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Abstract

This paper summarizes the 2021 ChaLearn Looking at People Challenge on Understand-
ing Social Behavior in Dyadic and Small Group Interactions (DYAD), which featured two
tracks, self-reported personality recognition and behavior forecasting, both on the UDIVA
v0.5 dataset. We review important aspects of this multimodal and multiview dataset
consisting of 145 interaction sessions where 134 participants converse, collaborate, and
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compete in a series of dyadic tasks. We also detail the transcripts and body landmark an-
notations for UDIVA v0.5 that are newly introduced for this occasion. We briefly comment
on organizational aspects of the challenge before describing each track and presenting the
proposed baselines. The results obtained by the participants are extensively analyzed to
bring interesting insights about the tracks tasks and the nature of the dataset. We wrap
up with a discussion on challenge outcomes, and pose several questions that we expect will
motivate further scientific research to better understand social cues in human-human and
human-machine interaction scenarios and help build future AI applications for good.

Keywords: Personality recognition, Behavior forecasting, Multimodal approaches, Human
interaction, AI competitions

1. Introduction

Socially intelligent systems are expected to accurately perceive, understand, react, and
adapt to the affective and cognitive state of interacting individuals in different contexts so
as to provide a more natural, empathic, tailored communication (Dautenhahn, 2007; Espos-
ito et al., 2014; Paiva et al., 2017; Nocentini et al., 2019). To embody this human-likeness
into such systems, it is crucial to have a deeper understanding of real human-human inter-
actions first, to allow for the computational modeling of individual and social behaviors,
and interpersonal influence (Burgoon et al., 1995; Escudero et al., 2018; Braithwaite and
Schrodt, 2021). Research in dyadic and small group interactions has enabled the devel-
opment of automatic approaches for detection, understanding, modeling, and synthesis of
individual and interpersonal behaviors, social signals, and dynamics (Picard, 2000; Gatica-
Perez, 2009; Vinciarelli et al., 2011, 2015). For measuring interpersonal processes during
an interaction such as non-verbal synchrony (Delaherche et al., 2012), rapport (Zhao et al.,
2016), or engagement (Dermouche and Pelachaud, 2019), the joint modeling of all inter-
locutors and/or other sources of context has been frequently considered. These sources
of context may include individual factors, such as sociodemographics and other attributes
of each interlocutor, or shared factors, such as the history of the interaction and charac-
teristics of the situation (Rauthmann et al., 2014). However, for the task of recognizing
individual attributes or behaviors in interaction settings, most computational approaches
usually only consider information from the target interlocutor, disregarding the effect of
any sources of context on individual behavior in addition to existing dyadic or group in-
terdependencies (Barrett et al., 2011; Wright, 2014; Vinciarelli and Mohammadi, 2014b;
Vinciarelli et al., 2015; Moore, 2017; Dudzik et al., 2019; Corona et al., 2020b).

To foster research on interlocutor- and context-aware approaches for social behavior
modeling and understanding, we organized the ChaLearn LAP Challenge on Understand-
ing Social Behavior in Dyadic and Small Group Interactions (henceforth referred to as
DYAD’21 Challenge), in conjunction with the International Conference on Computer Vi-
sion (ICCV), 2021. In particular, the challenge was divided into two competition tracks,
related to key elements for understanding social interactions and developing socially in-
telligent systems: 1) Self-reported Personality Recognition, with the goal of inferring the
self-reported personality of a single individual based on the individual’s behavior under dif-
ferent interaction-based situations; and 2) Behavior Forecasting, with the goal of predicting
2D hand, face and body landmarks of both interlocutors in an interaction up to two sec-
onds in the future given an observed time window of at least four seconds. Both tracks were
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based on the UDIVA v0.5 dataset, a subset of the UDIVA dataset (Palmero et al., 2021).
The UDIVA v0.5 dataset consists of audiovisual, transcripts, and metadata information, as
well as automatically extracted annotations, of 145 face-to-face dyadic interaction sessions.
Such sessions are performed by 134 individuals of varied characteristics, and are divided
into different conversational, collaborative, and competitive tasks.

We provided reference results from our own baseline architectures for each of the com-
petition tracks. For self-reported personality, we used a Transformer-based architecture
(Palmero et al., 2021) with audiovisual information from the target participant and the
other interlocutor as context, as well as the associated individual and dyadic metadata.
The challenge participants were able to outperform the provided baseline, but found the
careful handling of metadata to be key for the task. In particular, they indicated gender
and age to greatly influence the prediction. Challenge participants also found the conver-
sation transcripts to be particularly useful for the task. For the behavior forecasting track,
participants were not able to compete with a challenging but straightforward zero-velocity
baseline. We attribute this to several factors: the stochasticity of hand gestures, the mostly
static nature of seated social interactions (in comparison to highly interactive scenarios like
dancing), the difficulty of accurately annotating hand poses, and the metric that evaluated
predictions at frame level, which penalizes out-of-sync behaviors.

In this paper, we first describe the dataset used for the challenge (Section 2), as well
as the challenge design and participation instructions and statistics (Section 3). Then, we
describe both challenge tracks (Track 1: Self-Reported Personality Recognition in Section 4
and Track 2: Behavior Forecasting in Section 5), including a summary of the state of the art
of each topic, baseline methodologies and solutions proposed by the top-performing teams, in
addition to a discussion of the results obtained and the outcomes of each track. Furthermore,
we discuss ethical considerations of the challenge data and potential implications stemming
from research in personality recognition and behavior forecasting as the two main research
topics considered herein (Section 6). Finally, Section 7 concludes the paper.

2. UDIVA v0.5 Dataset

In this section, we describe the UDIVA v0.5 dataset, which was used for both tracks of
the DYAD’21 Challenge, and is currently publicly available for research purposes1. UDIVA
v0.5 is a preliminary subset of UDIVA (Palmero et al., 2021), a highly varied multimodal,
multiview dataset of zero- and previous acquaintance, face-to-face dyadic interactions, con-
sisting of 180+ interaction sessions where 140+ participants arranged in dyads performed a
set of different conversational, collaborative, and competitive tasks in a lab setting. UDIVA
was collected using multiple audiovisual and physiological sensors, and includes sociodemo-
graphic, personality, internal state, and relationship metadata of all participants, as well
as contextual information of the tasks. UDIVA v0.5 contains a subset of the interaction
sessions, participants, synchronized camera views and metadata from UDIVA, in addition
to new annotations collected for the challenge, which we detail below. For more informa-
tion about the complete UDIVA dataset, we refer the reader to the work of Palmero et al.
(2021).

1. https://chalearnlap.cvc.uab.cat/dataset/41/description/

6

https://chalearnlap.cvc.uab.cat/dataset/41/description/


ChaLearn LAP Challenges on Personality Recognition and Behavior Forecasting

2.1. Setup and structure of a dyadic session

Participants were recruited through university and social media ads and word of mouth.
Prior to their first dyadic session, participants filled in a consent form in compliance with
the EU General Data Protection Regulation (GDPR2, European Parliament and Coun-
cil of European Union 2016) as well as several questionnaires about themselves. UDIVA
v0.5 includes information from self-reported sociodemographics (see participant’s metadata
in Section 2.4.2) and Big Five Inventory (BFI-2) personality questionnaires (Gallardo-Pujol
et al., 2021). The latter provides personality ratings across five traits, known as OCEAN
(see Section 4.1 for a description), in a 1-to-5 scale, which were later converted to z-scores us-
ing descriptive data from normative samples (Gallardo-Pujol et al., 2021). Before and after
each interaction session, participants also completed several questionnaires regarding their
current internal state. In particular, UDIVA v0.5 includes the pre- and post-session infor-
mation from mood (Gallardo-Pujol et al. 2013, with items drawn from PEQPN by Williams
et al. 2002, as a 1-to-5 rating scale) and fatigue (ad-hoc 1-to-10 rating scale) questionnaires.
In particular, the mood questionnaire assessed current state based on eight classes: Good,
Bad, Happy, Sad, Friendly, Tense, and Relaxed. Participants that did not fill in the pre-
and/or post-fatigue questionnaire had their fatigue level set to 0.

To perform the administered tasks, participants were asked to sit at 90◦ relative to
one another as depicted in Figure 1. Each session consisted of five tasks eliciting distinct
behaviors and cognitive workload. Four of them are included in the UDIVA v0.5 dataset,
shown in Figure 1 (right), namely:

Talk. Participants were instructed to talk about any subject of their preference for ap-
proximately five minutes. This task allows for analysis of common conversational constructs,
such as turn-taking, synchrony, empathy, and quality of interaction.

“Animals” game. Participants asked ten yes/no questions about the animal in the
card wore on their forehead to guess the animal. Animals were classified into three difficulty
levels. This game elicits cognitive processes (e.g., thinking, gaze signaling events).

Lego building. Participants built a Lego together following the instructions leaflet,
ranging between four difficulty levels. This task fosters collaboration, cooperation, joint
attention, and leader-follower behaviors, among others.

“Ghost blitz” card game. Participants played one card per turn, competing with
each other to be the first to select the correct figurine from a set of five figurines placed on
the table, based on the content of the played card. This task fosters competitive behavior
and allows cognitive processing speed analysis, among others.

The Talk task was always administered first as a warm-up, whereas the remaining three
were administered in randomized order. The recording of each task starts when the task
administrator finishes explaining the task to the participants and stops interacting with
them, and finishes when the administrator starts interacting with the participants again
to deliver the following task. The real given task (e.g., build a Lego building) may finish
minutes before the end of the recording. Once participants finished the real given task, they
were free to continue playing or just wait until the task administrator entered the recording
room and stopped the recording.

2. https://gdpr.eu/
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Figure 1: The UDIVA dataset contains views from six HD tripod-mounted cameras. In
UDIVA v0.5, only the frontal views of each participant are provided, FC1 and
FC2. Left: Example of the FC1 and FC2 frontal views. Right: Examples of the
four tasks (Talk, Lego, Animals, and Ghost) from different dyadic sessions.

The UDIVA dataset contains views from six HD third-person cameras and two first-
person views. UDIVA v0.5 includes the frontal view of each participant, recorded using two
tripod-mounted Revotech i706 cameras at a resolution of 1280× 720 pixels and a sampling
rate of 25 fps. These correspond to FC1 and FC2 cameras illustrated in Figure 1 (left). The
audio was recorded using two Rode smartLav+ lapel microphones, one per participant, at
44100 Hz.

