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Abstract
Medical time series like physiological signals
provide a rich source of information about pa-
tients’ underlying clinical states. Learning such
states is a challenging problem for ML but has
great utility for clinical applications. It allows
us to identify patients with similar underlying
conditions, track disease progression over time,
and much more. The challenge with medical
time series however, is the lack of well-defined
labels for a given patient’s state for extended
periods of time. Collecting such labels is ex-
pensive and often requires substantial effort. In
this work, we propose an unsupervised repre-
sentation learning method, called TRACE, that
allows us to learn meaningful patient represen-
tations from time series collected in the Inten-
sive Care Unit (ICU). We show the utility and
generalizability of these representations in iden-
tifying different downstream clinical conditions
and also show how the trajectory of represen-
tations over time exhibits progression toward
critical conditions such as cardiopulmonary ar-
rest or circulatory failure.

Data and Code Availability This paper uses the
HiRID ICU dataset (Hyland et al., 2020), which is
available on the PhysioNet repository 1. The pro-
posed model is also evaluated on an ICU dataset from

1. https://physionet.org/content/hirid/1.1.1/

The Hospital for Sick Children in Toronto Canada,
which unfortunately is not publicly available. The
code implementation of this work and all the exper-
iments are made available here: https://github.

com/Addison-Weatherhead/TRACE

1. Introduction

In the Intensive Care Unit (ICU), patients require
continuous, close monitoring via devices that record
and keep track of patient vital signs at all times. This
results in large amounts of high frequency signals, in-
cluding Electrocardiogram (ECG), Heart Rate (HR),
respiratory rate (RR), arterial blood pressure (ABP),
etc. The clinicians tending to the patients at the bed-
side use these time series data, together with ancil-
lary information, to form a mental model of the pa-
tient state and guide treatments. However, the sheer
volume of information generated from these signals
can impose a cognitive load on clinicians leading to
inefficient patient care. At the same time this com-
plex data source presents an opportunity as a rich
source of information and an ideal substrate for Ma-
chine Learning (ML) models. As a result, there’s
been an increase in research focused on developing
data-driven ML models with promising results to as-
sist ICU professionals in their practice and ultimately
help improve delivery of care (Ong et al., 2012; Suresh
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et al., 2017; Razavian et al., 2016; Hyland et al., 2020;
Gutierrez, 2020).

The physiological signals collected at the ICU are
multivariate and highly non-stationary. They cap-
ture changes in the patient’s underlying health con-
dition over time and are therefore an informative
source of data for ML models and clinicians alike.
For both, learning informative representations of the
underlying patient state in a lower dimensional en-
coding space may help with better understanding
and modeling of the time series. Such lower dimen-
sional representations of patient state resonate with
the underlying physiological processes that generate
the recorded signals and can serve as an ideal sub-
strate to identify and track changes that happen in
a patient’s health condition by examining the tra-
jectory of encodings over time. Moreover, these en-
codings can also be used for a variety of important
downstream tasks without needing a complex model
(Bengio et al., 2013). Examples of such tasks range
from tracking patient trajectory throughout the dis-
ease course to identify need for interventions, diagno-
sis and prognostication, assessing treatment response,
triaging patients according to severity, and even un-
covering hitherto unknown distinct classes in hetero-
geneous clinical entities such as septic shock or acute
respiratory distress syndrome.

The biggest challenge in learning general represen-
tations for rich time series datasets is lack of well-
defined labels. Obtaining labels for the patient’s state
for extended periods of signals is expensive and often
impractical; the underlying physiological state can be
unknown or there can be lack of agreement between
even experienced clinicians. This motivates using un-
supervised representation learning frameworks for en-
coding information. Additionally, health datasets are
often plagued by severe class imbalance, with a tiny
subset of patients experiencing a particular clinical
condition. In these situations, unsupervised methods
are more favorable because they provide a more ro-
bust solution and are less prone to learning features
only relevant to the dominant class (Liu et al., 2021).

