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Abstract

Addressing fairness concerns about machine learning models is a crucial step towards their
long-term adoption in real-world automated systems. Many approaches for training fair
models from data have been developed and an implicit assumption about such algorithms
is that they are able to recover a fair model, despite potential historical biases in the
data. In this work we show a number of impossibility results that indicate that there
is no learning algorithm that can recover a fair model when a proportion of the dataset
is subject to arbitrary manipulations. Specifically, we prove that there are situations in
which an adversary can force any learner to return a biased classifier, with or without
degrading accuracy, and that the strength of this bias increases for learning problems with
underrepresented protected groups in the data. Our results emphasize on the importance
of studying further data corruption models of various strength and of establishing stricter
data collection practices for fairness-aware learning’.

1. Introduction

Recent years have seen machine learning models greatly advancing the state-of-art per-
formance of automated systems on many real-world tasks. As learned models become
increasingly adopted in high-stake decision making, various fairness concerns arise. Indeed,
it is now widely recognized that without addressing fairness issues during training, machine
learning models can exhibit discriminatory behavior at prediction time (Barocas et al.,
2019). Designing principled methods for certifying the fairness of a model is therefore key
for increasing the trust in these methods among the general public.

To this end many ways of measuring and optimizing the fairness of learned models have
been developed. The problem is perhaps best studied in the context of group fairness in
classification, where the decisions of a binary classifier have to be nondiscriminatory with
respect to a certain protected attribute, such as gender, race, etc. (Barocas et al., 2019).
This is typically done by formulating a desirable fairness property for the task at hand and
then optimizing for this property, alongside with accuracy, be it via a data preprocessing
step, a modification of the training procedure, or by post-processing of a learned classifier
on held-out data (Mehrabi et al., 2019). The underlying assumption is that by ensuring that
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the fairness property holds exactly or approximately on the available data, one obtains a
classifier whose decisions will also be fair at prediction time.

A major drawback of this framework is that for many real-world applications the training
and validation data available are often times unreliable and biased (Biggio and Roli, 2018;
Mehrabi et al., 2019). For example, demographic data collected via surveys or online polls
is often difficult and expensive to verify. More generally any human-generated data is likely
to contain various historical biases. Datasets collected via crowdsourcing or web crawing are
also prone to both unwittingly created errors and conscious or even adversarially created
biases.

These issues naturally raise concerns about the current practice of training and certifying
fair models on such datasets. In fact, recent work has demonstrated that strong poisoning
attacks can negatively impact the fairness of specific learners based on loss minimization. At
the same time, little is known about the fundamental limits of fairness-aware learning from
corrupted data. Previous work has only partially addressed the problem by studying weak
data corruption models, for example by making specific label/attribute noise assumptions.
However, these assumptions do not cover all possible (often unknown) problems that
real-world data can possess. More generally, in order to avoid a cat-and-mouse game of
designing defenses and attacks for fair machine learning models, one would need to be able
to certify fairness as a property that holds when training under arbitrary, even adversarial,
manipulations of the training data (Kearns and Li, 1993).

Contributions In our work, we address this gap by studying the effect of arbitrary data
corruptions on fair learning algorithms. Our main contribution is a series of hardness results,
which show that achieving fairness under worst-case data poisoning is provably impossible.

Specifically, we explore the fundamental limits of fairness-aware PAC learning within
the classic malicious adversary model of Valiant (1985), where the adversary can replace a
fraction of the data points with arbitrary data, with full knowledge of the learning algorithm,
the data distribution and the remaining samples. We focus on binary classification with
two popular group fairness constraints - demographic parity (Calders et al., 2009) and equal
opportunity (Hardt et al., 2016).

First we show that learning under this adversarial model is provably impossible in a
PAC sense - there is no learning algorithm that can ensure convergence with high probability
to a point on the accuracy-fairness Pareto front, even in the limit of infinite training data.
Furthermore, the irreducible error on the fairness measures we study is inversely proportional
to the frequency of the rarer of the two protected attributes groups. This makes the
robust learning problem especially hard when one of the protected subgroups in the data
is underrepresented. These hardness results hold for any learning algorithm based on a
corrupted dataset, including pre-, in- and post-processing methods in particular.

Perhaps an even more concerning result from a practical perspective is that the adversary
can also ensure that any learning algorithm will output a classifier that is optimal in terms
of accuracy, but exhibits a large amount of unfairness. The bias of such a classifier might go
unnoticed for a long time in production systems, especially in applications where sensitive
attributes are not revealed to the system at prediction time for privacy reasons.

