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Abstract

Methods that address data shifts usually as-
sume full access to multiple datasets. In the
healthcare domain, however, privacy-preserving
regulations as well as commercial interests limit
data availability and, as a result, researchers
can typically study only a small number of
datasets. In contrast, limited statistical char-
acteristics of specific patient samples are much
easier to share and may be available from pre-
viously published literature or focused collabo-
rative efforts.

Here, we propose a method that estimates
model performance in external samples from
their limited statistical characteristics. We
search for weights that induce internal statis-
tics that are similar to the external ones; and
that are closest to uniform. We then use model
performance on the weighted internal sample as
an estimation for the external counterpart.

We evaluate the proposed algorithm on sim-
ulated data as well as electronic medical record
data for two risk models, predicting complica-
tions in ulcerative colitis patients and stroke in
women diagnosed with atrial fibrillation. In the
vast majority of cases, the estimated external
performance is much closer to the actual one
than the internal performance. Our proposed
method may be an important building block in
training robust models and detecting potential
model failures in external environments.

Data and Code Availability This paper uses
the IQVIA Medical Research Data, primary care
electronic medical records (EMRs) from the United
Kingdom (IMRD-UK, version: 2019-03), incorporat-
ing data from THIN, A Cegedim Database (refer-
ence made to THIN is intended to be descriptive
of the data asset licensed by IQVIA), and trans-
formed to the Observational Medical Outcomes Part-
nership (OMOP) common data model (CDM; v5.1)

(OHDSI, 2019). Definitions of cohorts, features,
and outcomes are available through OHDSI demo
ATLAS. Code is available at https://github.com/
KI-Research-Institute/external-evaluation.

1. Introduction

Predictive models, such as disease risk scores, are
typically trained on a single, or few, data sources
but are often expected to work well in other environ-
ments, that may vary in their population character-
istics, clinical settings, and policies (Steyerberg and
Harrell, 2016). In many cases, model performance
deteriorates significantly in these external environ-
ments, as demonstrated repeatedly (e.g., Ohnuma
and Uchino (2017)), and most recently for the widely
implemented proprietary Epic Sepsis Model (Wong
et al., 2021) and for COVID-19 risk models (Reps
et al., 2021).

Model robustness – that is, its ability to provide
accurate prediction despite changes, e.g., in the char-
acteristics of input covariates – can be demonstrated
using external validation, the process of evaluating
model performance on data sources that were not
used for its derivation. However, full access to med-
ical datasets is often limited due to privacy, regula-
tory and commercial factors. Therefore, we aim to
estimate the performance of a given model on exter-
nal sources using only their more commonly available
statistical characteristics.

Here, we propose an algorithm which reweights in-
dividuals in an internal sample to match external
statistics, potentially reported in preceding publica-
tions or characterization studies (e.g., Recalde et al.
2021); then estimates the performance on the exter-
nal sample using the reweighted internal one. We
focus on cases that are common in the healthcare do-
main, where the size of samples (that is, number of
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individuals) is much larger than the number of fea-
tures. In such cases, infinite number of weight sets
may recapitulate the external statistics, therefore the
proposed algorithms searches for weights with a min-
imal divergence from a uniform distribution.
We first study the strengths and limitations of our

suggested approach using simulated data; then split
a sample from a primary care dataset into ”internal”
versus ”external” subsets based on demographic in-
formation, and validate the approach using a predic-
tion model for 3-year risk of complications in ulcer-
ative colitis patients; and, finally, use the entire pri-
mary care data to estimate the performance of three
stroke risk scores in seven external resources and com-
pare it to the actual performance, as reported in a
recent study (Reps et al., 2020).

2. Related Work

The task of evaluating model performance in external
samples, often with (at least some) data shift (Fin-
layson et al., 2021), is tightly coupled with that of
training robust models, as evaluation is a necessary
step in model selection and optimization.
One line of work handling data shifts adopts ideas

from causal inference. Specifically, causal models
(Bareinboim and Pearl, 2016) can distinguish in-
variant relations between risk factors (e.g., biologi-
cal or physiological) and outcomes from context- or
environment-dependent mechanisms (Subbaswamy
et al., 2019). Subbaswamy et al. (2021) developed a
method for analyzing model robustness (or stability)
that, given a model, a set of distribution-fixed (im-
mutable) variables and a set of distribution-varying
(mutable) variables, identifies the sub-population
with the worst average loss; thus, enabling evalua-
tion of model safety, with no external information.
Sample reweighting is commonly applied to adjust