In this work, we introduce an unsupervised repre-
sentation learning framework that learns the under-
lying state of patients over time using high-frequency
physiological signals collected at the bedside ICU.
Our work builds on a previously developed Tempo-
ral Neighborhood Coding (TNC) framework (Tonek-
aboni et al., 2020) with substantial improvements to
ensure that it is appropriate for the streaming signals
in the ICU. First, we incorporate an encoder archi-

Figure 1: Overview of representation learning for
time series window. Each encoder learns a represen-
tation vector Zt for a window of time series Wt. The
representations of consecutive windows over time,
show the temporal evolution of the underlying states.

tecture that can handle long term dependencies as
well as missing observations and measurements that
are taken with different rates. Second, we introduce a
novel way of identifying the temporal neighborhoods
that is significantly more efficient and performs bet-
ter in the presence of missing observations. With this
new technique, we can also alleviate for sampling bias
in the contrastive objective, without the need for an
additional hyper-parameter or prior knowledge of the
signal. Through a number of evaluations, we assess
the usability and generalizability of our learned rep-
resentations. We demonstrate that our approach en-
codes the informative parts of the signal in a lower
dimensional representation, and that these encodings
can be used for a number of downstream tasks such
as predicting in-hospital mortality, cardiopulmonray
arrest, and patient diagnostic, without the need of
complex models. We further demonstrate that by
tracking the representations over time, we can iden-
tify how high risk conditions evolve and appear in a
patient’s physiology. This is one of the major ben-
efits of learning representations for complex medical
time series, as it provides an opportunity to explore
patient states and disease trajectories in a tangible
lower dimensional space.
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2. Related Work

ML for ICU ML has shown great utility in the
ICU where an abundance of high frequency data is
being collected for patients (Gutierrez, 2020). Many
tools are designed to assist clinicians in identifying
high-risk individuals in need of care. For instance
models have been developed to predict intervention
onset (Ghassemi et al., 2017; Suresh et al., 2017),
disease onset (Razavian et al., 2016), circulatory fail-
ure (Hyland et al., 2020), cardiopulmonary arrest
(Tonekaboni et al., 2018; Ong et al., 2012), sepsis
(Nemati et al., 2018; Henry et al., 2015), or even un-
planned unit transfer (Wellner et al., 2017). All these
tools use information embedded in the medical time
series in order to predict downstream events.

Representation learning in medicine: In
healthcare, learning representation of temporal data
can be very helpful for understanding patients’
underlying health conditions. Most existing ap-
proaches for learning representations however are
designed for specific downstream tasks. This means
the representations are optimized to learn encodings
that improve prediction of specific events (Choi
et al., 2016a,b; Fiterau et al., 2017). Such methods
improve performance significantly by extracting the
informative parts of the rich and complex medical
time series into lower dimensional encodings, but
cannot be used as general representations. These
representations are used for a variety of applications
like identifying similar disease mechanisms (Lasko
et al., 2013; Schulam et al., 2015), modelling disease
progression (Wang et al., 2014; Alaa and van der
Schaar, 2019), and multitask learning (Harutyunyan
et al., 2019).

Unsupervised representation learning for time
series: Recently there has been an increase in re-
search on unsupervised representation learning meth-
ods, specifically designed for time series data. These
methods belong to multiple general categories; for
instance methods that use reconstruction objective
for training, similar to Variational Auto Encoders
(VAEs) that are commonly used in audio signals
(Chorowski et al., 2019; Amiriparian et al., 2017).
Other methods use measure of similarity to train the
encoders (Lei et al., 2017; Ma et al., 2019; Madiraju
et al., 2018), and more recent methods use differ-
ent types of contrastive objectives for training (Oord
et al., 2016; Franceschi et al., 2019; Tonekaboni et al.,
2020; Hyvarinen and Morioka, 2016). All of these

methods have shown great success on a variety of
time series data.

3. Method

In this section, we introduce our unsupervised rep-
resentation learning framework, called TRACE, de-
signed to learn the underlying patient’s states using
medical timeseries collected in the ICU. We augment
the TNC framework in a number of ways to improve
the efficiency of the method and to make it suitable
for the ICU setting.