We conclude with a discussion on the implications of our hardness results, emphasizing
on the need for developing and studying further data corruption models for fairness-aware
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learning, as well as on the importance of strict data collection practices in the context of
fair machine learning.

2. Related work

To the best of our knowledge, we are the first to investigate the information theoretic limits
of fairness-aware learning against a malicious adversary. There is, however, related previous
work on PAC analysis of fair learning algorithms, robust fair learning, and learning with
poisoned training data, that we discuss in this section.

Fairness in classification. Fairness-aware learning has been widely studied in the
context of classification. We refer to Mehrabi et al. (2019) for an exhaustive introduction to
the field. In this paper we focus on two popular notions of group fairness - demographic
parity (Calders et al., 2009) and equal opportunity (Hardt et al., 2016). A number of
hardness results for fair learning are already known. In particular, Kleinberg et al. (2017)
prove the incompatability of three fairness notions for a broad class of learning problems
and Menon and Williamson (2018b) quantify fundamental trade-offs between fairness and
accuracy. Both of these works, however, focus on learning with i.i.d. clean data.

Fairness and data corruption. Most relevant for our setup are a number of recent
works that empirically study attacks and defenses on fair learners under adversarial data
poisoning. In particular, Solans et al. (2020); Chang et al. (2020); Mehrabi et al. (2020)
consider practical, gradient-based poisoning attacks against machine learning algorithms.
All of these works demonstrate empirically that poisoned data can severely damage the
performance of fair learners that are based on empirical loss minimization. In our work we go
beyond this by proving a set of hardness results that hold for arbitrary learning algorithms.

Among works focusing on weaker adversarial models, a particularly popular topic is
the one of fair learning with noisy or adversarially perturbed sensitive attributes (Lamy
et al., 2019; Awasthi et al., 2020; Wang et al., 2020b; Celis et al., 2021a; Mehrotra and
Celis, 2021; Celis et al., 2021b). Under the explicit assumption that the corruption does
not effect the inputs and the labels, these works propose algorithms that can recover a fair
model despite the data corruption. A related, but conceptually different topic is the one of
fair learning without demographic information (Hashimoto et al., 2018; Kallus et al., 2020;
Mozannar et al., 2020; Lahoti et al., 2020). Another commonly assumed type of corruption
is label noise, which is shown to be overcomable under various assumptions by De-Arteaga
et al. (2018); Jiang and Nachum (2020); Wang et al. (2020a); Fogliato et al. (2020). A
distributionally robust approach for certifying fairness is taken by Taskesen et al. (2020),
under the assumption that the real data distribution falls within a Wasserstein ball centered
at the empirical data distribution. In Ignatiev et al. (2020) a formal methods framework for
certifying fairness through unawareness, even in the presence of a specific type of data bias
that targets their desired fairness measure, is provided. The vulnerability of fair learning
algorithms to specific types of data corruption has also been demonstrated on real-world
data by Calders and Zliobaité (2013); Kallus and Zhou (2018).

An orthogonal line of work shows that imposing fairness constraints can neutralize the
effects of corrupted data, under specific assumptions on the type of bias present (Blum and
Stangl, 2020). Also related are the works of Tae et al. (2019); Li et al. (2021) who propose
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procedures for data cleaning/outlier detection, without a specific adversarial model, that
in particular improve fairness performance. Finally, the work of Lechner et al. (2021) also
studies fairness-aware (representation) learning in the presence of a malicious opponent.
However, in their setting the adversary can manipulate the classifier chosen on top of the
representation, not the training data.

Learning against an adversary. Learning from corrupted training data is a field with
long history, where both theoretical and practical aspects of attacking and defending ML
models have been widely studied (Angluin and Laird, 1988; Kearns and Li, 1993; Cesa-Bianchi
et al., 1999; Bshouty et al., 2002; Biggio et al., 2012; Charikar et al., 2017; Steinhardt et al.,
2017; Chen et al., 2017; Diakonikolas et al., 2019). In this work we study fair learning within
the so-called malicious adversary model, introduced by Valiant (1985). The fundamental
limits of classic PAC learning in this context have been extensively explored by Kearns and
Li (1993); Cesa-Bianchi et al. (1999). Our paper adds an additional dimension to this line of
work, where fairness is considered alongside with accuracy as an objective for the learner.

