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Abstract

Machine learning models are often required to
generalize to new populations (domains) unseen
during training, which may lead to model un-
derperformance. So far, most research has fo-
cused on Domain Generalization methods for
image classification tasks, which address the
problem by learning domain invariant predic-
tors. In this study, we assess the efficacy of do-
main generalization methods in survival analy-
sis. The goal is to predict time-to-events such
as death or disease progression based on base-
line demographic and clinical variables of in-
dividuals exposed to medical treatment. We
benchmark four domain generalization methods
and several conventional/established methods
on real world scenarios encountered in clinical
practice. This includes tasks such as generaliz-
ing between randomized controlled trials to real
world data, identification of prognostic models
regardless of treatment or disease subtypes. We
find that the generalization issue is often not as
severe as reported in synthetic scenarios. Fur-
thermore, our results corroborate previous find-
ings that domain generalization often does not
consistently outperform classical empirical risk
minimization baselines also on low-dimensional
data. Finally, to better understand when do-
main generalization methods can lead to per-
formance gains and thus better outcomes for
patients, we quantify the influence of different
types of shifts occurring in the data.

Data and Code Availability Our study includes
patient outcome and baseline characteristics data col-
lected from several clinical studies on non-small-cell
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lung carcinoma (NSCLC) and diffuse large B-cell
lymphoma (DLBCL). A short description of each
dataset along with references is available in the Ap-
pendix. Details of the clinical trials can be found on
https://clinicaltrials.gov/. Datasets are not
publicly available at the time of writing, please con-
tact the study team to obtain data access. Legal
review for code sharing is in progress and the code
cannot be shared by the time of manuscript submis-
sion. Please contact the authors regarding the access
to the code.

1. Introduction

Machine learning is increasingly important in med-
ical research. It can be used for a broad array of
tasks ranging from improving the understanding of
biological or chemical processes, automating and en-
hancing physician capabilities (e.g., by providing ad-
ditional annotations or a second opinion in radiology)
or providing additional diagnostic scores to predict
patient survival. A central assumption for these tasks
is that new data points stem from the same under-
lying distribution as that on which a machine learn-
ing model was trained (Widmer and Kubat, 1996;
Quinonero-Candela et al., 2009). This is a reasonable
assumption when a large enough and representative
data sample about the population we wish to predict
for can be collected, or when variation among indi-
viduals is limited and central relationships between
data and the corresponding property of interest are
stable across sub-populations. Unfortunately, this is
often not the case in clinical scenarios, e.g., when
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data is collected across different sub-populations with
access to different hospitals, standards of care and
disease heterogeneity (Challen et al., 2019). In such
clinical generalization scenarios, clinical models often
show lower predictive performance in medical imag-
ing applications (Zhang et al., 2021) such as radiog-
raphy (Zech et al., 2018; Pooch et al., 2019; Cohen
et al., 2020) and MRI imaging (Martensson et al.,
2020). A popular example of such a scenario is the
CAMELEYON17 dataset (Béndi et al., 2019), part of
the WILDS (Koh et al., 2021) domain generalization
benchmark. Baseline models that attempt to gener-
alize a histology image segmentation task across hos-
pitals saw an average drop in accuracy from 93.2% on
training domains to 70.3% on target domains (Koh
et al., 2021) due to variations in slide staining and
hospital populations.

A solution to this problem is the use of Domain
Generalization (DG) methods (Pan and Yang, 2010;
Zhou et al., 2021) which identify models that are ro-
bust to such shifts in domains by learning domain in-
variant representations or predictors. Although pre-
vious DG research mostly focused on (medical) im-
age classification scenarios, many clinical applications
rely on low dimensional tabular data to predict the
expected time to a clinical event, using methods from
survival analysis. In these scenarios only few highly
relevant features are available, and there is consider-
able error even for a Bayes optimal predictor. This
makes clinical time-to-event prediction distinct from
the high dimensional scenarios in image classifica-
tion. In this study we therefore benchmark four DG
methods against several Empirical Risk Minimization
(ERM) based baseline methods with respect to dif-
ferent types of distribution shifts.

To study the efficacy of domain generalization
methods on clinical survival data we ask two ques-
tions: 1) how reliable are domain generalization
methods in typical clinical survival prediction sce-
narios and 2) can we provide additional understand-
ing by investigating types of shifts occurring in those
scenarios. We use five tabular datasets obtained
from randomized controlled trials and from electronic
health record derived real-world data. Our main con-
tributions are the following:

e We quantify different types of distribution shifts
in the data to characterize scenarios where DG
can be successfully applied.

e We find that domain shift and performance
degradation of ERM models for survival analysis
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with tabular data in real-world clinical cases are

often smaller than reported in imaging domains
(Koh et al., 2021; Zhang et al., 2021).

e We corroborate findings in the imaging litera-
ture (Gulrajani and Lopez-Paz, 2020; Koh et al.,
2021; Zhang et al., 2021) that DG methods of-
fer an improvement over ERM only in the lim-
ited cases in real-world survival analysis scenar-
ios and is correlated with degree of domain shift.