2.2. Statistics

UDIVA v0.5 is composed of approximately 80h of recordings of dyadic interactions be-
tween 134 voluntary participants (44.78% female) from 17 to 75 years old (mean=31.95,
sd=12.57), mostly Caucasian. Participants come from 22 countries: 74.6% from European
(a total of 68.7% from Spain) and 21.6% from Latin American countries. In relation to the
maximum level of education, participants had mostly a Master’s degree (35.82%), followed
by a Bachelor’s degree (28.36%). Table 1 shows the descriptive statistics (i.e., mean, stan-
dard deviation, and Pearson’s correlation) for self-reported personality OCEAN variables
for participants of UDIVA v0.5 (see Section 4.1 for a description of Big Five personality
traits). Compared to the normative data (Gallardo-Pujol et al., 2021), the UDIVA v0.5
sample presented higher levels of Open-Mindedness (O) and lower scores in Negative Emo-
tionality (N). A low-to-moderate negative correlation between “N” and Conscientiousness
(C) and Agreeableness (A), and low-to-moderate positive correlation between “A” and “C”
and Extraversion (E) were observed. Finally, “E” correlated moderately with “O” (r = .40)
and slightly with “C”. These findings are comparable to the pattern found in the literature
of intercorrelations between personality traits (Soto and John, 2017; Gallardo-Pujol et al.,
2021). Females scored higher than males in all OCEAN values, with statistically significant
differences in all traits except in “O”. When correlating age and OCEAN scores, medium
to low intensity associations were observed, being absolute correlations between 0.04 (“E”)
and 0.32 (“C”).
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Trait Mean Std. Dev. O C E A
O .21 1.07

C .12 1.07
.02

[−.15, .19]

E −.12 1.01
.40∗∗

[.25, .53]
.24∗∗

[.07, .39]

A −.04 .97
.08

[−.09, .25]
.26∗∗

[.10, .42]
.20∗

[.03, .36]

N −.28 1.07
.01

[−.16, .18]
−.22∗∗

[−.38,−.05]
−.10

[−.26, .07]
−.22∗

[−.38,−.05]

Table 1: Descriptive statistics (mean and std. deviation, and Pearson’s correlation) for self-
reported personality OCEAN values of participants from the UDIVA v0.5 dataset.
Values in square brackets indicate the 95% confidence interval for each correlation.
∗p < .05, and ∗∗p < .01.

Trait Gender Age

O t(132)=0.36; d=0.06 -0.2* [-0.36;-0.03]
C t(132)=3.04***; d=0.53 0.32*** [0.16;0.47]
E t(132)=2.28*; d=0.4 0.04 [-0.13;0.21]
A t(132)=2.74**; d=0.48 0.25** [0.08;0.4]
N t(132)=3.34***; d=0.58 -0.13 [-0.3;0.04]

Table 2: Differences between genders on OCEAN scores, by means of Student’s t-test, and
correlations with age. Values in square brackets indicate the 95% confidence in-
terval for each correlation. ∗p < .05, ∗∗p < .01, and ∗∗∗p < .001.

Participants were distributed into 145 dyadic sessions, with a participation average of
2.16 sessions/participant (max. 5 sessions). 44.14% of the interactions occurred among
participants that knew each other before their interaction session (i.e., known people).
Spanish was the interaction language for most of the dyads (73.10%), followed by Catalan
(17.25%), and English (9.65%). Regarding the inner state of the participants, the mean
pre- and post-fatigue value was 4.35 (± 2.32 for pre-session and ± 2.39 for post-session),
whereas descriptive statistics of pre- and post-session mood are shown in Table 3. As can
be seen, interaction sessions slightly improved the participants’ mood state (i.e., positive
states increased, whereas their respective negative counterparts decreased).

Good Bad Happy Sad Friendly Unfriendly Relaxed Tense

Pre-session 3.91±0.74 1.83±0.79 3.61±0.78 1.91±0.88 3.86±0.71 1.77±0.81 3.52±0.93 2.34±1.01
Post-session 4.1±0.64 1.67±0.67 3.92±0.72 1.71±0.78 4.04±0.63 1.68±0.73 3.73±0.85 2.07±0.9

Table 3: Descriptive statistics (mean ± standard deviation) of pre- and post-session mood
categories of the UDIVA v0.5 dataset.
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2.3. Data selection and partition procedure

The interaction sessions included in the UDIVA v0.5 dataset were selected from the com-
plete UDIVA dataset, with the aim of creating subject-independent training, validation,
and test splits with similar distribution each in terms of personality traits, age, gender, and
relationship among interaction partners. Prior to the data partition process, we first dis-
carded all sessions with participants younger than 16 years old, as such participants filled in
personality/temperament questionnaires specific to their age different than the BFI-2 ques-
tionnaire (see Palmero et al., 2021), and not all traits measured with such questionnaires
have a one-to-one correspondence to the OCEAN personality traits. We also discarded
sessions with any major technical issue (e.g., one of the FC views not available or none of
the audio signals available for a whole recording).

To ensure that no participants appeared in more than one split, some further sessions
needed to be discarded. We followed an iterative procedure to decide which sessions to
keep and how to divide them into the different splits. First, we represented the remaining
sessions as a graph, where the nodes correspond to participants and the edges correspond to
interaction sessions, and assigned weights to sessions based on the number of interactions
per participant and the group (i.e., combination of age, gender and binary relationship)
they belonged to. That is, initially, sessions with participants that interacted in many
sessions and/or their group belonged to a high density one were assigned a lower weight
than those sessions with participants that interacted in fewer sessions and/or belonged to
less represented groups. Then, we used a greedy approach that iteratively removed and
added sessions based on their importance to find split combinations that fulfilled a split
ratio of approximately 3:1:1 with respect to the number of participants and sessions. Such
approach started removing those sessions with a lower weight. The weights were updated
every time a session was removed or added. Once a sample of all possible split candidates
was computed, we calculated a set of costs for each candidate based on:

• the difference in per-trait distributions among each split with respect to the sum
of splits by means of the p-value obtained from a Kolmogorov-Smirnov significance
test (Massey Jr, 1951);

• the differences in Pearson correlation between each personality trait and self-reported
gender among each split;

• the differences in Pearson correlation between each personality trait and self-reported
age among each split;

• the differences between age, gender, and relationship distributions with respect to a
uniform distribution for validation and test splits.

Finally, we selected the combination that minimized the sum of the costs and that maxi-
mized the total number of sessions and participants.

The final split contains 116 sessions and 99 participants for training, 18 sessions and
20 participants for validation, and 11 sessions and 15 participants for test. The resulting
distribution of OCEAN values is shown in Figure 2. As can be seen, validation and test
splits contain a more uniform distribution as intended, trying to correct the characteristic
Gaussian-like distribution of personality traits. The age distribution among splits depicted

10
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Figure 2: Distribution of the self-reported personality trait (OCEAN) values across train,
validation and test splits of the UDIVA v0.5 dataset. The x axis refers to z-scores
for each personality trait.

in Figure 3 shows that the test set contains a more restricted but uniform sample than
validation. Gender ratios were conserved in all splits. In contrast, relationship ratios are
significantly different, having 37.9% of known people in training, 61.1% in validation, and
81.8% in test. Pre- and post-session mood and fatigue values in addition to correlations be-
tween personality traits and other attributes are shown in Appendix A of the supplementary
material. Given that the number of participants in the different splits is low (particularly
validation and test), correlations between personality traits and other attributes differed, as
expected (Schönbrodt and Perugini, 2013). Indeed, the resulting splits exhibit the difficulty
of balancing dyadic data with interdependencies among multiple sessions and a relatively
low number of participants. Nonetheless, these splits allow for reliable comparability and
benchmarking, especially in the context of the challenge. For other contexts where a higher
number of train/test subjects is required, we recommend strategies like leave-one-subject-
out or leave-one-dyad-out instead of the provided data splits.

2.4. Content

Here, we describe the data provided with the UDIVA v0.5 dataset for both challenge tracks.

11
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Figure 3: Age distribution across train, validation and test splits of the UDIVA v0.5 dataset.

2.4.1. audiovisual

UDIVA v0.5 dataset includes the two frontal views of the UDIVA dataset, one per par-
ticipant (FC1 and FC2). Each video is accompanied by a synchronized audio signal from
the lapel microphone of the corresponding participant. Both videos are time-synchronized.
There is one video per participant, task, and session.

2.4.2. Metadata

Audiovisual data is accompanied by a set of metadata, described next:

Participant. Metadata about each participant, independent of the session. It includes:
anonymized participant ID, gender, age, country of origin, maximum level of education,
z-score OCEAN personality values, total number of sessions done, session IDs in which the
participant has participated in order of occurrence. All information except participant and
session IDs, and total number of sessions done, were reported by the participant.

Session. Metadata about the interaction session, as well as participant metadata spe-
cific of a given interaction session. It includes: session ID, participant IDs corresponding to
each of the camera views, date and time of the recording, difficulty level of Lego and Ani-
mals tasks, language, self-reported relationship among interaction partners (whether they
knew each other or not before the session), order of administration of the tasks within the
session, pre- and post-session self-reported answers of the mood and fatigue questionnaires
per participant, and notes about the session (if any).

Other. Start-end times of the real given task within a task recording (e.g., the time
when participants start and end building the requested Lego figurine for the Lego task),
and start-end times of segments that do not contain audio and/or video because of privacy
or technical issues.

2.4.3. Transcripts

Complementing the originally presented UDIVA dataset, literal transcripts of the conver-
sations at utterance level were obtained by a third-party company, and manually reviewed
for cleanliness and data protection. As illustrated in Figure 4, a transcript file is composed
of: an utterance number, the start and end times of the utterance synchronized to the
videos, the ID of the interaction partner (PART.1/2 for the participant visible from FC1/2,
respectively), and the transcribed utterance.

12
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Figure 4: Example of transcript from a short conversational segment included in UDIVA
v0.5.

2.4.4. Landmarks and gaze annotations

To further enrich the dataset and provide labels for the Behavior Forecasting track (de-
scribed in Section 5), we also provided automatically extracted body, face, and hand land-
marks, as well as 3D gaze direction vectors. Next, we detail extraction, post-processing,
and data cleaning procedures.

Extraction and post-processing. For every frame of each video, the landmarks for
the face, body and both hands, as well as the 3D eye gaze direction vector are provided.
Their extraction and post-processing are thoroughly described next:

• Face landmarks. 68 face fiducials were regressed by the 3DDFA v2 algorithm pre-
sented by Guo et al. (2020)3. This method uses a lightweight backbone together with
a landmark-regression regularization to achieve state-of-the-art accuracy at very fast
speeds. The method also incorporates a short-video-synthesis training strategy, which
helps retrieve stabler landmarks for videos. Additionally to the facial landmarks, the
face detection confidence provided by FaceBoxes (Zhang et al., 2017) was stored. The
face landmarks retrieval was constrained to the most centered face detected within
each frame, discarding false detections product of the occasional occlusion caused by
the profile view of the other interlocutor. In order to reduce the jitter, the method
applied average-smoothing to the landmarks coordinates from frame t with those from
frames t− 1 and t+ 1.

