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A. Proofs and Derivations for Results in the Main Paper

A.1. Proof for Theorem 3

Theorem (6). Let V ∗ ∈ RV
(t)
s ×d be a minimizer for the function f(V ) in an iteration t of

Algorithm 3 and for ϵ > 0 define X = {V ∈ RV
(t)
s ×d | f(V ) − f(V ∗) ≤ ϵ}. Let PX denote

the average probability of successfully sampling from the uniform distribution over X by
algorithm A, and it takes nX samples to realize PX . Then, the number of queries to f that
A makes to compute Ṽ s.t. f(Ṽ )− f(V ∗) ≤ ϵ with probability at least 1− δ is bounded as
O(max{ ln (δ−1)

PX
, nX}).

Proof The proof follows from Theorem 1 in (6). Since we are considering a sampling-only
framework, we set λ = 1 in Theorem 1 (6) to obtain the result.

A.2. Derivations for Section 3.1

In this subsection we discuss the derivation of the single-level reduction using KKT constraints
with CSON and Fsocial. First, consider the original strongly convex SON clustering objective:

min
µ′∈Rn×d

1

2

n∑
j=1

||Uj − µ′
j ||2 + λ

∑
i<j

||µ′
i − µ′

j || (1)

As described in the main text, we create the ordering O, the graph G and define its
node-arc-incidence matrix I (5) and then reformulate the above objective:

min
µ∈Rn×d, η ∈Rd×|O|

1

2
||µ− U ||2 + λ

∑
i∈O

||ηi|| s.t. µT I − η = 0 (2)

It can be verified that objectives (5) and (6) are equivalent. We can even define the
dual formulation for the above primal problem (where ⟨, ⟩ denotes the matrix Frobenius
inner-product):

max
θ∈Rn×d, ζ∈Rd×|O|

⟨UT , θ⟩ − 1

2
||θ||2

s.t. IζT − θ = 0

||ζi|| ≤ λ, ∀i ∈ O

(3)

Now, we discuss the KKT conditions. Since the SON objective is strongly convex, we
can use the reformulated primal (6) and dual (7) problems to arrive at the KKT conditions:

θ + µ− U = 0

η − P(η + ζ) = 0

µT I − η = 0

IζT − θ = 0

(4)

Here P(.) refers to the proximal operator of the Euclidean norm, therefore P(η + ζ) =
max{0, 1 − 1

||η+ζ||}(η + ζ). Since we now have the KKT conditions we can undertake the
single-level reduction for problem P1.R.
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For this we first have to substitute U for U ∪ V . As in the main text, V (t)
s denotes |V |

in iteration t of Algorithm 1. The number of centers we have will thus be µ ∈ Rm×d where
m = n+V

(t)
s for U∪V . So now we can use the KKT conditions by replacing U with U∪V and

n with m. The other variables will also then be: µ ∈ Rm×d, η ∈ Rd×|O|, θ ∈ Rm×d, ζ ∈ Rd×|O|.
The original problem P1.R for CSON and Fsocial is:

min
V, µ

Fsocial(µ,U)

s.t. µ = CSON(U ∪ V )
(5)

Replacing (8) as constraints for the upper-level objective in (9) and removing the lower-
level objective gives us the single-level optimization problem we present in the main paper:

min
V, µ, η, θ, ζ

Fsocial(µ,U)

s.t. θ + µ− (U ∪ V ) = 0

η −max{0, 1− 1

||η + ζ||
}(η + ζ) = 0

µT I − η = 0

IζT − θ = 0

B. Experiments for Algorithm 1 with CSON and Fsocial

We provide results for Algorithm 1 when using CVX as the solver (3) for the KKT reformulated
single-level objective with fairness cost as Fsocial. We show how the antidote data computed
by our optimization consistently reduces the fairness cost compared to vanilla SON clustering
while varying the regularization parameter λ from 0.001 to 0.01. That is, we are showcasing
the trend in fairness (cost) as a function of the number of clusters (ie, number of unique
centers) which are determined by the value of λ.