It is important to note that model and hyper-
parameter selection (Guyon et al., 2010) in DG sce-
narios is an active field of research and existing strate-
gies often fail to provide a satisfying solution (Gul-
rajani and Lopez-Paz, 2020). This has drastic em-
pirical consequences, since practitioners, lacking an
estimate of a model’s generalization error to the tar-
get domain, cannot determine whether ERM or DG
methods should be preferred and failures w.r.t. gen-
eralization can only be detected at the time of pre-
diction.

2. Related work

The goal of domain generalization is to estimate the
functional relationship f(x) between a data set X
sampled from an input space X and a corresponding
outcome of interest y € Y. We further ask that this
estimate f(x) generalizes across changes in P(X),
P(Y) and P(Y|X) across a set of source domains
used for training and a target domain we aim to con-
duct inference on. In the case of survival analysis, Y
is often the cumulative survival distribution S;(z) for
an observation z € X at time point t. Each data point
is assigned a domain d;. We will denote with D, ;
the set of observations sampled from source domain i
and with D, ; observations sampled from the target
domain i (¢ € 1,...,k). Models fitted on source do-
mains can now suffer from various distribution shifts
that lead to worsened performance. An additional
often encountered problem called single-source DG
in (Zhou et al., 2021) is that datasets often lack la-
beled source domains, which either requires identi-
fying domains (Creager et al., 2021) before applying
domain generalization, or the use of methods that do
not require information about domains (Wang et al.,
2019). In contrast to models on high-dimensional
data, models studied in our manuscript might suf-
fer less severely from poor generalization as has been
shown e.g. in (Simon-Gabriel et al., 2018) under
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small transformations (Azulay and Weiss, 2019) or
adversarial examples (Szegedy et al., 2013).

2.1. Types of domain shifts

Distribution shifts may occur due to different reasons:
Shifts in P(X) might e.g. occur due to population dif-
ferences between rural and urban hospitals, or shifts
in P(Y|X) occurring due to differences between clin-
ical trials and treatment in the real-world. Typically,
such shifts in distribution do not occur in isolation
but domains exhibit several shifts of differing magni-
tudes. Depending on the perspective, several types of
combined shifts can be identified (Zhang et al., 2015).

e Shift in P(X) with constant P(Y|X). This is of-
ten referred to as covariate shift in the literature
(Zhang et al., 2015). In this case, model per-
formance should theoretically not degrade, but
in practice models might be oversimplified and
under-fits the conditional models, which causes
the predicted Y to depend on the input distri-
bution P(X).

Shift in P(Y'|X). In this case, the optimal model
takes into account variations in P(Y|X) between
source domains in order to predict the target do-
main.

Shift in P(Y'): Since we model a functional re-
lationship X—Y, a shift in Y can not occur in
isolation (Zhang et al., 2015). define two types
of shifts in Y for the reverse causal direction
Y—X that result in subsequent changes of P(X)
or P(Y|X). We assume effects only in the tem-
poral direction X — Y in the remainder of this
manuscript.

2.2. Domain generalization methods

Domain Generalization, in contrast to the related
concepts of transfer learning and domain adaptation,
does not assume access to or knowledge about statis-
tics of the target domain (Pan and Yang, 2010). In
recent years, a large variety of domain generaliza-
tion methods have been proposed. Methods vary
from kernel-based methods (Blanchard et al., 2011;
Muandet et al., 2013) to approaches that incorpo-
rate causal frameworks such as Invariant Causal Pre-
dictions (ICP) (Peters et al., 2016; Rothenhdusler
et al., 2021) as well as approaches that take a ro-
bustness perspective (Krueger et al., 2021; Sagawa
et al., 2019). For brevity we only introduce methods
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relevant to our benchmark, a comprehensive overview
over state-of-the-art DG methods is e.g. provided in
(Zhou et al., 2021).

3. Method

3.1. ERM and domain generalization
methods for survival analysis

3.1.1. BASELINES

We investigate two methods based on empirical risk
minimization (ERM) as baselines. We choose two
widely used models, a Cox Proportional-Hazards
model (coxph)(Cox, 1972) and a parametric model
using a weibull distribution (weibull) (Kalbfleisch
and Prentice, 2011). In coxph, the hazard function
hi(t) = ho(t) exp(>_F_, Okxik), where each feature
affects the hazard multiplicatively. In the Weibull
model, baseline hazards are defined as h;(t) = Ayt~ !
with estimated shape + and scale A, as a linear com-
bination of the features X.

3.1.2. ENSEMBLE-BASED APPROACHES

Ensembles of ML models can be used to obtain better
generalizing estimators (Zhou et al., 2021). We inves-
tigate survival forests (Ishwaran et al., 2008) as well
as more sophisticated survival quilts (Lee et al., 2019)
as ensemble baselines for the survival context. Tem-
poral quilting constructs ensembles of survival models
assuring that the resulting model is a valid risk func-
tion. The core idea is to optimize weights w;; for
risk functions of individual ensemble members j and
each time point ¢ optimizing model calibration under
a constraint for the predictive error using Bayesian
Optimization.