• Body landmarks. 24 full-body joints and a detection confidence were retrieved by using
the MeTRAbs method (Sárándi et al., 2020)4, which beat all the tested methods in
a preliminary evaluation thanks to performing particularly well with truncated upper
bodies. This top-down algorithm detects the body and leverages volumetric heatmaps
to extract 2D landmarks in the image space (image coordinates in pixels) along with
their corresponding 3D landmarks in the camera coordinate frame. Additionally,
detection mistakes were identified and fixed by leveraging a tracker which enforced

3. https://github.com/cleardusk/3DDFA_V2
4. https://github.com/isarandi/metrabs
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spatiotemporal continuity (Li et al., 2019)5. An extra post-processing step was applied
to translate the 3D coordinates to the image space while preserving the depth value.
First, we found the 3D similarity transformation T which minimized the least squares
problem TX3D−>2D = Y2D where X3D−>2D = (x3D, y3D) (pose camera coordinates),
and Y2D = (x2D, y2D) (pose image coordinates). The matrix T was defined to have 8
degrees of freedom: 3 for rotation, 3 for translation and 2 for scaling (this parameter
was fixed to 1 for z). Then, T was applied to X3D = (x3D, y3D, z3D) vector. The
resulting TX3D = Y3D vector was stored as the 3D body joints coordinates. This
retrieval method did not implement any temporal average smoothing by default. As
a result, landmarks had high jitter. To mitigate it, a one-euro filter (Casiez et al.,
2012)6 was applied in the temporal axis (cut off to 0.001 and β = 0.005).

• Hand landmarks. 21 hand landmarks were retrieved with the hand estimator module
from FrankMocap (Rong et al., 2021)7. This method first detects the hand and then
fits a 3D model, which provides 3D hand landmarks. The hand detector leveraged
was trained with 100K images featuring a wide range of hand interactions with ei-
ther objects or themselves (Shan et al., 2020). The hands landmarks estimator was
trained with the Ho-3D dataset (Hampali et al., 2020), among others, which contains
60K samples aiming to study the interaction between hands and objects. As a result,
the method infers fairly accurate landmarks in the recurrent scenario where hands
are interlaced, interacting with objects or mildly occluded (see Table 4 and Figure 5).
Similarly to the procedure followed for the body detections, a tracker ensured spa-
tiotemporal smoothness and filled the gaps of hands missed due to rapid movement
or severe occlusions (Li et al., 2019). Unfortunately, this scenario is much more chal-
lenging and required further processing to increase the quality of the annotations,
especially to ensure the consistency of the left-right hand associations. This process
is extensively described in Appendix B. The one-euro filter previously described was
likewise applied (cut off to 0.001 and a β = 0.02).

• 3D eye gaze direction vector. The ETH-XGaze baseline method (Zhang et al., 2020b)8,
based on the ResNet architecture, leveraged the face fiducials previously retrieved to
normalize the input images and extract the 3D gaze direction (unit) vectors with
respect to the camera coordinate system. This gaze estimation method was trained
on ETH-XGaze, a large-scale dataset for gaze estimation purposes, with wide vari-
ability in terms of appearance, head poses, gaze directions, and accessories like eye-
glasses. The reported error of the method is on par with other state-of-the-art subject-
independent remote gaze estimation approaches.

Data cleaning. Additionally, the landmarks from the Talk task from the validation
and test sets underwent a visual inspection process, since that was the task used to evaluate
the methodologies proposed for the Behavior Forecasting track (see Section 5 for a detailed

5. SiamRPN++ implementation from OpenCV 4.5.1 (Python).
6. http://cristal.univ-lille.fr/~casiez/1euro/OneEuroFilter.py
7. https://github.com/facebookresearch/frankmocap
8. https://github.com/xucong-zhang/ETH-XGaze
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Figure 5: Face, body, and hands landmarks, and gaze vector displayed over examples of the
Talk, Animals, Lego and Ghost tasks from 4 sessions (top to bottom rows).
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Validation/Test sets
Correct Mild Severe Switched VF FBI

Face 99.3/99.7 0.6/0.2 0.1/0.1 - - -
Body 98.1/97.2 1.9/2.7 0.0/0.1 - - -

Left hand 88.9/87.0* 7.2/8.0 3.9/5.0 0.4/0.2 2.6/1.6 6.6/7.1
Right hand 90.1/82.3* 5.4/9.7 4.5/8.0 0.4/0.2 2.0/3.4 6.9/7.0

Table 4: Visual annotation process for validation and test sets: prevalence of each label
(% of frames). Abbreviations: VF, Visibility Fixed; FBI, Fixed By Interpolation.
* Including switched, VF, and FBI annotations.

description). Note that the gaze vector was not visually assessed because it was not evalu-
ated as part of that challenge track. All frames from the 18 validation and 11 test sessions
were annotated as follows:

• Face annotation. The quality of the face landmarks was assessed and classified for each
frame as: 1) correct, if all landmarks faithfully matched their anatomical locations,
2) mild, if the retrieved face was slightly translated with respect to its anatomical
position but its shape and orientation were correct, and 3) severe, if either the shape
or the orientation was wrong.

• Body annotation. Similarly, the quality of the body joints was annotated. Compar-
atively, we were more permissive regarding the quality thresholds as the body joints
estimator yielded noisier predictions in our challenging scenario characterized by trun-
cated bodies. Consequently, body landmarks were classified as correct provided that
their pose was correct and their individual joints locations matched their anatomical
position accounting for certain error. The mild label was associated to body land-
marks with one inaccurate side that was not caused by occlusion, and the severe label
to those either with both sides incorrect or with severe single joints mislocations.

• Hands annotation. In addition to being wrongly extracted, the hands annotations
could present several complementary issues such as left-right mismatch, or being false
positive/negatives. In order to distinguish all scenarios, the manual inspection for
hands required the annotation of additional labels. First, the quality flag was set to
correct if the orientation of the annotations was correct and fingers matched their
anatomical position allowing for some error. If the fingers did not match either in
shape or position but the overall hand orientation was still right, they were labeled as
mild. On the contrary, if neither the hand orientation nor the fingers were correctly
inferred, the hand quality was labeled as severe. Additionally, the hand visibility
(visible or not visible, i.e., the hand visibility flag is labeled as not visible if the hand
is under the table or is behind the body) and cases where the left hand was detected as
the right hand or vice versa (hands switch) were annotated even when the estimator
detected only one hand. Although the post-processing substantially improved the
quality of the hand landmarks, wrong or missing hands were still very frequent during
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Figure 6: In (a), examples of correct, mild and severe quality labels for face, body and hands
landmarks. In (b), a sequence of 104 frames with wrong left-hand landmarks
which was fixed by linearly interpolating the landmarks from the last and the
first correct extractions before (frame 705) and after (frame 810) the sequence,
respectively.

hands interactions or occlusions. In order to maximize the number of correct hand
annotations, sequences of consecutive frames (t0, ..., tn) with n ≥ 2 with none or very
slow hand movements and correct hand landmarks at t0 and tn but with wrong or
missing hands in all frames {ti}1≤i≤n−1 were identified. From those, segments for
which a linear interpolation between the t0 and tn landmarks could generate valid
hands for the interval (t0, tn) were annotated. Such linear interpolation was applied
as an extra post-processing step (see Figure 6b).

Figure 6a shows visual examples for the quality labels of each part of the body. Note that,
except for the described cases for the hands, the landmarks were not manually corrected.
Table 4 summarizes the annotation results for both validation and test sets. The hands
linear interpolation proved extremely useful as it fixed up to 7% of the annotations in both
validation and test sets (a total of 1714 filled segments for both hands, with an average
length of 34.5±78.3 frames). However, the quality of the hands annotations still represents
the biggest limitation of the dataset, as the number of correct hands annotations varies
from 80% to 90% in the validation and test sets.
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3. Description of the ChaLearn LAP DYAD’21 challenge

In this section, we describe the organization of the challenge, guidelines to participate, and
participation statistics.

3.1. Challenge organization, schedule, and benchmarking platform

The challenge was held in CodaLab9, an open-source web-based platform designed for host-
ing computational competitions and benchmarking. Challenge participants could partici-
pate in either or both of the two tracks, Track 1: Self-Reported Personality Recognition and
Track 2: Behavior Forecasting. To be able to participate, challenge participants were first
requested to register to any of the tracks in Codalab, accept the terms and conditions, and
fill in and sign the dataset license to request dataset access.

Both tracks were divided into two main phases: development and final evaluation. Each
phase featured a public leaderboard where challenge participants could compare the per-
formance of their proposed solutions against those from other participants and baselines
proposed by the organizers given a certain metric to optimize. During the development
phase, training data (with ground truth) and validation data (without ground truth) were
made available to registered participants, and the submitted predictions over validation data
were compared to validation labels. No limit with respect to number of submissions was
enforced. Later, during the final evaluation phase, validation ground truth and test data
without ground truth were released and the submitted predictions over test were compared
to test labels. Test labels were never released during the competition and the participants
were limited to 5 submissions during the final evaluation in order to prevent them from
improving by trial and error and overfitting to the test data. The final evaluation leader-
board was the one taken into account to determine the potential challenge winners. Both
challenge tracks were active from June 1st to September 18th, 2021. The development
phase was active throughout the whole competition, while the final evaluation phase ran
from September 1st to September 18th.

Once the challenge ended, participants were asked to submit their codes along with
detailed instructions on how to run them to reproduce their top-scoring submitted evalua-
tion predictions. Furthermore, they needed to provide a fact sheet detailing their methods.
Only those approaches that would outperform the provided baseline could be considered
as potential winners, while the remaining approaches could be considered for honorable
mentions.

3.2. Provided data and guidelines

Challenge participants were allowed to use all provided data included in the UDIVA v0.5
dataset (unless otherwise stated in each track description below) as well as third-party
datasets to train their approaches. All training data was provided unmasked, whereas
validation and test data were provided with masked ground truth at the beginning of each
corresponding phase. Since the same dataset was provided to all challenge participants
regardless of the track in which they participated, and to avoid information leakage, all
participants received the data with masked self-reported personality trait values and masked

9. https://codalab.org/
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recording snippets to predict from the Talk task (i.e., with no audiovisual nor transcript
information for those snippets). After each phase, self-reported personality values and
information from snippets to predict from the corresponding split were released. For the
final evaluation phase, challenge participants were allowed to retrain their models with
training and validation data.

3.3. Participation statistics

In total, 67 participants registered for the Self-reported Personality Recognition track, and
44 for the Behavior Forecasting track. From them, we received a total of 20 dataset requests,
and a total of 260 submissions, 204 of which were for Track 1 from four unique teams and
56 for Track 2 from three unique teams. Finally, two teams passed the code verification
stage for Track 1, and one for Track 2.

4. Track 1: Self-Reported Personality Recognition

In this section, we introduce the task of personality recognition and summarize related work,
with a particular focus on recent interlocutor- and context-aware methods. Furthermore, we
describe Track 1 of the challenge, the proposed baseline and the top-performing solutions.
Finally, we discuss the outcomes and possible future research directions.