3.1. Notation

Physiological signals collected from bedside monitors
are in the form of multivariate time series. We rep-
resent each multivariate time series sample as X(i) ∈
RD×T , where i is the sample index, D is the num-
ber of features, and T is the time length of the sam-
ple. Note that the length of the time series can vary
among samples depending on the patient’s length
of stay in the ICU. To deal with missing measure-
ments, for each sample i, we define a binary mask
M (i) ∈ RD×T the same size as X(i) that indicates
which input entries are measured (indicated by 1)
and which one are missing (indicated by 0). For nota-
tional simplicity, the sample index (i) will be dropped
throughout this paper.

We denote Wt ∈ RD×δ to be a window of time
series from sample X, centered at time t and with
length δ. Our goal is to learn the representation Zt ∈
RL for each window, where L represents the size of
the encoding and condenses the information in the
window into a lower dimensional representation(L ≪
D × δ). Learning the representations of consecutive
windows over time will allow us to track the state
progression.

3.2. Background

Here, we provide a brief description of the TNC
framework. At the heart of TNC is an encoder (Enc),
typically a deep neural network, which takes a refer-
ence window Wt of time series and generates a vector
representation Zt ∈ RL, where L is the size of the
encoding. The objective function (Eq. 1) is partly
a contrastive learning objective that trains the sig-
nal encoder with a Discriminator (D) that identifies
representations of similar windows.
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LTNC = −EWt∼X

[
EWl∼Nt

[logD(Zt, Zl)]

+ EWk∼N̄t

[
(1− w) log (1−D(Zt, Zk))

+ w logD(Zt, Zk)
]] (1)

This semantic similarity between windows is deter-
mined by the temporal neighborhood around a window
Wt, which is defined as the region where the signals
are relatively stationary and are therefore assumed
to be generated from the same underlying state. The
Augmented Dickey-Fuller (ADF) statistical test is
used to determine the stationarity in the original
TNC framework. Furthermore, the loss is weighted
according to principles from Positive/Unlabeled (PU)
learning to account for the potential sampling bias
in the contrastive objective. This is to compensate
for the fact that the negative samples, drawn from
outside of the neighborhood, could in fact be similar
to the reference window (in seasonal time series, for
example). Further details on the framework can be
found in Tonekaboni et al. (2020).

3.3. Proposed method: TRACE
TempoRal AutoCorrelation Encoding - ICU

The TNC method provides a reasonable solution for
learning representations for non-stationary time se-
ries. The method is based on the smoothness as-
sumption of signals which holds well for the physio-
logical signals, as changes in patient states often hap-
pen gradually. However, the method has a number of
shortcomings that limit its usability in many settings,
including the ICU. For instance, one of the biggest
challenges of real world high-frequency time series,
especially clinical data, is missingness and noise in
the signals. The ADF test that is used to define the
neighborhood range in the TNC framework is very
sensitive to such artifacts and fails to find the appro-
priate size for a neighborhood, hindering the overall
performance of the encoder. In our proposed TRACE
method we have addressed a number of such issues re-
sulting in a more efficient method with fewer hyper-
parameter to tune.

L = −EWt∼X

[
EWl∼Nt [log(D(Enc(Wt), Enc(Wl)))]

+ EWk∼N̄t
[log(D(Enc(Wt), Enc(Wk))]

]
(2)

We use the simplified contrastive objective in Eq.
2 to train our models. The encoder is a dilated causal
convolutional neural network (Franceschi et al., 2020)
that handles mutltivariate time series of variable
length. The filters are exponentially dilated mean-
ing deeper layers have filters that have been stretched
out, leading to a larger receptive field, while making
sure the output at time t is only reliant on time series
data up to time t. When generating an encoding for
a window Wt, the encoder is also fed the missing data
mask to incorporate that information into its learn-
ing. The discriminator is a simple single layer MLP,
that takes in a pair of encodings and estimated the
probability of those encodings belonging to the same
temporal neighbourhood.

Given that selecting good quality positive and neg-
ative samples is key in contrastive learning, we ex-
plain how we robustly define a temporal neighbor-
hood for positive samples and the non-neighboring
region for negative samples below. We also describe
our novel approach for determining the optimal rep-
resentation size L for every time series dataset as part
of the learning process.