3.1.3. LOW-RANK DECOMPOSITION BASED
APPROACHES

Several low-rank decomposition based approaches
have been proposed in literature (Khosla et al., 2018;
Li et al., 2017; Piratla et al., 2020). We design a strat-
egy heavily inspired by common-specific low-rank de-
composition (LRD, (Piratla et al., 2020)). The core
assumption is, that for each source domain k, the
optimal model’s parameters can be written as

0% = 0c + vk

where 0, is a domain specific effect and the goal there-
fore is to find model coefficients 6. encompassing the
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signal that is common across all domains. We per-
form a low-rank decomposition on the model coef-
ficients of a cox proportional hazards model fitted
on each domain in order to find a set of coefficients
0. containing the domain-independent signal which is
used for subsequent prediction on the target domains.

3.1.4. INVARIANT RISk MINIMIZATION (IRM) &
ENVIRONMENT INFERENCE FOR INVARIANT
LEARNING (EIIL)

Arjovsky et al. (2019) propose Invariant Risk Mini-
mization (IRM), a novel risk minimization strategy
with the goal to discover domain-invariant classifiers
® by solving the following minimization problem:

. i i . 2
mgn;R (®) + A 5 | Vs B (w - )|

The resulting invariant predictor therefore is bal-
anced by A\ between predictive performance and a low
gradient at w=1 as a measure of domain invariance
(Arjovsky et al., 2019). If domain assignments d;
are latent, domains can be inferred as described in
(Creager et al., 2021) (EIIL) by inferring domain as-
signments d;, such that the domain invariance in the
equation is maximized before training the model us-
ing IRM. This method will fit for the single-source
DG use cases. We adapt IRM /EIIL a survival by op-
timizing for the negative log likelihood of the Cox PH
risk as R? (c.f. Kvamme and Borgan (2021)).

3.1.5. CONTINUOUSLY INDEX DOMAIN
ApAPTATION (CIDA)

Wang et al. (2020) propose an Encoder-Decoder
based approach to obtain domain invariant represen-
tations E(x) for the scenarios where domain assign-
ments i are continuous (Wang et al., 2020). The goal
is to learn an encoder E that allows for training a pre-
dictor F on y which simultaneously does not permit
predicting domain assignments i.

min maz Ly(F(E(z,d)),y) = AaLa(D(E(z, d;)). )

Models can be trained using either the L4 Lo
(CIDA), i.e. the mean squared error loss or a prob-
abilistic loss L; modeling the mean and variance
of a Gaussian distribution and optimizing for the
negative log-likelihood (PCIDA). We configured the
model both in a linear as well as a deep setting, im-
plementation details can be found in the appendix.
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We adapt to a survival setting by employing the neg-
ative log likelihood of the Cox PH model as a loss for
L, (Kvamme and Borgan, 2021).

3.2. Quantifying shifts

We try to characterize types and magnitudes of shifts
occurring in the data to better understand differences
between the scenarios and investigate correlations be-
tween domain shifts and the improvement by DG
methods. In particular, we measure the shift between
the target domain and the pooled source domains.
We propose 3 metrics allowing for measuring the dif-
ferent shifts, i.e., shifts in P(X), P(Y), and P(Y|X)
aforementioned. Other metrics for such shifts have
been proposed in histopathology (Stacke et al., 2020),
or structured biological data (Borgwardt et al., 2006).

3.2.1. SHIFT IN P(X)

Shift in P(X) are summarized using the Wasserstein
distance (Dobrushin) between the distribution of the
propensity score of data in the source and target do-
main. The propensity score of a sample in source or
target domain was calculated using a logistic model
with all features in X.

3.2.2. SHIFT IN P(Y)

The distribution shift in P(Y) were measured using
the chi square statistics from the log-rank test be-
tween the outcomes in the source and target domain.

n

W=y

t=1

(Oit - Ezt)2
Var(Es)

Ny —Ot)(Nt -N; )
N, N, —1

where O;; represents the observed number of events
in the group i (target or source domain) over time, E;;
represents the expected number of events in the group
i over time, N;; represents the number of subject at
time t in group i.

Var(Eiy) = Eqij(

3.2.3. SHIFT IN P(Y|X)
To measure the shift in P(Y|X), we used the differ-

ence between a model trained on the source domain
(®°7¢) and a model trained on the target domain (®*,
fitted with the training split of the target domain) in
the Akaike information criterion (AIC) computed on
the data from target domain for both models. Note



DOMAIN GENERALIZATION FOR SURVIVAL ANALYSIS

that the ®* is fitted in the target domain, which usu-
ally have a much smaller sample size than the source
domain in our experiments.

Dy y = AIC(Yigt, @ (Xigt)) — AIC(Yige, @°7(Xige))

3.3. Model selection

Since DG assumes no access to target domain data,
no reliable estimates for the generalization error
GEy4 are available for model selection or hyperpa-
rameter tuning (Sagawa et al., 2019; Gulrajani and
Lopez-Paz, 2020). Since we are interested in the per-
formance of models, we investigate models from a
post-hoc perspective by reporting best-in-class per-
formance on target domain data from each approach
(Oracle, ERM, DG). Since this is not possible in prac-
tice, we additionally investigate a setting where a
model is selected based on performance on a 30%
validation sample collected from each source domain.
Then, the best model is refitted on the full data to
compute G E4; after model selection. We investigate
differences to post-hoc selection in order to assess the
effect of model selection.