4.1. Personality computing

Personality computing (Vinciarelli and Mohammadi, 2014a; Phan and Rauthmann, 2021)
is an emergent research field that is attracting increasing attention from different research
communities. Personality is widely defined as the manifestation of individual differences in
patterns of thought, feeling, and behavior, that remain relatively stable during time (Soto
and John, 2017). In the personality computing field, personality is usually characterized by
the basic Big Five traits (McCrae and John, 1992) – Openness to Experience (“O”), Consci-
entiousness (“C”), Extraversion (“E”), Agreeableness (“A”), and Neuroticism (“N”), often
referred to as OCEAN. As described in Vinciarelli and Mohammadi (2014a), personality
computing often follows the Brunswik Lens (Brunswik, 1956), which is used to describe ex-
ternalization and attribution of socially relevant attributes during social interactions. The
former is related to personality recognition, which aims to infer self-reported personality
traits from observable distal cues, i.e., overt behavior. In contrast, the latter is related to
personality perception, where the goal is to recognize the apparent personality traits of a
target person from the perspective of an external observer (Jacques Junior et al., 2019)
based on proximal cues, i.e., cues that the observer perceives. According to these defini-
tions, we will use the “personality recognition” expression when referring to works that focus
on self-reported personality traits (e.g., obtained via self-reported questionnaires), and the
“personality perception” expression (or “apparent personality”) for referring to works that
focus on the personality attributed by external observers. Nevertheless, a method devel-
oped for personality recognition could be easily adapted for personality perception and vice
versa.

Personality computing has relevant applications in a vast number of scenarios. Personal-
ity recognition is increasingly showing its potential to improve well-being and mental health
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through personalized interventions (Alexander III et al., 2020). Pedagogical agents (Davis,
2018) which are personalized to maximize learner’s attention and learning are another im-
portant real-life application. Healthcare delivered by robots is a burgeoning field of re-
search (Esterwood and Robert, 2021), and personalization of robots’ personalities seems
to have positive impacts on patients’ health and social outcomes (Andrist et al., 2015) by
means of increasing acceptance of robot’s care (Tapus and Matarić, 2008). On a more inter-
active research field, Hickman et al. (2021) found they were able to profile personality from
a job candidate during a job interview interaction with higher accuracy than self-reports,
and Song et al. (2021) found that they were able to predict emotional states of an individ-
ual through her facial reactions based on cues displayed by the conversational partner. All
these benefits rely on the fact that personality is an essential variable in people’s interac-
tions with their contexts. The role of personality recognition is to understand the person to
the greatest possible degree so as to offer them a personalized version of health, education,
or even customer service.

4.2. Related work

Personality recognition has been addressed in the literature using different data modalities,
i.e., still images (Celli et al., 2014), image sequences (Subramanian et al., 2013), audiovi-
sual (Batrinca et al., 2011; Lepri et al., 2012a; Fang et al., 2016), speech and text (An and
Levitan, 2018), and multimodal (Anzalone et al., 2017). Apparent or self-reported person-
ality has also been inferred from gaze behavior (Hoppe et al., 2018), mood (Sogancioglu
et al., 2021), and even from behavior patterns collected from smartphones (Stachl et al.,
2020). Preliminary studies tended to use handcrafted features with standard machine learn-
ing techniques (Nguyen et al., 2013; Fang et al., 2016), while more recent works rely on deep
learning approaches from handcrafted features (An and Levitan, 2018) or raw data (Mehta
et al., 2019).

Most works focus on personality recognition or perception from the individual point
of view, even in dyadic or small group conversational scenarios, using only features from
the target person. First works that considered interpersonal dependencies for personality
computing in face-to-face interaction scenarios used descriptive statistics of overlapping
speech segments, short interjections, backchanneling, or interruptions (Pianesi et al., 2008;
Valente et al., 2012), or percentages of attention given by the target speaker to other
participants and attention received by them (Lepri et al., 2010; Aran and Gatica-Perez, 2013;
Subramanian et al., 2013), in addition to other audio/video features of the target speaker.
Some works also considered labeled co-occurrent events, such as attention given/received
while speaking/not speaking (Lepri et al., 2012b). Okada et al. (2015) proposed to discover
frequent co-occurrent events between multiple modalities and people using graph clustering
in a small group scenario. In particular, they used utterance segments, speech, gaze, head
and body gestures. In a similar scenario, Fang et al. (2016) obtained the highest accuracy
when using intrapersonal (speech-, prosodic-, and visual-based), dyadic (speech-based, such
as speaking interruptions and backchanneling), and speech-based one-versus-all features.

Most of the aforementioned methods rely on handcrafted interpersonal features. How-
ever, few methods propose interlocutor- or context-aware architectures. The work of Su
et al. (2016) was one of the first for dyadic conversations, but focusing on personality
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perception. They relied on a recurrent network to model the relationship between the
linguistic features of each speaking turn and personality, and on coupled Hidden Markov
Models to then model the long-term turn-taking temporal evolution and cross-speaker con-
textual information to infer the personality of both individuals. Later, Lin and Lee (2018)
proposed an interlocutor-modulated recurrent attention model with turn-based acoustic
features, which models the vocal self and interactive behaviors of a target speaker during
small group interactions. Zhang et al. (2020a) predicted self-reported personality and per-
formance labels by correlation analysis of co-occurrent intrapersonal and interpersonal key
action events, extracted from head and hand pose, gaze, and motion intensity features.
Regarding context, Principi et al. (2019) were one of the first to consider person metadata
(e.g., gender, age, ethnicity, and perceived attractiveness) with audiovisual data. However,
their goal was to better approximate the crowd biases for apparent personality recognition
in one-person videos. More recently, Palmero et al. (2021) proposed a Transformer-based
method for self-reported personality recognition in dyadic scenarios, which uses audiovisual
data and different sources of context from both interlocutors and the tasks performed to
regress a target person’s personality traits. In their work, the individual’s personality was
regressed from 3-second snippets, which may not be enough to properly model long-term
interactions. Multimodal fusion was done by simply concatenating the information from
the video and audio modalities. To address these limitations, Curto et al. (2021) exploited
variable time windows, allowing the capture of long-term interdependencies (e.g., longer
video snippets up to 30 seconds), and cross-subject layer, which allows the network to
explicitly model interactions among interaction partners in a dyadic scenario through at-
tentional operations. In their work, the behavior from both individuals is explicitly modeled
simultaneously through a two-stream cross-attentional Transformer, to eventually predict
their self-reported personalities jointly. Very recently, Shao et al. (2021) proposed to in-
fer an individual’s personality by modeling their cognitive processes. More concretely, the
approach first learns a person-specific convolutional network that predicts the target’s fa-
cial reactions to the other speaker’s audiovisual cues (facial landmarks and Mel-frequency
cepstral coefficients). Then, personality is inferred from the graph representation of the
target’s person-specific processor. Since such processor is optimized on all available data of
the target, it can use the information from entire videos at once to infer personality, not
only short video snippets.

4.3. Description of the competition track

The goal of the Self-Reported Personality Recognition track was to regress the self-reported
per-subject OCEAN personality traits, having at disposal all available data in the UDIVA
v0.5 dataset. Challenge participants had to outperform the provided baseline results in
terms of the average Mean Squared Error (MSE) between the ground truth and the predicted
scores, taking into account the individual score of the different traits.

4.4. Baseline approach

As the baseline for this track, we proposed a multimodal attention-based model that receives
different sources of information and context from both participants in the dyadic interaction
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to regress the target person’s personality traits. An overview of the method is described
below, while the complete details can be found in Palmero et al. (2021).

The architecture is a re-purposed Video Action Transformer Network (Girdhar et al.,
2019), the input of which consists of video, audio, and metadata information. The time-
synchronized full-length videos corresponding to each interlocutor were split into 32-frame
length non-overlapping chunks, capturing approximately 2.5 seconds of information. They
are fed to a pretrained R(2+1)D (Tran et al., 2018) network, and associated features are
extracted from the third convolutional residual stack. The face of the target person is
extracted from the full-frame chunks using a pretrained MobileNet-SSD (Howard et al.,
2017) and processed similarly. Time-synchronized audio features were extracted from the
raw audio signal of each participant’s lapel microphone using a pretrained VGGish (Hershey
et al., 2017) model. Finally, provided characteristics of both participants were used along
with session and dyadic metadata. More concretely, as participant metadata we used: age,
gender, cultural background (Mensah and Chen, 2013), the number of times that participant
had been recorded so far, and pre-session mood and fatigue values. As session metadata, we
used the order of the task within a session and the task difficulty, using 0 for tasks with no
associated difficulty level. As dyadic metadata, we considered the participants’ relationship.

A fundamental characteristic of the Action Transformer network is the selection of the
query, keys and values. In the case of the proposed baseline, the query incorporated the face
and the metadata of the target person. We considered two types of keys and values: local
and extended. Local keys/values included audiovisual embeddings from the target person,
while the extended counterparts included audiovisual and metadata embeddings from the
other interlocutor. The local and extended key and value embeddings together with the
query are processed independently in two different units of the transformer layer. They
provide two updated queries that are concatenated and linearly projected to produce the
final context-updated query. The baseline architecture uses three such transformer layers.

Since the model receives chunks of the original videos as input, the predicted personality
traits are obtained at chunk level. We computed the median between all the chunk scores
corresponding to each person to obtain the final participant-wise personality values.

4.5. Top-performing solutions

The scores of the challenge participants for each personality trait and the average score are
reported in Table 5. As can be seen, the SMART-SAIR team outperformed the baseline
for all the personality traits and was declared the winner of the personality track. The
remaining participants were not able to improve the baseline’s average score. However, the
FGM Utrecht team was awarded an honorable mention for achieving the highest score for
“C”. The table also includes the error obtained by an additional mean prediction baseline,
which uses the mean of the per-trait ground truth personality labels of the training set as
the prediction for the individuals on the test set. We observe that the winner and honorable
mention methods outperform this mean baseline on average and for all traits except for “O”,
for which this baseline is only outperformed by the winner team.

22



ChaLearn LAP Challenges on Personality Recognition and Behavior Forecasting

Team Avg. Score ↑ O C E A N

Mean prediction 0.889 0.725 0.877 0.991 0.673 1.179

SMART-SAIR 0.7691 0.7112 (1) 0.7230 (2) 0.8665 (1) 0.5482 (1) 0.9966 (1)
Baseline 0.8179 0.7443 (2) 0.7935 (3) 0.8864 (2) 0.6531 (2) 1.0121 (2)
FGM Utrecht 0.8251 0.7522 (3) 0.6874 (1) 0.9174 (3) 0.6707 (3) 1.0978 (3)
STARS Inria 1.0580 0.8386 (4) 0.9762 (4) 1.3586 (4) 0.8644 (4) 1.2520 (4)

Table 5: Codalab leaderboard (final evaluation stage) of Track 1: Self-Reported Personality
Recognition. Per-trait scores are reported by means of Mean Squared Error (MSE).
Values within parentheses denote the rank position. The Average MSE per method
is also reported. Methods that passed the code verification stage and described in
this paper are highlighted in bold. ↑ indicates the lower the score, the better. Mean
prediction refers to the performance of a system that returns the average per-trait
personality ground truth labels of the training set as the predicted personality.

