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Abstract
Neural network models have demonstrated im-
pressive performance in predicting pathologies
and outcomes from the 12-lead electrocardio-
gram (ECG). However, these models often need
to be trained with large, labelled datasets,
which are not available for many predictive
tasks of interest. In this work, we perform
an empirical study examining whether train-
ing time data augmentation methods can be
used to improve performance on such data-
scarce ECG prediction problems. We investi-
gate how data augmentation strategies impact
model performance when detecting cardiac ab-
normalities from the ECG. Motivated by our
finding that the effectiveness of existing aug-
mentation strategies is highly task-dependent,
we introduce a new method, TaskAug, which
defines a flexible augmentation policy that is
optimized on a per-task basis. We outline an
efficient learning algorithm to do so that lever-
ages recent work in nested optimization and im-
plicit differentiation. In experiments, consider-
ing three datasets and eight predictive tasks, we
find that TaskAug is competitive with or im-
proves on prior work, and the learned policies
shed light on what transformations are most ef-
fective for different tasks. We distill key insights
from our experimental evaluation, generating a
set of best practices for applying data augmen-
tation to ECG prediction problems.

Data and Code Availability We use three
datasets: two are from Massachusetts General Hos-
pital (MGH) and are not publicly available; the third
is PTB-XL (Wagner et al., 2020), which is publicly

available on the PhysioNet repository (Goldberger
et al., 2000). Code implementing our method is avail-
able here: https://github.com/aniruddhraghu/

ecg_aug.

1. Introduction

Electrocardiography is used widely in medicine as
a non-invasive and relatively inexpensive method of
measuring the electrical activity in an individual’s
heart. The output of electrocardiography — the elec-
trocardiogram (ECG) — is of great utility to clini-
cians in diagnosing and monitoring various cardiovas-
cular conditions (Salerno et al., 2003; Fesmire et al.,
1998; Blackburn et al., 1960).

In recent years, there has been significant inter-
est in automatically predicting cardiac abnormali-
ties, diseases, and outcomes directly from ECGs using
neural network models (Hannun et al., 2019; Raghu-
nath et al., 2020; Gopal et al., 2021; Diamant et al.,
2021; Kiyasseh et al., 2021; Raghu et al., 2021a). Al-
though these works demonstrate impressive results,
they often require large labelled datasets with paired
ECGs and labels to train models. In certain situa-
tions, it is challenging to construct such datasets. For
example, consider inferring abnormal central hemo-
dynamics (e.g., cardiac output) from the ECG, which
is important when monitoring patients with heart
failure or pulmonary hypertension (Schlesinger et al.,
2021). Accurate hemodynamics labels are only ob-
tainable through specialized invasive studies (Bajo-
rat et al., 2006; Hiemstra et al., 2019) and hence it
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Figure 1: The effect of data augmentation on ECG
prediction tasks is task-dependent. We
examine the mean/standard error of AUROC
over 5 runs when applying SpecAugment (Park
et al., 2019), a data augmentation method,
to two different ECG prediction tasks. We
observe performance improvement in one set-
ting (left, Right Ventricular Hypertrophy),
and performance reduction in another (right,
Atrial Fibrillation).

is difficult to obtain large datasets with paired ECGs
and hemodynamics variables.

Data augmentation (Hataya et al., 2020; Wen et al.,
2020; Shorten and Khoshgoftaar, 2019; Iwana and
Uchida, 2021a; Cubuk et al., 2019, 2020) during train-
ing is a useful strategy to improve the predictive per-
formance of models in data-scarce regimes. However,
there exists limited work studying data augmentation
for ECGs. A key problem with applying standard
data augmentations is that fine-grained information
within ECGs, such as relative amplitudes of portions
of beats, carry predictive signal: augmentations may
worsen performance if such predictive signal is de-
stroyed. Furthermore, the effectiveness of data aug-
mentations with ECGs varies on a task-specific basis
– applying the same augmentation for two different
tasks could help performance in one case, and hurt
performance in another (Figure 1).

In this work, we take steps towards addressing
these issues. Our contributions are as follows:

• We propose TaskAug, a new task-dependent aug-
mentation strategy. TaskAug defines a flexible aug-
mentation policy that is optimized on a per-task
basis. We outline an efficient learning algorithm
to do so that leverages recent work in nested op-
timization and implicit differentiation. (Lorraine
et al., 2020).

• We conduct an empirical study of TaskAug and
other augmentation strategies on ECG predictive
problems. We consider three datasets and eight dif-

ferent predictive tasks, which cover different classes
of cardiac abnormalities.

• We analyze the results from our evaluation, find-
ing that many augmentation strategies do not work
well across all tasks. Given its task-specific nature,
TaskAug is competitive with or improves on other
methods for the problems we examined.

• We study the learned TaskAug policies, finding
that they offer insights as to what augmentations
are most appropriate for different tasks.

• We provide a summary of findings and best prac-
tices to assist future studies exploring data aug-
mentation for ECG tasks.

2. Related Work

Data augmentation for time-series. Prior re-
search on time-series data augmentation includes: (1)
large-scale surveys exploring the impact of augmen-
tation on various downstream modalities (Iwana and
Uchida, 2021a,b; Wen et al., 2020); and (2) specific
methods for particular modalities, including speech
signals (Park et al., 2019, 2020), wearable device sig-
nals (Um et al., 2017), and time series forecasting
(Bandara et al., 2021; Smyl and Kuber, 2016). There
is relatively little work exploring how augmentation
can impact performance for ECG-based prediction
tasks, with prior studies mostly restricted to consider-
ing single tasks (Hatamian et al., 2020; Banerjee and
Ghose, 2021). In contrast, in this paper, we evaluate
a set of data augmentation methods on many different
predictive tasks, studying when and why augmenta-
tions may help. In addition, the data augmentation
strategy proposed in this work, TaskAug, can be read-
ily adapted to new predictive tasks, unlike in existing
works where the methods may be designed for a very
specific downstream task.

There also exists related work on using data aug-
mentation for contrastive pre-training with ECGs
(Gopal et al., 2021; Kiyasseh et al., 2021; Raghu
et al., 2021b; Mehari and Strodthoff, 2021). These
works are complementary to ours; we focus specifi-
cally on supervised learning (rather than contrastive
pre-training), and we hypothesize that our proposed
augmentation pipeline could be used in these prior
methods for improved contrastive learning.

Designing and learning data augmentation
policies. The structure of TaskAug, our proposed
augmentation strategy, was inspired by related work
on flexible data augmentation policies in computer vi-
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sion (Cubuk et al., 2019, 2020; Hataya et al., 2020).
We extend these ideas to ECG predictive tasks by
(1) selecting appropriate transformations for ECG
data, and (2) allowing for class-specific transforma-
tion strengths. Since such policies introduce many
hyperparameters, we use a bi-level optimization al-
gorithm to enable scalable policy learning (Lorraine
et al., 2020; Raghu et al., 2021c).

3. Problem Setup and Notation

We focus on supervised binary classification problems
from ECG data. Let x ∈ R12×T refer to a 12-lead
ECG of T samples and y ∈ {0, 1} refer to a binary
target. We let D = {(xn, yn)}Nn=1 refer to a dataset
of N ECG-label pairs.

Let f(x; θ) → ŷ be a neural network model with
parameters θ that outputs a predicted label ŷ given
x as input. Network parameters are optimized to
minimize the average binary cross entropy loss LBCE

on the training dataset D(train).

We restrict our study to single label binary classi-
fication problems in this work in order to study the
effect of data augmentation on a per-task basis. One
can extend this to multilabel binary classification by
letting y be a vector of several different binary la-
bels and training the network to produce a vector of
predictions.