3.4. Synthetic domain shift

Besides scenario A, all other scenarios has natural
domains that can be identified. For scenario A, we
create a label based on the quantiles (0-20%, 21-40%,
41-60%, 61-80%, 81-100%) of propensity score of one
sample, which primarily categorize data based on the
distribution of P(X). We use the propensity labels
together with the original domain labels to rearrange
the source and target domains to 10 different sub-
domains. By different combinations of these sub-
domains, we are able to create new source and target
datasets with different degrees of distribution shifts
and to test the performance of domain generalization
under these scenarios (see Appendix for more details).

3.5. Data

In this study, we focus on patient-level tabular data
from the oncology domain, in particular diffuse large
B-cell lymphoma (DLBCL) as well as squamous
and non-squamous small cell lung cancer (NSCLC).
Datasets are obtained either from randomized con-
trolled trials (RCTSs) or electronic health record based
real-world data (RWD) collection efforts (for more
details see Appendix). Measured covariates contain
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demographic information such as sex and age as well
as clinical variables, e.g., Eastern Cooperative On-
cology Group (ECOG) score (Oken et al., 1982) and
lab test results. For NSCLC datasets (dataset D,E),
we select five covariates following Alexander et al.
(2017), while for DLBCL (dataset A,C,E) we select
five variables chosen for the International Prognos-
tic Index (IPI) (International Non-Hodgkin’s Lym-
phoma Prognostic Factors Project, 1993). For both
diseases, patients’ death of all causes is used as the
target event for survival analysis. We further created
synthetic datasets based on the DLBCL data in case
A, using the method described above.

The five different domain shift cases from real clin-
ical data are summarized in Table 1. In order to pro-
vide an overview, we indicate the presence of detected
shifts. The datasets contain between 733 and 3218
samples distributed into 5-8 source domains while
target domains are pooled into a single domain for
evaluation. Target domain sizes vary from 107 to 733
(Table 1). Distributions across datasets reflect shifts
that might typically be encountered in clinical prac-
tice: A) build a prognostic model for DLBCL on RCT
data and apply the model in the real-world dataset;
B) train a model on squamous NSCLC trials and ap-
ply it to a non-squamous NSCLC trial, which may
reflect the case of generalization of models between
disease subtypes; C) train a model on a set of ran-
domly selected treatment groups in the NSCLC trials
and apply to other treatment groups in NSCLC tri-
als, which aims to investigate the potential influence
by the change of care; D) train a model based on
younger DLBCL patient groups (0-60 yrs) and ap-
ply the model to the older population (60+), which
tests the generalizability between demographic sub-
populations; E) train a model on low/intermediate
risk populations and apply to the high risk popula-
tion of DLBCL patients, which tests generalizability
across risk groups (Wang et al., 2021).

4. Domain Generalization on clinical
data

We design an experiment comparing a set of DG
methods reflective of existing approaches to ERM
baselines including cox proportional-hazards mod-
els (Cox, 1972) and weibull models (Kalbfleisch and
Prentice, 2011). Together with ensemble models pre-
sented above, this allows us to go one step further be-
yond questions posed in previous publications (Gulra-
jani and Lopez-Paz, 2020; Zhang et al., 2021): analyz-
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Table 1: Overview of datasets and generalization cases. Criteria for check marks: if the Wasserstein
distance of features between the datasets is larger than 0.1, we consider it as a case with shift in
P(X); if the differences on survival outcomes between the source and target domains is significant
under a log-rank test (p—wvalue < 0.05), we consider it as a case with shift in P(Y); if the difference
on 0AIC is larger than 6, we consider it as a case with shift in P(Y|X).

. Samples size Sample size Number of
ID Generalization  P(X)  P(Y)  P(Y]X) (target domain) (source domain) source domains
A RCT to RWD v v v 733 1060 1
B Cancer subtypes - v v 107 3111 6
C  Treatment groups - v v 254 2857 8
D Age group - - - 191 542 4
E Disease risk - v v 151 582 4

ing whether DG not only improves over simple base-
lines but instead also over more advanced methods
that are readily available in practice. We adapt the
following experimental protocol for all studied set-
tings: After splitting data into fixed source and target
domains, we impute missing values using their me-
dian/mode and subsequently fit the model. Each ex-
periment is replicated 10 times on a randomly drawn
90% sample of the data to obtain an estimate of the
variance of results.

4.1. Performance metrics

Given that our outcome of interest is a continuous
survival distribution, we measure the target domain
generalization error (GE;4) in terms of the C-index
(Harrell Jr et al., 1996) on data obtained from the
target domain.

GEtgt = C(Y:fgt7 CI)(tht))

We further estimate the source domain generalization
error GE,.. using a random 70-30 split of source data
from each source domain as training and validation
data. The GFE,,. are used for the model selection
process as the validation data strategy.

