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Abstract
Control using quantized feedback is a fundamental approach to system synthesis with limited com-
munication capacity. In this paper, we address the stabilization problem for unknown linear systems
with logarithmically quantized feedback, via a direct data-driven control method. By leveraging a
recently developed matrix S-lemma, we prove a sufficient and necessary condition for the exis-
tence of a common stabilizing controller for all possible dynamics consistent with data, in the form
of a linear matrix inequality. Moreover, we formulate a semi-definite programming problem to
solve the coarsest quantization density. By establishing its connections to unstable eigenvalues of
the state matrix, we further prove a necessary rank condition on the data for quantized feedback
stabilization. Finally, we validate our theoretical results by numerical examples.
Keywords: Quantized control; data-driven control; linear systems; linear matrix inequalities.

1. Introduction

Motivated by limited communication capacity in physical systems, control with quantized feed-
back (Elia and Mitter, 2001; Fu and Xie, 2005; You et al., 2011; Kang and Ishii, 2015; Zhou et al.,
2019) has been an active research area for decades, dating back to an early work (Kalman, 1956)
by Kalman. By loosely compressing the system input and output into sectionalized levels through
a quantizer, the dynamical system can be stabilized, possibly with H2 and H∞ performance guar-
antees under low communication load. The main line of the existing literature is to understand and
mitigate the side effects of quantization. However, an explicit dynamical model is required which
might be impossible to obtain in practical scenarios.

Recent years have witnessed a renewed surge in data-driven control for unknown linear systems
(De Persis and Tesi, 2019, 2021; Van Waarde et al., 2020; van Waarde et al., 2020). Instead of
identifying a descriptive model via system identification, the direct data-driven framework computes
a control law from sampled system trajectories. A key feature of this approach is that it does not
require the well-known persistent excitation condition, hence shedding light on the case where data
is insufficient for system identification. By invoking a data-based uncertainty representation, it has
been shown in (van Waarde et al., 2020) that for informative data, a stabilizing controller can be
efficiently found via a Linear Matrix Inequality (LMI) (Boyd et al., 1994).

In this paper, we take an initial step towards quantized control in the direct data-driven approach
and focus on the quantized stabilization problem for unknown noisy linear systems with a single
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input. In particular, we limit the input quantizer to be logarithmic (i.e., the quantization levels are
linear in logarithmic scale) with a linear state feedback input, which has been proved (Elia and
Mitter, 2001) to be able to attain the coarsest quantization density for stabilization of deterministic
linear systems. By leveraging a recently developed matrix S-lemma (van Waarde et al., 2020), we
prove a sufficient and necessary condition for the existence of a common stabilizing controller for all
possible dynamics that reflect the data, in terms of an LMI. Moreover, we propose a Semi-definite
Programming (SDP) to solve a uniform lower bound for the quantization density. By establishing its
connections to unstable eigenvalues of the state matrix, we further prove a necessary rank condition
on the data for quantized feedback stabilization.

1.1. Related work

Quantized control. Control using quantized feedback has drawn increasing attention of the control
community from the seminal work (Elia and Mitter, 2001). Its major contribution is to show that
for linear systems with a single input, the coarsest quantizer is logarithmic, and the associated
quantization density can be computed using the unstable eigenvalues of the state matrix. Fu and Xie
(2005) interprets the quantized stabilization problem as anH∞ control problem based on the sector
bound method, and extend it to multiple-input multiple-output (MIMO) systems. Inspired by Fu
and Xie (2005), our work solves a minimaxH∞ control problem to find the coarsest density. More
pertinent to our work is the quantized control for linear uncertain systems. Hayakawa et al. (2009)
proposes a time-varying adaptive control law for asymptotic stabilization of uncertain noiseless
linear systems by solving a series of Riccati equations. However, we aim to stabilize a set of
systems consistent with the data using a common quantized state feedback controller. Kang and
Ishii (2015) considers the element uncertainty in the state matrix of a controllable canonical system,
and addresses the stabilization problem of systems with two blocks of uncertainties (due to the
plant and the quantization) as done in our work. In contrast, we consider a more natural form of
uncertainty which is reflected by the data. Other works include Gao and Chen (2008); Fu and Xie
(2009); Coutinho et al. (2010); Shen et al. (2017), and Corradini and Orlando (2008); Liu et al.
(2012); Yu and Lin (2016); Zhou et al. (2019) for nonlinear systems.