for confounders, either measured (Hainmueller, 2012)
or unmeasured (Streeter et al., 2017), and to ac-
count for selection bias (Kalton and Flores-Cervantes,
2003), typically leveraging fully-accessible samples.
Methodologically, the optimization problem we de-
rive is similar to that studied for entropy balancing
(Hainmueller, 2012), which attempts to reweight a
sample (e.g., control group) so its prespecified set
of moments exactly match that of another sample
(e.g., treatment group), while maximizing the weight
entropy (that is, keeping weights as close as possi-
ble to uniform). We note, however, that we explore
a different use-case and, consequently, optimize over

moments of an otherwise inaccessible sample (rather
than samples from an accessible data source).

3. Estimation Algorithm

The goal of the proposed method is to estimate the
performance of a prediction model, e.g., risk score, on
an external sample, given some of its statistical prop-
erties, and using an internal, fully-accessible data.
Briefly, we reweight an internal sample to obtain the
external statistics, then compute model performance
on the weighted sample as an estimate of the external
performance.

3.1. Problem Formulation

Let xi and yi denote an observation (or feature) vec-
tor and a binary outcome†, respectively, for an indi-
vidual i. Suppose we have access to observations for
nint individuals in an internal sample:

Dint = {xi, yi}nint
i=1 ;

and summary statistics for an external sample (with
next individuals):

µ =
1

next

∑
(xi,yi)∈Dext

ϕ(xi, yi),

where ϕ(xi, yi) is a set of transformations on
individual-level observations. For example:

ϕ(xi, yi) = {xi · yi,xi · (1− yi), yi}

allows computation of features mean in subsets of in-
dividuals with and without the outcome (as often re-
ported in a study’s Table 1).

We aim at estimating the performance of a model
m on the external sample Dext, using µ and observa-
tions from Dint. To this end, we search for weights
w ∈ [0, 1]nint ,

∑
i wi = 1, such that the statistical

properties of the weighted sample {xi, yi, wi}nint

i=1 ap-
proximate these of the external one. Let W (µ,Z)
denote the space of such weight sets:

W (µ,Z) =

{
w ∈ Rn : Z⊤w = µ,

∑
wi = 1,

wi ≥ 0, i = 1, . . . , nint

}
†. We focus here on binary outcomes, as these are commonly

used – and reported – in healthcare applications; it is pos-
sible to extend the proposed approach to continuous out-
comes, using an appropriate performance measure and sta-
tistical characteristics.
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Where Z is a matrix whose rows are zi ≡ ϕ(xi, yi).
As W (µ,Z) may be infinitely large, we propose to
search for a set of weights that is also closest to uni-
form. This additional constraint is based on a prox-
imity assumption, intuitively that the external dis-
tribution is relatively similar to the distribution in
W (µ,Z) that is closest to the internal distribution.
Using the reweighted sample we can now estimate

two types of performance measures:

• Measures that can be expressed as a pointwise
loss function, l(m(xi), yi), for which we estimate
the expected loss of the model in the external
sample as:

1

nint

∑
(xi,yi)∈Dint

wi · l(m(xi), yi).

For example, for a model that computes the
probability of an outcome y, we can estimate
the expected negative log-likelihood by setting
l(m(xi), yi) = −yi log(m(xi)) − (1 − yi) log(1 −
m(xi)).

• Non-decomposable measures that can be evalu-
ated on weighted samples. For example, the area
under the receiver operating characteristic curve
(AUC).

Below we present a model independent scheme,
which minimizes an f-divergence function (for ex-
ample, maximizes the weights entropy); and in Ap-
pendix A, we derive a model (and loss) dependent
scheme, which maximizes a weighted upper bound on
the model loss and the regularized divergence func-
tion.

Model-independent optimization scheme. To
find a weighted representation of an internal sample
that replicates the external expectations, we solve the
following optimization problem:

min
w∈W(µ,Z)

Df (w∥1/n), (1)

where Df (P∥Q), f-divergence, for discrete measures
P and Q is:

Df (P∥Q) =
∑
x

f

(
P (x)

Q(x)

)
Q(x)

and f : R+ → R is a convex function, with f(1) =
0. For example, when f(t) = t log t, Optimization
Problem (1) becomes:

max
w∈W(µ,Z)

H(w), (2)

whereH(w) = −
∑

i wi logwi is the entropy function.
We derive a dual formulation of Problem (2), sim-

ilar to Hainmueller (2012), in Appendix B; and show
that the optimal solution has the form:

wi ∝ ezi·ν ,

where ν ∈ R|ϕ|. In other words, the optimal weights
are normalized exponents of a linear function of Z.
We note that, as the number of features is typically
much smaller than the sample size, the solution to
the dual problem is expected to be more numerically
stable than the primal’s.