3. Preliminaries

In this section we formalize the problem of fairness-aware learning against a malicious
adversary, by giving precise definitions of the learning objectives and the studied data
corruption model.

3.1. Fairness-aware learning

We adopt the following standard group fairness classification framework. We consider a
product space X x A x ), where X is an input space, J = {0, 1} is a binary label space
and A = {0,1} is a set corresponding to a binary protected attribute (for example, race or
gender). We assume that there is an unknown true data distribution P € P(X x A x Y)
from which the clean data is sampled. Denote by H C {h : X — Y} the hypothesis space of
all classifiers to be considered.

PAC learning Adopting a statistical PAC learning setup, we are interested in designing
learning procedures that find a classifier based on training examples. Formally, a (statistical)
fairness-aware learner £ : Upen(X x A x V)™ — H is a function that takes a labeled dataset
of an arbitrary size and outputs a hypothesis. Note that we consider learning in the purely
statistical sense here, focusing on any procedure that outputs a hypothesis, regardless of its
computational complexity, and seeking learners that are sample-efficient instead.

In a clean data setup, the learner is trained on a dataset S¢ = {(zf, af, y¢)}_; sampled
ii.d. from P and outputs a hypothesis h := £(S°). The performance of a learner can be
measured via the standard 0/1 loss (a.k.a. the risk) with respect to the distribution P

R(h,P) = P(h(X) £ Y). (1)

Group fairness in classification In (group) fairness-aware learning, an additional
desirable property of the classifier h = L£(5¢) is that its decisions are fair in the sense
that it does not exhibit discrimination with respect to one of the protected subgroups
in the population. Many different formal notions of group fairness have previously been
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proposed in the literature. The problem of selecting the “right” fairness measure is in general
application-dependent and beyond the scope of this work.

Here we focus on the two arguably most widely adopted measures. The first one,
demographic parity (Calders et al., 2009), requires that the decisions of the classifier are
independent of the protected attribute, that is

P(h(X) = 1|A = 0) = P(h(X) = 1|A = 1). 2)

The second one, equal opportunity (Hardt et al., 2016), states that the true positive rates of
the classifier should be equal across the protected groups, that is

Ph(X)=1A=0,Y =1) =P(W(X)=1/A=1,Y =1). (3)

In practice, it is rarely the case that a classifier achieves perfect fairness. Therefore, we will
instead be interested in controlling the amount of unfairness that h possesses, measured
via corresponding fairness deviation measures D(h) (Woodworth et al., 2017; Menon and
Williamson, 2018a; Williamson and Menon, 2019). Here we adopt the mean difference score
measure of Calders and Verwer (2010); Menon and Williamson (2018a) for demographic
parity

DPY(h,P) = [P(h(X) = 1]A = 0) = P(h(X) = 1]A = 1) (4)
and its analog for equal opportunity
DPP(h,P) = |P(h(X)=1]A=0,Y =1)-P(h(X)=1]4A=1,Y =1)|. (5)

To avoid degenerate cases for these measures, we assume throughout the paper that P, =
P(A =a) >0 and P, =P(Y =1,A = a) > 0 for both a € {0,1}. For the rest of the
paper, whenever we are interested in demographic parity fairness, we assume without loss of
generality that A = 0 is the minority class, so that Py < % < P;. Similarly, whenever the
fairness notion is equal opportunity, we will assume that Pjg < Pij.

Whenever the underlying distribution is clear from the context, we will drop the depen-
dence of R(h,PP) and D(h,P) on P and simply write R(h) and D(h).

3.2. Adversarial model

As argued in the introduction, machine learning models are often trained on unreliable
datasets, where some of the points might be corrupted by noise, human biases and/or
malicious agents. To model arbitrary manipulations of the data, we assume the presence
of an adversary that can modify a certain fraction of the dataset and study fair learning
in this context. In addition to its assumption-free nature, this worst-case approach can be
seen as a tool for providing a certificate for fairness: if a system can work against a strong
adversarial model, it will be effective under any circumstances that are covered by the model.