Defining more robust Temporal Neighbor-
hoods: The temporal neighborhood determines the
distribution of the positive and negative samples for
the contrastive objective, therefore it is an integral
part of both the TNC and our framework. If a
neighbourhood is too narrow, many positive samples
will have overlaps in time, and therefore the encoder
would only learn trivial similarities, encoding infor-
mation from the overlap and failing to generalize. On
the other hand, if the neighborhood is too big, it
would span over multiple underlying states, and the
encoder would learn to assume all neighborhoods to
be similar, failing to distinguish between distinct pa-
tient states. The ADF test used by TNC fails in time-
series with missing measurements or irregular sample
intervals, therefore the test will very often return the
smallest possible neighbourhood range in these sce-
narios.

To alleviate this issue, we propose a test based
on the absolute value of the autocorrelation score
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Figure 2: Autocorrelation test for identifying the neighbouring and non-neighbouring regions. The neigh-
bourhood range is determined by the lag after which the acf score drops below the accepted threshold (0.6).
The non-neighbouring samples are drawn from times that are further than 2 standard deviation apart from
the center of the reference window, and also have a correlation smaller than ϵ.

acf(∆t) for determining the neighborhood regions.
The score is computed using the Pearson correlation
between observations at different times, as a function
of the time lag ∆t. Since the neighborhood represents
the stationary region of a time series, we assume that
the measurements should be correlated for time lags
smaller than the neighbourhood range η. When se-
lecting the neighborhood around a window Wt, we
compute the autocorrelation values for the sample
that contains Wt. We find the smallest lag for which
autocorrelation is smaller than the threshold (we as-
sume it to be 0.6 throughout this paper), and then
expand the neighborhood until it encompasses time
series up to that lag to determine the neighbourhood
range η. Correlated regions are assumed to contain
samples with similar underlying states. In the eval-
uation section we show that the autocorrelation test
can result in a better performance for the encoder
than the ADF test. Another major benefit of this
test over ADF is that it is far more computationally
efficient. Calculating the ADF score can be slow and
it becomes a bottleneck for training as it needs to
be estimated for every single window. However, with
the autocorrelation test, we only need to compute
the acf(·) once for each sample in the training. This

significantly reduces the number of computations re-
quired during training 2.

Overcoming sampling bias: Sampling bias is a
common issue with contrastive learning methods. It
is introduced when negative samples that are drawn
randomly from the dataset are similar to the reference
sample, and it will substantially impact the learn-
ing framework’s performance (Chuang et al., 2020;
Saunshi et al., 2019). For time series for instance, in
the presence of seasonality, signals can exhibit simi-
lar behaviours at distant times (outside of the neigh-
borhood region-N̄) and therefore should not be con-
sidered as negative samples. TNC adjusts for this
bias by introducing a weighting parameter (w in Eq.
1) that represents the probability of having samples
similar to Wt in N̄ and can be approximated using
prior knowledge of the underlying state distribution
or tuned as a hyperparameter. By using the auto-
correlation, our method controls for the bias without
the need for introducing an extra hyper-parameter or
prior knowledge of the data distribution. We impose
an additional constraint over the non-neighboring re-

2. The original TNC framework takes ∼ 100× longer to train
using the stattools implementation of the ADF test, as
compared to TRACE. Training done on a T4 Nvidia GPU.
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gion N̄t to ensure the negative samples drawn from
this region are not generated from the same underly-
ing state as the reference window.

By default the negative samples are sampled from
the set of all windows with distance larger than ∆
from the reference, where ∆ is determined as the sec-
ond standard deviation of the neighborhood distri-
bution. To remove negative samples that are similar
to the reference, we check the correlation for those
samples and drop the ones that have high correlation
when estimating the second expectation in our objec-
tive function (Eq. 2). Since acf scores are measured
for each sample once, this check can be done easily by
looking at the correlation score function, as explained
in Figure 2 for a simple time series example. Let’s as-
sume the reference window is centered at time t∗, and
we randomly sample a negative window Wt− centered
at t−. We need to check the ACF scores for the lag
regions of |t− − t∗| and if the correlation is higher
than our accepted threshold ϵ, Wt− will be ignored.
To simplify this idea in the objective, we define the
non-neighbouring region for Wt∗ (N̄Wt∗ ) as the set of
t− where |t− − t∗| > 2 ∗ η ∗ δ and acf(|t− − t∗|) < ϵ.