GEsrc = C<sz/'rc’ CI)(X;TC))

4.2. Oracle models

We further study an oracle condition to answer how
much performance gain could be had, if access to the
target domain data was available. Measured differ-
ences in C-index between source model and the oracle
model stem from training on either a subset of the

target domain (oracle model) or source domain data
(source model). The resulting gap doracie thus reflects
differences in training data between source and target
domain.

5. Results

5.1. Domain shifts and model performance
degradation

In case A, we observe a significant difference in P(X)
(Wasserstein distance W, = 0.25), P(Y) (x* = 23.49,
p < 0.001) and P(Y|X) (AAIC = 12.62) between the
cohorts from RWD and the RCT. Case B and C both
show distribution shifts in P(Y') and P(Y|X), but the
metrics are larger in case B. In case D, we observe a
moderate shift in P(Y) (x? = 5.55, p = 0.02), but
not in P(Y|X) or P(X). In case E, we found a signif-
icant difference in P(Y) (x? = 8.75, p = 0.003), and
P(Y|X) (AAIC = 16.33). Metrics of domain shifts
are summarised in Table 2 (for additional details see
Fig. 3 in the Appendix).

When measuring performance degradation by com-
paring GEg,.. and GE.4, differences range between
0.01 and 0.05 across all experiments (Fig. 4 in the
Appendix). Interestingly, we find that performance
of the ERM models on the source domain are worse
than on the target domain in the conducted experi-
ments. When using the oracle models as a compara-
tor, oracle models are also not always superior to the
ERM models. The performances of oracle models are
worse than ERM models in the cases D by 0.03 and E
by 0.01. Note, that model performances can be worse
than random guessing if models over-fit on source do-
main data.
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Table 2: Summary of experimental results. We compare the best performing baseline with the best
performing DG method selected as best-of-class (DG) and selected according to the validation
data strategy (DG’). We report the domain shift by each metric for each tested scenario. For the
model performance, we report mean C-index along with standard deviations (in brackets) over 10
monte-carlo cross-validation iterations. The best class is denoted in bold.

A B C D E
Domain shift metrics
Shift in P(X) (Wp) 0.25 0.02 0.01 0.01 0.03
Shift in P(Y) (x?) 23.49 12.43 3.89 5.55 8.75
Shift in P(Y|X) (AAIC) 12.62 19.24 6.32 2.76 16.33
C-index by method class
Oracle 0.70(0.02)  0.65(0.07) 0.63(0.04) 0.66(0.08) 0.67(0.07)
ERM 0.70(0.01)  0.59(0.01) 0.62(0.01) 0.71(0.01) 0.69(0.01)
Ensemble 0.65(0.01)  0.61(0.01)  0.640(0.00)  0.64(0.01) 0.66 (0.01)
DG 0.70(0.01) 0.63(0.01) 0.66(0.01) 0.70(0.01) 0.67(0.01)
DG’ 0.65(0.01)  0.60(0.01) 0.66(0.01) 0.66(0.01) 0.66(0.01)

5.2. Performance of DG methods

We report best-of-class results across all investigated
DG and ERM methods to provide an overview. We
find DG only outperforms ERM in two out of five
real-world cases, with improvement on C-index be-
tween 0.03 and 0.05. In case A, the difference be-
tween the best DG and ERM was almost negligible.
In case D and E, ERM gives yields better C-indices
than DG (Table 2). Among the selected DG meth-
ods, LRD performed competitively well in all cases.
CIDALinear was the best performing method for case
C, and outperformed ERMs in two out of five cases.
Full results can be found in Table 3 in the Appendix.

When applying the wvalidation data strategy for
model selection, the selected methods (DG’, Table
2) have a loss from 0.02 to 0.05 in C-index compared
to the best-of-class results.

5.3. Correlation between domain shift and
the improvement by DG methods

Since the introduced domain shift metrics such as chi-
square statistics and AAIC are comparable with the
same target domain, we derive an experiment allow-
ing us to evaluate correlations with a fixed testing
dataset while changing source domains to mimic sce-
narios with different degrees of shifts between source
and target domain.

We first tested the correlation in case B. While
keeping the same testing dataset, we remove clinical
trials from the training datasets, two at each time, to
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create new training datasets. This generates shifts
with AAIC ranging from 16.6 to 20.5. With in-
creased domain shift, we observe a larger advantage
in performance of DG over ERM based models (from
0.63 to 0.59 for DG, 0.63 to 0.56 for ERM, Figure 1).

Using synthetic domain labels, we applied the same
approach and created four scenarios with increasing
domain shift between the target and source domains
based on case A (Fig. 5 in the Appendix). The ERM
and DG models have similar performance in the ini-
tial scenario (median C-index of 0.70 in both cases
with AAIC of 14). However, when the AAIC in-
creases to 26 and 39, the performance was worse in
ERM models (median C-index 0.68 and 0.66) com-
pared to DG models (0.69 and 0.67, Fig. 2).