Training with Data Augmentation. Let
A(x, y;ϕ)→ x̃ refer to a data augmentation function
with hyperparameters ϕ that takes the input ECG x
and its label y and outputs an augmented version x̃.
Note that this formulation implicitly assumes that
the augmentation is label preserving, since it does
not also change the label y. Where relevant, the
augmentation hyperparameters ϕ may control the
strength/probability of applying an augmentation.

The process of training with data augmentation 1

amounts to:

1. Sample a data point and label pair from the train-
ing set: (x, y) ∼ D(train).

2. Apply the augmentation A : x 7→ x̃, to transform
the original input x to an augmented version x̃.

3. Use the pair (x̃, y) in training.

1. For the SMOTE baseline this process is slightly different;
details are in Section 4.

4. Data Augmentation Methods

We now describe the data augmentation methods
considered in our experiments. We also present our
new, learnable data augmentation method that can
be used to find task-specific augmentation policies,
and an algorithm to optimize its parameters.

4.1. Existing Data Augmentation Methods

We evaluate the following set of existing data aug-
mentation strategies, which includes operations in the
signal (time-domain) space, frequency space, and in-
terpolated signal space, providing good coverage of
the possible space of augmentations.

Time Masking. This is a commonly used method
in time-series and ECG data augmentation work
(Iwana and Uchida, 2021a; Gopal et al., 2021). We
mask out (set to zero) a contiguous fraction w ∈ [0, 1]
of the original signal of length T , We choose a random
starting sample ts and set all samples [ts, ts+wT ] = 0.

SpecAugment. A highly popular method for aug-
menting speech signals (Park et al., 2019, 2020). We
follow the approach from Kiyasseh et al. (2021), and
apply masking (setting components to zero) in the
time and frequency domains as follows. We take
the Short-Time Fourier Transform (STFT) of the in-
put signal, and independently mask a fraction w of
the temporal bins and frequency bins (this involves
setting the complex valued entries in these bins to
0 + 0j). The inverse STFT is then used to map the
signal back to the time domain.

Discriminative Guided Warping (DGW). In-
troduced in Iwana and Uchida (2021b), this method
uses Dynamic Time Warping (DTW) (Müller, 2007;
Berndt and Clifford, 1994) to warp a source ECG to
match a representative reference signal that is dissim-
ilar to examples from other classes.

SMOTE (Chawla et al., 2002). A commonly
used oversampling strategy, the SMOTE algorithm
generates new synthetic examples of the minority
class by interpolating minority class samples. Given
that many ECG prediction problems are character-
ized by significant class imbalance, oversampling al-
gorithms are important methods to consider. In con-
trast to the other methods, the SMOTE algorithm
generates an augmented dataset prior to any training,
based on a predefined training set size, rather than
augmenting examples at each training iteration (as
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presented in Section 4). We set this value to achieve
a balanced number of the two classes.

4.2. TaskAug : A New Augmentation Policy

Motivation. The approaches mentioned so far are
simple to implement and can be effective for various
problems; however, they are fairly inflexible, given
each individually uses only one or two fixed trans-
formations. With ECGs, recall that it is unclear on
a per-task basis which augmentations may help or
worsen performance (Figure 1). Designing a more
flexible augmentation strategy that is optimized on a
per-task basis could help with this problem, and we
now describe such an approach – TaskAug.

4.2.1. Formalizing TaskAug

High-level structure. We define a set of opera-
tions S = {A1, . . . , AM}, each of which is an augmen-
tation function of the form Ai(x, y;µ0, µ1), where x
is the input data point to the augmentation function,
y is the label, and {µ0, µ1} represent the augmenta-
tion strengths for datapoints of class label 0 and class
label 1 respectively. We separately parameterize the
augmentation strengths for each class because trans-
formations may corrupt predictive information in the
signal for one class but not the other.
The overall augmentation policy consists of a set of

K stages, where at each stage we: (1) sample an aug-
mentation function Ai to apply; and (2) apply it to
the input signal to that stage. This allows composing
combinations of operations in a stochastic manner. A
high-level schematic is shown in Figure 2.

Mathematical definition. The policy is defined
following Hataya et al. (2020). At each augmen-
tation stage k ∈ {1, . . . ,K} we have a set of op-
eration selection parameters π(k) ∈ [0, 1]M , where∑

i π
(k)
i = 1 ∀k. Each vector π(k) parameterizes

a categorical distribution such that each entry π
(k)
i

represents the probability of selecting operation i at
augmentation stage k. We obtain a reparameteriz-
able sample from this categorical distribution (using
the Gumbel-Softmax trick, (Jang et al., 2016; Maddi-
son et al., 2016)) at each stage to select the operation
to use, as follows:

u ∼ Categorical(π(k)) # Note that u ∈ RM (1)

i = argmaxu (2)

x̃ =
ui

stop grad(ui)
Ai(x, y;µ0, µ1). (3)

The multiplicative factor ui

stop grad(ui)
allows differen-

tiation w.r.t the operation selection parameters π.
This enables gradient-based optimization of π (see
Section 4.2.2). The denominator is necessary because
the reparameterized sample from the categorical dis-
tribution is not one-hot. Further details are in Ap-
pendix A.

Suppose a particular augmentation function Ai

with strength parameters µ0 and µ1 is obtained fol-
lowing Eqns 1 and 2. Then, denoting the input to this
augmentation stage as x with label y, the function Ai

that computes the augmented output is defined as:

Ai(x, y;µ0, µ1) = ti(x; s), (4)

where ti is the actual transformation applied
to the signal (e.g., time masking), and s is
the transformation strength, computed as follows:
s = yµ1 + (1− y)µ0. See Appendix A for a detailed
example of the different steps in applying TaskAug.

Extension to multiclass and multilabel set-
tings. Our instantiation of TaskAug is for the bi-
nary classification setting, since this is the scenario
we consider in our experiments. The formulation
can be extended to multiclass/multilabel problems
by defining an operation selection probability ma-
trix and strength matrix at each augmentation stage.
The operation selection probabilities and operation
strengths for a given example are then obtained by
taking the matrix product of the relevant parameter
matrix and the label vector y.

4.2.2. Optimizing Policy Parameters

Although the defined policy is flexible, it introduces
many new parameters – for a binary problem, there
are M operation selection parameters for the cate-
gorical distributions at each stage, and 2 strength pa-
rameters at each stage, resulting in K×(2+M) total
parameters. Finding effective values for these param-
eters with random/grid search or Bayesian optimiza-
tion is computationally expensive since they require
training models many times with different parameter
settings. We therefore use a gradient-based learning
scheme to learn these parameters online.

We optimize policy parameters to minimize a
model’s validation loss, which is computed using non-
augmented data. Following prior work (Lorraine
et al., 2020; Hataya et al., 2020; Raghu et al., 2021c),
we alternate gradient updates on the network param-
eters θ and the augmentation parameters ϕ by iter-
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Figure 2: Structure of TaskAug. Augmentations to apply are sampled from a set of available operations, and
applied in sequence. Here we show an example with K = 2 stages of augmentation. We omit details
relating to the per-class magnitudes and probabilities of sampling for clarity.

ating the following steps (details and full algorithm
in Appendix A):

• Optimize the model parameters θ for P steps:
at each step, sample a batch (x, y) of data from
D(train), augment the batch with the augmentation
policy to obtain (x̃, y), compute the predicted label
ŷ, and update the model parameters using gradient
descent: θ ← θ − η∇L(y, ŷ).

• Compute the validation loss LV using an un-
augmented batch from the validation dataset.

