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Abstract

We address the generalised imitation learning problem of producing robot motions to imitate expert
demonstrations, while adapting to novel environments. Past studies have often focused on meth-
ods that closely mimic demonstrations. However, to operate reliably in novel environments, robots
should be able to adapt their learned motions accordingly. Motivated by this, we devise a framework
capable of learning a time-invariant dynamical system to imitate demonstrations, and generalise to
account for changes to the surroundings. To ensure the system is robust to perturbations, we need
to maintain its stability. Our framework enforces stability in a principled manner: we start with a
known stable system and use differentiable bijections (diffeomorphisms) to morph the system into
the desired target system. We modularise robot motion and develop diffeomorphic transforms to
encode individual actions. A composition of transforms produces generalised behaviour that com-
plies with multiple requirements, such as mimicking demonstrations while avoiding obstacles. We
evaluate our framework in both simulation and on a real-world 6-DOF manipulator. Results show
our framework can produce a stable system that is collision-free and incorporates user-specified
biases, while closely resembling demonstrations.

1. Introduction

Imitation learning is an approach where robots are taught to execute novel motions from a few
human expert demonstrations (Billard and Grollman, 2012). This approach is natural for generating
complex motions, as it circumvents hand coding movements or specifically designing control costs
(Osaetal., 2018). Crucial to imitation learning is a generative model mimicking the demonstrations,
which can typically be described as having a time-dependent or state-dependent representation. In
this paper, we focus on the state-dependent category, where motions are generated by integrating
a time-invariant dynamical system. A major challenge of representing robot motion with a state-
dependent system is the need to ensure the system’s asymptotic stability. Methods (Khansari-Zadeh
and Billard, 2011) have been developed to learn stable dynamics. In particular, recent methods
such as (Rana et al., 2020b; Urain et al., 2020) attempt to construct inherently stable dynamical
systems by learning a differentiable bijective mapping (i.e. a diffeomorphism) linking a stable
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Figure 1: A motivating application for our work is generalising stable systems learned from expert demonstrations, when surroundings
change. Here, a JACO arm is shown 8 recorded human demonstrations. Then, an obstacle bottle is placed right in the path of the recorded
demonstrations. Our proposed method allows the arm to warp smoothly around obstacle and successfully reach and lift the box.
system to a target system, using invertible neural networks (INN). However, it is unclear how
to inject additional knowledge into these INN models to produced generalised behaviour without
providing demonstrations of these generalisations. This makes it difficult to use INNs to encode
additional generalised behaviour.

We contribute the diffeomorphic transforms framework for generalised imitation learning, which
account for environment changes, by factoring in other sources of information, such as occupancy
data or additional user specification. A specific example is described in fig. 1, where additional
obstacles cause the previous demonstrations to be in collision. We represent each behaviour such as
reproducing demonstrations and obstacle avoidance, as individual diffeomorphic transforms, which
take the form of integral curves of vector fields. These can be built in various ways, such as learn-
ing from examples obtained from continuous occupancy models or be hand-crafted. By combining
transforms, generated motions can be learned from demonstrations and adjusted to avoid new ob-
stacles or warp towards a designated point, all while conserving the stability of the resulting system.

2. Related Work

Imitation learning aims to replicate motion based on demonstrations, allowing human expert to
transfer skills to robot systems. One class of imitation learning methods represents robot motion
by a stable state-dependent dynamical system (Khansari-Zadeh and Billard, 2011; Khansari-Zadeh
and Billard, 2014). Such a representation is more robust to perturbations, particular in regions
with no data, as the system is guaranteed to stabilise at some point. A pioneer example of a sta-
ble state-based representation is SEDS (Khansari-Zadeh and Billard, 2011), which to constrains
the learned system to quadratic Lyapunov functions via sequential quadratic programming. Further
work in (Khansari-Zadeh and Billard, 2014) expands the family of Lyapunov functions for candi-
dates. Recent approaches often take a different strategy. Instead of explicitly parameterising and
learning the class of stable systems, these approaches learn diffeomorphisms which map between a
stable base system and some target, “morphing” of the base system, and preserves the asymptotic
stability of the original system. A similar morphing approach has also been used to speed up the
integration of differential equations (Zhi et al., 2021). Our method, along with those in (Urain et al.,
2020; Rana et al., 2020b) take this approach. Despite the advancements made in imitation learning,
there have been few work addressing adapting imitations after learning. The authors of (Calinon,
2016) propose to adjust parameters of Gaussian mixture models based on tasks, while the authors
of (Rana et al., 2017) make attempts to alter generated trajectories, by post-processing with mo-
tion planning. Early dynamical system-based collision avoidance approaches have been proposed
in (Hoffmann et al., 2009; Khansari-Zadeh and Billard, 2012), although no consideration is given
to C-space avoidance, with obstacles defined in task space. A more recent method in (Rana et al.,
2019), introduces learnable weights for hand-coded policies within the Riemannian Motion Policy
(RMP) framework (Ratliff et al., 2018) which combines policies from different task-spaces in C-
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space. Subsequent work in (Rana et al., 2020b,a) provide more flexibility by learning to imitate,
but still rely on hand-coded “distance-to-point” repulsors from the RMP framework for avoidance.
Diffeomorphic transforms, proposed in this work, not only flexibly model imitated motions, but
also encode collision-avoidance directly from continuous occupancy representations, without hand-
coded repulsor systems.

