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Abstract
We present a data-driven algorithm for efficiently computing stochastic control policies for general
joint chance constrained optimal control problems. Our approach leverages the theory of kernel
distribution embeddings, which allows representing expectation operators as inner products in a
reproducing kernel Hilbert space. This framework enables approximately reformulating the orig-
inal problem using a dataset of observed trajectories from the system without imposing prior as-
sumptions on the parameterization of the system dynamics or the structure of the uncertainty. By
optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original
problem to a linear program over the control parameters that can be efficiently solved using stan-
dard convex optimization techniques. We demonstrate our proposed approach in simulation on a
system with nonlinear non-Markovian dynamics navigating in a cluttered environment.
Keywords: kernel distribution embeddings, stochastic optimal control, joint chance constraints

1. Introduction

The deployment of reliable autonomous systems requires control algorithms that are robust to model
misspecifications and to external disturbances. To enable safety-critical applications, these control
algorithms should also explicitly enforce constraints. For instance, an autonomous car should al-
ways respect speed limits and avoid pedestrians at all times while accounting for uncertain road
conditions and external disturbances. The presence of these two sources of aleatoric and epistemic
uncertainty presents a significant challenge for traditional stochastic optimal control techniques,
which typically rely upon an accurate model of the system and calibrated uncertainty quantifica-
tion. Critically, the accuracy of the model and of its associated uncertainty estimates may deterio-
rate over time as the system is deployed in new environments. This motivates the use of data-driven
techniques that leverage collected measurements of the system to design efficient adaptive control
laws. However, existing data-driven techniques tend to be complex to implement (e.g., neural net-
work controllers), may require system-specific assumptions restricting possible applications (e.g.,
dynamics that are linear in the uncertain parameters), or may not explicitly account for constraints
that are crucial for the reliable deployment of these intelligent autonomous systems.

* These authors contributed equally to this work.
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Figure 1: We propose a data-driven algorithm to efficiently compute control trajectories u for uncertain
dynamical systems. The key consists of representing the state trajectory distribution Q(�jx0; u) by a condi-
tional distribution embedding m(x0; u) from a reproducing kernel Hilbert space H. This approach allows
approximating the true embedding m(x0; u) using a dataset D of observed trajectories of the uncertain sys-
tem (see Assumption 1). The resulting embedding estimate m̂(x0; u) defines an approximation Q̂(�jx0; u) of
Q(�jx0; u) that is used to efficiently compute a stochastic control policy to drive the system to a goal region
Xgoal while avoiding all unsafe sets O (e.g., representing obstacles) at all times.

Contributions: we present a data-driven control algorithm to efficiently compute stochastic control
inputs for general joint chance constrained control problems given observed transitions from the
system. The key consists of leveraging the theory of kernel distribution embeddings, which allows
representing expectation operators as inner products in a reproducing kernel Hilbert space (RKHS).
By applying this theory to the stochastic kernel that characterizes the uncertain system dynamics
(Figure 1), we derive a tractable relaxation of the original joint chance constrained problem that is a
linear program over the control parameters. Our approach allows computing randomized open-loop
control strategies for non-Markovian nonlinear dynamical systems subject to nonconvex constraints.
Outline: we discuss related work in Section 2 and our joint chance constrained problem formulation
in Section 3. Section 4 describes how stochastic kernel embeddings are used to relax the original
intractable problem using a dataset of trajectories as a linear program over the stochastic open-loop
control parameters. We validate our approach in Section 5 and conclude in Section 6.