• Perform a gradient update on the augmentation
parameters ϕ. We use the chain rule to re-express
the gradient wrt the augmentation parameters:

∂LV

∂ϕ
=

∂LV

∂θ
× ∂θ

∂ϕ
,

and compute this as follows. The first term on the
RHS is found exactly using straightforward back-
propagation; the second term is approximated us-
ing the algorithm from Lorraine et al. (2020), lever-
aging implicit differentiation for efficient computa-
tion (since differentiating through training exactly
is too memory-intensive). The augmentation pa-
rameters are then updated: ϕ← ϕ− η ∂LV

∂ϕ .

By using this algorithm, augmentation parameters
are learned on a per-task basis and analyzing the
learned parameters may allow us to understand what
augmentations are useful for different problems. We
return to this in Section 5.2.2.

Computational cost. Optimizing policy parame-
ters in this manner is significantly more computa-
tionally efficient than running a grid search over pa-
rameter values. With P = 1, running this algorithm
has about 2− 3× the computational cost of training
without any augmentations.

5. Experiments

We evaluate the data augmentation strategies on
ECG prediction tasks. We have two main experimen-
tal questions: (1) in what settings can data augmen-
tation be beneficial, and (2) when data augmentation
does help, which augmentation strategies are most ef-
fective? To investigate these questions, we consider
a range of settings that cover three different 12-lead
ECG datasets and eight prediction tasks of varying
difficulty, class imbalance, and training set sizes.

5.1. Experimental Setup

5.1.1. Datasets and Tasks

We highlight key information about our datasets and
tasks here, with a summary in Table 1.

Dataset A is from Massachusetts General Hospital
(MGH) and contains paired 12-lead ECGs and labels
for different cardiac abnormalities. Of the available
labels in the dataset, we select Right Ventricular Hy-
pertrophy (RVH) and Atrial Fibrillation (AFib) as
two of the predictive tasks in our evaluation. These
were chosen because (1) they have been previously
studied as prediction targets from the ECG (Couceiro
et al., 2008; Lin and Lu, 2020), and (2) they have low
positive prevalence: 1% for RVH, and 5% for AFib,
and therefore help to understand the impact of data
augmentation in imbalanced prediction problems.

Dataset B is PTB-XL (Wagner et al., 2020; Gold-
berger et al., 2000), an open-source dataset of 12-lead
ECGs. Each ECG has labels for four different cate-
gories of cardiac abnormality. This dataset has been
used in prior work to evaluate ECG predictive models
(Gopal et al., 2021; Kiyasseh et al., 2021).
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Dataset Task name Prevalence Abnormality type #ecgs/#patients

Dataset A
Right Ventricular Hypertrophy (RVH) 1% Structural 705057/705057
Atrial Fibrillation (AFib) 5% Electrical 705057/705057

Dataset B (PTB-XL)

Hypertrophy (HYP) 12% Structural 21837/18885
ST/T Change (STTC) 22% Ischemia 21837/18885
Conduction Disturbance (CD) 24% Electrical 21837/18885
Myocardial Infarction (MI) 25% Ischemia 21837/18885

Dataset C
Low Cardiac Ouput (CO) 4% Hemodynamics 6290/4051
High Pulmonary Capillary Wedge
Pressure (PCWP)

26% Hemodynamics 6290/4051

Table 1: Summary information about the datasets and tasks considered in our empirical evaluation.

Dataset C is from the same hospital (MGH) as
Dataset A and contains paired ECGs and labels
for two hemodynamics parameters, Cardiac Out-
put (CO) and Pulmonary Capillary Wedge Pressure
(PCWP). These measures of cardiac health are im-
portant in deciding treatment strategies for patients
with cardiac disease (Yancy et al., 2013; Hurst et al.,
1990; Solin et al., 1999). Typically, these parameters
can only be measured accurately through an inva-
sive cardiac catheterization procedure (Bajorat et al.,
2006; Hiemstra et al., 2019). As a result, datasets
with paired ECGs and hemodynamics measurements
are relatively small. Considering the use of data aug-
mentations to improve model performance in this lim-
ited data regime is therefore clinically relevant. We
specifically consider inferring abnormally low Cardiac
Output, and abnormally high Pulmonary Capillary
Wedge Pressure.

Note that the tasks considered cover different
classes of cardiac abnormalities: ischemia (MI,
STTC), structural (HYP, RVH), electrical (CD,
AFib), and abnormal hemodynamics (low CO, high
PCWP).

Dataset splitting. Since the value of data aug-
mentation can depend on the amount of training
data, we train on different dataset sizes. For the non-
hemodynamic tasks (Datasets A and B), we gener-
ate development datasets with 1000, 2500, and 5000
ECGs. On the more challenging hemodynamics in-
ference tasks (Dataset C), for elevated PCWP, we
consider two settings: using a development set of size
1000, and using the full dataset. For low CO, we
only use the full dataset, since reducing the dataset
size led to poor quality models.

In each setting, we split datasets into development
and testing sets on a patient-level (no patient is in

both sets). We split the development set into an 80-
20 training-validation split.

5.1.2. TaskAug Transformations

Based on prior work in time series and ECG data
augmentation (Iwana and Uchida, 2021a; Mehari and
Strodthoff, 2021) we use the following transforma-
tions in the TaskAug policy. Mathematical descrip-
tions are in Appendix A.

• Random temporal warp: The signal is warped
with a random, diffeomorphic temporal transfor-
mation. This is formed by sampling from a zero
mean, fixed variance Gaussian at each temporal
location in the signal to obtain a velocity field, and
then integrating and smoothing (following Balakr-
ishnan et al. (2018, 2019)) to generate a temporal
displacement field, which is applied to the signal.
The variance is the strength parameter, with higher
variance indicating more warping.

• Baseline wander: A low-frequency sinusoidal
component is added to the signal, with the am-
plitude of the sinusoid representing the strength.

• Gaussian noise: IID Gaussian noise is added to
the signal, with the strength parameter represent-
ing the variance of the Gaussian.

• Magnitude scale: The signal amplitude is scaled
by a number drawn from a scaled uniform distribu-
tion, with the scale being the strength parameter.

• Time mask: A random contiguous section of the
signal is masked out (set to zero).

• Random temporal displacement: The entire
signal is translated forwards or backwards in time
by a random temporal offset, drawn from a uniform
distribution scaled by a strength parameter.

Note that our instantiation of the augmentation pol-
icy could utilize many more operations, but we keep
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it to this number for simplicity and to assist in inter-
preting the learned policies.

5.1.3. Implementation Details

Network architecture. We standardize the net-
work architecture to be a 1D convolutional network,
based on the ResNet-18 architecture, since prior work
has shown architectures of this form to be effective
with ECG data (Diamant et al., 2021). Full architec-
tural details are in the appendix.

Training Details. On Datasets A and B, all mod-
els are trained for 100 epochs, using early stopping
based on validation loss. For the hemodynamics in-
ference problems on Dataset C, we train models for
50 epochs with early stopping (since we observed sig-
nificant overfitting after this point). We consider 15
random development/testing set splits for Datasets A
and C (lower prevalences for some tasks meant that
performance was more variable with fewer runs), and
5 splits for Dataset B. We train models using the
Adam optimizer and a learning rate of 1e-3. This
value resulted in stable and effective training across
all models (as compared to 1e-4, 5e-4, and 5e-3). As
evaluation, we compute the AUROC of the best per-
forming model on the held-out testing set, and report
mean/standard error across runs. We also report re-
sults for a baseline (NoAugs) that does not use any
data augmentation.