Direct data-driven control. This line of work originates from the Willems et al.’s fundamental
lemma proposed by Willems et al. (2005), which states that the dynamical model can be replaced
with data from sufficiently excited systems. Motivated by it, De Persis and Tesi (2019) represents the
dynamics using historical trajectories under the Persistent Excitation (PE) condition and formulate
an SDP to solve a stabilizing controller for deterministic linear systems. This data-driven framework
is then applied to model predictive control to deal with safety constraints (Coulson et al., 2019;
Berberich et al., 2020a). When the data is corrupted with noises, De Persis and Tesi (2021) proposes
an SDP with robustness to the noise for stabilization in an ad-hoc way. For the case that data
is insufficient to satisfy the PE condition, the seminal work Van Waarde et al. (2020) establishes
sufficient and necessary conditions on the informativity of the data for several fundamental control
problems. van Waarde et al. (2020); Bisoffi et al. (2021) solves a stabilizing controller via an LMI
from noisy data by leveraging a matrix S-lemma. Other data-driven work includes Guo et al. (2021);
Xu et al. (2021); Rotulo et al. (2021); Berberich et al. (2020b). Our work extends the framework
in van Waarde et al. (2020) to address quantized stabilization problems and answer fundamental
questions regarding the coarsest quantization density and the condition on the noisy data.
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Figure 1: The logarithmic quantizer with density ρ.

2. Problem formulation

In this paper, we consider the following discrete-time linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where x(k) ∈ Rn denotes the state, u(k) ∈ R is the control input and {w(k) ∈ Rn} is an uncorre-
lated noise sequence. As an initial attempt, we focus on the setting that A ∈ Rn×n is an unknown
state matrix but the input matrix B ∈ Rn is known a priori, and (A,B) are stabilizable. Since
the coarsest quantizer that quadratically stabilizes linear time-invariant systems is logarithmic (Elia
and Mitter, 2001), we aim to stabilize (1) via logarithmically quantized state feedback, provided
only with a finite length of input and state trajectory {x(0), u(0), x(1), u(1), . . . , x(T )}. Define the
quantization level ui = ρ−iu0, i ∈ {1, 2, . . . } with a density 0 < ρ < 1. Then, the quantized
controller has the form of

u(k) = f(v(k)), v(k) = Kx(k), (2)

where a logarithmic quantizer f(·) : R→ R (see Fig. 1) is given by

f(v) =


ui, if 1

1+δui < v ≤ 1
1−δui, v > 0

0, if v = 0

−f(−v), if v < 0

with δ =
1− ρ
1 + ρ

, (3)

and K ∈ R1×n is the feedback gain. We make a standard technical assumption (De Persis and Tesi,
2019; van Waarde et al., 2020) on the noise.

Assumption 1 The sequenceW = {w(0), w(1), . . . , w(T−1)} is unknown, yet satisfies a quadratic
bound [

I
W>

]> [
Φ11 Φ12

Φ>12 Φ22

] [
I
W>

]
≥ 0 (4)

with a symmetric matrix Φ11 and a negative definite matrix Φ22 < 0.

Assumption 1 is in the form of a quadratic matrix inequality, which is able to capture important
prior knowledge on the system such as energy and sample covariance bounds over a finite horizon.
For example, let Φ12 = 0 and Φ22 = −I , it reduces to WW> =

∑T−1
k=0 w(k)w(k)> ≤ Φ11.
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A main challenge for quantized stabilization is that the unknown matrix A cannot be deduced
uniquely from data, which instead constitutes an uncertainty set. In fact, our approach relies on
a data-based representation of the uncertainty (van Waarde et al., 2020). Define the data matrices
X− = {x(0), x(1), . . . , x(T−1)},U = {u(0), u(1), . . . , u(T−1)},X+ = {x(1), x(2), . . . , x(T )},
which are constrained by system dynamics X+ = AX− + BU + W. Substituting W into (4), it
follows that all possible A consistent with the data must satisfy a quadratic matrix inequality[

I
A>

]> [
I XU

0 −X−

] [
Φ11 Φ12

Φ>12 Φ22

] [
I XU

0 −X−

]> [
I
A>

]
≥ 0, (5)

with XU = X+ −BU , which defines the uncertainty set Σ = {A|(5) holds}.
Our goal is now to design a controller in the form of (2) to stabilize all systems withA ∈ Σ. This

naturally raises the following fundamental question: can we characterize the conditions for such a
controller to existing? Clearly, the data must be sufficiently informative such that the uncertainty
set Σ is small enough. Moreover, the quantizer f(·) cannot be too coarse, which implies that the
quantization density ρ has a uniform lower bound.