Formally a fairness-aware adversary is any procedure for manipulating a dataset, that
is a possibly randomized function A : (X x A x Y)" — (X x A x V)" that takes in a clean
dataset S¢ = {(z¢, af,vy$)}, sampled i.i.d. from P and outputs a new, corrupted, dataset
SP = {(a?,a?,y?)},. Depending on the type of restrictions that are imposed on the
adversary, various adversarial models can be obtained.
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In this work we adopt the powerful malicious adversary model, first introduced by Valiant
(1985) and extensively studied by Kearns and Li (1993); Cesa-Bianchi et al. (1999). The
formal data generating procedure is as follows:

e Aniid. clean dataset S¢ = {(x¢,af,y$)}", is sampled from P.

e Each index/point i € {1,2,...,n} is marked independently with probability «, for a
fixed constant o € [0,0.5). Denote all marked indexes by P C [n].

e The malicious adversary computes, in a possibly randomized manner, a corrupted
dataset SP = {(a¥,a?,y?)}, € (X x A x Y)", with the only restriction that
(2, al, yP) = (2, a§,y§) for all i ¢ P. That is, the adversary can replace all marked
data points in an arbitrary manner. Note that no assumptions whatsoever can be

made about the points (2, a?,y?) for i € P.

e The corrupted dataset SP is then passed on to the learner, who computes £(.SP).

For a fixed a € [0,0.5), we say that A is a malicious adversary of power a. Note that
the number of marked points is [B| = Bin(n,«). Since no assumptions are made on the
corrupted data points, they can, in particular, depend on the learner £, the data distribution
P, the clean data S° and all other parameters of the learning problem. That is, the adversary
acts with full knowledge of the learning setup and without any computational constraints.

3.3. Fairness-aware learning against an adversary

Structure of the hardness results In the next section we will be showing lower bounds
on R(L(SP)) and D(L(SP)), that is, the risk and the fairness deviation measure achieved by
the learner when trained on the corrupted data. Our bounds can be thought of as hardness
results that describe a limit on how well the learner can perform against the adversary.
These are based on explicit constructions of hard learning problems and adversaries that
demonstrate these limitations.

Crucial in these results is the ordering of the predicates. These matter for the sake of
formalizing the powers of the adversary and the learner. Recall that the learner only operates
with knowledge of the corrupted dataset. At the same time, the adversary is assumed to
know not only the clean data, but also the target distribution and the learner. Therefore,
our lower bounds are structured as follows:

For any learner L there exists a distribution P and an adversary A, such that with constant
probability . ..

Note in particular that the adversary can be chosen after the learner is constructed and
together with the distribution and it can therefore be tailored to their choice. On the other
hand, the learner is fixed before the distribution and the adversary are, so it has to work for
any such pair.

We note that all probability statements in our theorems refer to the randomness in the
full generation process of the dataset SP, that is the randomness of the clean data, the
marked points and the adversary.
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Role of the hypothesis space Learnability in our setup can be studied either as a
property of any fixed hypothesis space, or as a property of a class of hypothesis spaces,
for example the hypothesis spaces of finite size or finite VC dimension. However, one can
easily see that for certain hypothesis spaces fairness can be satisfied trivially. For example,
whenever H contains a classifier that is constant on the whole input space (that is, always
predicts 1 or always predicts 0), a learner that returns this constant classifier, regardless of
the observed data, will always be perfectly fair with respect to both fairness notions, under
any distribution and against any adversary. We therefore opt to study the learnability of
classes of hypothesis spaces.

In particular, our hardness results demonstrate the existence of a finite hypothesis space,
such that a certain amount of inaccuracy and/or unfairness is unavoidable. Therefore, no
learner can achieve better guarantees on the class of all finite hypothesis spaces, even in the
infinite training data limit. This is in contrast to, for example, classic PAC learning with
clean data, where the ERM algorithm is a PAC learner for all finite hypothesis spaces and
more generally all spaces of finite VC dimension (Shalev-Shwartz and Ben-David, 2014).

Parameters of the learning problem Our bounds will depend explicitly on the cor-
ruption ratio o and on the smaller of the protected class frequencies Py = P(A = 0) (for
demographic parity) oron Pigo =P(Y =1, A =0) <P(Y =1, A = 1) (for equal opportunity).
To understand the limits of fairness-aware learning against a malicious adversary, we will
analyze our bounds for small values of oz and Py or Pjg. Intuitively, the smaller the corruption
rate « is, the easier it is for the learner to recover an accurate and fair hypothesis. On the
other hand, a small value for Py or Py implies that one of the subgroups is underrepresented
in the population, and so intuitively the adversary can hide a lot of information about this
group and thus prevent the learner from finding a fair hypothesis.

As we will see, this intuition is reflected in our bounds, which give a tool for comparing
these quantities in terms of their effect on the hardness of the learning problem.