Augmentation Hyperparameters. In TaskAug,
we set the number of augmentation stages to K =
2 (defined in Section 4.2.1), following prior work
(Hataya et al., 2020). For the number of model opti-
mization steps P (defined in Section 4.2.2), we eval-
uate both P = 1 and P = 5, and select the best
performing setting based on validation set loss. Fur-
ther discussion on the choice of P is in Appendix A.
For Time Masking and SpecAugment, we search

over the masking window, considering w ∈ {0.1, 0.2}
for SpecAugment (range based on Kiyasseh et al.
(2021)) and w ∈ {0.1, 0.2, 0.5} for Time Masking
(range based on Gopal et al. (2021)).

5.2. Results

5.2.1. Quantitative results

Non-hemodynamics tasks. We first analyze per-
formance of augmentation strategies on the non-
hemodynamics tasks. Given that performance im-
provements are most evident in the lowest sample

regimes for both datasets (N = 1000), we focus on
this setting with results shown in Table 2. Results for
the higher sample regimes are in the appendix. We
summarize key findings here.

The value of augmentation varies by task. For
some tasks such as RVH and MI, almost all augmen-
tation strategies lead to performance improvements.
On other tasks such as STTC and HYP, performance
is the same or worse when applying augmentations.
The improvement seen with RVH could be due to the
fact that it is particularly low prevalence (1%), so all
augmentation strategies have an oversampling effect
and thus boost performance.

TaskAug performs well on average. TaskAug al-
most always improves on the NoAugs baseline, and
even boosts performance on some tasks where other
augmentations worsen performance (AFib). Al-
though TaskAug does not always result in a statisti-
cally significant (p < 0.05) improvement in AUROC ,
it is the only method to significantly improve AUPRC
over NoAugs on the low-prevalance tasks, RVH and
AFib (see Appendix C, Table 4).
When TaskAug results in lower performance than
other augmentation strategies (e.g., TimeMasking for
CD), it is still competitive with these methods and
never causes a statistically significant reduction in
performance compared to other methods. This sug-
gests that for a new task, it may always be worth
using TaskAug to see if performance is boosted. We
hypothesise that TaskAug’s efficacy is due to its flex-
ible and learned nature, examined in ablation studies
(Section 5.2.3).

Performance improvements are smaller on Dataset
B. The maximum improvement over the NoAugs
baseline in Dataset A (5.8%) is greater than the max-
imum improvement in Dataset B (2.3%). We hy-
pothesise two reasons for this. Firstly, the prevalence
in Dataset B is higher, meaning that augmentations
may not have as much of an effect at N = 1000. We
study this in Appendix C, Table 11, where we ex-
amine performance at the N = 500 data regime for
Dataset B, and find that the maximum improvement
(obtained with TaskAug for MI) goes up to 4%.

Secondly, Dataset A has narrower label definitions
than Dataset B, and this affects performance, es-
pecially with TaskAug. The HYP, STTC, and CD
classes of abnormalities in Dataset B aggregrate many
sub-categories together (see Appendix B), and these
sub-categories may each benefit from different aug-
mentations. In contrast, the labels in Dataset A are
fine-grained, and so TaskAug, which optimizes aug-
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Dataset A Dataset B
RVH AFib MI HYP STTC CD

NoAugs 72.6 ± 2.7 79.8 ± 1.4 80.0 ± 0.8 84.3 ± 1.4 87.6 ± 0.8 82.2 ± 0.6
TaskAug 78.4 ± 1.9 82.8 ± 1.0 82.3 ± 0.5∗ 83.7 ± 0.5 87.8 ± 0.4 83.1 ± 0.4
SMOTE 75.9 ± 1.8 79.0 ± 1.4 81.2 ± 0.6 80.4 ± 0.6 87.0 ± 0.5 82.6 ± 0.8
DGW 73.6 ± 1.7 77.4 ± 1.5 81.1 ± 0.6 83.9 ± 0.7 87.5 ± 0.5 81.8 ± 1.0
SpecAug 77.9 ± 1.7 77.2 ± 2.1 81.1 ± 0.7 83.5 ± 0.8 87.7 ± 0.4 82.2 ± 0.7
TimeMask 72.8 ± 2.1 77.9 ± 1.9 81.1 ± 1.3 82.9 ± 0.7 87.7 ± 0.7 83.8 ± 1.1

Table 2: Augmentation strategies improve AUROC on detecting most cardiac abnormalities in the
low-sample regime (N = 1000), and TaskAug is among the best-performing methods. Ta-
ble shows mean and standard error of AUROC (best-performing method bolded, second best underlined,
statistically significant (p < 0.05) improvement over NoAugs marked ∗). The impact of augmentations is
task-dependent, with some tasks (such as RVH, MI) showing improved performance on average with almost
all strategies, and others (HYP) showing no improvement with any strategy. TaskAug is among the best
methods across tasks, and improves performance on tasks such as AFib where no other augmentations help.

Dataset C
Low CO High PCWP: N = 1000 High PCWP: All Data

NoAugs 65.9 ± 1.2 66.7 ± 0.7 74.4 ± 0.5
TaskAug 68.2 ± 1.0 67.9 ± 0.7 75.1 ± 0.4
SMOTE 66.0 ± 1.4 67.2 ± 0.5 73.6 ± 0.5
DGW 68.3 ± 0.9 66.4 ± 0.6 74.9 ± 0.4
SpecAug 66.1 ± 0.9 66.4 ± 1.3 75.0 ± 0.4
TimeMask 66.8 ± 1.1 67.3 ± 0.4 74.6 ± 0.4

Table 3: Training with data augmentation improves AUROC on two hemodynamics inference tasks,
and TaskAug again is among the best-performing methods. Table shows mean and standard error
of AUROC (best-performing method bolded, second best underlined). All methods are comparable with
or improve on the no augmentation baseline for Low CO prediction, possibly because of the low prevalence
of the label (4%). The performance of methods on the High PCWP task is more variable across the two
sample sizes. TaskAug obtains improvements in all three settings considered.

mentations on a per-task basis, learns more appropri-
ate augmentation strategies. This hypothesis is sup-
ported by the fact that with MI (a more fine-grained
label than HYP, CD, and STTC) we observe improve-
ments over the NoAugs baseline (clearly seen in the
N = 500 regime, Appendix C, Table 11).

Performance improvements at higher samples are
lower, as seen in the results in Appendix C. Aug-
mentations do not worsen performance however, and
some tasks (STTC, CD) benefit a small amount,
∼ +1% AUROC.

Hemodynamics tasks. Table 3 presents results
for performance on the more challenging hemody-
namics prediction tasks. All methods are compara-
ble with or improve on the no augmentation base-
line for low CO prediction, likely because of the low

prevalence of the positive label (4%). For inferring
high PCWP, at both low sample and higher sam-
ples, TaskAug obtains improvements in performance
(though not significant at the p < 0.05 level); how-
ever, other methods do not consistently improve on
the no augmentation baseline. Although improve-
ments in AUROC are not statistically significant, we
observe significant improvements with TaskAug in
AUPRC for low CO detection (see Appendix C, Ta-
ble 6). Again, we see that the benefit of augmen-
tation varies with the task, prevalance, and dataset
size, and that TaskAug is better than or competitive
with other strategies.
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Figure 3: The TaskAug policy for Atrial Fibrillation detection. We focus on the probability of selecting
each transformation in both augmentation stages (left) and the optimized temporal warp strengths in
the first stage (right). We show the mean/standard error of these optimized policy parameters over 15
runs. Given the characteristic features of AFib (e.g., irregular R-R interval), Time Masking is likely to
be label preserving and therefore it is sensible that it has a high probability of selection. The temporal
warp strength for positive samples is higher than that for negative samples, which makes sense since time
warping a negative sample too strongly could change its label.
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Figure 4: The TaskAug policy for detecting elevated Pulmonary Capillary Wedge Pressure. We focus
on the probability of selecting each transformation in both augmentation stages (left) and the optimized
magnitude scaling strengths in the second stage (right). We show the mean/standard error of these
optimized policy parameters over 15 runs. There exists little domain knowledge about what features
in the ECG may encode elevated PCWP, so examining the learned augmentations here could provide
hypotheses of invariances in the data. Of interest is that the positive class is augmented with stronger
magnitude scaling than the negative class, suggesting that scaling negative examples could affect their
labels.