For a given λ we run Algorithm 1 and obtain V , and then re-run regular SON clustering
on U ∪ V . We then compare this obtained fairness cost to the one obtained by regular
vanilla SON clustering on U . Note that since CVX does not scale well with large inputs,
we subsample all datasets to 100. We also let γ = 0.99 and for all experiments we obtain
|V | ≤ 10, ie |V |/|U | ≤ 0.1. We now present the results in Figure 1.

Each of the 4 figures corresponds to the 4 real-world datasets we consider. To further
simplify the model we only consider 2 protected groups. As the vanilla SON fairness cost
values and fairness cost values for the V obtained by Algorithm 1 could vary widely due to λ,
it would be hard to decipher their curves individually. Thus, instead, we present the results
as a difference between the vanilla SON fairness cost Fsocial(µ

vanilla, U) and the fairness cost
values we obtain as a result of Algorithm 1 denoted by Fsocial(µ,U). That is, the y-axis of
the figures represents Fsocial(µ

vanilla, U)−Fsocial(µ,U) and the x-axis represents λ. It is clear
to see then that in each figure, if the difference curves are positive on the y-axis, Algorithm
1 outperforms vanilla SON. As can be seen, the centers obtained as a result of clustering
on U ∪ V where V is obtained from Algorithm 1, lead to more fair clusters than traditional
SON clustering (for the Fsocial metric).
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(a) Results for adult
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(b) Results for bank
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(c) Results for creditcard
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(c) Results for LFW

Figure 1: Results for Algorithm 1

C. Additional Experiments for Algorithm 2

C.1. Experiments for Algorithm 2 for k = 3 and k = 4

As mentioned in the paper, we provide experiments for Algorithm 2 for k greater than 2. We
obtain results for k = 3 and k = 4 and present them in Table 1 and Table 2, respectively. The
results are tabulated similar to the main paper– we are comparing Algorithm 2 with vanilla
clustering for each of the three combinations considered in the paper. As can be observed
in both Table 1 and Table 2, Algorithm 2 can achieve improved fairness than traditional
clustering. Another interesting trend that can be noted is that more antidote data needs
to be added for larger k, in general. This can be seen by observing the |V |/|U | values for
both tables individually. This trend is intuitive however, as having more number of clusters
can introduce more complexities in reducing fairness cost thus requiring more antidote data
addition.

C.2. Experiments Comparing Clustering Performance on Davies-Bouldin index
(2) and Calinski-Harabasz score (1)

In this subsection we present additional results for clustering performance of Algorithm 2
compared to other fair clustering approaches, thus extending the results for the Silhouette
scores presented in the main paper for k = 2. In particular, we consider the Davies-Bouldin
index (2) and Calinski-Harabasz score (1). However, these are less indicative and harder to
decipher, compared to the more straightforward Silhouette score. This is because these scores
are unbounded, and unlike the Silhouette score, do not lie between -1 and 1. It is thus harder
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Table 1: Results for Algorithm 2 when k = 3

Clustering-Fairness Combination Dataset α |V |/|U | F(µvanilla, U) F(µ,U)

Combination #1:
Ck-means,Fbalance

adult 0.0 0.002 0.0 -0.6249
bank -0.2919 0.00044 -0.2919 -0.2945

creditcard -0.7957 0.00067 -0.7957 -0.7977
LFW -0.7834 0.0015 -0.7834 -0.7871

Combination #2:
Ck-means,Fsocial

adult 3.4898 0.002 3.4898 3.4848
bank 1.7985 0.00044 1.7985 1.7983

creditcard 17.177 0.00067 17.177 17.165
LFW 1308.099 0.0015 1308.099 1307.841

Combination #3:
Cspectral,Fbalance

adult -0.543 0.02 -0.543 -0.576
bank -0.4216 0.02 -0.4216 -0.4298

creditcard -0.8056 0.02 -0.8056 -0.8261
LFW -0.7736 0.02 -0.7736 -0.7938

Table 2: Results for Algorithm 2 when k = 4

Clustering-Fairness Combination Dataset α |V |/|U | F(µvanilla, U) F(µ,U)