Detailed information about the winner and honorable mention methods can be found
in their respective fact sheets: SMART-SAIR10 and FGM Utrecht11. Both solutions are
briefly described in the following subsections.

4.5.1. Winning solution: SMART-SAIR

Motivated by the findings that significant differences in personality traits between men and
women exist (Weisberg et al., 2011), the SMART-SAIR team decided to cluster the dataset
participants into two profiles based on their gender, and developed a multimodal model
for each profile using Neural Architecture Search (NAS, Jin et al. 2019). The proposed
pipeline is illustrated in Figure 7. The features used to train each model come from different
modalities: visual and textual (i.e., transcripts).

1. Visual features consisted of facial and body pose landmarks obtained from the an-
notations provided with the dataset. For each video frame, 68 3D facial landmarks are
used, obtaining a flattened 204-dimensional array. For the body, 24 3D landmarks are
used, obtaining a flattened 72-dimensional array. The mean and standard deviation of
each facial and body pose landmark point over all the frames in a 1-minute video clip
are computed, resulting in 2 feature vectors of sizes 408 and 144, respectively. Then,
the face and body landmark statistics are concatenated, resulting in a 552-dimensional
feature vector for each 1-minute video clip.

2. Text-based features are obtained through the analysis of the transcripts, based on
each talk-turn (i.e., utterance) duration, content, and sentiment.

• Duration: the duration of interaction for a person in a single minute was analyzed
to generate a 5-dimensional feature set consisting of the minimum and maximum

10. https://chalearnlap.cvc.uab.cat/media/results/None/Track-1_top-1_ICCV_Learning_
Personalised_Models.pdf

11. https://chalearnlap.cvc.uab.cat/media/results/None/Track_1-Honorable_Mention_Fact_sheet_
__Challenge.pdf
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Figure 7: SMART-SAIR workflow approach10 for self-reported personality recognition.

turn duration, average turn duration, standard deviation of turn duration, and
total duration of turns.

• Content: the features extracted by analyzing the number of turns and the content
of the dialog is represented as a 5-dimensional vector produced by the following
features: the percentage of turns for a particular person out of the total number
of turns in a single minute, average words per turn, longest turn, total number
of words, and standard deviation of words per turn.

• Sentiment: Each of the 1-minute transcripts was analyzed to generate 10 sentiment-
based features using a Spanish sentiment recognition library12, as it is the pre-
dominant language across all sessions. The generated sentiment values ranged
in between 0 to 1, where 0 corresponds to fully negative and 1 corresponds to
fully positive sentiment. Then, different features were obtained from that, i.e.,
the most negative/positive turn values, average sentiment per person, sentiment
range, and overall sentiment.

Having the model automatically designed using NAS and trained for the different pro-
files based on gender, the SMART-SAIR team applied decision-based fusion to predict the
personality of each individual. That is, the scores obtained per minute were averaged over
all the sessions. Then, the resulting values were aggregated across the different modalities
using the average predictions of both modalities.

According to the SMART-SAIR team10, the proposed approach has two main advan-
tages. Firstly, it combines multiple modalities to predict the personality of an individual.
Secondly, the system is scalable and can adapt itself to changing trends in the data as
the neural architecture search-based approach enables the generation of a deep learning
model depending on the user profile. Finally, they also observed that visual and textual
features performed almost equally well when used individually, and that the best results
were obtained by combining both the visual and textual features.

12. https://pypi.org/project/sentiment-analysis-spanish/
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Figure 8: Final solution of the Utrecht team11 for self-reported personality recognition.

Figure 9: Alternative solution of the Utrecht team11, used during development phase.

4.5.2. Honorable mention: FGM UTRECHT

The FGM Utrecht team analyzed the correlation between metadata and the self-assessment
personality trait scores, and proposed to use a Random Forest (RF) regressor trained solely
on metadata features (i.e., age, gender and number of sessions). The proposed pipeline is
illustrated in Figure 8.

Alternatively, they also proposed to combine linguistic, audio and metadata features in
a multitask fashion, based on RF regressors and late fusion, illustrated in Figure 9. In this
alternative solution, they trained different regressors from different data modalities, based
on a preliminary analysis using the development data (i.e., evaluated on the validation
split). Interestingly, they observed that different traits were better predicted from different
modalities. For instance, the “O” trait was better predicted from metadata information;
the “C”, “E” and “A” traits were better predicted using text-based features; and the “N”
trait was better predicted from audio features. Furthermore, they also found that the best
performing models for both linguistic and audio features were obtained in the Ghost task.
However, such methodology was not able to outperform their simple RF regressor trained
solely on metadata for the final evaluation phase (i.e., evaluated on the test split), despite
doing so for the development phase. Detailed information about such alternative solution
can be found in their fact sheet11.

According to the FGM Utrecht team11, obtained results validate to some extent the
findings that a correlation between personality, gender, and age exists (Marsh et al., 2012).
They also suggested that the number of sessions may be correlated with the Openness trait,
considering the time investment and social energy required to participate in these sessions.
In their conclusions, they commented that a simple RF regressor based on metadata features
only should not be enough to outperform a method based on linguistic, audio-visual and
metadata features like the alternative model they evaluated in such a complex task like
personality recognition, indicating that the UDIVA v0.5 dataset may include unwanted
bias. Finally, they commented that the possible sources of bias could be associated with
the small number of participants in the dataset, the similarities in their backgrounds, and

25



Palmero et al.

education level, which might not be representative enough for building a strong model
capable of generalizing in a more diverse population.

4.6. Discussion

Several lessons can be drawn from the self-reported personality recognition track. Both
winning and honorable mention solutions suggested that a correlation between personal-
ity and gender exist, which is supported by the literature on the field (Weisberg et al.,
2011; Marsh et al., 2012). Although previous work on personality computing identified
the existence of distinct types of gender-bias on related datasets (Principi et al., 2019; Es-
calante et al., 2020; Jacques Junior et al., 2021), most methods found in the personality
computing literature are proposing to advance the research on the topic without explicitly
taking such correlation into account. Although personality traits are often regarded as
relatively stable over time (Cuperman and Ickes, 2009), they actually follow specific pat-
terns of change that have been already described (e.g.,“C” increases over lifetime, Roberts
et al. 2006). Personality values denote behavior tendencies averaged across many situations;
therefore, self-reported personality predictions from short temporal segments can be noisy
and later aggregation of those should be carefully designed. In fact, within-person vari-
ability is greater than between-person variability (Fleeson and Jayawickreme, 2015), even
during face-to-face interactions (Gundogdu et al., 2017), thus point estimates of personality
traits should be taken with caution. The use of longer time windows capable of capturing
long-term interdependencies (Curto et al., 2021) or the learning of person-specific networks
leveraging complete interactions (Shao et al., 2021) are potential alternatives to address
this problem. Nevertheless, the modeling of context-aware long-term interdependencies is
complex, particularly in the case of multimodal scenarios.

Results from challenge participants have also shown that vocal behavior (both speech
features and transcripts) provides rich cues for personality recognition, which is aligned
with previous work on personality perception showing that audiovisual models can benefit
from the inclusion of language data (Güçlütürk et al., 2018). Furthermore, both teams have
shown the potential of using lower-dimensional input representations for their personality
models, in contrast to the baseline approach that uses raw data. Results have also revealed
a recurrent and consistent finding in personality computing (Jacques Junior et al., 2019)
that there is no single model that works best for all possible settings and personality traits,
reinforced in Section 4.5.2 by the FGM Utrecht’s solution. This suggests that different traits
can be better modeled and recognized by distinct feature representations and methodologies.

Fairness in machine learning can be defined in different ways (Kusner et al., 2017; Friedler
et al., 2019). In general, most definitions propose to fight against algorithmic biases in order
to ensure that the decisions of any machine learning-based method do not reflect discrimi-
natory behavior toward certain groups or populations (Mehrabi et al., 2021). In the context
of decision-making, and according to Mehrabi et al. (2021), fairness is the absence of any
prejudice or favoritism toward an individual or group based on their inherent or acquired
characteristics. Thus, an unfair algorithm is one the decisions of which are skewed toward a
particular group of people. Therefore, if we want the next generation of intelligent systems
for personality computing to be fair with respect to different contexts, setups and demo-
graphics, we need to address the fairness problem in some way, either through the design
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and development of new datasets and annotation protocols or through new methodologies
capable of mitigating different types of bias. For instance, the winning approach of the per-
sonality recognition track proposed to use as visual information facial and body landmarks.
Facial landmarks detectors may have their own biases, depending on how they are trained.
They also have a potential power to reveal racial information based on face morphology and
geometric features (Bülthoff et al., 2021), which could be considered a possible source of
bias. However, facial landmarks can also be used to remove some appearance information
that could be another and probably even stronger possible source of bias due to stereotyp-
ing, such as skin tone, hair style or face attractiveness. A future research question to be
addressed on this domain could be: is it possible to build generic features free of bias with
respect to demographics attributes (e.g., gender, age, race) for different kinds of modalities
(e.g., audio, visual, text)? Completely eliminating demographic bias is extremely difficult,
if not impossible, due to unknown factors or correlated features. However, moving toward
fair machine learning is crucial to advance on the use of artificial intelligence for the good
of society. Automatically identifying whether the outcomes of a particular model are bi-
ased toward different demographic groups of individuals is another highly relevant future
research direction on this domain, as well as the automatic identification of unknown biases.

In this regard, UDIVA v0.5 is an unbalanced dataset. For instance, although the dataset
is relatively balanced with respect to the gender attribute, it is extremely unbalanced re-
garding age, country of origin, or spoken language. Besides that, personality recognition is
treated as a regression task where not all the range of values are equally represented, usually
following a normal distribution (McCrae and John, 1992). As mentioned in Section 2.2 and
raised by the FGM Utrecht team, the dataset is slightly biased towards people with high
levels of the Openness trait due to the recruitment procedure. These and other possible
sources of bias make the problem harder, but also stimulate research on bias identifica-
tion and mitigation methods and related areas, in addition to the multimodal personality
computing problem by itself. Another limitation of the UDIVA and UVIDA v0.5 dataset
is the number of subjects, i.e., 147 and 134, respectively. While being one of the face-to-
face interaction datasets with such a high number of participants (Palmero et al., 2021),
correlations are known to achieve their point of stability around 160 subjects for typical
scenarios in personality psychology, achieving full stability at 250 (Schönbrodt and Perug-
ini, 2013). From a psychology standpoint, this means that our findings reveal trends that
will not radically change, but can vary in terms of size, not in terms of the direction of
correlation. Thus, our findings are reliable. However, from a machine learning point of
view, where we aim to infer personality from overt behavior, the need for further data that
covers a broader spectrum of behavior combinations significantly increases. Consequently,
our study can motivate the research and design of novel datasets and annotation protocols,
in particular large-scale datasets for unsupervised or self-supervised pre-training for shared,
social-related downstream tasks.