Learning the optimal dimension of the encod-
ing: A challenge and an open question in represen-
tation learning is determining the appropriate dimen-
sion size for representations. A larger encoding size
will give the representations more power to encode
information, however, it will also become prone to
learning spurious details and as a result miss out on
interpretability. On the other, if the selected size is
too small, the encoder will not be able to encode
enough information about the time series and will
therefore lose on generalizability. One of the novel-
ties of TRACE is that it automatically finds this bal-
ance and learn the optimal size for the encoding. We
achieve this by pruning highly correlated encoding
dimensions during the training process. Our learn-
ing algorithm is an iterative process of training the
encoder and pruning correlated dimensions and we
repeat this process until convergence is reached. In
each iteration, to ensure that the encoder can recover
after reducing the encoding size, we limit the number
of dimensions that are removed to a single dimension,
and continue training until we have reached conver-
gence.

4. Experiments

We have evaluated the performance of TRACE on
two different ICU datasets, with different patient
populations and characteristics, as well as sample
sizes and signal resolutions. In general, evaluat-
ing unsupervised methods is challenging as we often
don’t have access to well-defined labels for the latent
states. We measure the usability and generalizability
of the representations for different clinical tasks. We
demonstrate that the representations summarize the
informative parts of the signals and can be used for
a number of downstream tasks, from prediction of a
cardiac arrest to classifying the diagnostic groups.

4.1. Baselines

In our experiments, we compare the performance of
our approach with various baselines. A number of
them are unsupervised representation learning meth-
ods specifically designed for time series that have
shown great utility across different datasets, and the
others are models trained in a supervised fashion, us-
ing labels for the downstream task. Below are more
details on each baseline:

1. TNC: The Temporal Neighbourhood Coding
framework introduced in (Tonekaboni et al.,
2020) and described in detail above.

2. CPC: Contrastive Predictive Coding (CPC) is an
unsupervised representation learning framework
introduced by van den Oord et al. (2019). This
method uses predictive coding principles to train
an encoder using a predictive contrastive loss.

3. Triplet-Loss [T-Loss]: This framework intro-
duced by Franceschi et al. (2020) uses a time-
based triplet loss objective for training encoders
for time series samples. The triplet loss objec-
tive ensures similar time series have similar rep-
resentations by minimizing the pairwise distance
between positive and negative samples.

4. Supervised (End-to-end) [E2E]: This baseline
uses the same encoder architecture as the other
baselines, but trains its parameter end-to-end for
the downstream task. This means, the encodings
extracted here are specific to the classification la-
bels and not necessarily a general encoding of the
patient health state.
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5. Supervised (Raw data) [Raw]: This baseline
demonstrates the performance of the same down-
stream model as other baselines, applied on the
raw data, as opposed to the learned representa-
tions. It can be used as a reference to estimate
how much of the performance comes from the
downstream model, and how much is the result
of high-quality encodings.

4.2. HiRID Dataset

Data description and processing We para-
phrase the description of the dataset from Hyland
et al. (2020): High time Resolution ICU Data set
(HiRID), is a freely accessible critical care dataset
containing data relating to more than 33 thousand
adult patient admissions to the Department of In-
tensive Care Medicine of the Bern University Hospi-
tal, Switzerland. This dataset has a uniquely high
time resolution of each entry every two minutes and
includes information on a total of 712 routinely col-
lected physiological variables, diagnostic test results
and treatment parameters.
To show the usability of the learned representations

using our approach, we evaluate how generalizable
these representations are for identifying a variety of
patient complications. We demonstrate that the rep-
resentations can be used to train simple models that
predict the diagnostic group code upon admission to
the ICU, the risk of in-hospital mortality, and the
risk of circulatory failure in ICU patients. Further-
more, the representations show the state progression
as patients condition evolves; for instance when ap-
proaching circulatory failure. In all our evaluations
TRACE is constantly amongst the top performing
methods, regardless of the downstream task, further
proving its generalizability. In the Appendix A.1 we
explain in more details the inclusion criterion, the
processing steps and the clinical variables used for
each of the different experiments.