Combination #1:
Ck-means,Fbalance

adult 0.0 0.15 0.0 -0.5384
bank -0.2821 0.0011 -0.2821 -0.2837

creditcard -0.7694 0.0017 -0.7694 -0.7705
LFW -0.7383 0.0038 -0.7383 -0.7691

Combination #2:
Ck-means,Fsocial

adult 3.0299 0.005 3.0299 3.01
bank 1.315 0.0011 1.315 1.301

creditcard 15.989 0.0017 15.989 15.976
LFW 1242.913 0.0038 1242.913 1242.570

Combination #3:
Cspectral,Fbalance

adult -0.3584 0.05 -0.3584 -0.5354
bank -0.273 0.05 -0.273 -0.476

creditcard -0.8425 0.05 -0.8425 -0.9307
LFW -0.7574 0.065 -0.7574 -0.7658

to discern and compare different clusterings in an objective manner. The Davies-Bouldin
index is an inverse score, in that a lower value signifies better clustering performance, with
the lowest possible being 0. This is different from the Calinski-Harabasz score, which gives
well-formed clusters higher values, and ill-formed clusters lower ones. Also as in the main
paper, we let k = 2.

We then present the results for Algorithm 2 with the Davies-Bouldin index being used
as a clustering performance metric in Table 3. Similar results are shown for the Calinski-
Harabasz score in Table 4. It can be observed from the values obtained in the table that
we generally have very similar performance to the state-of-the-art fair clustering algorithms,
while providing improved fairness (as the results show in the main text). In some cases,
we can see that we have better performance, such as in the case of comparisons with the
Fair-Lloyd algorithm of (4) for Combination #2 and the creditcard and LFW datasets.
We can also observe that while the Sihouette score and Davies-Bouldin index give more
reasonable differences in values, values for the Calinski-Harabasz score vary widely and
are not easy to justify. However, overall, we can see that Algorithm 2 obtains competitive
clustering performance while providing improved fairness on these two metrics as well.
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Table 3: Results for Davies-Bouldin index (2)

Clustering-Fairness Combination Dataset SOTA Fair Algorithm Algorithm 3

Combination #1:
Ck-means,Fbalance

adult 1.977075899 1.987745353
bank 1.32144642 1.323176876

creditcard 1.535894783 1.545304948
LFW 1.955060538 1.957352428

Combination #2:
Ck-means,Fsocial

adult 0.253210096 0.253863016
bank 1.320149817 1.352818868

creditcard 1.549144574 1.346206321
LFW 1.964263126 1.6180073

Combination #3:
Cspectral,Fbalance

adult 1.855412037 1.939762524
bank 1.411452861 9.265055739

creditcard 1.839992765 3.568314803
LFW 1.918287593 2.04272442

Table 4: Results for Calinski-Harabasz score (1)

Clustering-Fairness Combination Dataset SOTA Fair Algorithm Algorithm 3

Combination #1:
Ck-means,Fbalance

adult 1745.35127 1670.931497
bank 14025.77526 13935.82229

creditcard 6411.585792 6365.048578
LFW 3208.171468 3200.597262

Combination #2:
Ck-means,Fsocial

adult 2170.257982 2054.422064
bank 13923.43025 14677.25017

creditcard 6411.04393 10905.30975
LFW 3193.024907 6293.817629

Combination #3:
Cspectral,Fbalance

adult 171.7174597 128.9134408
bank 284.5544472 6.931179858

creditcard 197.9853811 51.74285991
LFW 249.6535979 181.497717
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