6. Discussion

6.1. Domain shift and generalizability issues
in clinical data

A comparison between GFEg.. and GE:g4 is a com-
mon method to evaluate model performance under
domain shift. In contrast to the literature on im-
age data, where significant performance degradation
has been reported in target domains (Arjovsky et al.,
2019; Koh et al., 2021), we observed relatively small
performance loss in most of the tested cases, which
are low dimensional survival analysis settings. In our
experiment we find domain shift are not reflected in
differences between GE,,.. and G'Eyy, which is often
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Figure 1: Performance of ERM and DG models with increased domain shift in case B. While
keeping the same target domain, we create different training datasets by excluding trials from the
source domain. See appendix for the details of the NSCLC RCTs.

used as an indicator for detecting potential gener-
alization issues. We observe that models often ex-
hibit GE gt < GEsye, which might stem from differ-
ent Bayes error rates (Fukunaga, 1990) between the
domains.

Oracle models are often used in previous studies to
benchmark the performance of DG methods. How-
ever, oracle models may suffer from small sample sizes
and large variations in the target domain. In the cur-
rent study, oracle models also do not seem to be the
upper limit of the performance as suggested in other
literature (Zhang et al., 2021). In practice, compar-
ing the ERM model with an oracle model trained on a
small dataset from the target domain may not neces-
sarily help to identify potential generalizability issues
either. An additional open challenge is model selec-
tion from a set of candidate models, which can lead
to severe performance degradation in comparison to
the post-hoc best algorithm.

Because no single metric can directly measure the
generalizability of a model, a set of carefully designed
experiments are required to understand the underly-
ing issues.

6.2. Synthetic data for DG assessment

Synthetic data allows to test DG methods in con-
trolled experiments. However, previous publications
have shown that DG methods only outperform ERMs
in some special settings, particularly influenced by
spurious correlations generated from the synthetic
process. Synthetic DG scenarios such as coloured
MNIST (Arjovsky et al., 2019) or artificial features
often introduce spurious correlations in the source do-
mains that are reversed on the target domain, which
is perhaps rarely observed in real datasets (Zhang
et al., 2021; Arjovsky et al., 2019).

Instead of creating synthetic datasets, we introduce
a method to create synthetic domain labels based on
propensity scores. One advantage of this approach
is that the method only attempts to identify sub-
clusters within the sample to be used as domains,
and thus does not change the correlations between
the features and the outcomes. This may mimic more
realistic domain shift scenarios than directly modify-
ing the distribution of the original data.

6.3. Factors influencing domain
generalization methods

Previous studies reported that domain generalization
provides no advantage in the case of more subtle data
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Figure 2: Performance of ERM and DG models with increased domain shift in the synthetic
data. While keeping the same target domain as in case A, we create multiple training datasets by
removing subgroups of patients from the original DLBCL trial data according to their propensity
scores categories, which creates training datasets with different degrees of deviation from the target
domain. As an example, RCTps2-5 includes patients in RCT with propensity score category 2-5.
Models are tested on patients from RWD dataset with propensity score category 1 and 2.

shifts (Zhang et al., 2021; Gulrajani and Lopez-Paz,
2020). We observe that the DG methods show more
benefits when the source and target domains have
larger deviations. From a practical point of view,
when the training datasets are expected to be close
to the target domains, training with ERM methods
might be sufficient; when the training data are more
likely to be different from the target domain, e.g.
from a different disease subtype (case B) or patients
with different characteristics (the synthetic case), DG
method could yield improvements.

It is worth noting that AAICs from different
datasets are not directly comparable, comparisons are
only meaningful when the models share the same test
dataset. Although Case A and E have similar AAIC's
as in case B, it does not necessarily mean that they
have the same degree of domain shift. On the other
hand, there might be other factors influencing the ef-
ficacy of DG methods, such as the diversity of the
source domains (Zhou et al., 2021) and sample size.
In case A, since only one dataset is used in the train-
ing, the source domains are created by a random split
of the dataset, which may result in very homogeneous
source domains. Similarly in case E, although the
target domain includes patients with higher risk, the
source domains are similarly included patients with
low /intermediate risk patients. Additionally, case E
has a relatively small sample size in each source do-
main ( 100), which may influence the model fitting.

The process of model selection is another factor
influencing the final performance of the DG meth-
ods (Gulrajani and Lopez-Paz, 2020). In our exper-
iments, the selected models have a loss in c-index
between 0.02 to 0.05 compared with post-hoc model
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selection. The model selection should not only in-
clude hyper-parameter tuning of the algorithms, but
also feature selection. None of the original publica-
tions of the tested DG methods address the proper
optimization under the DG scenario. As suggested
previously (Zhang et al., 2021; Gulrajani and Lopez-
Paz, 2020), the model selection strategy needs to be
an integral part of a domain generalization method
and its evaluation. Without it, the validity of the
reported performance of these methods is limited.