5.2.2. Analyzing learned policies

We analyze the learned policies for three of the pre-
dictive tasks: AFib, PCWP, and RVH (appendix).

AFib, Figure 3. We see that time mask has a high
probability of selection (Figure 3(a)). Since AFib is
characterized in the ECG by an irregular R peak-
R peak interval (Couceiro et al., 2008), which is of-
ten present regardless of which section of ECG is se-
lected, time masking is likely label preserving, and is

a sensible choice. Considering the learned time warp
strength in Figure 3(b), we observe that signals la-
belled negative for AFib are warped less strongly than
those with AFib, again sensible since time warping
may affect the label of a signal and introduce AFib
in a signal where it was not originally present.

PCWP, Figure 4. We have limited domain un-
derstanding of what augmentations may be label pre-
serving and help model performance, since detecting
high PCWP from ECGs is not something clinicians
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Figure 5: Optimizing the TaskAug policy param-
eters results in performance improve-
ments. We show the mean/standard error of
AUROC over 15 runs for AFib and over 5 runs
for MI. Without optimizing policy parameters
(InitAug), performance is comparable to not
using augmentations at all, indicating the im-
portance of learning the policy parameters.

are typically able to do (Schlesinger et al., 2021). An-
alyzing the augmentations could provide hypotheses
about what features in the data encode the class la-
bel. Noise, displacement, and baseline wander all
obtain higher weight in the first stage, and scaling
obtains higher weight in the second stage. The high
weight assigned to noise could be to help the model
build invariance to it, and not use it as a predic-
tive aspect of the signal. Studying the magnitude
scaling in Figure 4(b), we see positive examples are
scaled significantly more than negative examples. It
is possible that negative examples are more sensitive
to scale, and scaling them pushes them into positive
example space. The positive examples may have more
variance in scaling, and thus scaling them further has
less of an effect.

5.2.3. Ablation Studies

How much does optimizing augmentations
help? Our results show that TaskAug offers im-
provements in performance. In Figure 5, we exam-
ine how the actual optimization of the augmentation
policy parameters (operation selection probabilities
and magnitudes, Section 4.2.1) affects performance,
considering the AFib and MI detection tasks and
N = 1000. We compare the performance of optimiz-
ing the policy parameters vs. keeping them fixed at
their initialized values and training. We observe im-
provements in performance through the optimization
process, suggesting that it is not only the range of
augmentations that leads to improved performance,
but also the optimization of the policy parameters. In
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Figure 6: Class-specific magnitude parameters in
TaskAug lead to improvements in per-
formance. We show the mean/standard error
of AUROC over 15 runs for AFib and over 5
runs for MI. This is particularly true for tasks
such as AFib where some operations may not
be label preserving.

Appendix C, we study this at different dataset sizes
and find that performance is improved by optimiza-
tion at each size.

How much do class-specific magnitudes help?
TaskAug instantiates magnitude parameters for the
augmentation operations on a per-class basis, as de-
scribed in Section 4.2.1, allowing positive and nega-
tive examples to be augmented differently. We exam-
ine this further, considering the AFib and MI detec-
tion tasks and N = 1000. We compare performance
using class-specific magnitude parameters (the pos-
itive and negative examples have independent aug-
mentation magnitudes µ1 and µ0) vs. using global
magnitude parameters (the positive and negative ex-
amples are forced to have the same augmentation
magnitude: µ = µ0 = µ1). Results are shown in
Figure 6. We observe noticeable improvements in
performance with class-specific magnitude parame-
ters, demonstrating the importance of independently
specifying magnitudes for the two classes. In Ap-
pendix C, we study this at different dataset sizes and
find that performance is improved at each size.

5.2.4. Summary and best practices

• Training with data augmentations does not always
improve model performance, and may even hurt it.
The impact of augmentation depends on nature of
the task, positive class prevalence, and dataset size.

• Augmentations are most often useful in the low-
sample regime. Where the prevalence is particu-
larly low (see results for RVH detection) various
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augmentation strategies improve performance, per-
haps by functioning as a form of oversampling.

• Data augmentations do not always improve perfor-
mance at high sample sizes, but do not hurt it.

• TaskAug, our proposed augmentation strategy, is
the most effective method on average, and could
therefore be the first augmentation strategy one
tries on a new ECG prediction problem. TaskAug
defines a flexible augmentation policy that is op-
timized on a task-dependent basis, which directly
contributes to its effectiveness.

• TaskAug also offers insights as to what augmenta-
tions are most effective for a given problem, which
could be useful in novel prediction tasks (e.g.,
hemodynamics inference) to suggest what aspects
of the ECG determine the class label.

6. Conclusion

In this work, we studied the use of data augmen-
tation for prediction problems from 12-lead electro-
cardiograms (ECGs). We outlined TaskAug, a new,
learnable data-augmentation strategy for ECGs, and
conducted an empirical study of this method and sev-
eral existing augmentation strategies.
In our experimental evaluation on three ECG

datasets and eight distinct predictive tasks, we find
that data augmentation is not always helpful for
ECG prediction problems, and for some tasks may
worsen performance. Augmentations can be most
helpful in the low-sample regime, and specifically
when the prevalence of the positive class is low. Our
proposed learnable augmentation strategy, TaskAug,
was among the strongest performing methods in all
tasks. TaskAug augmentation policies are addition-
ally interpretable, providing insight as to what trans-
formations are most important for different prob-
lems. Future work could consider applying TaskAug
to other settings (e.g., multiview contrastive learning)
and modalities (e.g., EEGs) where flexible augmenta-
tion policies may be useful and could be interpreted
to provide scientific insight.
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Appendix A. Augmentation Methods

In this section, we provide further details on the dif-
ferent augmentation strategies explored (existing and
TaskAug), and visualize their operation.

A.1. Existing methods

Figures 7-10 present examples following augmenta-
tion using the existing methods. We show only one
lead for clarity; however, these operations will be ap-
plied to each lead.

Original signal After time masking

Figure 7: Time Masking.

Original signal After SpecAugment

Figure 8: SpecAugment.

Original signal After DGW

Figure 9: Discriminative Guided Warping (DGW).

A.2. TaskAug

We provide more details about TaskAug: (1) further
information about the mathematical formalism of the

Original signal example Signal generated with SMOTE

Figure 10: SMOTE.

policy and an example of applying the different steps;
(2) A more detailed description of the nested opti-
mization algorithm used to learn TaskAug parame-
ters, including a full algorithm; and (3) mathematical
descriptions of the operations used in TaskAug in our
experiments and a visualization of their effect on an
ECG signal.

A.2.1. Structure of policy

Mathematical definition. As described in Sec-
tion 4.2.1, the TaskAug policy is defined following
Hataya et al. (2020). At each augmentation stage
k ∈ {1, . . . ,K} we have a set of operation selection

parameters π(k) ∈ [0, 1]M , where
∑

i π
(k)
i = 1 ∀k.