5. Track 2: Behavior Forecasting

Similarly to Section 4, in this section, we first introduce the task of non-verbal social behav-
ior forecasting, potential applications, and technical related work particularly focusing on
landmark-based approaches. Then, we describe the challenge baseline and top-performing
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solutions of Track 2. The section ends with a discussion of the outcomes of this track and
suggestions for future research.

5.1. Social behavior forecasting

Humans have the innate ability to anticipate actions continuously, given a set of previous
observations. Such anticipation is crucial in many time-sensitive contexts. For example,
Sexton et al. (2018) showed that around 30% of requests during surgery were anticipated
by the assistants, which translated to significant operating time reductions. The influ-
ence of anticipation is not limited to such specific environments though. In fact, similar
efficiency improvements have been observed in other robot-assisted tasks like object grasp-
ing (Saponaro et al., 2013), or executing actions towards a common goal (Dominey et al.,
2008; Huang and Mutlu, 2016). Behavior forecasting has also applications in assistive
technology (e.g., anticipating falls), collaborative and autonomous robots or autonomous
vehicles (Chaabane et al., 2020). For instance, Gujjar and Vaughan (2019) achieve to de-
code the behavior of pedestrians based on previously recorded videos to inform the decisions
taken by autonomous vehicles. Another application works with visually impaired popula-
tions, in which behavior forecasting has helped predict the future trajectory of people in
egocentric settings (Qiu et al., 2021).

In a more interactive and social context, Duarte et al. (2018) showed the benefits of
modeling non-verbal signals exchanged during interactions to make an embodied agent act
in an understandable and socially aware way. In this direction, the research community
has explored the forecasting possibilities for many human behavior representations in social
contexts such as feedback responses, disengagement, or turn-taking (Barquero et al., 2022a).
For instance, in dyadic interactions, behavior forecasting has been applied in scenarios
ranging from the prediction of non-verbal behavior allowing more human-like interactions
with artificial interfaces or avatars (Ahuja et al., 2019), to the prediction of periods of
agitation in people with dementia (Alam et al., 2019).

5.2. Related work

Low-level representations, such as body or face landmarks, are commonly used as input for
single human behavior forecasting (Sofianos et al., 2021; Parsaeifard et al., 2021), although
few works leverage them in social contexts (Katircioglu et al., 2021; Guo et al., 2021). The
stochastic nature of future prediction makes behavior forecasting an extremely challenging
problem. For instance, in the much more generic problem of future video prediction, the
future uncertainty leads to blurred predicted sequences of frames (Oprea et al., 2020).
While unavoidable, the ambiguity can be reduced by narrowing the space of predictions and
increasing the contextual information available. Regarding the prediction space, a common
path is to forecast low-dimensional data such as landmarks or action units. As a matter
of fact, in the past years, human body poses and facial expressions have been leveraged to
recognize behavior (Nadeem et al., 2020), infer intent (Kim et al., 2020) or detect behavioral
and emotional disorders (Vyas et al., 2019). Therefore, forecasting landmark representations
can be seen as an intermediate step towards the forecasting of any visual behavioral cue or
signal (Stergiou and Poppe, 2019).
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Most behavior forecasting works focus on single-human scenarios. Existing methodolo-
gies have traditionally followed two main directions. Some of them embrace the aforemen-
tioned future uncertainty and exploit it by predicting multiple futures, which are usually
referred to as stochastic methods. Most common approaches are conditional variational
autoencoders (Yuan and Kitani, 2020; Kania et al., 2021; Zhang et al., 2021b) and condi-
tional generative adversarial networks (Barsoum et al., 2018; Fushishita et al., 2019). The
main problem derived from these methods resides in their evaluation, as the ground truth
only includes one sample of all hypothetical futures. Instead, other works simplify it by
considering the future to be deterministic. Compared to the stochastic methods, the re-
sults of deterministic methods can be easily evaluated by directly comparing them to the
ground truth. Most of them add constraints or provide contextual information in order to
narrow the future space and therefore reduce its stochasticity. Usual methodologies include
encoder-decoder recurrent approaches (Fragkiadaki et al., 2015; Chung et al., 2016; Martinez
et al., 2017; Ghosh et al., 2017; Chiu et al., 2019) and Transformer-like architectures (Mao
et al., 2020; Cai et al., 2020). Other works underline the importance of incorporating scene
knowledge to the human behavior model, including the objects position and trajectory (Shu
et al., 2016; Corona et al., 2020b; Adeli et al., 2021), or visual spatiotemporal features of
the scene (Adeli et al., 2020, 2021).

In contrast, few works attempt to predict behavior on conversations between two or
more interlocutors, and none tackles them from a stochastic point of view. When a group
of people is interacting, the positions and orientations of the individuals, their body and
hand gestures, gaze, and facial expressions become extremely relevant for behavior forecast-
ing. In the context of face, most works aim at predicting lower-dimensional representations
of the face such as action units (Chu et al., 2018; Chen et al., 2019; Ueno et al., 2020; Woo
et al., 2021), facial landmarks (Huang and Khan, 2017), or explicitly learned representa-
tions (Feng et al., 2017). For body pose forecasting, methodologies can be grouped by how
the landmarks are handled: in the image or in the frequency space. The former refers to
classical approaches, with encoder-decoder architectures based on recurrent neural networks
such as Long Short-Term Memory (LSTM, Ahuja et al. 2019; Hua et al. 2019; Honda et al.
2020) or gated recurrent units (Adeli et al., 2020) as the gold standard, sometimes assisted
by graph neural networks (Corona et al., 2020b; Adeli et al., 2020, 2021). Instead, the
latter approaches apply the Discrete Cosine Transform (Ahmed et al., 1974) to each body
joint’s temporal sequence to process them in the frequency space. This favors the intra- and
inter-person attention with Transformer-like architectures (Wang et al., 2021b; Guo et al.,
2021; Katircioglu et al., 2021; Wang et al., 2021a) and reportedly avoids generating freezing
motion. The only available works on hand-gestures forecasting tackle other problems in
non-social environments such as grasping object affordance (Corona et al., 2020a) or early
gesture recognition (Lee et al., 2018). Few works try to leverage multimodal information
like verbal content (Chu et al., 2018; Hua et al., 2019; Ueno et al., 2020), prosodic fea-
tures (Ahuja et al., 2019; Ueno et al., 2020; Woo et al., 2021), or visual features (Adeli
et al., 2020, 2021). Naturally, multimodal data needs to be exploited in a specific way in
order to fully profit from it.
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5.3. Description of the competition track

The goal of the Behavior Forecasting track consisted in using information from the past in
order to predict the position of the face, body and hand landmarks in the future within
a given time window, in the form of 2D coordinates in the image space. The length of
this prediction window was set to two seconds (50 frames), which allows us to evaluate
both short- (0 − 400ms) and long-range behaviors (> 400ms) (Tang et al., 2018; Oprea
et al., 2020; Kania et al., 2021). In order to provide a reasonable conversational context,
the information from the immediate previous frames of the prediction window is needed
(observation window). Each pair of observation and prediction windows will be hereafter
referred to as segment. These segments conceptually include information of both individuals.
Although we enforced all validation and test segments to have observation windows of at
least four seconds (100 frames), there were no specific requirements regarding the time
window that challenge participants had to use to make their predictions.

The Talk task was selected to evaluate this track due to its highly interactive nature,
which could provide the most valuable insights about the underlying mechanisms of human-
human interaction. Prediction window snippets were defined for this task (explained in Sec-
tion 5.3.2) for validation and test data. In addition to the nature of the task, the landmarks
extraction process was less challenging in this scenario due to the lack of occlusions and
interactions with objects. Nevertheless, challenge participants had to deal with a relatively
high amount of noise in the labels available: the evident jitter for the body limbs, the often
wrong wrist joints from the body landmarks, and the missing or wrong extractions of hands
landmarks. This encouraged the exploration of methods especially suited for such weakly
supervision and methods that explicitly leveraged noise mitigation mechanisms.

In contrast to the Personality Recognition track, where challenge participants could
use all available data to infer per-subject personality traits, participants of the Behavior
Forecasting track were only allowed to use information from or obtained in the past to
predict the behaviors occurring in a given prediction window. That discards post-session
fatigue and mood values provided as metadata, as well as further information coming from
other interaction sessions if such sessions took place after the session to which a given
prediction window belongs. Consequently, as the Talk task (i.e., the one used for evaluation)
was always administered first during a session, the remaining tasks of that session counted
as future information as well. Therefore, it was not allowed to use information coming
from those future tasks either. In practice, this implies that the first predictions for a given
subject may be worse than future ones, as more information about the subject is being
provided and used sequentially. In the code verification stage, we carefully checked that
the participants did not use information from the future to predict the given prediction
windows.

5.3.1. Pose representation

In order to reduce the complexity of our problem, the evaluation only considered a subset
of the most relevant landmarks for human behavior analysis. For face, only 28 of the 68
original landmarks were considered: five landmarks per eyebrow, three landmarks per eye
(four inner points averaged as the eye center, and both end points), five landmarks per lip
(computed by averaging the top and bottom edges of each lip), and the two mouth extremes.
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From body, we only considered the 10 upper-body joints (both wrists, elbows, shoulders
and chest landmarks, and torso and neck). We kept all the landmarks of the fingers (20 in
total, four for each finger) and discarded the wrist one, which was found to be much noisier
than the one from the body pose. Several examples of the selected landmarks are shown in
Figure 6.

5.3.2. Segments generation

In order to fairly evaluate dyad-driven behaviors, the landmarks from the evaluation seg-
ments had to be as accurate as possible for both session participants. Ideally, the evaluation
could have been constrained to the 150-frames-long sequences (i.e., segments) with correct
face, body, and hands landmarks for both participants. However, this restrictive scenario
implied an upper bound for the amount of non-overlapping segments of 288 for the val-
idation set and 97 for the test set (28.2% and 16.2% of total frames used, respectively).
In order to keep a good trade-off between landmarks accuracy and number of segments
fulfilling the constraints, the correctness condition was only required for face, body, and at
least one hand (if visible) for both participants. This increased the previous upper bound
up to 658 and 300 non-overlapping segments for validation and test sets, respectively.