6.4. Clinical applications and regulatory
hurdles

It is encouraging for practitioners in the field that
in most cases ERM methods are performing compet-
itively. But we should also be aware that in many
other scenarios DG methods do outperform ERM
models. Both successful and failed attempts to use
DG methods in different clinical applications abound
in the literature (Lafarge et al.; Guo et al., 2021; Jin
et al.). As observed here and elsewhere (Wang et al.),
these conflicting observations may be explained by
different degrees of domain shifts as well as the quan-
tity and diversity of training data. The challenge thus
lies in the correct choice of proper methods contingent
on the recognition of the specific type of scenario. To
aid this choice, we propose a set of metrics that can
be used to qualify domain shifts, and to understand
the diversity within the source domain. Additionally,
estimating potential shifts in the target domain of the
intended use cases will be a potential required step
for identifying the proper use scenarios (Gossmann
et al.).
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For a clinical algorithm, the regulatory require-
ment plays a critical role. With the rising question
on trustworthiness of the machine learning models,
the request is not only on accuracy, but increasingly
on transparency of the model training process, which
includes a demonstration of model design tailored to
the available data and intended use (FDA, 2021).
These may imply a requirement of evidence to justify
the use of selected methods, their applicable scenarios
and potential risks, such as over-fitting, performance
degradation, and security risks. In essence, this calls
for comprehensive evaluation of methods before real-
world application.

7. Conclusion

In this study, we evaluated four recently published
domain generalization methods for their ability to
generalize to an unseen data domain with real clinical
data. Similar to previous findings with imaging data,
these methods provided improvement over ERM for
survival analysis in limited settings. However, our
study is limited to comparatively low-dimensional
settings (less than 10 features), which are often en-
countered in clinical practice. Richer settings em-
ploying a larger number of variables might result in
different results due to possibly stronger over-fitting.
We propose several metrics of domain shifts, and an-
alyze the factors influencing the efficacy of the DG
methods, which is a first step to find the right method
that fits a particular domain shift scenario. Further-
more, data used throughout our study comes only
from the US, a broader study across different popu-
lations could lead to interesting results.

Most of the current DG methods were developed
for tasks outside low-dimensional clinical settings and
may therefore not have been optimized for clinical use
cases. We hope our work will encourage researchers
in the field to further develop suitable DG methods
for clinical research, as well as to develop more fit-
ting evaluation frameworks and datasets to bench-
mark these methods.

Institutional Review Board (IRB)

The data used in this study were all published pre-
viously, the study did not require an IRB approval.
For the original clinical studies, approval from the In-
dependent Review Board (IRB)/Independent Ethics
Committee (IEC) were obtained before the start of
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the studies, and all patients provided written in-
formed consent.
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Appendix A. Data and Methods
A.1. Datasets

The data are collected from the following studies:
NSCLC:

e NCT01351415 (RCT1): A Study of Beva-
cizumab in Combination With Standard of
Care Treatment in Participants With Advanced

Non-squamous Non-small Cell Lung Cancer
(NSCLC).

e NCT01496742 (RCT2): A Study of Onar-
tuzumab (MetMAD) in Combination With Beva-
cizumab (Avastin) Plus Platinum And Paclitaxel
or With Pemetrexed Plus Platinum in Patients
With Non-Squamous Non-Small Cell Lung Can-
cer.

e NCT01903993 (RCT3): A Randomized Phase
2 Study of Atezolizumab (an Engineered Anti-
PDL1 Antibody) Compared With Docetaxel
in Participants With Locally Advanced or
Metastatic Non-Small Cell Lung Cancer Who
Have Failed Platinum Therapy - “POPLAR”.

e NCT02008227 (RCT4): A Study of Ate-
zolizumab Compared With Docetaxel in Par-
ticipants With Locally Advanced or Metastatic
Non-Small Cell Lung Cancer Who Have Failed
Platinum-Containing Therapy (OAK).

e NCT02366143 (RCT5): A Study of Ate-
zolizumab in Combination With Carbo-
platin Plus (4) Paclitaxel With or With-
out Bevacizumab Compared With Carbo-
platin+Paclitaxel4+Bevacizumab in Participants
With Stage IV Non-Squamous Non-Small Cell
Lung Cancer (NSCLC) (IMpower150).

e NCT02657434 (RCT6): A Study of Ate-
zolizumab in Combination With Carboplatin or
Cisplatin + Pemetrexed Compared With Carbo-
platin or Cisplatin + Pemetrexed in Participants
Who Are Chemotherapy-Naive and Have Stage
IV Non-Squamous Non-Small Cell Lung Cancer
(NSCLC) (IMpower 132).

e NCT01519804 (target): A Study of Onar-
tuzumab (MetMAb) Versus Placebo in Combi-
nation With Paclitaxel Plus Platinum in Pa-
tients With Squamous Non-Small Cell Lung
Cancer.
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DLBCL:
e NCT01287741 (RCT): A Study of Obin-
utuzumab in  Combination With CHOP

Chemotherapy Versus Rituximab With CHOP
in Participants With CD20-Positive Diffuse
Large B-Cell Lymphoma (GOYA)

e FlatironHealth (RWD): This study used the na-
tionwide Flatiron Health electronic health record
(EHR)-derived de-identified database. We se-
lected a subset of patients from the DLBCL co-
hort for the analyses.

A.2. Model Selection

Throughout the manuscript, we report the best-in-
class model. That is, for each group of models (ERM,
DG, Oracle condition), we report the best model
based on the average performance on the held-out
30% validation data from each split.