Each vector π(k) parameterizes a categorical distri-

bution such that each entry π
(k)
i represents the prob-

ability of selecting operation i at augmentation stage
k. We obtain a reparameterizable sample from this
categorical distribution (using the Gumbel-Softmax
trick, (Jang et al., 2016; Maddison et al., 2016)) at
each stage to select the operation to use, as follows:

u ∼ Categorical(π(k)) # Note that u ∈ RM (5)

i = argmaxu (6)

x̃ =
ui

stop grad(ui)
Ai(x, y;µ0, µ1). (7)

Why the multiplicative factor? We use the mul-
tiplicative factor ui

stop grad(ui)
to allow gradient flow to

the operation selection parameters π. If we just se-
lected i = argmaxu and had no scaling in Eqn 7,
then there would be no gradient flow to π, since the
argmax operation is not differentiable.

The denominator of this scaling factor is necessary
because ui, obtained from the reparameterized sam-
ple from the categorical distribution, is not one-hot.
The resulting fraction used as the scaling factor al-
ways has magnitude 1, since |stop grad(ui)| = |ui|.
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When we take the gradient, we get:

∂

∂π

ui

stop grad(ui)
=

1

stop grad(ui)

∂ui

∂π
,

so the stop grad(ui) acts as a scaling term.

Example application of TaskAug. Suppose we
have a one-stage TaskAug policy, K = 1, our aug-
mentation set has two operations S = {A1, A2} which
are A1 = TimeMask(x, y;µ0 = 0.2, µ1 = 0.1) and
A2 = Noise(x, y;µ0 = 2.1, µ1 = 5.3), and the op-
eration selection probability vector is π = [0.9, 0.1]
(that is, we select TimeMask with probability 0.9,
and noise with probability 0.1). Now consider apply-
ing TaskAug to a (data, label) pair (x, 1), i.e., the
label is 1. We follow these steps:

1. Obtain a reparameterizable sample u from
Categorical([0.9, 0.1]): let this be u = [0.75, 0.25].

2. Find i = argmaxu; in this case, i = 1.
3. Select the operation A1, i.e. TimeMask.
4. Compute the masking strength based on the label.

Recall this is defined as s = yµ1 + (1 − y)µ0, so
s = 1× 0.1 + (1− 1)× 0.2 = 0.1.

5. Apply time-masking with strength 0.1 to x, gen-
erating x̂.

6. Scale this by u1

stop grad(u1)
to generate x̃.

A.2.2. Parameter optimization

As detailed in the main text, there are many learn-
able parameters in TaskAug, and we use gradient-
based optimization to learn these jointly with the
base model parameters. Here, we provide some more
details about the estimation of the gradient wrt the
TaskAug parameters, and also include a full algo-
rithm detailing the training procedure, Algorithm 1.

Estimating TaskAug parameter gradients.
Let the base model parameters after P update steps
be denoted as θ̂(ϕ). We update the TaskAug policy
parameters to minimize the base model’s validation
loss LV , with the gradient of interest being:

∂LV

∂ϕ
=

∂LV

∂θ̂
× ∂θ̂

∂ϕ
.

The first term on the RHS can be found exactly us-
ing standard backpropagation. To compute the sec-
ond term, we re-express it using the implicit function
theorem (IFT) as in Lorraine et al. (2020). Using
LT to denote the training loss, the IFT allows us to

re-express this second term as:

∂θ̂

∂ϕ
= −

[
∂2LT

∂θ ∂θT

]−1

× ∂2LT

∂θ ∂ϕT

∣∣∣
θ̂(ϕ)

, (8)

which is a product of an inverse Hessian and a matrix
of mixed partial derivatives. Adopting the algorithm
from Lorraine et al. (2020), we approximate this with
a truncated Neumann series with 1 term, and implicit
vector-Jacobian products.

Training algorithm. Incorporating this gradient
estimator, the algorithm to jointly optimize base
model parameters and TaskAug policy parameters is
given in Algorithm 1, mirroring the approach used in
Raghu et al. (2021c).

Algorithm 1 Optimizing TaskAug parameters.

1: Initialize base model parameters θ and TaskAug
parameters ϕ

2: for t = 1, . . . , T do
3: Compute training loss, LT (θ)
4: Compute ∂LT

∂θ

5: Update θ ← θ − ηθ
∂LT

∂θ
6: if t % P == 0 then
7: Set θ̂ = θ
8: Compute the validation loss, LV (θ̂)
9: Compute ∂LV

∂θ̂

10: Approximate ∂θ̂
∂ϕ using Equation 8.

11: Compute the derivative ∂LV

∂ϕ = ∂LV

∂θ̂
× ∂θ̂

∂ϕ
using the previous two steps.

12: Update ϕ← ϕ− ηϕ
∂LV

∂ϕ
13: end if
14: end for

Choice of P . The value of P influences how many
‘inner’ gradient steps (to the base model) we perform
before an ‘outer’ gradient step (to the TaskAug pa-
rameters). There is a tradeoff here: if P is too small,

then applying the IFT to approximate ∂θ̂
∂ϕ will result

in a poor approximation (Lorraine et al., 2020); if
P is too large, then updates to the policy parame-
ters will have little effect on model parameters since
the base model has already reached minimal training
loss (and may start to overfit). In our experiments,
we find that P > 5 suffered from this second prob-
lem, and P = 1 was sometimes unstable due to the
first problem. In general, P = 1 worked well at small
sample sizes (N = 1000), and P = 5 worked better
at N = 2500 and N = 5000.
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A.2.3. Augmentation operations

Figure 11 shows the different operations used in
TaskAug. We show only one lead for clarity; how-
ever, these operations will be applied to each lead.
We now provide more details on the implementation
of these operations in our experiments.

• TimeMask. As with the existing TimeMask
strategies, we randomly select a contiguous portion
of the signal to set to zero. We set 10% of the sig-
nal to zero in our implementation. This parameter
is not optimized.

• Gaussian Noise. IID Gaussian noise is added
to the signal. This is formed as follows. We first
compute the standard deviation of each lead of the
signal: let us denote this as σ. Then, the noise
added to each sample of the signal is expressed as:
ϵ = 0.25 × σ × sigmoid(s) × N (0, 1), where s is
the learnable strength parameter, initialized to 0.
The coefficient 0.25 was found by visual inspection
of some augmented examples, and observing that
this allowed flexible augmentations to be generated
without overwhelming the signal with noise.

• Temporal warping. The signal is warped with
a random, diffeomorphic temporal transformation.
To form this, we sample from a Gaussian with zero
mean, and a fixed variance 100× s2, where s is the
learnable strength parameter (initialized to 1), at
each temporal location, to generate a length T di-
mensional random velocity field. This velocity field
is then integrated (following the scaling and squar-
ing numerical integration routine used by Balakr-
ishnan et al. (2018, 2019)). This resulting displace-
ment field is then smoothed with a Gaussian filter
to generate the smoothed temporal displacement
field. This field represents the number of samples
each point in the original signal is translated in
time. The field is then used to transform the sig-
nal, translating each channel in the same way (i.e.,
the field is the same across channels).

• Baseline wander. We firstly form a wander am-
plitude by computing: A = 0.25 × sigmoid(s) ×
Uniform(0, 1), where again s is a learnable strength
parameter. Then, we compute the frequency and
phase of the sinusoidal offset. The frequency is

computed as: f = 20×Uniform(0,1)+10
60 , based on the

approximate number of breaths per minute for an
adult. The phase is: ϕ = 2π×Uniform(0, 1). Then,
the sinusoidal offset is computed as: A sin(ft+ ϕ).

• Magnitude scaling. We scale the en-
tire signal by a random magnitude given by

sigmoid(s)× Uniform(0.75, 1.25), where s is a
learnable strength parameter, initialized to 0.