2. Related work

A wide range of model-based stochastic control techniques have been developed to efficiently con-
trol uncertain systems. By leveraging a model of the system, these approaches explicitly account
for uncertainty while enforcing constraints. For instance, stochastic model predictive controllers
(Mesbah, 2016) explicitly enforce constraints along the state trajectory, dynamic programming ap-
proaches (Ono et al., 2015) use a Lagrangian relaxation and augment the control objective with a
penalty on constraint violation, and control barrier functions (Clark, 2019) provide a condition that
guarantees closed-loop forward invariance. Guaranteeing constraint satisfaction with high proba-
bility typically involves considering a chance constrained problem formulation. The most common
formulation enforces pointwise chance constraints that ensure the independent satisfaction of each
constraint at each time step with high probability (Castillo-Lopez et al., 2019; Lew et al., 2020;
Hewing et al., 2020; Polymenakos et al., 2020; Khojasteh et al., 2020; Jasour et al., 2021). In con-
trast, joint chance constraints guarantee trajectory-wise constraints satisfaction with high probability
(Blackmore et al., 2011; Frey et al., 2020; Schmerling and Pavone, 2017; Koller et al., 2018; Lew
et al., 2022) which is of particular interest whenever all constraints should be satisfied at all times
jointly. For instance, a drone transporting a package should always avoid obstacles and reach its
destination with high probability over the distribution of possible payloads. Unfortunately, tackling
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joint chance constrained formulations is particularly challenging due to the need to consider the full
distribution of the state trajectory. Common approaches decompose such constraints using Boole's
inequality (Blackmore et al., 2011; Ono, 2016) which can be conservative (Schmerling and Pavone,
2017), or perform robust trajectory optimization given con�dence sets for the model parameters
(Koller et al., 2018; Lew et al., 2022) which requires assuming bounded external disturbances and
relying on robust uncertainty propagation techniques that can be conservative.

The performance of model-based controllers depends on prior domain knowledge, which may
become inaccurate over time as the system is deployed in new environments. For this reason, data-
driven control techniques have been proposed to leverage measurements of the system to ef�ciently
characterize its properties and adapt to changes in its operating conditions. Popular data-driven ap-
proaches leverage Gaussian processes models (Deisenroth et al., 2015; Ostafew et al., 2016; Kho-
jasteh et al., 2020; Williams and Rasmussen, 2006; Berkenkamp et al., 2017; Koller et al., 2018;
Lew et al., 2022) which make Gaussian-distributed predictions for the state transitions of the sys-
tem, linearly-parameterized dynamics (Coulson et al., 2019; Berberich et al., 2021), Koopman op-
erators (Abraham and Murphey, 2019), random Fourier features (Bof�, 2021), and neural networks
(Chua et al., 2018). A key algorithmic feature of these approaches is to directly model single-step
transitions of the system. While intuitive and suf�cient from a statistical viewpoint, this approach
makes uncertainty propagation challenging, requiring particle-based approaches to represent the
distribution of the trajectory (Blackmore et al., 2010; Janson et al., 2015; Chua et al., 2018).

In this work, we take a drastically different approach and leverage the theory ofdistributional
kernel embeddingsto characterize the joint distribution of the state trajectory from data. This ap-
proach allows tackling general nonlinear, non-Markovian dynamical systems, representing joint
chance constraints as a linear operation in an RKHS, and optimizing over open-loop stochastic
control policies by solving a linear program over the control parameters. Kernel distribution em-
beddings have been thoroughly studied in the recent years (Song et al., 2009; Smola et al., 2007;
Grüneẅalder et al., 2012; Park and Muandet, 2020), but are not yet popular within the control com-
munity. Controller synthesis applications have been explored in (Thorpe and Oishi, 2021), but the
authors do not consider constraints and only consider one-step transition kernels. In contrast, we
tackle a joint chance constrained problem formulation that explicitly accounts for constraints and
represent the distribution of the entire state trajectory. As a byproduct, this approach allows handling
non-Markovian dynamical systems that are resistant to traditional one-step modeling techniques.

3. Problem Formulation

First, we describe our notation. We denote a conjunction (logicalAND) by ^ and a disjunction
(logicalOR) by _. R andN denote the sets of real and natural numbers, respectively. Given a space
E andN 2 N, we denote the Cartesian productE N , E � � � � � E (N times). For a subsetA � E ,
the map1A : E ! f 0; 1g denotes the indicator function ofA, which satis�es1A (x) = 1 if x 2 A
and1A (x) = 0 if x =2 A. We denote the Borel� -algebra on a topological spaceE by B (E).

De�nition 3.1 (Stochastic Kernel) Let (E; E) and (F; F ) be measurable spaces. A stochastic
kernel fromE to F is a map� : F � E ! [0; 1] such thatx 7! � (A j x) is E-measurable for all
A 2 F andB 7! � (B j x) is a probability measure on(F; F ) for all x 2 E .

3.1. Chance Constrained Optimization

Let (
 ; G; P) be a probability space andf : Rn � Rm � Rp � Rq ! Rn be a continuous function.
Given an initial statex0 2 Rn , our goal is to safely control a system with stochastic dynamics
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x t+1 = f (x t ; ut ; wt ; � ); t 2 N; (1)

wherex t 2 X � Rn denotes the state of the system at timet, ut 2 U � Rm is the control input,
w = ( wt )t2 N is a stochastic process characterizing external disturbances, and� is a random variable
that describes uncertain model parameters (e.g., a drone transporting an uncertain payload of mass
� that is sampled at the beginning of the control task and held constant over time, see Section 5).