In this paper, we provide an affirmative answer to the question. By converting the stabilization
problem to anH∞ control problem and applying a recently developed matrix S-lemma (van Waarde
et al., 2020), we derive a sufficient and necessary condition on the data matrices as well as the
quantization density in terms of an LMI. Moreover, we show that the coarsest quantizer and the
associated controller can be found by solving a minimaxH∞ norm optimization problem, which can
be formulated as an efficient SDP. By relating the minimax problem to the unstable eigenvalues of
the state matrix, we further prove an explicit rank condition on the data matrices, which is necessary
for quantized stabilization.

3. Sufficient and necessary condition for quantized stabilization

In this section, we establish a sufficient and necessary condition for (1) to be stabilizable with
logarithmically quantized linear feedback. We first convert the stabilization problem to an H∞
control problem over the uncertainty set Σ.

It has been shown in Fu and Xie (2005) that (1) is stabilizable via quantized linear state feedback
with quantization density ρ if and only if the uncertain system

x(k + 1) = Ax(k) +B(1 + ∆)v(k), ∆ ∈ [−δ, δ] (6)

is quadratically stabilizable via linear state feedback, where δ is defined by (3). Fig. 2 illustrates
the control diagram of (6) by viewing ∆ as the input uncertainty. By the well-known small-gain
theorem (Zhou and Doyle, 1998), the stabilization of (6) is equivalent to an H∞ control problem.
Define the transfer function from signal y to v as

GA,K(z) =

[
A+BK B

K 0

]
= K(zI −A−BK)−1B.

We use ‖GA,K(z)‖∞ to denote itsH∞ norm in the Hilbert space. Then, the uncertain system (6) is
stabilizable via v = Kx if and only if

δ−1 > ‖GA,K(z)‖∞. (7)
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Figure 2: The control diagram of the uncertain system (6).

Since the condition (7) is expressed in the frequency domain, we convert it to an explicit alge-
braic inequality by applying the bounded real lemma in robust control theory (Zhou et al., 1996).

Lemma 1 (Bounded real lemma) ‖GA,K(z)‖∞ < 1/δ if and only if there exists P > 0 such that

I − δ2B>PB > 0, and K>K + (A+BK)>(P−1 − δ2BB>)−1(A+BK) < P. (8)

By Lemma 1, the stabilization problem is now equivalent to solving the H∞ control problem
in (8) subject to A ∈ Σ. We show that (8) can be rewritten as a quadratic inequality by a standard
change of variables. Let Y = P−1, X = KY . Pre- and postmultiplying P−1 to (8), it holds that

−Y + (AY +BX)>(Y − δ2BB>)−1(AY +BX) +X>X < 0.

A Schur complement argument further yields that[
Y −X>X (AY +BX)>

AY +BX Y − δ2BB>

]
> 0,

which again by Schur complement is equivalent to

Y − δ2BB> − (AY +BX)(Y −X>X)−1(AY +BX)> > 0, and Y −X>X > 0.

Reorganizing it in a quadratic form of A with Z = Y −X>X > 0, we have that[
I
A>

]> [
Y − δ2BB> −BXZ−1X>B> −BXZ−1Y >

−Y Z−1X>B> −Y Z−1Y >

] [
I
A>

]
> 0. (9)

Then, the quantized stabilization problem leads to the following question: when does (9) hold
for all A satisfying (5)? Since both (9) and (5) are quadratic inequalities in [I A>], we apply the
matrix-valued S-lemma (van Waarde et al., 2020) to derive an LMI condition.

Lemma 2 (Matrix S-lemma) Let M =

[
M11 M12

M>12 M22

]
∈ R(n+n)×(n+n) and N =

[
N11 N12

N>12 N22

]
∈

R(n+n)×(n+n) be symmetric matrices with M22 ≤ 0 and N22 ≤ 0. Suppose that ker(N22) ⊂

ker(N12) and there exists some matrixA satisfying
[
I
A>

]>
N

[
I
A>

]
> 0 (the so-called generalized

Slater condition). Then, it follows that
[
I
A>

]>
M

[
I
A>

]
> 0 for allA satisfying

[
I
A>

]>
N

[
I
A>

]
≥

0 if and only if there exists α ≥ 0 and β ≥ 0 such that M − αN ≥
[
βI 0
0 0

]
.
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In our setting, we define the partitioned matrices