3. Preliminaries

We first introduce necessary background concepts, then present our framework in section 4.

Motion Representation and Stability of Systems: Following state-dependent imitation learn-
ing literature (Khansari-Zadeh and Billard, 2011; Khansari-Zadeh and Billard, 2014; Rana et al.,
2020b), we represent motion as a mapping between the robot state = € R? and its velocity & € R
We model the motion as a time-invariant first-order dynamical system: &(t) = f(x(t)), (0) = o,
where f : R¢ — R? is a non-linear mapping, and x is the initial state. A trajectory of the system
is given by £(t, xg) = xo + fg Z(s)ds. An equilibrium point, x*, is a point where velocity is zero,
x* € R?: f(x*) = 0. A system is locally asymptotically stable in a region S C R if trajectories
starting in .S converge to some equilibrium * € S, i.e. lim;_,o &(t, xp) = x*, Yy € S. A system
is globally asymptotically stable if S = R, and trajectories converge to a unique equilibrium point.

Imitating demonstrations: Provided a set of N demonstrations, =, where the it" demonstration
is given by a sequence of states, of length [;, i.e. E = {{x;1,xi2,... ,mi,li}}ij\il. The velocities,
&; j, are assumed to be available. To imitate demonstrations, we aim to learn an f(x) such that
trajectories generated match the empirical demonstrations =. Assuming 6 parameterises f, we can
optimise 6 via least squares: minng\;l Z?:lﬂng — fo(zi ;)||3, such that &= fg(x) is stable.

Preserving Stability with Diffeomorphisms: An elegant method, as presented in (Rana et al.,
2020b), of ensuring stability of # = f(a), is by viewing the target system as a natural gradient
system defined on some d-dimensional manifold M, where integral curves of the target system on
M correspond to integral curves of another known simple system in Euclidean space. A bijective
mapping is a diffeomorphism if ¢ and ¢~! are continuously differentiable. A diffeomorphism
¢ : M — R? maps points on the manifold to Euclidean space. Given a differentiable potential
function, ® : RY — R, and diffeomorphism 1/, and following (Rana et al., 2020b), we can define
the natural gradient descent system (Amari, 1998) on M, corresponding to the system 2 = V ,(2)
defined in Euclidean space as:

& = f(z) = ~G(z) 'V 2(¢(2)), e))
where G : M — Riﬁd is a real positive definite matrix Riemannian metric which varies smoothly
on M. We take the metric as G(x) = Jy(x)' Jy(x), where Jy(x) is the Jacobian of 1. It
has been shown (Rana et al., 2020b), if the system defined by 2 = —V,®(z) € R? is globally
asymptotically stable, then the system defined by the natural gradient descent in eq. (1) is globally
asymptotically stable. Building inherently stable systems can be done in a principled fashion by
specifying a stable potential function ® in Euclidean space, and constructing diffeomorphisms, 1/,
such that the natural gradient system of ®, as defined in eq. (1), matches a desired target system.