The set of evaluation segments had to be as diverse as possible to represent the widest
spectrum of human behavior possible within the dataset. Unfortunately, such behavioral
diversity is difficult to model, especially without any high-level behavioral labels. We sim-
plified it by assuming that such variety could be preserved by enforcing the diversity of
movement velocities (magnitude and angle) and hands visibility and correctness. There-
fore, for each candidate segment, the angles and speeds of the 28 face landmarks, six body
arms landmarks and 20x2 hand landmarks were computed. For each participant, two 2D
histograms were generated for each landmark: one for the observation window and one for
the prediction window. The histograms were computed with three bins for speed ([0, 3),
[3, 6) and ≥ 6 px/frame for face and body, and [0, 4), [4, 8) and ≥ 8 px/frame for hands)
and 11 bins for angles (equally split from −π to π) and normalized. The raveled histograms
were concatenated along with the percentage of correct/visible hands (eight values, two
for each hand of both participants), yielding a feature vector of size 9784 per candidate
segment (4892 for each participant). These vectors from the validation set were grouped
into 16 clusters (chosen with the elbow method) with the K-means algorithm (Hartigan,
1975). To ensure a uniform distribution of segments across clusters, the final segments were
greedily sampled by selecting all non-overlapping candidate segments starting from the least
populated cluster. This strategy yielded 598 validation segments (37.4± 10.4 segments per
cluster). The same clusters were used to classify and sample the test candidate segments,
resulting in 278 test segments (18.5± 13.6 segments per cluster). The distribution plots of
both candidate and final segments for the validation and the test sets are shown in Appendix
C.

Masking of prediction window snippets for validation and test data was done at frame
level for video and audio, using the timestamps of the start and end frames of the snippet
for the latter. Utterances with start and end times between the timestamp of the first frame
and the timestamp of the last frame of the snippet were removed. Additionally, utterances
that started before the prediction window and continued into such window, and/or those
that started during the prediction window and finished later, were manually masked by
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modifying the start/end utterance timestamp with the start/end prediction window times-
tamp, and replacing the utterance content that took place during the prediction window
with a [MASKED] note.

5.3.3. Metrics

The objectives of the Behavior Forecasting track are accurately predicting face, body, and
hands motions at the same time. A suitable metric for such goals should: 1) encourage
realistic future predictions, and 2) avoid penalizing outlier predictions dramatically. The
first constraint prevents us from using any distance metric (e.g., standard mean per joint
position error or MPJPE, c.f. Ionescu et al. 2013), as any corrupt prediction would penalize
the final score too heavily. Instead, upper-bounded metrics could be considered. The second
constraint is quite challenging; while realism can be easily assessed from a qualitative point
of view, providing a quantitative score is not trivial. Instead, we propose a set of broadly
adopted metrics in pose estimation that already implicitly imply such realism. Note that,
in order to account for the variability in the dataset participants’ anatomy, the errors in
the metrics are always computed up to an anatomical measure specific to each participant.

Face. Area Under the Curve (AUC) of the Cumulative Error Distribution plot (CED).
It was computed up to the 25% of the inter-pupil distance. Such distance was defined by av-
eraging the distance between the 3D landmarks of both eye centers in all participant frames.
Although the most common upper bound for the CED in the literature of face landmarks
estimation was 10%, we relaxed it due to the superior difficulty of the forecasting prob-
lem (Valstar et al., 2010). As a result, the face metric is sensitive to accuracy improvements
in a wider error spectrum while still significantly rewarding the most accurate predictions.
Furthermore, in order to avoid rewarding face predictions with sparse error distributions,
we computed the CED with the maximum error across landmarks, instead of the average.
Therefore, our metric only rewards faces that preserve a correct facial shape up to some
extent. Note that only frames with correct face landmarks were considered (MF ). 100 bins
were used for the AUC calculation.

F := AUCMF

CED(0:0.25)

Body. Average of the Percentage of Correct Keypoints (PCK) up to 50% of the head
size (Andriluka et al., 2014) for all the body joints. While high values for this metric do not
implicitly imply body realism, we do not consider this a problem given the static nature
of the body in seated conversational scenarios. Only frames with correct body pose were
considered (MB). Wrists joints were only evaluated when the hand was annotated as visible.
In order to contemplate the higher levels of noise present in the body annotations, only ten
bins were considered for the PCK scores computation.

B :=
1

P

P∑
i=0

AUCMB

PCKi(0:0.5)
, where P := #body-joints considered

Hands. AUC of the Success Rate (SR) (Yuan et al. 2018) plot computed up to the
50% of the palm size. The palm size was defined as the distance between the knuckles of
the index and the little fingers. Similarly to the face scenario, we considered the maximum
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Team Average Rank ↑ Face Body Hands

Baseline 1.00 0.3458 (1) 0.8897 (1) 0.5392 (1)
rays2pix 1.67 0.3458 (1) 0.8824 (2) 0.5177 (2)
SAIR KCL 2.67 0.2049 (2) 0.8507 (3) 0.3160 (3)

Table 6: Codalab leaderboard (final evaluation stage) of Track 2: Behavior Forecasting.
Methods that passed the code verification stage are highlighted in bold. ↑ indicates
the lower the score, the better.

error across all landmarks. The final hands score was the average of this value for both
hands. Only frames with correct hand landmarks were considered (ML and MR). 100 bins
were considered for the AUC calculation.

H =
HL +HR

2
=

(AUCML

SRL(0:0.5)
+AUCMR

SRR(0:0.5))

2

Challenge participants were ranked according to the three metrics independently. The
team with the highest average position in the three rankings which surpassed the baseline
position would be declared the winner.

5.4. Baseline approach

Our baseline for the Behavior Forecasting track consists in propagating the landmarks from
the last observed frame into the future, as if the person remained static once the observation
window finished (zero-velocity baseline). While it may seem counterintuitive, the zero-
velocity baseline has proven to be a very strong and difficult to improve baseline (Martinez
et al., 2017). This is especially true in our use case, where one interlocutor tends to keep a
static pose while thinking or listening to the other interlocutor’s speech.

5.5. Top-performing solutions

The scores of the challenge participants for each part of the body are reported in Table 6.
As can be seen, none of the teams outperformed the zero-velocity baseline. However, the
SAIR KCL team (Tuyen and Celiktutan, 2021) was awarded with an honorable mention for
the novelty of their approach13, which is presented next.

5.5.1. Honorable mention: SAIR KCL

Motivated by the influence of social signals in communication (Breazeal, 2002), the SAIR
KCL team proposed a method that exploits the dyadic information to improve the behavior
forecasting task. In a sequence-to-sequence fashion (seq2seq, Sutskever et al. 2014), three
LSTM units encode the 2D landmarks of the target person’s observed face, body and
hands. Another single LSTM unit followed by a fully connected layer encodes the 2D
landmarks from the interacting partner’s face, body and hands all together into a fixed-
length contextual vector. In the decoding stage, the 2D landmarks from the target person’s

13. https://github.com/TuyenNguyenTanViet/ForecastingNonverbalSignals
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Figure 10: Framework proposed by the SAIR KCL team13 to forecast non-verbal behaviors
of the target person during social dyadic interactions. The input consists of the
landmarks of the target and the interacting partner observed during 4 seconds
(100 frames).

face, body, and hands at frame t are each concatenated to the contextual vector and then
fed to their respective LSTM decoder, which generates the predicted pose for the frame t+1.
Additionally, a residual layer is added between the input and the output of each LSTM cell
of the decoder in order to better model the velocity of the motion (Martinez et al., 2017).
Finally, they also incorporate a discriminator, which learns to distinguish between the real
future sequence of poses and the generated one. They are both trained in an adversarial
way so that the generator is encouraged to produce more realistic motions. The approach
is depicted in Figure 10.

The authors remark that the low accuracy when predicting hands gestures might be
due to their inherent randomness. They suggest that building a multimodal setting to
exploit audio might help the network to learn the rhythmic movements (beat gestures)
which usually accompany the communicator’s speech (McNeill, 2011).

5.5.2. Analysis of results

In an additional experiment, we computed the absolute differences of the predicted land-
marks between consecutive frames for all the test segments (∆). This metric quantifies the
amount of motion in the predicted sequences of landmarks. In order to assess the evolution
of the predictions motion along the future, this metric was also computed restricted to the
short- (<400ms), mid- (400ms to 1s) and long-term (1s to 2s) future windows (∆S , ∆M ,
and ∆L, respectively). Finally, we also retrieved the mean absolute differences between
the last observed and the first predicted landmarks (∆0). Results for the test submissions
of both final stage participants are summarized in Table 7. In spite of the fact that the
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Face Body Hands

Team ∆0 ∆S ∆M ∆L ∆0 ∆S ∆M ∆L ∆0 ∆S ∆M ∆L

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ground truth 0.56 0.62 0.66 0.67 0.24 0.29 0.32 0.31 0.59 1.28 1.31 1.36
rays2pix 0.00 0.00 0.00 0.00 0.02 0.45 0.27 0.14 0.90 0.62 0.47 0.40
SAIR KCL 1.99 0.36 0.40 0.53 1.66 0.19 0.15 0.15 4.61 0.48 0.44 0.70

Table 7: Absolute mean differences (in pixels) across test segments between last observed
and first predicted landmarks (∆0), and between consecutive short- (∆S), mid-
(∆M ), and long-term (∆L) predictions (0 to 400ms, 400ms to 1s, and 1 to 2s,
respectively).

rays2pix team did not submit their fact sheet, we can observe that their method is equiva-
lent to the zero-velocity baseline for face. Their body and hands predictions tend to freeze
near the end of the prediction window, especially for the body. This effect is alleviated
in SAIR KCL’s framework by the adversarial loss, as a progressive deceleration would be
a strong discriminative feature for distinguishing real from generated sequences. Not only
their predictions do not freeze, but their motion increases when comparing the short- and
the long-term windows (from 0.36 to 0.53 and from 0.48 to 0.70 for face and body, re-
spectively). A qualitative analysis would determine whether such acceleration is due to
instability in the long-term predictions. Finally, we hypothesize that the high ∆0 values
observed for the honorable mention method in all the body parts could be the origin of its
modest challenge performance. High values of ∆0 translate to an overall rough transition
between the observation and the predicted window. Since the discriminator only sees the
predicted sequence of landmarks, it does not explicitly enforce a smooth and realistic tran-
sition between the observation and the prediction window. As a result, the combination of
1) a model rewarded for generating plausible accurate predictions and 2) the huge stochas-
ticity of the future might favor the generation of realistic pose sequences in an average safe
position.

5.6. Discussion

In the Behavior Forecasting track, challenge participants failed to outperform the zero-
velocity baseline. Indeed, such baseline has proven to be simple but strong in other motion
forecasting scenarios (Martinez et al., 2017). It is even more powerful in our test scenario
(i.e., the Talk task), where participants often remain static while listening to their partner,
or perform very subtle movements (e.g., nodding). Some of these subtle face movements
may be better captured with action units and gaze direction information, instead of solely
relying on facial landmarks. Added to the high stochasticity of the future, predicting a
future sequence of landmarks with high motion is often unworthy in terms of risk versus
success rate. As a matter of fact, in the very recent work from Barquero et al. (2022b)
on UDIVA v0.5, the zero-velocity baseline has been beaten by methods that predict slowly
moving and eventually freezing sequences without adversarial training. As a result, we might
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question whether quantitative metrics are an appropriate indicator of good performance
by themselves. Similarly, we often find situations where several distinct future behaviors
are equally valid and contextually coherent under the same observable circumstances. Such
situations are especially frequent when dealing with long-term horizons like ours (2 seconds).
In these scenarios, considering only a single observed behavior as the ground truth may be
detrimental. A possible solution could be using human criteria. Unfortunately, qualitative
assessments like questionnaires are unscalable and time-consuming options that are not free
of biases either.