M =

[
M11 M12

M>12 M22

]
=

[
Y − δ2BB> −BXZ−1X>B> −BXZ−1Y >

−Y Z−1X>B> −Y Z−1Y >

]
, (10)

N =

[
N11 N12

N>12 N22

]
=

[
I X+ −BU
0 −X−

] [
Φ11 Φ12

Φ>12 Φ22

] [
I X+ −BU
0 −X−

]>
. (11)

Now, we examine that M and N satisfy the kernel assumption in Lemma 2. Note that M22 ≤ 0
and N22 ≤ 0 trivially hold since Z = Y − X>X > 0 and Φ22 < 0. Clearly, ker(N12) =
ker(Φ12+(X+−BU)Φ22)X>− , and ker(N22) = ker(X>− ) as Φ22 < 0. Thus, ker(N22) ⊂ ker(N12).
The generalized Slater condition implies that the set Σ has at least an interior point, which is a mild
assumption in our problem. Then, we have the following main result under the Slater condition.

Theorem 3 Assume that there exists some matrix A such that
[
I
A>

]>
N

[
I
A>

]
> 0. Then, the

system is stabilizable via logarithmically quantized linear feedback with density ρ = (1−δ)/(1+δ)
for all A ∈ Σ if and only if there exists Y > 0, X and scalars α ≥ 0, β > 0, δ > 0 such that the
following LMI holds
Y − δ2BB> − βI 0 BX 0

0 0 Y 0
X>B> Y > Y X>

0 0 X I

−α

I XU

0 −X−
0 0
0 0

[Φ11 Φ12

Φ>12 Φ22

]
I XU

0 −X−
0 0
0 0


>

≥ 0,

[
Y X>

X I

]
> 0.

(12)
Moreover, if (12) is feasible for some Y and X , then a stabilizing controller is given by u(k) =
f(v(k)) with quantization density ρ = (1− δ)/(1 + δ) and v(k) = Kx(k) with K = XY −1.

Proof To prove the “if” statement, suppose that (12) is feasible. Now, we calculate the Schur
complement of the first LMI in (12) concerning I and obtainY − δ2BB> − βI 0 BX

0 0 Y
X>B> Y > Z

−α
I XU

0 −X−
0 0

[Φ11 Φ12

Φ>12 Φ22

]I XU

0 −X−
0 0

> ≥ 0,

[
Y X>

X I

]
> 0.

Then, we again compute the Schur complement with respect to Z to yield M − αN ≥
[
βI 0
0 0

]
,

where we have used the fact that Z = Y −X>X > 0 by the second inequality of (12). Thus, by
the matrix S-lemma in Lemma 2, the inequality (9) holds for all A ∈ Σ. According to our change
of variables, a stabilizing controller K can be solved by K = XY −1.

To prove the “only if” statement, suppose that the system is stabilizable with quantization den-
sity ρ for allA ∈ Σ. By assumption, the inequality (9) holds for allA ∈ Σ withZ = Y −X>X > 0.
Thus, the first inequality in (12) follows from Lemma 2 and some Schur complement. The second
inequality in (12) holds since Z = Y −X>X > 0. The proof is now completed.

It can be clearly observed from the first LMI in (12) that as δ increases, the system becomes
harder to stabilize. Hence, there exists a coarsest quantization density such that the system cannot
be stabilized for any lower density.

6
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4. Coarsest quantization density

In this section, we derive a tight lower bound of the quantization density ρ for the system to be
stabilizable, provided with the data matrices {X−, X+, U}.

Consider the following min-maxH∞ optimization problem

min
K

max
A∈Σ

‖GA,K(z)‖∞. (13)

Let K be the set of optimal controllers, S be the set of optimal state matrices, and γ∗ be its optimal
value to (13). Then, we show that δ = (1− ρ)/(1 + ρ) is in fact upper bounded by 1/γ∗.

Theorem 4 Suppose that (13) is feasible. Then, there exists a stabilizing logarithmically quantized
controller with density ρ = (1− δ)/(1 + δ) for all systems with A ∈ Σ if and only if δ < 1/γ∗.

Proof To prove the “if” statement, suppose that δ < 1/γ∗. Let K∗ ∈ K be an optimal controller to
(13). Then, for any A ∈ Σ, it follows that

‖GA,K∗(z)‖∞ ≤ max
A∈Σ
‖GA,K∗(z)‖∞ = γ∗.