In cases where W (µ,Z) = ∅, Problem (1) can
be adjusted to trade-off, using hyper-parameter λ,
the accuracy at which the weighted internal sample
reproduce the external statistics and proximity and
rewritten as:

min
w

(∥∥Z⊤w − µ
∥∥+ λ ·Df (w∥1/n)

)
such that

∑
i

wi = 1, wi ≥ 0 ,
(3)

where the norm can be L2 or L1.

3.2. Detecting Estimation Failure

To estimate the performance of a model in an exter-
nal sample Dext, with distribution Pext(z) of trans-
formed features, we assume that Pint(z) > 0 when-
ever Pext(z) > 0. This condition is analogous to the
positivity assumption in causal inference, except that
it is one sided. In other words, the support of Pext(z)
can be a strict subset of the support of Pint(z). Al-
though this assumption cannot be verified, its vio-
lations can be detected when external expectations
cannot be attained in the internal sample.

3.3. Implementation

We used R’s CVXR (Fu et al., 2020) library to solve
the optimization problem and WeightedROC library
(Hocking, 2020) to compute weighted AUC. To deal
with cases where W (µ,Z) = ∅ we used the relaxed
Problem (3) with λ = 10−6 and L2 norm. To alleviate
numerical issues, we set a minimum weight parameter
(10−6) and remove features with a small standard
deviation (< 10−4).

4. Empirical Evaluation

To evaluate the accuracy of the proposed algorithm,
we estimated the external performance of various
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models using an internal sample and limited exter-
nal statistical characteristics, in three scenarios: (a)
simulating data using a structural equation model
(Bareinboim and Pearl, 2016) for ”internal” and ”ex-
ternal” environments; training an outcome prediction
model on the internal sample and evaluating its per-
formance on the external one; (b) extracting a co-
hort of newly diagnosed ulcerative colitis individu-
als in IMRD-UK data; synthetically splitting this co-
hort into ”internal” and ”external” samples; train-
ing a complication risk model on the internal sample
and evaluating its performance on the external one;
and (c) extracting atrial fibrillation patient cohorts
in IMRD-UK data as an internal sample; evaluating
the performance of three stroke risk models in multi-
ple inaccessible claim and EMR databases using their
published statistical characteristics.

4.1. Synthetic Data

We simulated synthetic data using structural equa-
tion models that contain a hidden variable H ∈ R,
features X ∈ Rp, a binary outcome Y , and a deter-
ministic binary variable A where A = 0 denotes an
internal environment and A = 1 denotes an external
one (Figure 1). This framework allows examining the
strengths and limitations of the proposed algorithm
subject to different types of data shifts.

Figure 1: Graphical representation of the data-
generating causal model. A is an environ-
ment variable (e.g., in a clinical setting,
specific healthcare system), H is a hidden
variable (encoding, for example, an indi-
vidual’s healthcare status), X is a set of
observed features (e.g., prescribed medica-
tions or lab test results) and Y is a bi-
nary outcome (e.g., disease onset or pro-
gression).

We defined the simulations using the following
structural equations model:

H = βH,AA+ ϵH

X = βX,AA+ βX,HH + βX,AHAH + ϵX

Y ∼ Bernoulli(sigmoid(f(X, H,A)))

where

f(X, H,A) = βY,AA+βY,HH+βY,XX+βY,AXAX ,

βX,· and β·,X ∈ Rp are coefficient vectors, the rest
of the coefficients are scalars, ϵH ∼ N (0, 1), ϵX ∼
N (0, Ip) are independent sources of variability and
sigmoid(z) = 1

1+e−z .

This model is similar to the anchor regression
model (Rothenhäusler et al., 2021), replacing the con-
tinuous outcome with a binary one. The depen-
dency of X on the hidden variable H induces cor-
relations between features, and the interaction term
AH induces differences in the correlations structure
between environments. Therefore, the coefficient
βX,AH controls the ”strength” of the shift in corre-
lations between features, depending on the environ-
ment; and the coefficient βY,AX controls the shift in
direct effect of X on Y .