4. Diffeomorphic Transforms

Beyond simply mimicking the provided demonstrations, we are also interested in modifying f when
the situation changes and no further demonstrations are provided. We introduce diffeomorphic
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transforms (DTs) as a tool to generalise imitation learning. DTs are diffeomorphisms which en-
code desired behaviour. By composing DTs, we can build a stable system which is capable of
incorporating various behaviours such as imitating demonstrations and generalising to novel en-
vironments. This section is structured as follows: We start by discussing how multiple DTs can
sequentially be composed together (section 4.1). Next, we outline the general theory on which DTs
are built and how to imbue DTs with desirable properties (section 4.2). Thereafter, we derive DTs
with the following behaviours: (i) imitating demonstration data (section 4.3), (ii) avoiding collision
(section 4.4), and (iii) biasing towards specified coordinates (section 4.6).

4.1. Composition of Diffeomorphic Transforms

Diffeomorphisms provide smooth bijective

mappings between manifolds. If we have two { Expert demon- J
manifolds which are linked by a diffeomor- S"‘"[""S |
phism and a syste.m on one manifold, we can amensionar i Manifold, M1, | Manifold 32"
find a natural gradient system on the other man- Euclidean space encoding imitating generalising to
. . . . . from examples avoid obstacles
ifold via eq. (1). In this paper, diffeomorphisms , & = ) = v = filw) =
map between manifolds of the same dimension, ~C@TVR (@) —C) A0 W)

and can be thought ofasa change of coordinate Figure 2: To obtain a stable system that imitates demonstrations
and avoids collisions, we compose two DTs: ' mapping from M

systems. We denote dlffeomorphlsms by @Z) and to Euclidean space, and 4° from M? to M. The system on M’ re-
manifolds by M with superscripts for SpCCiﬁC produces the demonstrations, while that on M additionally avoids

diffeomorphisms or manifolds. Previous work obstacles.
(Ratliff, 2013), define the forward mapping v
to be from some warped manifold to Euclidean space. We adopt this convention and define the
diffeomorphisms ¢ of a DT as a mapping from some manifold which encodes desirable behaviour
to one that does not. Correspondingly, the inverse 1) ~! maps to a manifold with encoded behaviour.
Compositions of DTs can be done in a sequentially. A specific example of such a compo-
sition is given in Figure 2, where we obtain a system which imitates demonstrations while also
avoiding collisions. We start with a stable attractor in Euclidean space, with potential ®(z) =
||z — z¢||2. The DT, ¢!, is learned from demonstration data, and maps from the d-dimensional
manifold, M' to Euclidean space. Let G' = Jy; (:B)TJW(CC), the natural gradient system & =
fi(x) = —G'(2) "'V, @ (¢! (x)), T € M' generates trajectories that mimic expert demonstrations.
The DT #° is constructed from occupancy data, and maps from another d-dimensional manifold
MP° to M. The resulting natural gradient system 1 = fo(y) = —G°(y) "' f;(¢°(y)) thus encodes
both the imitation and collision-avoidance properties. Throughout the paper, we denote system
states in Euclidean space by z, those on a manifold encoding demonstrated behaviour by «, and
those on a manifold which encodes generalisation behaviour, such as collision avoidance, by y.
Thoughout this paper, the system in Euclidean space is always given as an attractor with potential
®(2) = ||z — 2¢||2, with equilibrium z, € R?. Subscripts or superscripts of i, o, b, in our notation
relate to the imitation, obstacle-avoiding, bias-incorporation capabilities we wish to endow DTs.

Occupancy data J

4.2. Infinitesimal Generators of Flows

In this section we introduce the building block of diffeomorphic transforms (DTs): Flows (integral
curves) generated by infinitesimal generators (vector fields).
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Definition 1 (Flows) A (global) flow on R? is a continuous mapping v : R x R* — R%, such that
Vs € R? and V1, 1y € R, there is v(0,8) = s and (ta,v(t1,8)) = v(t1 + t2,8).
Definition 2 (Infinitesimal Generator) The infinitesimal generator, V : R — R, of a smooth
flow v is a smooth vector field mapping from each s € R® to the tangent ~' (0, s).