Multiplying by δ in both sides of the above inequality yields that δ‖GA,K∗(z)‖∞ < 1 by the
assumption δ < 1/γ∗. Hence, by (7), the feedback gain K∗ is able to stabilize (1) with quantization
density ρ = (1− δ)/(1 + δ).

To prove the “only if” statement, suppose that a controller K with quantization density ρ stabi-
lizes all systems with A ∈ Σ. Let A∗ ∈ S be an optimal system matrix to (13). Then, it follows
that

δγ∗ = δmin
K
‖GA∗,K(z)‖∞ < δ‖GA∗,K(z)‖∞ < 1.

Therefore, we must have that δ < 1/γ∗. The proof is now completed.

Note that (13) may not have a solution if Σ is unbounded. In fact, the boundedness of Σ is a
necessary condition for (13) to be feasible, as to be shown in the next section. Now, we propose an
efficient SDP to solve (13). Clearly, (13) is equivalent to

min
K,δ>0

1/δ, subject to ‖GA,K(z)‖∞ < 1/δ, ∀A ∈ Σ.

TheH∞ norm constraint in the above minimization problem can be formulated as an LMI by virtue
of Theorem 3, which leads to the following maximization problem

max
Y,X,α,β,δ

δ, subject to (12) and δ > 0, Y > 0, α ≥ 0, β > 0, (14)

which is an SDP and can be efficiently solved by modern solvers e.g., CVX (Grant and Boyd, 2014).

5. Necessary condition for quantized stabilization

So far, we have established both sufficient and necessary conditions for quantized stabilization and
have proposed an SDP to solve the coarsest quantization density, all based on the LMI in (12).
To provide more profound insights, we derive a necessary and explicit rank condition on the data
matrices by leveraging classical quantized control results.

7
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Consider the following max-min problem that has interchanged the order of minimization and
maximization of (13)

max
A∈Σ

min
K
‖GA,K(z)‖∞. (15)

According to Fu and Xie (2005), the inner minimization can be expressed as min
K
‖GA,K(z)‖∞ =∏

i |λi|, where λi denotes the i-th unstable eigenvalue of A. Thus, (15) is equivalent to a maximiza-
tion problem

max
A∈Σ

∏
i

|λi|.

By the well-known max-min inequality (Boyd and Vandenberghe, 2004), it follows that

max
A∈Σ

∏
i

|λi| ≤ min
K

max
A∈Σ
‖GA,K(z)‖∞ = γ∗.

Hence, the maximum max
A∈Σ

∏
i |λi| must be bounded such that γ∗ is finite. Since Σ is only related

to the data, we then ask the following question: under which conditions on the data matrices, the
eigenvalues of A are bounded for all A ∈ Σ?

A straightforward sufficient condition is that Σ is bounded, which is equivalent to rank(X−) =
n. However, it is non-trivial to prove that the rank condition is also necessary for the eigenvalue
to be bounded. The following example shows that when Σ is unbounded, there might still exist a
nilpotent matrix A ∈ Σ with unbounded elements yet zero eigenvalues.

Example 1 Consider a nilpotent matrix A =

[
0 k
0 0

]
and input matrix B = I . The data matrices

are given by X− =

[
1 1
0 0

]
, U = I , X+ = I . It can be easily verified that X+ = AX− +BU . Set

Φ11 = I,Φ12 = 0,Φ22 = −I . Then, it is easy to verify that A ∈ Σ for k ∈ R. Hence, A can be
unbounded but its eigenvalues are bounded.

Nevertheless, we show by contradiction that the boundedness of Σ is both sufficient and neces-
sary for the eigenvalues of A to be bounded for all A ∈ Σ, which leads to the following result.

Theorem 5 If there exists a stabilizing logarithmically quantized controller, then rank(X−) = n.

Proof We prove by contradiction. Suppose that rank(X−) = r < n. Next, we construct a matrix
Ā ∈ Σ which has unbounded eigenvalues. First, we define an invertible linear transformation

E =

[
E11 E12

E21 E22

]
∈ Rn×n such that EX− =

[
Xr

0

]
with Xr ∈ Rr×T , and a diagonal matrix

Λ = diag(0, . . . , 0, 1, . . . , 1) ∈ Rn×n with its first r diagonal elements being zero.
LetA0 ∈ Σ, and Ā = A0 +kΛE. Then, we prove that Ā ∈ Σ. To see this, note that ΛEX− = 0

by definition, and Σ can be written as

[
I XU +AX−

] [Φ11 Φ12

Φ>12 Φ22

] [
I XU +AX−

]> ≥ 0.