4.1.1. Implementation

Here, we set the dimension of X to be p = 10 and
sample coefficients βH,A, βY,A ∼ N (0, 0.2), βX,A ∼
N (0, 0.2Ip), βX,H ∼ N (0, Ip), and βY,H ∼ N (0, 1).
We let only X1 and X2 (but not X3 to X10) affect
the outcome Y by setting βY,X = (1, 1, 0, . . . , 0) and
βY,AX = (−0.8,−0.2, 0, . . . , 0).

As studies do not typically report correlations be-
tween features within each outcome class, we tested
our algorithm in different scenarios of correlation
shifts. Specifically, we used three configurations of
βX,AH ∼ N (0, σX,AH), where σX,AH = 0, 0.5, or
1, emulating weak, medium, and strong correlation
shifts, respectively.

Given a specific simulation model, we generated
three data sets, namely internal training and tests
sets and an external data set. We computed the mean
and variance of every feature in X, separately for in-
dividuals with Y = 0 and Y = 1, in the external
set. Next, we trained an elastic net regularized logis-
tic regression model on the internal training set and
computed the AUC on the internal test and external
sets. Finally, we applied the performance estimation
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algorithm on the internal test set, using external ex-
pectations, and compared the estimated AUC to the
actual one.
Supplementary Figure 6 presents examples of gen-

erated samples with varying values of σX,AH . For
each setting, we generated 200 models, and from each
sampled data with varying sizes (n = 200, 500, 1000,
2000, 5000).

4.1.2. External Performance Estimation

The results of the proposed algorithm, in terms of
divergence from uniform weights and AUC estima-
tion accuracy, for different values of σX|AH and data
size n = 5000 are shown in Table 1. As expected,
weight divergence from uniform (DKL(w∥1/n)) and
estimation error grow with σX|AH .
Figure 2 presents the estimation error of the ex-

ternal AUC values, as a function of correlation shift
strength and sample size, n. Estimation quality is
lower for strong shifts in correlations which are not
captured in the shared expectations, whereas milder
differences result in good estimations. For compari-
son, the difference between internal and actual exter-
nal AUC values is around 0.1 (Table 1).

Table 1: Algorithm performance in 5000-unit sim-
ulated datasets averaged on 200 sampling
repetitions. The estimation error column
presents the mean of the absolute values of
errors. DKL, Kullback Leibler divergence
between the derived and uniform weights,
and estimation error increase with stronger
correlation shifts.

Internal External Est.
σX|AH DKL AUC AUC Error

0.0 (Weak) 0.41 0.841 0.726 0.011
0.5 (Med.) 1.37 0.850 0.735 0.019
1.0 (Strong) 4.04 0.847 0.733 0.043

4.2. Synthetic Data Split: Complications of
Ulcerative Colitis

Next, we studied the IMRD-UK primary care data
and synthetically split it into ”internal” and ”ex-
ternal” sets based on various demographic criteria.
Specifically, we trained a model on the internal sam-
ple to predict the 3-year risk of intestinal surgery (or

Figure 2: Estimation error (absolute value of the
difference between actual and estimated
external AUC values; y-axis) for weak,
medium, and strong correlation shifts, as
a function of sample size, n (x-axis).
Whiskers correspond to 25-75 AUC per-
centiles, over 200 models.

death) in ulcerative colitis (UC) patients; estimated
its performance on the external sample, using limited
external statistics; and compared the estimated and
observed performance.

4.2.1. Clinical Background

UC is a chronic inflammatory bowel condition with
consistently increasing incidence rates in both newly
industrialized and developed countries (Benchimol
et al., 2014; Windsor and Kaplan, 2019; Kaplan and
Windsor, 2021). The increase in its prevalence has
a significant impact on healthcare financial burden
due to chronically administered medications as well
as hospitalizations and surgical procedures (Windsor
and Kaplan, 2019).

UC pathogenesis is not well understood. Presumed
risk factors for a more complicated disease include
younger age at diagnosis, extensive disease, use of
steroids and immunosupressive drugs, and being a
non-smoker (Koliani-Pace and Siegel, 2019).
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Table 2: Characteristics of internal and external samples, split by age.