This formulation is particularly challenging due to the fact that the system described in (1) is
non-Markovian. Speci�cally, at any timet 2 N, the stochastic state trajectoryx = ( x t )t2 N satis�es

x t = f t (x0; u; w; � ) , f (�; ut � 1; wt � 1; � ) � � � � � f (x0; u0; w0; � ); (2)

whereu = ( us)t � 1
s=0 denotes the control trajectory. Since the parameters� are uncertain and the

disturbanceswt are not necessarily independent, the incrementsx t+1 � x t are not independent, i.e.
the state trajectoryx is not a Markov process. Intuitively, the parameters are randomized only once
and their uncertainty is propagated along the entire state trajectory, see (Lew et al., 2021).

We consider the problem of minimizing the sum of two (possibly non-convex) state and input
cost functions̀ x : X N ! R and`u : UN ! R. For instance,̀x may be chosen as a quadratic cost
that penalizes tracking error and`u may penalize control effort. In addition to this control objective,
the system should reach a desired compact goal regionXgoal � X at a speci�ed timeN 2 N while
avoiding all unsafe sets of statesOt � X (e.g., representing potentially nonconvex obstacles). Due
to the stochasticity of the system, guaranteeing strict constraint satisfaction with probability one
may be infeasible. Instead, given a tolerable failure probability threshold� 2 (0; 1), we require that
all constraints are jointly satis�ed with probability at least1 � � , a requirement often referred to as
a joint chance constraint.

In general, the optimal solution of such chance constrained control problems arestochastic
control policies (Altman, 1999; Ono, 2016). As such, we formulate a stochastic optimal control
problem over the set� of all open-loop stochastic policies� : B (UN ) � X ! [0; 1], where� is
a stochastic kernel fromX to UN . Optimizing over closed-loop stochastic policies is challenging;
we leave such extensions for future work. The resulting control problem is expressed as follows:

min
� 2 �

E[`x (x) + `u(u)] (3a)

s.t. x t+1 = f (x t ; ut ; wt ; � ); u � � (� j x0); t = 0 ; 1; : : : ; N � 1; (3b)

P
�� N � 1^

t=1

x t 62 Ot

�
^ (xN 2 X goal)

�
� 1 � �; (3c)

where the state and control trajectories are denoted asx = ( x t )N
t=1 andu = ( ut )N � 1

t=0 . This problem
is challenging due to the non-convexity of the cost function (3a), the nonlinearity of the uncertain
dynamics (3b), the joint chance constraint (3c), and the non-Markovianity of the state-trajectory
(x t )N

t=1 which requires reasoning about the joint probability distribution of the state trajectory.
Without imposing assumptions regarding the system parameterization and the distribution of the

disturbances and parameters, the problem in (3) is intractable. Instead of relying on such assump-
tions, in this work, we assume access to a dataset of observed transitions from the system. Such a
dataset may come from prior observations of the system evolution or from high-�delity simulations.
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Assumption 1 (Dataset)We have access to a datasetD = f (x i
0; ui ; x i )gM

i =1 of M 2 N independent
and identically distributed (i.i.d.) trajectories, wherex i

0 andui are sampled i.i.d. from probability
distributions onX andUN andx i = ( x i

1; : : :; x i
N ) are i.i.d. trajectories satisfying(1) for eachi .

In the next section, we propose an equivalent reformulation of the problem in (3) using stochastic
kernels. This reformulation is the basis for our data-driven approach that leverages the datasetD.