We shall use the following property of flows to build DTs: For every infinitesimal generator V' that
is Lipschitz continuous, the flow for time ¢ € R, (¢, -), is a diffeomorphism. Specifically, for any
initial point sg € R and time ¢, if s; = (¢, sg) € RY, then sg = ~(—t, s;). That is, the inverse
of ~(t,-) is unique and given by ~(—t,-). This is a direct consequence of the existence and of
the existence and uniqueness of ODE initial value problems (Picard—Lindel6f theorem (Coddington
and Levinson, 1955)), and also given as Theorem 9.12 of (Lee, 2012). Intuitively, following an
infinitesimal generator V' for time ¢ from sg leads to a new location s;. To return to sy from
s; requires the reversed vector field —V/, which is equivalent to following the vector field V' for
the negative amount of time, i.e. —t. This property provides us with a principled mechanism to
construct a diffeomorphism: The smooth infinitesimal generator V' and its associated flow v form
our diffeomorphism and its inverse. Invertible functions constructed by integrating vector fields,
parameterised by neural networks, have also been explored in the density estimation literature as
Continuous Normalising Flows (Chen et al., 2018; Grathwohl et al., 2019), with the additional
requirement of volume preservation. The following sections describe how to construct infinitesimal
generators with different properties.

4.3. Learning Infinitesimal Generators from Demonstrations

We outline a method to learn smooth infinitesimal generators which encode demonstrated motions.
We exploit smooth Gaussian radial basis functions to parameterise the infinitesimal generator V' :
R? — R? with a weighted combination of basis functions, Vi(s) = W T K (s, 8), where K (s,3) =
[k(s, 81),k(s,82),...k(s,8m)]" € R¥™ is the projection of point s € R to m pre-determined
inducing states, 3; € R, fori = 1,2,...,m. The radial basis functions k(s, §;) = exp(—£||s —
5i||2) are centered on each inducing state. The vector field V' is parameterised by weight matrix
W e R¥>™_ Like (Rana et al., 2020b; Urain et al., 2020), the policies are defined for world space
position, and are typically coordinates in R3. The hyper-parameter ¢ of the radial basis function
controls its “width”. The flow on the infinitesimal generator is obtained by taking integral curves.
We assume there exists a d-dimensional manifold M, where trajectories follow demonstrations.
Points on z € M are mapped to the corresponding point in Euclidean space, z, by following the
flow 7' on V' for time ¢. We define the diffeomorphism wiw : M — R? and its inverse as:

t 0

iy () =z —I—/ Vi (u,z))du =z, Yy (z) =2z + / Vi (u, 2))du =z (2)
0 —t

As analytical integrals are often difficult to obtain we use numerical integration techniques, Euler’s

method in our case due to its simplicity. In the context of the imitating demonstrations, we are

assumed to have N demonstrations, each a sequence of states. That is, éz ={z;1,xi2,..., wi,li},

where [; is the length of the i*"* demonstration. We can formulate the least squares optimisation

problem as:

N I;
I%H{ZZIlﬂbi,j+G‘(mz‘,j)_lvmi,fb(d)w(ivm))lli}, G(@ij) = Ty (@ig) Ty (i), 3)

i=1j=1
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(a) A 3d example of avoiding a cube obstacle (b) Left: a simple attractor base system; Center: the infinitesimal generator
(black). (Left) an attractor & = f () is Vi learned on demonstrations of “S”; Right: the learned system with roll-
on M; (Right) The corresponding natu- outs (black).

ral gradient system.
Figure 3: Examples of diffeomorphic transforms for collision avoidance and imitation.

We optimise to obtain W. By eq. (1), the natural gradient system which generates trajectories, with
xe M, ist = fi(x) = -G () ' Va @Yy (x)).