12 hour in-hospital mortality The learnt rep-
resentations over time encode patients underlying
health state into a lower dimensional space. Using
such representations, we can train a simple model to
predict the probability of in-hospital mortality. We
train an single layer LSTM model on 4 days of pa-
tient representations, equivalent to 40 encodings, to
predict the probability of mortality in the future 12
hours from the end of that time window. Table 1 sum-
marizes the performance of our model TRACE and
the different baselines on this task. Our method out-

performs the rest of the unsupervised baselines, and is
the closest in performance to a supervised model that
is trained end-to-end for learning to predict mortality
from the data. Increasing the complexity of the clas-
sifier model that predicts mortality from the repre-
sentation brings the downstream performance closer
to the supervised baselines. However, in this eval-
uation, our objective is the asses the quality of the
representations, so we have chosen a simple model in
order to minimize the impact of the classifier’s learn-
ing capacity in our evaluation. Given that in-hospital
mortality happens in less than 10% of our dataset, we
have chosen to report the results using the AUROC,
AUPRC, and the F1 score to be more reflective of the
true performance of the model. In the Appendix A.4
we have included the Receiver-Operator curve and
the Precision-Recall curves for further reference.

HiRID Mortality

Model AUROC AUPRC F1

TRACE 0.80 ±0.03 0.48 ±0.03 0.59 ±0.08
TNC 0.77 ±0.04 0.32 ±0.02 0.41 ±0.20
CPC 0.62 ±0.00 0.15 ±0.00 0.46 ±0.06
T-Loss 0.64 ±0.00 0.19 ±0.01 0.44 ±0.19

Raw data 0.60 ±0.02 0.16 ±0.00 0.54 ±0.02
E2E 0.97 ±0.01 0.66 ±0.07 0.71 ±0.03

Table 1: Performance of all baselines in predicting
in-hospital mortality within 12 hours

Clinical diagnostic groups To show that the rep-
resentations are general enough to be used for differ-
ent tasks, we further evaluate our baselines on a clin-
ical diagnosis classification task. For this task we use
the APACHE diagnostic groups (Acute Physiology
and Chronic Health Evaluation) that is one of several
ICU scoring systems for assessing severity-of-disease.
It uses several key laboratory and physiological mea-
surements to estimate patient prognosis and when
employed additional information regarding the pri-
mary diagnostic group (upon admission) is collected
by the clinicians. Examples of common diagnostic
groups, as coded by the treating physicians, are sep-
sis, cardiovascular, metabolic/endocrinology, trauma,
neurological and others. We show that our repre-
sentations, derived using only physiological measure-
ments and several laboratory values, can be used
to classify patients into their admission diagnostic
group. Thus, using representations derived from sig-
nals from the first 24 hours after admission, we train
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a recurrent model to classify the patients’ diagnostic
groups. As shown by the results in Table 2, TRACE
achieves a classification performance close to the su-
pervised models, improving over most unsupervised
baselines. This shows that the representations sum-
marize parts of the signal that are informative and
predictive of a variety of events.

Diagnostic Groups

Model Accuracy (%) AUROC

TRACE 21.3 ± 0.9 0.61 ± 0.01
TNC 19.0 ± 0.8 0.57 ± 0.01
CPC 13.3 ± 3.9 0.57 ± 0.01
T-Loss 19.8 ± 0.5 0.62 ± 0.00

Raw data 25.3 ± 0.8 0.72 ± 0.01
E2E 25.0 ± 0.5 0.72 ± 0.01

Table 2: The performance of all baselines on clas-
sifying the clinical diagnostic groups. Since this is
multi-class classification, AUROC is computed using
the ’One vs Rest’ strategy.

Circulatory failure As another test, we evaluated
our representations to see if they can be used to pre-
dict circulatory failure in patients. Circulatory failure
is a common condition among critically ill patients,
and while dangerous, its effects can be reversed if
caught early enough. We use our representations to
estimate the risk of a circulatory failure (as defined by
Hyland et al. (2020)) in patients over time. Similar
to the mortality prediction task, we take a sequence
of representation and train an RNN to predict the
risk of circulatory failure. In this case, each positive
sample is a sequence of encodings derived from 2 days
prior up to 3 hours prior to failure. As shown by the
results in Table 3, TRACE performs quite well com-
pared to the other unsupervised methods, however it
does fall behind the supervised methods.
The learned representations are not only informa-