4. Impossibility results

We now present a series of hardness results that demonstrate that fair learning in the
presence of a malicious adversary is provably impossible in a PAC learning sense. Complete
proofs of all results can be found in the supplementary material.

4.1. Pareto lower bounds

We begin by presenting two hardness results that intuitively show that for some choices of H
the adversary can prevent any learner from reaching the Pareto front of the accuracy-fairness
optimization problem. We first demonstrate this for demographic parity:

Theorem 1 Let 0 < a < 0.5,0 < Py < 0.5. For any input set X with at least four
distinct points, there exists a finite hypothesis space H, such that for any learning algorithm
L Upen(X x A X V)" — H, there exists a distribution P for which P(A = 0) = Py, a
malicious adversary A of power o and a hypothesis h* € H, such that with probability at
least 0.5

R(L(SP),P) — R(h*,P) > min {111 zpopl}
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and

«
par P __ ppar (p* > mi - .
DPOT(L(SP), P) — DP (h*, P) _m1n{2 - 1(1_a),1}

The proof, which can be found in the supplementary material, is based on the so-called
method of induced distributions, pioneered by Kearns and Li (1993). The idea is to construct
two distributions that are sufficiently different, yet can be made indistinguishable by the
adversary. Then, no learner can be “correct” with high probability on both distributions
and so any learner will incur a high loss and exhibit high unfairness on at least one of them.

Discussion. Our hardness result implies that no learner can guarantee reaching a point
on the Pareto front in a PAC learning sense, even for a simple family of hypothesis spaces,
namely the finite ones. To prove the theorem we explicitly construct a hypothesis space that
is not learnable against the malicious adversary. As discussed in Section 3.3, a constructive
proof is necessary here, because fairness can be trivially satisfied on some hypothesis spaces,
for example those that contain a constant classifier, which is fair under any distribution and
against any adversary.

We now analyze the bounds and their behavior for small values of @ and Py. First
assume that 2. < 2Py Py, which in particular is the case whenever 2a < Fy. Then under
the conditions of the theorem, with probability at least 0.5

R(L(S7)) = R(h*) = Q () (6)

and

Dpar(ﬁ(sp)) _ 'Dpar(h*) > 0 (](jo) ) (7)

The lower bound on the loss is known to hold for any hypothesis space as shown by Kearns
and Li (1993). What Theorem 1 adds to this classic result is that for certain hypothesis
spaces 1) the learner can at the same time be forced to produce an unfair classifier; 2) the
fairness deviation measure DP?" can be increased by Q(«a/Fy). Note that these results hold
regardless of the sample size n, and so even in the infinite data limit.

In the second case, when 12~ > 2Py P, the adversary can force a constant increase in the
loss and make the classifier completely unfair, making DP*"(L(S?)) = 1. These observations,
combined with the rates from the first case, indicate that unless a = o(Fp), the adversary
can ensure that the resulting model’s demographic parity deviation measure is constant. In
particular, if one of the protected groups is rare, even very small levels of data corruption
can lead to a biased model.

Next we show a similar result for equal opportunity.

Theorem 2 Let 0 < a < 0.5 and Py < Pi1 <1 be such that Pig+ P11 < 1. For any input
set X with at least five distinct points, there exists a finite hypothesis space H, such that for
any learning algorithm L : Upen(X x A x V)" — H, there exists a distribution P for which

2. We use the Q-notation for lower bounds on the growth rates of functions.
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P(A=a,Y =1) = Py for a € {0,1}, a malicious adversary A of power o and a hypothesis
h* € ‘H, such that with probability at least 0.5

R(E(Sp)jp) — R(h*JP’) > min {1?(1’ 2P, 2(1 — Pig— Pu)}

and
. o 1—Pio—Pnn }
DPP(L(SP),P) — DPP(h*,P) > min 1, .
(€577 = D7 ) 2 min {1 A
Discussion. A similar analysis to the one after Theorem 1 applies here as well. In
particular, whenever ¢~ < 2min {Pio,1 — Pio — P11}, we obtain
R(L(SP)) = R(R") = Q(a) (8)
and
P (L(SP)) — DPT (h*) > Q) <O‘> . (9)
Py
The case when % > 2min{Po,1 — Pio — P11} leads to a constant equal opportunity

deviation measure. If in addition we have that 1 — Pyg — P11 > Pig, a completely unfair
classifier will be returned. Consequently, if positive examples associated with one of the
protected groups are rare (that is, if P(Y = 1,A = 0) is small), then even very small
corruption ratios can lead to a biased model.