4.4. Infinitesimal Generators for Collision Avoidance

Beyond reproducing motions from demonstrations, we wish to adapt the generated motions so that
they remain collision-free when the environment changes. In this section, we introduce DTs which
encode collision-avoiding behaviour, by using smooth obstacle gradients. These are obtained an-
alytically via a continuous maps, such as the representations described in (Ramos and Ott, 2016;
Zhi et al., 2019). Using occupancy information about the new environment in the form of a train-
ing dataset of n pairs, {(sg,or)}?_,, where each sample s, € R? is a point in the state-space,
and o € {0,1} is a binary variable indicating whether sj is occupied or free. A continuous
map uses kernelised logistic regressor (Bishop, 2007) wrapped around Gaussian radial basis func-
tions to learn a mapping between coordinates to the probability of them being occupied (occu-
pancy). The representation is given as f™P(s) := p(o = 1|s), and is smooth as it consists of
sigmoid and Gaussian functions. We exploit the smooth obstacle gradients to construct an in-
finitesimal generator: V°(s) = Vgp(o = 1|s) = Vsf™P. Following the flow on V° in re-
verse time reduces the observed occupancy, i.e. lower collision likelihood. This captures the goal
of the inverse diffeomorphism °~*, which is designed to map to a manifold encoding collision-
avoiding behaviour. Accordingly, we define a d-dimensional manifold M° where trajectories ex-
hibit obstacle avoidance behaviour. Provided some manifold M, the infinitesimal generator V°
generates flow 7. Thus, for some ¢t € R, let y € M° and x € M, we define the diffeomor-
phism ¢° : M° — M as: ¥°(y) = ~°(t,y) = y+fg V°(v°(u,y))du = «, and its inverse
Yo(x)~! =90t x) =x + fEt VO(7°(u,x))du = y, where a numerical integrator is used to
evaluate the integral. The natural gradient system on M° is: ¥ = —G°(y) "' f(¢°(y)), where f
corresponds to a system on M. This could be, for example, a simple attractor or f; that encodes
demonstrations. When rolling out trajectories with the collision-avoiding system, the initial con-
ditions given by yo € M?° are assumed to be collision-free. As y approaches the boundary of
the obstacle, the natural gradient system smoothly warps around. Figure 3(a) gives an example of
trajectories on M° smoothly avoiding an obstacle.

4.5. Infinitesimal Generators in C-space for Collision Avoidance

In imitation learning setups with a manipulator, it is typical to learn a stable dynamical system that
governs Cartesian fask-space coordinates of the end-effector. However, collision avoidance is not
limited to the end-effector. We can define DTs which encode avoidance behaviours for body points
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on the manipulator, and operate in the configuration space (C-space) (Lavalle, 2006) of the robot,
rather than task-space. A dq-dimensional configuration of the manipulatoris g € Q C R, where
the C-space is denoted as Q. Robot configurations can be mapped into the task-space coordinates
of ¢ body points on the robot by a set of ¢ kinematic functions, {xi ¢_1. Each kinematic func-
tion, x{ : @ — R, represents the Cartesian task space coordinates of the i*” body point from a
given configuration. For multiple-link manipulators, these kinematic functions are modelled by of
simple operations on basic trigonometry functions (Denavit et al., 1955), and are Lipschitz con-
tinuous with respect to the configurations. We set the manipulator end-effector as the first body
point, and x{(-) is the forward kinematics of the robot. Denoting the end-effector position as
x¢, the velocity of the end-effector and the configurations are: x¢ = It (@)g, ¢ = Jlfl (x€)xe,

f
Jit () = %—qu(-). The dimensions of g are typically greater than that of the Cartesian coordinates

x°. To obtain a unique g for some &, we take Jlf = Jfo1 (fo1 Jfol)_1 as the Moore-Penrose pseu-
doinverse. The Moore-Penrose pseudoinverse p;eserves stability of the resulting system (Wang
et al., 2018), and pull the task-space velocities to C-space: if the end-effector follows a system
given by € = f(x), the system in C-space is ¢ = Jlff(xfl(q)). Using inverse kinematics,
we can find a starting configuration qg, then rollout a seéluence of configurations. The deriva-
tive of the combined occupancy of body points, wrt to configurations, gives smooth vector field
Vi(q) == Vq ijl f mC”D(xﬁ-(q)), where f“ is the continuous occupancy representation as out-
lined in section 4.4. We can use V' as the infinitesimal generator of a diffeomorphism, giving
dq-dimensional manifold Q°, where natural gradient systems corresponding to systems in Q are
collision-free. The diffeomorphism, ¢g, mapping from Q° to Q is given by following the flow, g,
on V. For a configuration g € Q, and its corresponding collision-avoiding configuration p € Q°,
we define the diffeomorphism: g (p) :=~°(t,p) = p+ fg Vi (v°(u,p))du = g and its inverse:
Vo)t =10 (—t,q)=q+ fi)t V4 (v°(u, q))du = p. Following eq. (1), we can define our system
on Q° as:

p = ~G(p) " [ il (45 (p)))), Go(p) = Juy() TuyP). @)

By using the natural gradient system on the collision-avoiding manifold in C-space, we can roll out
p to obtain collision-free configurations.