Internal: individuals > 34 years old, Internal: individuals ≤ 64 years old,
External: individuals ≤ 34 years old External: individuals > 64 years old

Internal External Internal External

n 5577 1933 5616 1894
Townsend deprivation index
Score 2.4 (±1.2) 2.6 (±1.3) 2.5 (±1.2) 2.4 (±1.2)
Available 4893 (87.7%) 1685 (87.2%) 4913 (87.5%) 1665 (87.9%)

Female 2752 (49.3%) 932 (48.2%) 2711 (48.3%) 973 (51.4%)
Smoking 1397 (25%) 362 (18.7%) 1393 (24.8%) 366 (19.3%)
Steroids 1597 (28.6%) 670 (34.7%) 1666 (29.7%) 601 (31.7%)
Body mass index (BMI)
Underweight 105 (1.9%) 85 (4.4%) 140 (2.5%) 50 (2.6%)
Overweight 1535 (27.5%) 244 (12.6%) 1170 (20.8%) 609 (32.2%)

Perianal disease 66 (1.2%) 49 (2.5%) 97 (1.7%) 18 (1%)
Complications 900 (16.1%) 141 (7.3%) 457 (8.1%) 584 (30.8%)

4.2.2. Implementation

The UC onset cohort includes individuals with at
least two diagnoses of inflammatory bowel disease
(IBD) or with an IBD diagnosis and a prescription
for an IBD medication; who have an ulcerative colitis
diagnosis and no Crohn’s disease diagnosis. We set
index (or cohort entry) date to the first IBD diagnosis
or medication prescription and required that individ-
uals have a minimum observation of 365 days prior
to index date. We excluded subjects with insufficient
follow-up.

For each individual in the ulcerative colitis co-
hort we extracted a set of features, previously re-
ported as associated with increased intestinal surgery
risk (Koliani-Pace and Siegel, 2019). These include
age (and age2), sex, smoking, being underweight or
overweight, presence of perianal disease, and use of
steroids; and considered sets of predefined features
(per OHDSI’s Feature Extraction R library), e.g.,
drugs prescribed to a at least 1,000 subjects up to
90 days after index date. The outcome considers
procedure codes for colostomy, colectomy, ileostomy,
small intestinal resection, stricturoplasty, balloon di-
lation, drainage of perianal abscess, drainage of intra-
abdominal abscess, or death, within 3 years following
index date. Definition of all concept sets and cohorts
are available at https://atlas-demo.ohdsi.org/.

We split the IMRD-UK data into internal and ex-
ternal sets based on individual age or country of liv-
ing, as described below.

4.2.3. External Performance Estimation:
Ulcerative Colitis, Split by Age

In the following experiments, we split the subset of
individuals who live in England by their age. Specif-
ically, in the first experiment, the internal set con-
tained the 75% youngest subjects (≤ 64 years) and
the external set – the 25% older ones; and in the
second experiment, the internal set contains the 75%
older individuals (> 34 years) and the internal set –
the remaining older individuals. In each of these se-
tups we randomly split the internal set to training
(75%) and test (25%); we repeated the training-test
random split 200 times. Next, we trained a linear
model as well as a non-linear one, using XGBoost
(Chen and Guestrin, 2016), computed model’s AUC
on the internal test and external sets, and estimated
the external AUC using the internal set and the ex-
pectations of the external one. To maintain positiv-
ity and to emulate an environment dependent hidden
factor, we excluded age from the feature set. The
populations were different in several observed charac-
teristics, notably, percentage of women, underweight
and overweight; see Table 2 for details.

Overall, the external performance estimations, us-
ing either elastic net or XGBoost, are close to the
actual ones (Figure 3), notably for external younger
samples, where the difference between the internal
and external performance is large (right panel).
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Internal: individuals > 34 years old, Internal: individuals ≤ 64 years old,
External: individuals ≤ 34 years old External: individuals > 64 years old

A
U
C

(a) Elastic net (b) XGBoost (c) Elastic net (d) XGBoost

Figure 3: Actual and estimated external performance in England UC cohorts, split by age. Boxes show the
external median AUC and inter-quantile range (IQR, 25 and 75 percentiles) over 200 repetitions;
solid line represents the median internal AUC and dashed lines represent the IQR.

4.2.4. External Performance Estimation:
Ulcerative Colitis, Split by Country

A
U
C

(a) Elastic net (b) XGBoost

Figure 4: Actual and estimated performance in ex-
ternal, country-based UC samples. Boxes
show the external median AUC and IQR
over 200 repetitions; solid and dashed lines
represent the internal median AUC and
IQR, respectively.