4.2. Hurting fairness without affecting accuracy

While the results above shed light on the fundamental limits of robust fairness-aware learning
against an adversary, models that are inaccurate are often easy to detect in practice. On
the other hand, a model that has good accuracy, but exhibits a bias with respect to the
protected attribute can be much more problematic. This is especially true in applications
where demographic data is not collected at prediction time for privacy reasons. In this case
the model’s bias might go unnoticed for a long time, thus adversely affecting one of the
population subgroups and potentially extrapolating existing biases from the training data to
future decisions.

We now show that such an unfortunate situation is indeed also possible under the
malicious adversary model. The following results show that any learner will, in some
situations, be forced by the adversary to return a model that is optimal in terms of accuracy,
but exhibits high unfairness in terms of demographic parity.

Theorem 3 Let 0 < a < 0.5,0 < Py < 0.5. For any input set X with at least four
distinct points, there exists a finite hypothesis space H, such that for any learning algorithm
L Upen(X x A X V)" — H, there exists a distribution P for which P(A = 0) = Py, a
malicious adversary A of power «a and a hypothesis h* € H, such that with probability at
least 0.5

R(L(S),P) = R(h",P) = min R(h,P)

and
DPr(£(SP), P) — PP (h*,P) > min {O‘, 1} .
25,

9
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We also present a corresponding result for equal opportunity.

Theorem 4 Let 0 < a < 0.5, Pig < P11 <1 be such that Pig + P11 < 1. For any input set
X with at least five distinct points, there exists a finite hypothesis space H, such that for
any learning algorithm L : Upen(X x A x V)" — H, there exists a distribution P for which
P(A=a,Y =1) = Py for a € {0,1}, a malicious adversary A of power o and a hypothesis
h* € ‘H, such that with probability at least 0.5

R(L(SP),B) = R(h*,P) = minR(h.P)

and

. a Py Py
DPP(L(SP),P) — DPP(h*,P) >mind ———— (1 — — |, 1 — — ;.
(€57, 8) = D )z min{ o (1o ) -
Once again the error terms on the fairness notions are inversely proportional to Py and P
respectively, indicating that datasets in which one of the subgroups is underrepresented are
particularly vulnerable to data manipulations.

5. Discussion

In this work we explored the statistical limits of fairness-aware learning algorithms on cor-
rupted data, under the malicious adversary model. Our results show that data manipulations
can have an inevitable negative effect on model fairness and that this effect is even more
expressed for problems where a subgroup in the population is underrepresented.

While the strong adversarial model and the statistical PAC learning analysis we have
considered are mostly of theoretical interest, we believe that the hardness results have several
important implications. Indeed, crucial to increasing the trust in learned decision making
systems is the ability to guarantee that they exhibit a high amount of fairness, regardless of
any known or unforeseen biases in the training data. In contrast, we have shown that this is
provably impossible under a strong adversarial model for the data corruption.

We believe that these results stress on the importance of developing and studying further
data corruption models in the context of fairness-aware learning. As discussed in the related
work, previous research has shown that it is possible to recover a fair model under corruptions
of the labels or protected attributes only. While real-world data is likely to contain more
subtle manipulations, one may hope that for certain applications there will be models of
data corruption that are, on the one hand, sufficiently broad to cover the data issues and,
on the other hand, specific enough so that fair learning becomes possible.

Our results can also be seen as a indication that strict data collection practices may in
fact be necessary for designing provably fair machine learning models. Indeed, our bounds
hold under the assumption that the learner can only access one dataset of unknown quality.
In contrast, it has been shown that the use of even a small trusted dataset (that is, a
certified clean subset of the data) can greatly improve the performance of machine learning
models under corruption, both in the context of classic PAC learning (Hendrycks et al.,
2018; Konstantinov and Lampert, 2019) and in the context of fairness-aware learning (Roh
et al., 2020). Such data can also be helpful for the sake of validating the fairness of a model
as a precautionary step before its real-world adoption.

10



ON THE IMPOSSIBILITY OF FAIRNESS-AWARE LEARNING FROM CORRUPTED DATA

In summary, understanding and accounting for the types of biases present in machine
learning datasets is crucial for addressing the issues brought up in this work and for the
development of certifiably fair learning models.
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