4.6. Infinitesimal Generators for User-Specified Bias

Sometimes it is desirable to deform learned mo-
tions based on user input without recording new
expert demonstrations. In this section we out-
line a method to construct a diffeomorphism
which can apply deformation biases to specific |-
COOI‘d'lnE'lteS along a_traJeCtor}]' Figure 4: (Left) a system (red vector field) on M learned to
Similar to previous sections, we focus on imitate a “J” (in blue). We bias the system to the magenta point,
buﬂdll’lg DTs by directly Crafting their infinites- the green vector field shows, —Vb(s); (Center) the biased system;
. : . b (Right) biasing to another coordinate.
imal generator. We design the manifold M° by
constructing the diffeomorphism * such that

. -1 . . L . . . . . .
the inverse 1/ maps straight trajectories in a specific region to trajectories with the specified
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Figure 5: Imitating expert examples from the LASA dataset (Khansari-Zadeh and Billard, 2011). Reproduced motion in red and
shown demonstration in green.

bias. As we define ¢b_1 from reverse-time integral curves of the generator, we need to build
the generator V® such that the biased direction is given by —VP°. This is achieved by regress-
ing specified vectors onto the infinitesimal generator representation. We collect sample points
within a fixed region in the state-space and compute a unit vector pointing away from the point
of interest, giving us a dataset of ng pairs D = {(s3, Val|s! — s'[|2)}}), where s* € S
are sample points in some region S where the bias takes effect, and s'®" is the coordinate of in-
terest. To produce a valid DT, we require an infinitesimal generator to be Lipschitz continuous,
by minimising: W* := argminw ) ;*||Vg — W T K(s;,8)||2, where we now have a smooth
Vh=W*'K (s, 8). With eq. (1) we can take natural gradients on the resulting manifold MP. An
example of biasing a learned system towards points of interest is shown in fig. 4.

5. Experimental Evaluation

We empirically evaluate the performance of diffeomorphic transforms (DTs) to imitate and gener-
alise robot motions, both in simulation and on a real-world 6-DOF JACO manipulator.

Imitating Expert Demonstrations: The first analysis is on the ability of DTs to imitate pro-
vided demonstrations. We train DTs from 8 alphabet characters from the LASA handwriting
dataset (Khansari-Zadeh and Billard, 2011). There are 7 demonstrations for each character. We
use m = 720 inducing states for the Gaussian basis function, each with £ = 0.005, arranged in an
equally-spaced grid covering the range of the demonstrations. Qualitative results are presented in
fig. 5, where generated trajectories are given in red with demonstrations in green. The generated tra-
jectories are smooth and consistent with the demonstrated motions. We note that first-order dynam-
ical systems cannot model intersections which exist in the data (Dupont et al., 2019), and explains
some of the differences between generated and ground truth motion. These results demonstrate that
our method is sufficiently flexible to morph a simple base attractor from complex demonstrations.

Generalised Collision-Avoiding Motion Reproduction: We evaluate the efficacy of DTs to
adapt the motion according to the occupancy of the surroundings and avoid collision. We work
with demonstrations from the following tasks: (i) pushing a box (7 demonstrations collected with
JACO arm); (ii) lifting a box, by reaching inside and abruptly moving upwards (8 demonstrations
collected with JACO arm); (iii) drawing an “S” character (7 demonstrations from LASA dataset).
We train DTs to imitate expert demonstrations to complete these tasks. Then, we place an obstacle
of diameter 15cm such that the original trajectories are in collision. We then provide occupancy data
of the new obstacle, and construct DTs in C-space to provide collision avoidance for the entire ma-
nipulator. Velocities in C-space are obtained and updated at 20hz. Baseline Methods: We evaluate
the performance of the following methods and variants: (i) Our method to imitate demonstrations
and avoid collisions. (ii) Our method with only imitation transformation. (iii) Euclideanizing Flows
(Eflow) (Rana et al., 2020b). (iv) Eflow modified a repulsive potential field overlaid for collision
avoidance; (v) Motion-planning networks (MPNet) (Qureshi et al., 2021); (vi) MPNet with RRT
replanning (MPNet-RRT): a variant where results are touched up by a RRT planner (Lavalle, 1998).
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Figure 6: Qualitative results of diffeomorphic transforms along with comparisons. We normalise the generated trajectories by arc-
length, and report the trajectory distance and M.C.D. at fixed intervals. For the draw “S” task, results for MPNet, MPNet-RRT, and
linear are discarded. These methods were unable to imitate, and departed greatly from the ground truth.
(vi) Linear motion in the C-space. Although MPNet is typically used for planning, at its core, it
uses a neural network to imitate a motion planner.