Next, we split the UC cohort by country of res-
idence and considered the sub-cohort of individuals
living in England as the internal sample and those liv-
ing in Scotland, Wales and Northern Ireland as three
distinct external samples. Similarly to the age split
analysis, we split the internal sample into training
and test sets, repeatedly 200 times; trained a model
on each training set; extracted expectations for the

external samples; and evaluated model performance
on the internal test and external sets.

The characteristics of different sub-populations are
presented in Table 3; Figure 4 shows the external per-
formance evaluation results, attesting to the (much)
improved accuracy of the estimated AUC values,
compared to internal performance.

4.3. Distinct Datasets: Stroke Risk Models

4.3.1. Clinical Background

Atrial fibrillation is a common cardiac rhythm disor-
der, associated with increased risk of stroke (Sagris
et al., 2021). Risk factors associated with the occur-
rence of stroke include older age, various comorbidi-
ties (in particular, hypertension, diabetes, and renal
disease) and smoking (Singer et al., 2013). To guide
treatment, multiple risk scores have been devised and
externally evaluated in several studies (van den Ham
et al., 2015). Recently, Reps et al. (2020) replicated
five previously published prognostic models that pre-
dict stroke in females newly diagnosed with atrial fib-
rillation; and externally validated their performance
across nine observational healthcare datasets. Below,
we use our proposed algorithm and the limited per-
database statistical characteristics, as it appears in
Reps et al. (2020), to estimate the external perfor-
mance of these risk scores.
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Table 3: Characteristics of ulcerative colitis, country-based sub-cohorts.

England Wales Northern Ireland Scotland

n 9469 1255 772 1772
Age (years) 48.7 (±18.9) 48.3 (±19.1) 46 (±18.2) 47 (±18.5)
Townsend deprivation index
Score 2.5 (±1.2) 2.4 (±1.1) 2.9 (±1.3) 3 (±1.2)
Available 8265 (87.3%) 900 (71.7%) 634 (82.1%) 1541 (87%)

Female 4636 (49%) 602 (48%) 382 (49.5%) 909 (51.3%)
Smoking 2230 (23.6%) 313 (24.9%) 221 (28.6%) 484 (27.3%)
Steroids 2834 (29.9%) 408 (32.5%) 224 (29%) 668 (37.7%)
Body mass index (BMI)
Underweight 248 (2.6%) 30 (2.4%) 24 (3.1%) 37 (2.1%)
Overweight 2276 (24%) 343 (27.3%) 200 (25.9%) 442 (24.9%)

Perianal disease 144 (1.5%) 16 (1.3%) 12 (1.6%) 11 (0.6%)
Complications 1315 (13.9%) 203 (16.2%) 123 (15.9%) 244 (13.8%)

4.3.2. Implementation

We downloaded Reps et al. (2020)’s analysis package
and applied it to the IMRD-UK data, with the fol-
lowing modifications that adjust the study definitions
to a primary care setting:

Target cohorts. We considered ECG-related pro-
cedures and conditions, in addition to measurements,
within 30 days prior the atrial fibrillation diagnosis,
as an optional inclusion criterion.

Outcome cohort. As stroke, typically not diag-
nosed in a primary care setting, may be poorly
recorded for deceased individuals, we added death as
an entry event to the stroke cohort.

Feature definitions. We extended the time win-
dow for extraction of model features to span the en-
tire history of each individual until, and including,
the date of the first atrial fibrillation event; included
individuals with estimated glomerular filtration rate
(eGFR) lower than 45 mL/min/1.73m2 in the end
stage renal disease cohort, as originally defined in the
ATRIA risk model (Singer et al., 2013); and defined
former smokers as individuals with an observation of
smoker, as well as those diagnosed with tobacco de-
pendence syndrome.
For each individual, the analysis package com-

puted a stroke risk score given her set of features,
as extracted from IMRD-UK; then, calculated score
performance, vis-à-vis recorded stroke (and death)
events. To estimate score performance in each ex-
ternal sample, we weighted individuals in the IMRD-

UK data using the proposed algorithm to reproduce
the sample’s populations characteristics, as reported
in Reps et al. (2020), and computed the score perfor-
mance for the weighted individual cohort. We com-
puted 95% confidence intervals using 1000 bootstrap-
ping iterations.

