - TN*)%} and B := {K}, < K}, .} with

RCP —
P(A) > 1 - fand P(B) > 1 - f5, it is easy to see that (A N B) C (Kjep < K&y o +Ly(1 = Ty)7).

By assumption, we have K:] ot Ly(1- TN*)% < 0 and, hence, one can deduce:

P(Kpep < Koy o +Lo(1=Ty)7n <0) 2 P(ANB) = 1 —~P(A°) —P(B) > 1 - B - B,.  (26)

This concludes the proof because the non-positiveness of Ky -, guarantees that the feasible solution
of RCP in (6) satisfies with a confidence of at least 1 — 8 — 8, the barrier conditions in Theorem 5. l

10



DATA-DRIVEN SAFETY VERIFICATION OF STOCHASTIC SYSTEMS VIA BARRIER CERTIFICATES

References

Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. /IEEFE Transactions on Automatic Control, 62(8):
3861-3876, 2017.

Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods for discrete-time dynamical
systems, volume 15. Springer, 2017.

Marco C Campi and Simone Garatti. Wait-and-judge scenario optimization. Mathematical Pro-
gramming, 167(1):155-189, 2018.

Peyman Mohajerin Esfahani, Tobias Sutter, and John Lygeros. Performance bounds for the scenario
approach and an extension to a class of non-convex programs. IEEE Transactions on Automatic
Control, 60(1):46-58, 2014.

Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Transactions on Automatic Control, 55(1):116-126,
2010.

Shuo Han, Ufuk Topcu, and George J Pappas. A sublinear algorithm for barrier-certificate-based
data-driven model validation of dynamical systems. In 54th IEEE conference on decision and
control (CDC), pages 2049-2054, 2015.

Pushpak Jagtap, George J. Pappas, and Majid Zamani. Control barrier functions for unknown
nonlinear systems using gaussian processes. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 3699-3704, 2020a.

Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Formal synthesis of stochastic systems via
control barrier certificates. IEEE Transactions on Automatic Control, 2020b.

Abolfazl Lavaei, Fabio Somenzi, Sadegh Soudjani, Ashutosh Trivedi, and Majid Zamani. For-
mal controller synthesis for continuous-space mdps via model-free reinforcement learning. In
ACM/IEEE 11th International Conference on Cyber-Physical Systems, pages 98—107. IEEE, 2020.

Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning hybrid control barrier functions from data. arXiv:2011.04112,
2020.

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates. In
International Workshop on Hybrid Systems: Computation and Control, pages 477-492. Springer,
2004.

José A Ramos and P Lopes Dos Santos. Mathematical modeling, system identification, and controller
design of a two tank system. In 46th IEEE Conference on Decision and Control, pages 2838-2843.
IEEE, 2007.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations.
arXiv:2004.03315, 2020.

11



DATA-DRIVEN SAFETY VERIFICATION OF STOCHASTIC SYSTEMS VIA BARRIER CERTIFICATES

Sadra Sadraddini and Calin Belta. Formal guarantees in data-driven model identification and control
synthesis. In Proceedings of the 21st International Conference on Hybrid Systems: Computation
and Control (part of CPS Week), pages 147-156, 2018.

Ali Salamati, Abolfazl Lavaei, Sadegh Soudjani, and Majid Zamani. Data-driven safety verification
of stochastic systems. 7th IFAC Conference on Analysis and Design of Hybrid Systems, 2021.

Paulo. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, 2009.

Zheming Wang and Raphaél M Jungers. Scenario-based set invariance verification for black-box
nonlinear systems. IEEE Control Systems Letters, 5(1):193-198, 2020.

Viraj Brian Wijesuriya and Alessandro Abate. Bayes-adaptive planning for data-efficient verification
of uncertain Markov decision processes. In International Conference on Quantitative Evaluation
of Systems, pages 91-108. Springer, 2019.

Majid Zamani, Peyman Mohajerin Esfahani, Rupak Majumdar, Alessandro Abate, and John Lygeros.
Symbolic control of stochastic systems via approximately bisimilar finite abstractions. IEEE
Transactions on Automatic Control, 59(12):3135-3150, 2014.

12



	Introduction
	Problem Statement and Preliminaries
	Notation
	System Definition
	Problem Statement
	Safety Verification for Stochastic Systems

	Data-driven Safety Verification for Stochastic Systems
	Safety Verification of Stochastic Systems via Wait-and-judge Approach
	Case Study
	Data-driven safety verification using the method proposed in salamati2021data
	Data-driven safety verification via the proposed wait-and-judge approach

	Appendix