• Temporal displacement. We shift the entire sig-
nal in time, padding with zeros where required.
Our implementation directly generates a displace-
ment field (as with temporal warping) and uses
the spatial transformation from Balakrishnan et al.
(2018, 2019) to transform the signal. This al-
lows the operation to be differentiable, and for us
to learn the displacement strength s. The dis-
placement magnitude is a Uniform distribution on
[−100 × s2, 100 × s2], with the strength being ini-
tialized to 0.5.
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Figure 11: Examples of the different operations used in TaskAug.
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Appendix B. Dataset Details

We provide more details about the three datasets.

B.1. Dataset A

The labels for RVH and AFib were assigned to each
example based on whether relevant diagnostic state-
ments were present in either a clinician’s read of the
ECG, or a machine read of the ECG.

For RVH, there were six diagnostic statements that
led to a positive label being assigned: “right ven-
tricular hypertrophy”, “biventricular hypertrophy”,
“combined ventricular hypertrophy”, “right ventric-
ular enlargement”, “rightventricular hypertrophy”,
“biventriclar hypertrophy”.

For AFib, there were nine such statements: “atrial
fibrillation with rapid ventricular response”, “atrial

fibrillation with moderate ventricular response”, “fib-
rillation/flutter”, “atrial fibrillation with controlled
ventricular response”, “afib”, “atrial fib”, “afibrilla-
tion”, “atrial fibrillation”, “atrialfibrillation”.

Preprocessing. ECGs were sampled at 250 Hz for
10 seconds, resulting in a 2500× 12 tensor for all 12
leads, per-ECG. We normalized the signals by divid-
ing by 1000. Other forms of normalization for this
dataset (e.g., z-scoring) resulted in some abnormally
large/small values.

B.2. Dataset B

The four labels are obtained by aggregating relevant
sets of diagnostic statements – we refer the reader to
the PTB-XL paper (Wagner et al., 2020) for further
details. Of relevance here is that certain labels, such
as MI, contain a small number of distinct diagnos-
tic statements (3), potentially suggesting why many
augmentation strategies can help – it is a fine-grained
task. Others (such as CD) are much broader, cover-
ing many more diagnostic statements.

Preprocessing. ECGs in the dataset are sampled
at 500 Hz for 10 seconds; we downsample these by
a factor of 2 for consistency with Dataset A and C,
resulting in a 2500 × 12 tensor for all 12 leads, per-
ECG. Normalization involved z-scoring, following the
code provided with the dataset.

B.3. Dataset C

The hemodynamics prediction cohort consists of pa-
tients who had an ECG and right heart catheteriza-
tion procedure on the same day. The catheterization
procedure measures hemodynamics variables includ-
ing the pulmonary capillary wedge pressure (PCWP)
and cardiac output (CO), and these are used to form
the prediction targets. We consider inferring abnor-
mally low Cardiac Output (less than 2.5 L/min), and
abnormally high Pulmonary Capillary Wedge Pres-
sure (greater than 20 mmHg).

Preprocessing. ECGs were sampled at 250 Hz for
10 seconds, resulting in a 2500× 12 tensor for all 12
leads, per-ECG. We normalized the signals by divid-
ing by 1000. Other forms of normalization for this
dataset (e.g., z-scoring) resulted in some abnormally
large/small values, so we opted for the division-based
normalization.
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Appendix C. Experiments

In this section, we provide further experimental de-
tails. We first provide implementation details, and
then outline additional experimental results includ-
ing: Results for AUPRC in the low-sample (N =
1000) regime, performance on Datasets A and B
in the high-sample regime, performance on Dataset
B in an additional low sample regime (N = 500
data points), interpretation of the TaskAug policy
for RVH, a study of the impact of optimizing pol-
icy parameters across different sample size regimes,
and a study of the impact of class-specific magnitudes
across different sample size regimes.

C.1. Implementation details

Network architecture. In all experiments, we use
a 1D CNN based on a ResNet-18 (He et al., 2016) ar-
chitecture. This model has convolutions with a kernel
size of 15, and stride 2 (informed by the temporal win-
dow we want the convolutions to operate over). The
blocks in the ResNet architecture have convolutional
layers with 32, 64, 128, and 256 channels respectively.
The output after the final block is average pooled in
the temporal dimension, and then a linear layer is ap-
plied to predict the probability of the positive class.

Optimization settings. As discussed, we used
Adam with a learning rate of 1e-3 for all methods,
given that this resulted in stable training across all
settings. When optimizing the TaskAug policy pa-
rameters, we used RMSprop with a learning rate of
1e-2, following Lorraine et al. (2020).

Computational information. All models and
training were implemented in PyTorch and run on
a single NVIDIA V100 GPU.

C.2. Additional results

AUPRC results at 1000 samples. As discussed
in Section 5.2, the improvements in AUROC are not
always statistically significant. Given that some of
the labels are very low prevalence (RVH: 1%, AFib:
5%, low CO: 4%), we evaluate the AUPRC in the
low-sample regime, which provides additional infor-
mation about model performance. Results are shown
in Tables 4, 5, and 6. We observe that for the low
prevalence RVH, AFib, and Low CO tasks, TaskAug
obtains statistically significant improvements in per-
formance. On Dataset A tasks (RVH and AFib), it
is the only method to do so.

RVH AFib

NoAugs 7.4 ± 1.3 21.2 ± 2.0
TaskAug 10.8 ± 0.8∗ 27.3 ± 1.8∗

SMOTE 9.7 ± 1.2 21.0 ± 2.2
DGW 7.1 ± 0.9 19.4 ± 2.3
SpecAug 10.6 ± 1.2 21.1 ± 2.0
TimeMask 10.1 ± 1.5 20.3 ± 2.3

Table 4: Mean and standard error of AUPRC for various
data augmentation strategies when detecting
cardiac abnormalities on Dataset A. We con-
sider a low-sample regime with a development
set of 1000 data points. The best-performing
method is bolded, and the second best is un-
derlined, and ∗ indicates statistically significant
improvement at the p < 0.05 level. TaskAug is
the only method to obtain significant improve-
ments in performance on both tasks.
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MI HYP STTC CD

NoAugs 59.2±2.1 53.1±1.7 66.9±2.5 67.3±1.1
TaskAug 63.1±1.7 55.2±0.9 68.7±1.3 66.8±1.2
SMOTE 62.0±1.6 41.2±2.9 65.9±1.0 62.7±1.1
DGW 61.1±1.2 53.9±1.6 67.9±1.1 64.7±2.6
SpecAug 61.7±1.6 54.5±1.5 68.8±1.5 65.8±1.4
TimeMask 60.3±1.3 52.8±1.8 68.8±1.2 70.1±1.3

Table 5: Mean and standard error of AUPRC for various data augmentation strategies on detecting cardiac abnor-
malities on Dataset B. We consider a low-sample regime with a development set of 1000 data points. The
best-performing method is bolded, and the second best is underlined, and ∗ indicates statistically significant
improvement at the p < 0.05 level.

Low CO
High PCWP:
N = 1000

High PCWP:
All Data

NoAugs 7.2 ± 0.4 42.5 ± 0.8 49.7 ± 0.8
TaskAug 8.8 ± 0.6∗ 43.5 ± 0.9 50.8 ± 0.8
SMOTE 8.8 ± 0.6∗ 41.9 ± 0.7 46.9 ± 0.7
DGW 8.1 ± 0.7 41.2 ± 0.7 49.7 ± 1.0
SpecAug 7.8 ± 0.4 42.3 ± 1.1 50.3 ± 0.8
TimeMask 8.0 ± 0.5 42.4 ± 0.7 50.1 ± 0.9

Table 6: Mean and standard error of AUPRC for various data augmentation strategies for the hemodynamics in-
ference task in Dataset C. We consider a low-sample regime with a development set of 1000 data points.
The best-performing method is bolded, and the second best is underlined, and ∗ indicates statistically
significant improvement at the p < 0.05 level. TaskAug is the one of only two methods to obtain significant
improvements in performance on the low CO detection task.
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Results at higher sample regimes. Tables 7-10
show AUROC for the different augmentation meth-
ods on the tasks from Datasets A and B. We ob-
serve that augmentations are less effective at higher
samples. Particularly when the development set
sizes are 2500 and 5000 datapoints, we observe that
the improvement with using augmentations (over the
NoAugs baseline) with any of the methods is quite
small, and nearly always less than 1% AUROC. This
suggests that in general, augmentations are less use-
ful at these higher data regimes.