3.2. Reformulation using Stochastic Kernels

The state trajectoryx that satis�es (1) can be characterized by a stochastic kernelQ : B (X N ) �
X � U N ! [0; 1] that assigns a probability measureQ(� j x0; u) to every initial conditionx0 2 X
and control sequenceu 2 UN on the measurable space(X N ; B (X N )) . This kernel can be de�ned
asQ(A j x0; u) , P(

V N
t=1 x t = f t (x0; u; w; � ) 2 A t ) for anyA = A1 � � � � � AN 2 B (X N ) and

(x0; u) 2 X � U N . As such, Assumption 1 states that one has access toM independent trajectory
samplesx i that are distributed according toQ(� j x i

0; ui ).
For any initial statex0 2 X , any control trajectoryu 2 UN , and any measurable functiong :

X N ! R, we denote the expectation with respect to this probability measure asEQ(xjx0 ;u) [g(x)] =R
X N g(x)Q(dx j x0; u). SinceEQ(xjx0 ;u) [g(x)] is a function of the initial conditionx0 and control

inputu 2 UN , reformulating the original problem in (3) amounts to computing the expectation over
the stochastic control policy. Since the distribution of the control inputsu is characterized by the
stochastic kernel� , for any measurable functionh : UN ! R, we de�ne the conditional expectation
E� (ujx0 ) [h(u)] =

R
UN h(u)� (dujx0).

The two stochastic kernelsQ and� allow representing the joint chance constraint in (3c) as the
expectation of an indicator function. LetT = ( X nO1) �� � � � (X nON � 1) �X goal � X N denote the
set of all state trajectories which reach the goal set while avoiding the unsafe sets at all times, and let
1T (x) denote the indicator ofT , which is one ifxN 2 X goal andx t 62 Ot for all t = 1 ; : : : ; N � 1,
and is zero otherwise. Then, the joint chance constraint in (3c) can be reformulated as

E� (ujx0 )
�
EQ(xjx0 ;u) [1T (x)]

�
= P

�� N � 1^

t=1

x t 62 Ot

�
^ (xN 2 X goal)

�
� 1 � �: (4)

Using (4) and the stochastic kernelQ, we reformulate the original problem in (3) as

min
� 2 �

E� (ujx0 )
�
EQ(xjx0 ;u) [`

x (x) + `u(u)]
�

(5a)

s.t. E� (ujx0 )
�
EQ(xjx0 ;u) [1T (x)]

�
� 1 � �: (5b)

Since the stochastic kernelQ that characterizes the state trajectoryx is unknown, the problem
above is generally intractable. In the next section, we show how the datasetD allows relaxing the
problem in (5) using a framework known askernel embeddings of distributions. This approach
allows representing the expectation operators in (5) as elements in a high-dimensional function
space and subsequently reformulating the original problem as a linear program in this space.

4. Hilbert Space Embeddings of Distributions

The main challenge in solving (5) is evaluating the expectations with respect to the stochastic kernels
Q and� that characterize dynamics uncertainty and the stochasticity of the control policy. Our key
insight consists of embedding an integral operator as an element in an RKHS. With this approach,
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evaluating the expectations in (5) amounts to performing a linear operation between two functions of
an RKHS. We use the dataset from Assumption 1 to approximate the expectation operator associated
to the unknown stochastic kernelQ. Then, by selecting a �nite-dimensional representation for the
stochastic policy, we propose a tractable �nite-dimensional approximation of (5).

4.1. Reproducing Kernel Hilbert Space Embeddings

In this section, we endow our problem with an RKHS structure that enables representing the ex-
pectation operators in problem (5) as linear functions. First, we de�ne the positive de�nite kernel
functionkX N : X N � X N ! R (Steinwart and Christmann, 2008, De�nition 4.15). According to
the Moore-Aronszajn theorem (Aronszajn, 1950), this kernel de�nes a unique corresponding RKHS
H of functions fromX N to R with associated inner producth�; �i H such that: (i)kX N (x; �) 2 H
for all x 2 X N , and (ii) g(x) = hg; kX N (x; �)i H for all g 2 H andx 2 X N . As a consequence
of the reproducing property,kX N (x; x 0) = hkX N (x; �); kX N (x0; �)i H , which is often referred to
as the kernel trick (Steinwart and Christmann, 2008). We assume that the kernelkX N is B (X N )-
measurable and bounded, such thatsupx2X N

p
kX N (x; x ) < 1 . With these conditions, according

to (Song et al., 2009), for everyx0 2 X andu 2 UN , there exists an elementm(x0; u) 2 H , called
theconditional distribution embedding, which is a linear function fromX N to R de�ned as

m(x0; u) , EQ(xjx0 ;u) [kX N (x; �)]: (6)

By the reproducing property and linearity of the expectation, the expectation of any function of the
RKHS H with respect to the stochastic kernelQ can be evaluated as an inner product with the
conditional distribution embedding. Speci�cally, for anyx0 2 X and anyu 2 UN ,

EQ(xjx0 ;u) [g(x)] = hg; m(x0; u)i H for anyg 2 H : (7)

Assuming that the cost functioǹx and the indicator function1T belong toH , the inner expecta-
tions in (5) with respect toQ can be rewritten as a linear operation using the distribution embedding
m(x0; u). As such, our approach does not rely on speci�c assumptions about the dynamics, the
uncertain parameters, and the disturbances. The main challenge consists of computing an accurate
approximation of the distribution embeddingm(x0; u), which we pursue in the next section.