tive for predicting circulatory failure, but can also be
used to estimate the risk over time. Figure 3 shows
how the pattern of encodings (second row) are used
by the RNN to estimate the risk of circulatory failure
over time (third row). We can see a sudden change
in representation roughly 10 hours prior to failure,
which is accompanied by volatility and eventual in-
crease in predicted risk. Presenting a low dimensional
continuous representation that captures the health
state of the patient is of great clinical utility as it al-
lows the clinicians to not only identify patients that

are deteriorating early, but also to intervene proac-
tively and assess the adequacy of the interventions.
The 2D projection of the encodings are also shown
on Figure 4 for a different patient experiencing circu-
latory failure. Each data point represents the encod-
ing of a window, and the color indicates how many
hours before the failure the window was. We clearly
see that as the patient approached circulatory failure,
the underlying state changes, and states that repre-
sent high-risk signals that are closer to the failure,
cluster separately from the representations of states
farther from the failure.

HiRID Circulatory Failure

Model AUROC AUPRC F1

TRACE 0.73 ±0.04 0.29 ±0.05 0.56 ±0.04
TNC 0.74 ±0.02 0.24 ±0.01 0.53 ±0.01
CPC 0.66 ±0.01 0.17 ±0.00 0.52 ±0.00
T-Loss 0.69 ±0.02 0.22 ±0.01 0.55 ±0.02

Raw data 0.87 ±0.02 0.54 ±0.03 0.69 ±0.00
E2E 0.86 ±0.02 0.51 ±0.04 0.66 ±0.02

Table 3: Performance of all baselines in predicting
circulatory failure

4.3. High-frequency physiological signal from
a pediatric hospital ICU

Data description and processing We have eval-
uated our approach on a dataset from the pediatric
ICU of the Hospital for Sick Children in Toronto,
Canada. This dataset consists of high-resolution
physiological signals collected from bedside monitors
over the course of 5 years. The measurements include
vitals such as heart rate, respiratory rate and venti-
lator measures such as the end-tidal CO2, and are
measured up to 12 samples per minute pervasively
for all patients throughout their stay. More informa-
tion about this dataset is provided in Appendix A.2.
A subset of the patients in this cohort experienced
in unit cardio pulmonary arrest (CPA), for which we
have the labels. We used these labels to evaluate
the quality of our learned representation in multiple
ways.

Cardio Pulmonary Arrest (CPA) prediction
For this experiment, we measure how well represen-
tations identify patients who experience a cardiopul-
monary arrest. To do so we train an RNN to esti-
mate the risk of CPA, using the representations of
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Figure 3: Representations of a patient who experiences circulatory failure during their stay. As the time of
failure approaches, the patient transitions to a state associated with high risk.
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Figure 4: Trajectory of patient embedding approach-
ing circulatory failure. Each data point in the plot
represents the representation of a window of time
series, and the color indicates how long before the
circulatory failure the window was. Notice that as
the states approach the circulatory failure, they shift
from one cluster to another.

the 7 hours prior. CPA is a rare event that hap-
pens in the ICU, and is only present in about 2% of
of the data samples. Table 4 demonstrates the per-
formance results for our model in comparison to our
supervised and unsupervised baselines. TRACE out-
performs all unsupervised baselines for this task, and
also performs better than a supervised model trained
on the raw data. This shows that the significance
of representation learning becomes more significant
with increased frequency and complexity of the time
series data.

Cardiopulmonary Arrest

Model AUROC AUPRC F1

TRACE 0.98 ±0.00 0.60 ±0.05 0.77 ±0.01
TNC 0.96 ±0.01 0.48 ± 0.03 0.72 ±0.02
CPC 0.75 ±0.01 0.09 ±0.03 0.54 ±0.00
T-Loss 0.75 ±0.01 0.11 ±0.02 0.54 ±0.00