8
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Figure 3: Left: the percentage of data sets for which (12) has a solution; Right: the mean of δ2

which is obtained by solving (14). The x-axis is set to be logarithmic for better exposition.

Next, we show that ΛE has a non-zero eigenvalue. By the definition, E22 has full rank. Let λE

be an eigenvalue of E22 and xE be the associated eigenvector. Denote x =

[
0

xE

]
∈ Rn. Then, it is

straightforward to verify that ΛEx = λEx, which implies that λE 6= 0 is an eigenvalue of ΛE.
Hence, by limiting k to infinity, we conclude that Ā has unbounded eigenvalue. Thus, we have

that max
A∈Σ

∏
i |λi| =∞, which leads to a contradiction.

Though the condition rank(X−) = n is only necessary, it provides a simple approach to examine
the existence of a solution to (12). Moreover, it also holds for zero quantization density, which
corresponds to general linear systems without quantization. Hence, our results extend van Waarde
et al. (2020) in that we provide a necessary and explicit rank condition for quadratic stabilization.

6. Numerical examples

In this section, we perform numerical examples to verify our theoretical results. The simulation
is carried out using MATLAB 2020b on a laptop with a 2.8GHz CPU. The code is provided in
https://github.com/lixc21/Data-driven-Quantized-Control.

We randomly generate an open-loop unstable linear dynamical model

A =

−0.192 −0.936 −0.814
−0.918 0.729 −0.724
−0.412 0.735 −0.516

 , B =

−0.554
0.735
0.528


by sampling its elements uniformly from the interval [−1, 1]. The eigenvalues of A are 1.2910,
−1.3228, 0.0528. The time horizon of the trajectory is set to T = 20. We assume that the noise is
independently sampled from a uniform distribution on a three-dimensional ball {w ∈ R3| ‖w‖22 ≤
ωmax} with noise level ωmax. The prior bound in (4) on the noise is then given by Φ11 = TωmaxI ,
Φ12 = 0, Φ22 = −I . It can be easily verified that the sampled noises satisfy the quadratic bound.
The initial state and the control input at each time instant are sampled from the standard normal
distribution.

9
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Figure 4: Left: the percentage of data sets for which (12) has a solution; Right: the mean of δ2

which is obtained by solving (14). The x-axis is set to be logarithmic.

First, we investigate the effects of noise level on quantized stabilization. We let ωmax vary from
0 to 1. For each noise level, we generate 1000 independent data sets to solve the LMI in (12) and
plot the percentage for (12) to have a feasible solution, i.e., a stabilizing controller exists. We check
that the generalized Slater condition required by Theorem 3 holds for all the data sets by verifying
thatN in (11) has three positive eigenvalues. The result is displayed on the left of Fig. 3. Consistent
with intuition, the percentage decreases as the noise level grows. This is because the uncertainty
set of A becomes larger and it is harder to find a quantized stabilizing controller. We obtain similar
results for the coarsest quantization density in the right of Fig. 3.

Then, we note that the prior bound on the noise in (4) can also have a significant impact on the
performance. To see this, we let the prior bound be larger than the true bound by setting Φ11 =
ζ × TωmaxI , Φ12 = 0, Φ22 = −I , where ωmax = 0.005 and the parameter ζ varies from 1 to 50.
For each ζ, we generate 1000 data sets independently and compute the percentage for (12) to have a
solution. For the cases that a stabilizing controller exists, we further solve the coarsest quantization
density by (14). The generalized Slater condition is also verified to hold for all data sets. The results
are shown in Fig. 4. Clearly, if we have a more accurate prior bound, we are more likely to stabilize
the system via a lower quantization density.

7. Conclusion

In this paper, we have addressed the stabilization problem using logarithmically quantized feedback
for partially unknown linear systems with noisy inputs. Particularly, we have provided a sufficient
and necessary condition for quantized stabilization in the form of an LMI. Moreover, we have solved
the coarsest quantization density as well as a stabilizing feedback gain via an SDP.

We believe that our results raise a range of interesting directions. For example, one may extend
our results to the stabilization of general MIMO systems. Instead of solving a stabilizing controller,
we can also study H2 and H∞ performance guarantees of the closed-loop systems. For online
control with quantized feedback, one can design an adaptive quantizer with a varying density as
more data is collected per round.
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