Since DG assumes no access to source domain data,
no reliable estimates for the generalization error GE
are available. Mainly three strategies have been pro-
posed in literature (Sagawa et al., 2019; Gulrajani
and Lopez-Paz, 2020):

e Validation Data Measure generalization error us-
ing average performance on a hold-out sample
from each source domain.

e Worst-case analysis Measure generalization error
as a method’s performance on the worst domain
(Sagawa et al. 2019).

e Validation Domain Measure generalization error
as a method’s performance on a (randomly) held
out source domain.

While each method can help to obtain better esti-
mates of eventual performance on a target domain,
their efficacy heavily depends on the (dis-)similarity
between source and target domains.

A.3. Implementation Details
IRM & EIL

Since we consider low-dimensional datasets with only
few observations, we consider simplistic (linear) neu-
ral networks in our benchmarks. The regularization
parameter A for both is tuned on a grid of values:
,le—7,1le—5,1le—3,1le—2,1e—1,.5 and trained us-
ing the Adam optimizer with a learning rate of 0.01.
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CIDA

We consider versions of CIDA and PCIDA that in-
clude only a linear predictor (CIDALinear and PCI-
DALinear) as well as a deep version including 4 layers
of widths (8,12,12,8) respectively (CIDA, PCIDA).
Since we study settings with ~ 5 covariates, we con-
sider a width of 12 to be appropriately big for our
neural networks.

A.4. Building synthetic domain shift

We created the synthetic dataset based on case A
to mimic scenario different degree of domain shift.
The case A contains only one dataset in the source
domain. For the main task, we simply separated the
data according to the age groups of the population
(0-50, 51-60, 61-70, 71-80, 80+), however, this is an
over simplification of categorizing the heterogeneous
subgroups within the population.

We applied the method described to create syn-
thetic domain labels. Firstly, a logistic regression
model was fitted on the combined source and target
domain to calculate the propensity of each sample be-
ing in one of the domains. Based on the propensity
scores, we stratified the whole population according
to the quantiles of the propensity scores (0-20%, 21-
40%, 41-60%, 61-80%, 81-100%), which are used as
the propensity labels (ps_1-5, Fig. 5). We then com-
bined the propensity labels and the original domain
labels (RCT or RWD) to create a new domain label
for each stratum in the population (e.g. RCT1, indi-
cates the patient comes from the RCT data and be-
longs to the propensity category ps_1). Based on dif-
ferent combinations of stratum we are able to created
scenarios with different degrees of domains shifts.

Appendix B. Figures and Tables
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Table 3: Full experimental results. We report c-index across replications for all experiments by method
and scenarios. Bold: best method according to GE;4 except Oracle model, underlined: chosen via

validation data strategy. We report averages along with standard deviations (in brackets).

Algorithm A B C D E
Oracle 0.703 (0.023) 0.648 (0.069) 0.634 (0.036) 0.664 (0.078)  0.666 (0.069)
ERM

coxph 0.695 (0.003)  0.592 (0.012) 0.625 (0.003)  0.710 (0.003) 0.686 (0.005)
weibull 0.694 (0.003) 0.588 (0.011) 0.624 (0.003) 0.710 (0.003)  0.687 (0.004)
LRD 0.683 (0.027)  0.630 (0.002)  0.629 (0.004) 0.698 (0.014)  0.654 (0.009)
CIDA

CIDA 0.631 (0.062)  0.588 (0.040) 0.601 (0.024) 0.665 (0.044)  0.642 (0.043)
PCIDA 0.593 (0.067) 0.551 (0.054) 0.556 (0.051) 0.654 (0.036)  0.639 (0.049)
CIDALinear 0.648 (0.002) 0.601 (0.014) 0.658 (0.014) 0.659 (0.012)  0.659 (0.013)
PCIDALinear  0.646 (0.001) 0.595 (0.015) 0.607 (0.015) 0.683 (0.020)  0.674 (0.014)
IR

IRM 0.345 (0.034) 0.465 (0.016) 0.478 (0.035) 0.605 (0.055)  0.518 (0.074)
EIIL 0.364 (0.019) 0.452 (0.002) 0.471 (0.002) 0.519 (0.110)  0.292 (0.007)
Ensemble

surv.quilts
surv.forest

0.635 (0.049)
0.650 (0.004)

0.613 (0.006)
0.602 (0.008)

0.623 (0.002)
0.639 (0.003)

0.635 (0.007)
0.610 (0.004)

0.662 (0.009)
0.655 (0.008)

2} ©
=} o
L L

Frequency

w
=}
L

ps_1 ps_2

ps_3 1 ps_4.ps_ 5

0.25 0.50 0.75 1.00
Propensity score

group RWD RCT

Figure 5: Create synthetic domain labels based
on propensity score in case A. The
RCT and RWD data were each categorized
based on the quantiles of the propensity
score (ps_1-5). Combining with the orig-
inal domain labels, the target and source
domains were divided into 10 different sub-
domains, labeled as RCT1-5 and RWD1-5.
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