Overall, the participants from the Behavior Forecasting track highlighted the difficulty
of predicting accurate hands gestures. Although there are no previous works studying hands
forecasting in other scenarios to the best of our knowledge, we hypothesize that three main
aspects may drive such difficulty. First, the hands gestures are extremely stochastic. In
conjunction with the primarily static nature of our scenario, predictive models have little
incentive to generate hands gestures over hands remaining in a static and safe position.
Second, the commonly used mean squared or derived losses only reward accurate gesture
predictions when they are time-synchronized to the ground truth at the frame level. If
not, the reward might even become a penalization. Finally, the hands annotations are very
noisy and frequently missing due to occlusions, hands interaction, and rapid movement. As
a result, the training might become unstable. Behavior forecasting will therefore benefit
from the advances in pose estimation methods, especially for hands. In particular, very
recent works specialize in interacting hands pose estimation (Zhang et al., 2021a; Kim
et al., 2021).

One of the main goals of this challenge was to promote novel architectures that ex-
ploited the social dynamics of the interactions. Even though the SAIR KCL’s method
encodes the observed landmarks from both participants to generate the future motion of
the target interlocutor, we lack a comparison against the same method without exploiting
the interacting partner’s landmarks. Recent works in similar benchmarks showed the po-
tential of considering only one participant of the interaction (Wang et al., 2021a; Barquero
et al., 2022b). We hypothesize that the challenges behind successfully exploiting dyadic
and context information may be mainly two. On the one hand, a vast amount of data is
required to model the complex data distribution of the dyads. On the other hand, the im-
balanced ratio of monadic- versus dyad-driven dynamics and interactions with other sources
of context in a conversation may impede the network to take full advantage of the minority
class. However, the joint computational modeling of both participants is a promising line
based on the psychology literature (Kaye and Fogel, 1980; Whyatt and Torres, 2017). In
fact, recent works focusing on highly interactive scenarios like dancing have already proved
the benefits from exploiting the dyad dynamics (Katircioglu et al., 2021; Guo et al., 2021).
Similarly, we also wanted the participants to explore whether the combination of multiple
modalities helped to improve the predictions. Unfortunately, none of this track’s partici-
pants exploited multimodal approaches. Preliminary studies though have recently reported
that naively incorporating multimodal data like audio, transcripts, or metadata might not
have any significant impact on the results (Barquero et al., 2022b). Consequently, further
research is needed in order to find the right multimodal fusion strategies that allow the
networks to learn useful multimodal behavioral patterns. We strongly believe that incorpo-
rating information from other modalities may help narrow the amount of possible futures
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and improve the accuracy of the predictions. Actually, multimodal approaches have already
proved useful in other higher-level social signal forecasting problems (Raman et al., 2021;
Boudin et al., 2021). In our problem, the main obstacle of incorporating other modalities
resides in the natural increase of the problem dimensionality. For example, leveraging the
last heard utterances of the participant might help anticipating their next gesture. How-
ever, the spectrum of possible combinations of observed landmarks and last utterances is
immense, and most surely underrepresented in any available training set. Generally, includ-
ing all possible combinations of verbal/non-verbal, individual/social behaviors in a dataset
is extremely challenging. Therefore, the research community should invest efforts in collect-
ing large-scale unlabeled datasets that capture more varied individual and social behavior
representations. We expect such datasets to favor data-hungry strategies like transfer learn-
ing, which remains unexplored as of today. This would eventually benefit the deployment
of behavior forecasting in scenarios where specific data collection is difficult due to privacy
concerns, for example. Finally, we also foresee future work to research on multitask settings
where multiple social cues and signals are simultaneously predicted, the benefits of which
have already been shown in other behavioral forecasting works (Ishii et al., 2020, 2021).

6. Ethical considerations

The research presented herein has several advantages and applications for good (see Sec-
tion 4.1 and Section 5.1), but also comes with a number of potential ethical pitfalls. In this
section, we describe some of the ethical issues concerning the methodological aspects of the
challenge as well as its results and consequences.

Since this research involved the collection and manipulation of sensitive data, several
ethical aspects were considered to conduct it. Consent to collect and use the data was asked
with full disclosure of how it would be used, processed, and for how long the data would
be available for further processing. Additionally, the data is preserved anonymously and
encrypted, all participation was voluntary, and it entailed no degree of harm. A noteworthy
ethical concern in our research is the sample bias towards a WEIRD population (Henrich,
2020), since most of the participants in our sample matched the characteristics of a white
and highly educated population.

On a different note, there are important ethical concerns in the use of the results in per-
sonality recognition and behavior forecasting fields. First off, since personality computing
may become the new channel for psychological assessment over the next few years (Bleidorn
and Hopwood, 2019), researchers and practitioners should ensure data privacy even more
as the possibilities of data leakage and misuse have increased (Nayak and Ojha, 2020). Col-
lected personality data could be misused for personality profiling beyond the scopes of the
research purposes, like personnel selection (Tippins et al., 2021), selling strategies (Dhelim
et al., 2021) or such as it happened in the Cambridge Analytica scandal, when person-
alized political messages were delivered based on reconstructions of personality profiles
from social networks (Confessore, 2018). Similarly, non-consensual behavior forecasting
may have potential pitfalls in areas such as security borders or migration controls, where
unfair algorithms may lead to undesired outcomes (McKendrick, 2019) impacting human
rights (Akhmetova and Harris, 2021). All in all, although data protection regulations vary
across countries (Guzzo et al., 2015), we encourage future research to ensure informational
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self-determination and consensual use of the information that can be extracted with the
methods presented herein. In this sense, frameworks such as the EU GDPR provide excel-
lent safeguards for establishing ethical borders that should not be crossed.

7. Conclusion

This paper summarizes all the research derived from the Personality Recognition and Behav-
ior Forecasting tracks of the ChaLearn LAP DYAD’21 Challenge on Understanding Social
Behavior in Dyadic and Small Group Interactions. The paper also describes the UDIVA
v0.5 dataset, used for the challenge, and discusses the challenge organization, outcomes,
and possible future research lines. Personality recognition and human behavior forecasting
are multidisciplinary and complex problems. For the Personality Recognition track, the
winning team was able to improve the baseline, showing promising performance and gener-
alization capabilities. Both winning and honorable mention teams showed the importance of
taking into account metadata when recognizing self-reported personality data. For the Be-
havior Forecasting track, even if participants were not able to outperform the zero-velocity
baseline, we have raised fundamental questions about the problem. How to deal with noisy
and missing data and how to promote realistic but also accurate predictions remain open
challenges. Furthermore, the exploitation of multimodal architectures remains unexplored.
We expect future research lines to focus on building novel multimodal frameworks that will
become the new state of the art for behavior forecasting.

The DYAD challenge (and associated workshop14) brought together researchers in the
field and from related disciplines (e.g., computer vision, machine learning, affective comput-
ing, social signal processing, human-machine interaction, social sciences, social psychology)
to discuss the advances and new challenges on the topic of dyadic and small group in-
teractions, explore strengths and limitations of existing approaches, and help define the
future directions of the field. We believe this work, in addition to UVIDA and UVIDA v0.5
datasets, may become a reference in the field. The datasets can be further expanded and ex-
ploited in many ways, either through additional annotations (e.g., high-level behavior labels,
perceived personality state over time) or behavioral analysis from different perspectives.
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German Barquero, Johnny Núñez, Zhen Xu, Sergio Escalera, Wei-Wei Tu, Isabelle Guyon,
and Cristina Palmero. Comparison of spatio-temporal models for human motion and
pose forecasting in face-to-face interaction scenarios. In Understanding Social Behavior
in Dyadic and Small Group Interactions, Proceedings of Machine Learning Research,
pages 107–138, 2022b.

Lisa Feldman Barrett, Batja Mesquita, and Maria Gendron. Context in emotion perception.
Current Directions in Psychological Science, 20(5):286–290, 2011.

Emad Barsoum, John Kender, and Zicheng Liu. Hp-gan: Probabilistic 3d human motion
prediction via gan. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pages 1418–1427, 2018.

Ligia Batrinca, Bruno Lepri, and Fabio Pianesi. Multimodal recognition of personality
during short self-presentations. In ACM Workshop on Human Gesture and Behavior
Understanding, pages 27–28, 2011.

Wiebke Bleidorn and Christopher James Hopwood. Using machine learning to advance
personality assessment and theory. Personality and Social Psychology Review, 23(2):
190–203, 2019.
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Ricardo Daŕıo Pérez Principi, Cristina Palmero, Julio C. S. Jacques Junior, and Sergio
Escalera. On the effect of observed subject biases in apparent personality analysis from
audio-visual signals. IEEE Transactions on Affective Computing, 12(3):607–621, 2019.

Jianing Qiu, Frank P-W Lo, Xiao Gu, Yingnan Sun, Shuo Jiang, and Benny Lo. Indoor
future person localization from an egocentric wearable camera. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 8586–8592. IEEE,
2021.

Chirag Raman, Hayley Hung, and Marco Loog. Social processes: Self-supervised forecasting
of nonverbal cues in social conversations. arXiv preprint arXiv:2107.13576, 2021.

John F Rauthmann, David Gallardo-Pujol, Esther M Guillaume, Elysia Todd, Christopher S
Nave, Ryne A Sherman, Matthias Ziegler, Ashley Bell Jones, and David C Funder. The
situational eight diamonds: A taxonomy of major dimensions of situation characteristics.
Journal of Personality and Social Psychology, 107(4):677, 2014.

48



ChaLearn LAP Challenges on Personality Recognition and Behavior Forecasting

Brent W Roberts, Kate E Walton, and Wolfgang Viechtbauer. Patterns of mean-level
change in personality traits across the life course: a meta-analysis of longitudinal studies.
Psychological bulletin, 132(1):1, 2006.

Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap: A monocular 3d whole-body
pose estimation system via regression and integration. In IEEE International Conference
on Computer Vision Workshops, 2021.

Giovanni Saponaro, Giampiero Salvi, and Alexandre Bernardino. Robot anticipation of hu-
man intentions through continuous gesture recognition. In 2013 International Conference
on Collaboration Technologies and Systems (CTS), pages 218–225. IEEE, 2013.

István Sárándi, Timm Linder, Kai O Arras, and Bastian Leibe. Metrabs: Metric-scale
truncation-robust heatmaps for absolute 3d human pose estimation. IEEE Transactions
on Biometrics, Behavior, and Identity Science, 2020.
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