Evaluation Results: The quality of the gener-
Table 1: Frechet Distance (ED.) and Maximum Col-  alised imitations produced under environment occupancy

lision Distance (M.C.D.) performance. changes are shown in fig. 6, and tabulated in table 1. In
Distance PushBox LiftBox Draws  fig. 6, the metrics used are: (i) trajectory distance (me-

ED 0.124 0.127 0.067 - : 3
Ours VD o o oo  tres), the distance between a point on a generated trajec-
Ours (no avoidance) ;‘?CD 83?2 851; ggié tory and the nearest coordinate of a demonstration; (ii)

ED 0068 0093 o021  Maximum Collision Distance (M.C.D.), the robot depth
%CD 8%; 8;; 8?22 in collision with the obstacle. We evaluate both metrics

M.C.D 0 0.001 0.003

EFlow

EFlow (repulsive)

. b o1 ous s at fixed intervals along arc-length normalised generated
ybCD 823? 8%; m trajectories. In table 1, we report: (i) the Fréchet dis-

MPNetRRT MCD 0 o ~na  tance (Alt and Godau, 1995) between the generated and

. ED 0.242 0.205 N/A . . . . .

Linear MCD 0147 0031  NA ground truth trajectories, which gives a single value over

the entire trajectories; (ii) M.C.D. For pure imitation, our
method generates trajectories with a relatively low Frechet Distance to the ground truth, comparable
to Eflow. After factoring in the obstacle, our method is able to remain relatively close to the original
demonstration, without large changes. In contrast, Eflow (repulsive) typically has a higher distance,
particularly when an obstacle is reached, the repulsion results in sharper and larger changes, while
our method manages to diverge from the original demonstration in a smoother manner. This is
highlighted in the sharper peaks of trajectory distance in fig. 6 by Eflow (repulsive). Additionally,
unlike our approach, Eflow with added repulsor does not have theoretical guarentees on stability.
Notably the collision-avoidance capability of MPNet (without RRT-replanning) is significantly less,
highlighting the difficulty of directly learning from collision-avoiding motions. Particularly in an
imitation learning setup, where the number of demonstrations is small. In fig. 7, we illustrate gen-
erated motion in both the absence and presence of added obstacles.

Evaluation on Real Robot: To evaluate the robustness of our method, we repeat the three tasks
on a real JACO arm. For each tasks, the JACO arm warped around new obstacles with no visible
collision, successfully completing the task. A video of the generalised motions on the JACO can be
found at https://youtu.be/LoLQ0bzfw9T.
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(a) Lift Box (b) Push Box (C) Draw S

Fi gure 7: The simulated environments under the Movelt framework (Coleman et al., 2014)

Figure 8: We provide 8 demonstrations of dropping moving over the center pot to drop an object, we can create user-specific DTs to
warp the reproduced movement to drop the object in the left or right pots. Left-most image shows starting position. The dropped objects
are circled in red.

Generalised User-Influenced Motion Reproduction: We also demonstrate the ability DTs
possess to be built based on user specifications. A simulated case studied of warping a dynamic
system trained on imitations of drawing “J” characters, based user specified points, is illustrated in
fig. 4. The original system is morphed to bias the designated positions. We extend our experiments
to real-world robots, with the JACO: We provide demonstrations of moving on top of a pot to drop
an object. Then, we craft DTs to morph the motion to either side such that the reproduced motion
drops the object in neighbouring pots. Without additional demonstrations, the robot successfully
drops the object in the correct pots (fig. 8).

6. Conclusions and Future Work

Diffeomorphisms provide a principled method to transform dynamical systems such that asymp-
totic stability properties are preserved. We utilise this property and propose a framework which
generalises imitation learning when changes in the environment renders collected demonstrations
infeasible. We modularise motion using DTs, where each DT encodes specific desirable behaviours,
including imitating demonstrations, avoiding obstacles, and incorporating specified biases. We
demonstrate the capabilities of this novel approach on a range of generalised imitation learning
tasks in both simulation and on a real robot. Avenues of future work may include: (1) isolating
movement styles from different sets of demonstrations performing the same action, by a subtrac-
tion, rather than a combination of DTs; (2) integrating into our framework invertible mapping with
ODEs which have augmented states for additional expressivity, akin to the augmented neural ODEs
method in (Dupont et al., 2019).
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