Population attributes (Reps et al., 2020) include
percentage of individuals in certain age groups (65-
74 years, 75-85 years and above 85 years), comor-
bidities (hypertension, congestive heart failure, con-
gestive cardiac failure, coronary heart disease, valvu-
lar heart disease, chronic and end stage renal disease,
proteinuria, diabetes, and rheumatoid arthritis) and
being a former smoker.

4.3.3. External Performance Estimation

A comparison between risk score performance, as re-
ported by Reps et al. (2020), and the estimated per-
formance is shown in Figure 5. For the full cohort
(top panel), in three out of six datasets, the con-
fidence interval of the ATRIA estimation overlaps
the actual AUC (Figure 5a); in two other datasets,
the estimation is better than the internal, IMRD-UK
based performance. Qualitatively similar results are
observed for the CHADS2 and Q-Stroke risk scores
(Figure 5b and c, respectively); as well as for women
65 years or older (bottom panel).

We note that for two additional risk scores, Fram-
ingham and CHA2DS2VASc, and two datasets, Ajou
University School Of Medicine (AUSOM) and In-
tegrated Primary Care Information (IPCI), Reps
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Women diagnosed with atrial fibrillation

(a) ATRIA (b) CHADS2 (c) Q-Stroke

Women 65 or more years old, diagnosed with atrial fibrillation

(d) ATRIA (e) CHADS2 (f ) Q-Stroke

Figure 5: Performance estimation for three stroke risk scores across seven external datasets. Blue circles
represent the actual AUC value as reported by Reps et al. (2020), red diamonds show the weighted
estimations, and whiskers denote 95% confidence intervals. Solid lines represent the internal AUC,
as computed in the IMRD-UK cohorts, with dashed lines denoting 95% confidence intervals.
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et al. (2020) do not provide necessary statisti-
cal characteristics. Additionally, AUC values of
IBMMarketScan® Medicare Supplemental Database
(MDCR) were not provided for the full atrial fibril-
lation cohort and those of IBM MarketScan® Com-
mercial Database (CCAE) are missing for the older
female sub-cohort. Therefore, in all those cases, per-
formance estimations are not reported.

5. Discussion

We presented an algorithm that estimates the perfor-
mance of prediction models on external samples from
their limited statistical characteristics; and demon-
strated its utility using synthetic data, synthetic split
of an ulcerative colitis cohort from a single database
into age groups and by country of living, and a re-
cent risk model benchmark of stroke risk models on
multiple external samples. Importantly, our proposed
algorithm can help identifying models that perform
well across multiple clinical settings and geographies,
even when detailed test data from such settings is
not available. It can thus direct development of ro-
bust models and accelerate deployment to external
environments.
This study has several limitations. First, the algo-

rithm relies on two assumptions: one-sided positiv-
ity and proximity. Both assumptions cannot be fully
tested, but clear violations of the former one can be
detected, for example, when the expected value of a
feature is non-zero in the external distribution but all
the individuals in the internal set have a zero value
for that feature. Intuitively, proximity is more likely
to be plausible when the statistical information be-
comes more detailed. Therefore, whereas our prelim-
inary experiments involved only marginal statistics
of features it may be informative to test the perfor-
mance of the algorithm when more detailed statis-
tics are available, for example interactions among
features or information available in deep character-
ization studies (Burn et al., 2020). Second, when
there are no weights that exactly reproduce the ex-
ternal statistics (Problem 1), we resort to a relaxed
formulation (Problem 3), which requires tuning an
additional hyper-parameter and may result in multi-
ple, different solutions. Such a scenario may be com-
mon in high-dimensional models, where sample size is
insufficient, compared to the number of constraints;
we will investigate it further in future work. Lastly,
for extremely large samples, optimizing over weights
(Problem 3) may become prohibitively costly; large-

scale optimization techniques may be used to over-
come such challenges.

We believe that the proposed methodology can
serve as a building block in network studies that aim
to construct robust models across datasets when data
sharing is limited, e.g., by regulatory constraints. Al-
though federated learning methods may be a promis-
ing avenue for such scenarios, it would be interesting
to explore in which cases the proposed algorithm can
facilitate a one-shot federated learning scheme, that
does not require deployment of federated algorithm
clients in all network nodes.