RVH AFib

NoAugs 86.1±0.9 89.0 ± 0.4
TaskAug 86.9±0.9 89.1 ± 0.4
SMOTE 85.5±1.3 89.1 ± 0.5
DGW 84.8±1.3 88.4 ± 0.5
SpecAug 83.3±1.8 89.1 ± 0.3
TimeMask 85.8±1.1 88.2 ± 0.4

Table 7: Mean and standard error of AUROC for aug-
mentation methods on Dataset A tasks with a
development set of 2500 data points. The best
performing method is bolded, and the second
best is underlined.

RVH AFib

NoAugs 90.6±0.6 92.6±0.2
TaskAug 90.6±0.4 92.8±0.1
SMOTE 89.8±0.6 92.6±0.2
DGW 90.8±0.5 92.5±0.2
SpecAug 90.5±0.8 92.7±0.1
TimeMask 89.4±0.7 92.6±0.2

Table 8: Mean and standard error of AUROC for aug-
mentation methods on Dataset A tasks with a
development set of 5000 data points. The best
performing method is bolded, and the second
best is underlined.
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MI HYP STTC CD

NoAugs 84.5±0.5 86.4±0.4 89.7±0.3 85.8±0.3
TaskAug 86.1±0.5 86.2±0.4 89.7±0.3 86.6±0.4
SMOTE 84.7±0.7 81.9±1.3 88.7±0.4 85.5±0.6
DGW 84.1±0.5 85.9±0.6 89.5±0.3 86.2±0.3
SpecAug 84.6±0.8 86.2±0.6 90.2±0.3 86.8±0.6
TimeMask 85.7±0.4 86.6±0.3 90.1±0.1 87.0±0.7

Table 9: Mean and standard error of AUROC for augmentation methods on Dataset B tasks with a development
set of 2500 data points. The best performing method is bolded, and the second best is underlined.

MI HYP STTC CD

NoAugs 89.4±0.3 88.2±0.2 91.0±0.3 89.3±0.4
TaskAug 89.4±0.3 88.3±0.2 91.6±0.2 90.0±0.2
SMOTE 86.6±0.7 86.7±0.4 90.6±0.3 88.0±0.3
DGW 88.6±0.3 88.0±0.2 91.3±0.1 89.3±0.2
SpecAug 89.5±0.2 88.4±0.4 91.6±0.2 89.9±0.2
TimeMask 89.3±0.3 88.6±0.2 91.6±0.2 89.8±0.2

Table 10: Mean and standard error of AUROC for augmentation methods on Dataset B tasks with a development
set of 5000 data points. The best performing method is bolded, and the second best is underlined.
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Results on Dataset B at N = 500. Table 11
shows AUROC for the different augmentation meth-
ods in an additional low sample regime, with N =
500. We see that the maximum improvement over
the NoAugs baseline by any augmentation strategy
is greater in this regime than it was at N = 1000 (see
Table 2). Given that the prevalence of these tasks is
relatively high, we see more significant performance
improvements in the N = 500 regime.
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MI HYP STTC CD

NoAugs 74.4 ± 0.9 81.9 ± 0.8 85.2 ± 0.5 78.9 ± 1.2
TaskAug 78.4 ± 0.5 81.5 ± 1.2 86.2 ± 0.4 80.7 ± 0.6
SMOTE 75.7 ± 1.2 79.2 ± 1.5 85.5 ± 0.3 78.6 ± 1.5
DGW 78.2 ± 0.6 78.7 ± 1.2 82.0 ± 1.3 79.0 ± 0.9
SpecAug 77.8 ± 0.7 81.0 ± 0.6 86.3 ± 0.4 79.3 ± 1.1
TimeMask 77.8 ± 1.0 80.9 ± 1.3 86.6 ± 0.5 80.3 ± 0.8

Table 11: Mean and standard error of AUROC for augmentation methods on Dataset B tasks with a development
set of 500 data points. The best performing method is bolded, and the second best is underlined.
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Interpreting the RVH policy. We visualize the
TaskAug policy for RVH in Figure 12. We observe
high probability assigned to selecting two temporal
operations in stage 1, namely masking and displace-
ment. Relative magnitudes of different portions of
the ECG affect the RVH label, so temporal opera-
tions having higher probability of selection is sensi-
ble since they are more likely to be label preserving
than operations that change the relative magnitudes
of different parts of the ECG. We examine the learned
strengths for the displacement operation in Stage 1,
Figure 12(b), and we see that there is little differen-
tiation on a per-class basis. This is sensible, since we
do not expect displacement of the signal in time to
affect the RVH label for differently for the positive
and negative classes.
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Figure 12: TaskAug policy for detecting Right Ventricular Hypertrophy. The learned TaskAug policy:
probability of selecting each transformation in both augmentation stages and the optimized displacement
strengths in the first stage. We show the mean/standard error of the learned parameter values over 15
runs. Temporal operations (masking and displacement) have high probability of selection in Stage 1,
which is sensible since these operations are likely to be label preserving (RVH is typically detected based
on relative magnitudes of portions of beats in the ECG). We see that both positive and negative classes
have similar optimized displacement augmentation strengths – we do not expect displacement to impact
the class label differently for the two classes, so this is sensible.
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Further study on the impact of optimizing
augmentations. As shown in the main text, Fig-
ure 5, optimizing the policy parameters improves per-
formance over keeping them fixed at their initial val-
ues. In Figure 13, we study this effect across different
dataset sizes and find that the optimization has the
most impact in the low sample regime, but still re-
sults in improvements even at higher samples. This
could be due to the fact that at higher samples, aug-
mentations boost performance less in general, so the
specific parameter settings in TaskAug also have less
impact.

Further study on the impact of class-specific
magnitudes. As shown in the main text, Figure
6, optimizing class-specific magnitudes improves over
learning one magnitude parameter for each class. Fig-
ure 14 studies this effect across different dataset sizes
and we see that the class-specific parameters improve
performance at all dataset sizes, but the improvement
is most clearly seen at low samples. Similarly with the
optimization of augmentation parameters, this could
be due to the fact that at higher samples, augmenta-
tions boost performance less in general, so the class-
specific parameterization in TaskAug has less impact.
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Figure 13: Studying performance when we do not optimize the policy parameters in TaskAug. We
show the mean/standard error of AUROC over 15 runs for AFib and over 5 runs for MI. We see that
optimizing the policy parameters results in noticeable improvements in performance over keeping the
policy parameters at their initial values (InitAugs). However, the impact of optimizing the parameters
is reduced at larger dataset sizes, possibly due to the fact that augmentations are inherently less useful
at higher sample regimes.
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Figure 14: Studying performance when we do not have class-specific magnitude parameters in
TaskAug. We show the mean/standard error of AUROC over 15 runs for AFib and over 5 runs for
MI. Class-specific magnitude parameters improve performance most in the low sample regime. At higher
samples, this impact is reduced, possibly due to the fact that augmentations are inherently less useful at
higher sample regimes.
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