4.2. Empirical Embedding Estimate

Since the true stochastic kernelQ is unknown a priori, we do not have access to the conditional dis-
tribution embeddingm(x0; u) 2 H . To construct an empirical estimatêm(x0; u) of this operator,
we leverage the datasetD from Assumption 1. Speci�cally, as in (Grüneẅalder et al., 2012; Capon-
netto and De Vito, 2007; Micchelli and Pontil, 2005), we search for a best-�t solution in the RKHS
as the solution to the regularized least-squares problemm̂ = arg min f 2 Q

1
M

P M
i =1 kkX N (x i ; �) �

f (x i
0; ui )k2

H + � kf k2
Q , where� > 0 is a regularization parameter andQ is a vector-valued RKHS

of functions fromX � U N to H (see Micchelli and Pontil, 2005, for more information). The
solution to this problem is unique:

m̂(x0; u) = � > (G + �MI ) � 1K (x0; u); (8)

where� 2 H M is a feature vector with elements� i = kX N (x i ; �) 2 H , G 2 RM � M is a
Gram matrix with elementsGij = kX (x i

0; x j
0)kUN (ui ; uj ), wherekX andkUN are positive de�nite
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Figure 2: We search for a stochastic
kernel embeddingp(x0) in the RKHS
U . This de�nes a stochastic kernel
� (ujx0) that characterizes the con-
trol policy. Using this policy kernel
and the approximate state trajectory
stochastic kernel̂Q(xjx0; u), we rep-
resent the state trajectory distribution
and reformulate the original stochas-
tic control problem.

kernels onX andUN , respectively, andK (x0; u) 2 RM is a vector with elements[K (x0; u)] i =
kX (x i

0; x0)kUN (ui ; u). This estimatêm(x0; u) of the conditional distribution embeddingm(x0; u)
enables an ef�cient approximation of the expectation in (7). Speci�cally, for any functiong 2 H ,

EQ(xjx0 ;u) [g(x)] = hg; m(x0; u)i H � h g;m̂(x0; u)i H = g> (G + �MI ) � 1K (x0; u); (9)

whereg = [ g(x1); : : : ; g(xM )]> 2 RM . With (9), the inner expectations in (5) with respect to the
unknown stochastic kernelQ can be approximated using simple matrix operations.

The quality of this approximation generally depends on the datasetD from Assumption 1, on
the kernel choice, and on the number of samplesM . The convergence properties of conditional dis-
tribution embeddings have been studied in the literature, see (Song et al., 2009, 2010; Grüneẅalder
et al., 2012; Park and Muandet, 2020). Notwithstanding minor variations in the underlying theoret-
ical framework, existing results show that the empirical estimate of a kernel distribution embedding
converges in probability to the true embedding as the sample size increases, and suggest an optimal
rate of convergence ofOp(M � 1=4) (Park and Muandet, 2020). Exactly quantifying the approxima-
tion error in (9) for a �nite number of samples is beyond the scope of this work.

4.3. Stochastic Control Trajectory Representation

To reformulate the problem in (5), it remains to compute the expectation with respect to any chosen
stochastic policy� . At this point, one could search for a deterministic control sequenceu 2 UN and
obtain a tractable approximate reformulation of the original problem. However, this reformulation
would be non-convex if̀u andkUN are non-convex.