In future work, we will combine the proposed al-
gorithm with methods that aim to construct robust
models such as those that leverage distributionally ro-
bust optimization (Bühlmann, 2020); study methods
that exploit the relations between calibration and ro-
bustness (Wald et al., 2022); and look into decompos-
ing AUC (Eban et al., 2017), so it can be optimized
explicitly.
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Asieh Golozar, Mengchun Gong, Lana Yin Hui Lai,
Jennifer C. E. Lane, Kristine E. Lynch, Michael E.
Matheny, Paras P. Mehta, Daniel R. Morales,
Karthik Natarjan, Fredrik Nyberg, Jose D. Posada,
Christian G. Reich, Peter R. Rijnbeek, Lisa M.
Schilling, Karishma Shah, Nigam H. Shah, Vi-
gnesh Subbian, Lin Zhang, Hong Zhu, Patrick
Ryan, Daniel Prieto-Alhambra, Kristin Kostka,
and Talita Duarte-Salles. Characteristics and
outcomes of 627 044 COVID-19 patients living
with and without obesity in the United States,
Spain, and the United Kingdom. International
Journal of Obesity, 45(11):2347–2357, Novem-
ber 2021. ISSN 1476-5497. doi: 10.1038/

s41366-021-00893-4. URL https://www.nature.

com/articles/s41366-021-00893-4.

Jenna M. Reps, Ross D. Williams, Seng Chan You,
Thomas Falconer, Evan Minty, Alison Callahan,
Patrick B. Ryan, Rae Woong Park, Hong-Seok
Lim, and Peter Rijnbeek. Feasibility and evalu-
ation of a large-scale external validation approach
for patient-level prediction in an international data
network: validation of models predicting stroke in
female patients newly diagnosed with atrial fibril-
lation. BMC Medical Research Methodology, 20(1):
102, May 2020. ISSN 1471-2288. doi: 10.1186/
s12874-020-00991-3. URL https://doi.org/10.

1186/s12874-020-00991-3.

Jenna M. Reps, Chungsoo Kim, Ross D. Williams,
Aniek F. Markus, Cynthia Yang, Talita Duarte-
Salles, Thomas Falconer, Jitendra Jonnagad-
dala, Andrew Williams, Sergio Fernández-Bertoĺın,
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Appendix A. Model-dependent
optimization scheme

An upper bound of a model m’s weighted loss l, up
to a finite sample error, can be derived as follows:

max
w∈W(µ,Z)

∑
i

wi · l(m(xi), yi).

The tightness of the bound may depend on the
number of expectations we consider. Furthermore, as
z, and consequently µ, may not represent all inter-
feature dependencies existing in the data, an addi-
tional constraint may yield improved estimations:

max
w∈W(µ,Z)

∑
i

wi · l(m(xi), yi)− λDf (w∥1/n). (4)

As we increase λ, the bound may become tighter but
confidence may decrease.
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Appendix B. Model-independent dual
optimization problem

Recall that optimization Problem (2) is defined as
follows:

minimizew −H(w)

such that Z⊤w = µ,1⊤w = 1
(5)

where w ≥ 0. Denoting

C =

[
Z⊤

1⊤

]
, d =

[
µ
1

]
, (6)

Problem (2) becomes:

minimizew −H(w)

such that C⊤w = d
(7)

Following Equation 5.11 in Boyd et al. (2004) the
dual function is:

g(ν) = −d⊤ν − (−H)∗(−C⊤ν)

where (−H)∗ is the conjugate of the negative-entropy
function (Boyd et al. (2004), p. 222):

(−H)∗(y) =

n∑
i=1

eyi−1

Therefore,

g(ν) = −(µ, 1)⊤ν − e−1
n∑

i=1

e−(zi,1)ν

The Lagrangian of the primal problem is:

L(w;ν) =
∑
i

wi logwi + ν⊤(Cw − d) (8)

Let ν∗ be the optimal solution of maxν g(ν). Then,
following Section 5.5.3 of Boyd et al. (2004), the solu-
tion of the primal problem minimizes the Lagrangian
at ν∗:

∂L(w;ν∗)

∂wi
= logwi + 1 + (zi, 1) ν

∗ = 0

giving
wi = e−1−(zi,1)ν

∗
.

This result shows that the optimal weights are nor-
malized exponents of a linear function of the data
points.
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Appendix C. Supplementary Figures

(a) σX,AH = 0 internal (b) σX,AH = 0 external

(c) σX,AH = 0.5 internal (d) σX,AH = 0.5 external

(e) σX,AH = 1 internal (f ) σX,AH = 1 external

Figure 6: Simulation examples with varying values of σX,AH . Dot colors denote outcome class, diamonds
represent class means. The shift in correlation between X1 and X2, given an outcome class,
increases with σX,AH .
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