Instead, optimizing over the larger set of stochastic policies allows for more ef�cient control
strategies (Altman, 1999; Ono, 2016). Note that under the condition thatkUN is B (UN )-measurable
and bounded, any stochastic policy� (� j x0) can be represented by a conditional distribution em-
beddingp(x0) in the RKHSU associated withkUN . Accordingly, the expectation of any function
h 2 U with respect to the stochastic policy can be expressed as an inner product in the RKHSU
asE� (ujx0 ) [h(x0; u)] = hh; p(x0)i U . However, depending on the choice of kernelkUN , the repre-
sentation of the embeddingp(x0) may be in�nite-dimensional. Thus, optimizing over all possible
stochastic embeddings is generally intractable. This observation motivates our �nite-dimensional
policy representation, which we characterize by the set of stochastic kernel embeddings

p(x0) =
PX

j =1


 j (x0)kUN (~uj ; �); where
PX

j =1


 j (x0) = 1 ; 0 � 
 (x0); (10)

7



CHANCE CONSTRAINED CONTROL USINGKERNEL DISTRIBUTION EMBEDDINGS

where
 (x0) 2 RP , the elements~uj 2 UN are user-speci�ed control sequences, andj = 1 ; : : : ; P .
The �nite set of control sequencesA = f ~uj gP

j =1 can be chosen strategically to uniformly cover
the control spaceUN , can be sampled randomly (independently of Assumption 1), or can be pre-
speci�ed depending on the application (e.g., informed by a sampling-based planner with an ap-
proximate deterministic dynamics model, Ichter et al., 2018). The coef�cients
 j (x0) characterize
the probability values that weight the admissible control sequences inA . Correspondingly, the last
two conditions in (10) constrain the coef�cient vector
 (x0) to lie within a probability simplex
S = f 
 2 RP j

P P
i =1 
 i = 1 ; 0 � 
 g. This guarantees that the kernel distribution embedding

p(x0) de�nes a valid stochastic kernel� characterizing the control policy.
Restricting the search of stochastic kernel embeddings to a �nite-dimensional subspace ofU

allows a tractable relaxation of the original problem. Indeed, for any functionh 2 U , we have

E� (ujx0 ) [h(u)] = hh; p(x0)i U =

*

h;
PX

j =1


 j (x0)kUN (~uj ; �)

+

U

=
PX

j =1

h(~uj )
 j (x0): (11)

Assuming that̀ u 2 U , this relaxation enables a tractable evaluation of the expectation opera-
tor with respect to the stochastic control policy� (� j x0). Intuitively, � (� j x0) is a sum of Dirac
functions centered at each control trajectory~uj 2 UN weighted by the probability coef�cient
 j (x0)
(Berlinet and Thomas-Agnan, 2011, Chapter 4, §1.1). Importantly, (11) is linear in the unknown pa-
rameter
 (x0) 2 RP . This relaxation offers a tractable linear reformulation of the original problem,
although it induces sub-optimality relative to the computationally intractable problem of optimizing
over the in�nite-dimensional space of stochastic policies. We leave the quanti�cation of this sub-
optimality gap (perhaps by �rst quantifying the error between the empirical approximation in (10)
and any feasible stochastic embeddingp(x0), see (Kanagawa et al., 2018, §6.2)) to future work.

4.4. Approximate chance constrained Optimization Problem

Using the estimatêm(x0; u) and the policy estimatep(x0), the expectations in (5) can be approxi-
mated using simple matrix multiplications and inner products. Speci�cally, for any functiong 2 H ,
combining (9) with (11), we obtainE� (ujx0 ) [EQ(xjx0 ;u) [g(x)]] � hh g;m̂(x0; �)i H ; p̂(x0)i U =
P P

j =1 g> (G + �MI ) � 1K (x0; ~uj )
 j (x0): This motivates the following approximation of (5):

min

 (x0 )2 RP

�
` x > (G + �MI ) � 1R(x0) + ` u>

�

 (x0) (12a)

s.t.
�

�1>
T (G + �MI ) � 1R(x0)

�

 (x0) � 1 � �; 1> 
 (x0) = 1 ; 0 � 
 (x0); (12b)

whereR(x0) 2 RM � P is a matrix such that each column[R(x0)] j = K (x0; ~uj ) such that[R(x0)] ij =
kX (x i

0; x0)kUN (ui ; ~uj ), and` x ; ` u ; �1T 2 RM are vectors with elements` x
i = `x (x i ), ` u

i = `u(~uj ),
and[�1T ]i = 1T (x i ), respectively. The approximate problem in (12) is a linear program over the
coef�cients 
 (x0) (that represent probability weights over the admissible control sequences inA)
that can be ef�ciently solved via interior-point or simplex algorithms. Thus, the solution to (12) is
a randomized control strategy, i.e., an open-loop stochastic control policy with values inA . The
quality of the resulting stochastic control strategy that solves the problem in (12) generally depends
on the quality of the datasetD from Assumption 1 and on the choice of the control inputs inA .
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