Raw data 0.67 ±0.06 0.08 ±0.04 0.51 ±0.24
E2E 0.97 ±0.01 0.66 ±0.07 0.71 ±0.03

Table 4: Performance of all baselines in predicting
cardiopulmonary arrest

Another benefit of learning the underlying repre-
sentation of signals over time is that it allows us
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Figure 5: Physiological signals and the learned representations of states over time for a patient experiencing
cardiopulmonary arrest. The top panel shows a subset of signals (normalized) over 2 hours. The bottom
panel shows the 6 dimensional representations generated for each window of time by our encoder. This
individual experiences cardiac arrest at the 1 hour mark. The encodings have a distinct state prior to arrest,
which changes as the arrest approaches, and then settles in a different state after the arrest.

to better understand the health state trajectory and
to identify abrupt changes in patient condition. We
investigated this by looking at the patterns of sig-
nal representations as they approach the CPA. Fig-
ure 5 shows the normalized physiological signals (top
panel) and the representations (bottom panel) for
an individual experiencing arrest. The patient ex-
periences arrest at hour 1, indicated by the vertical
dashed line in the top graph. The heatmap presents
the 6 dimensional encodings for consecutive windows
of signal over time. As the patient approaches the
cardiac arrest, the pattern of the representation starts
changing as early as 30 minutes before the event.
This shows one of the major benefits of representa-
tions learning for clinical time series that by tracking
the representations over time we can see the change
in the underlying state of patients and these kinds of
insights can lead to early detection and intervention
of severe cases. In Figure 5 we can also see that after
resuscitation, the patient settles into a different state
that is different from the state prior to the arrest.

To further show how patient states evolve over
time, in Figure 6 we also demonstrate the 2-
dimensional projection of encodings (over time) for
an individual that experiences CPA. Each data point
in the scatter plot is the representation of a window,
and the color indicates the time to the arrest. We
can clearly see the evolution of states as the windows
approach the arrest, indicated by the lighter points.

Figure 6: 2-dimensional projection of the representa-
tions of a patient over time, who experiences a cardiac
arrest. Each datapoint in the scatter plot is the rep-
resentation of a window of the physiological signals,
and the color indicate how long before the arrest the
window is. We can see the evolution of state as it
approaches a critical event like an arrest.
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Figure 7: Alluvial Visualization to show how the dis-
covered underlying states correspond to different sub-
categories of CPA.

Identifying sub-categories of CPA from the
representation patterns In the previous evalu-
ation, we show that signs of a cardiac arrest can
be observed in the representations over time. But
further investigation into the representations shows
that these patterns can be different across individu-
als. Erez et al. (2021) has shown that individuals ex-
hibit distinct physiologic patterns prior to in-hospital
cardiac arrest. Based on these patterns, they have
defined 3 categories of cardiac arrest, namely Brady-
cardic, Subacute Pulseless, and Acute Pulseless CPA.
Using their definition, we evaluate whether such cat-
egories can be identified using our representations.
Using hierarchical clustering, we cluster the repre-

sentations of pre-arrest signals into 3 states. Then we
assess how correlated our states are with the prede-
fined sub-categories as shown in Figure 7. Clusters 0
and 2 appear to have high correlation with the Suba-
cute Pulseless type of arrest. Bradycardic and Acute
Pulseless however appear to be more uniformly dis-
tributed between the 3 clusters.

5. Conclusion

Medical time series provide a complex but rich source
of information for patients. We have shown in this pa-
per that using the right unsupervised representation
technique we can learn the underlying state of pa-
tients using their physiological signals in a represen-
tation vector. The representations summarize the in-
formative parts of the signal into a lower dimensional
space that can be used to train models for a num-

ber of downstream tasks and tracking them over time
will help us monitor disease progressions in patients.
Representation learning approaches can also have a
potential in knowledge discovery to help uncover the
underlying states in patients. In this work, we have
made an attempt in overcoming a number of short-
comings in the existing methods to introduce an un-
supervised approach that is suitable for medical time
series with all its complexities like non-stationarity,
missing observations, and irregular sampling rate.
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Aäron van den Oord. Unsupervised speech rep-
resentation learning using wavenet autoencoders.
IEEE/ACM transactions on audio, speech, and
language processing, 27(12):2041–2053, 2019.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin,
Antonio Torralba, and Stefanie Jegelka. Debiased
contrastive learning. In NeurIPS, 2020.

Ely Erez, Mjaye L Mazwi, Alexandra M Marquez,
Michael-Alice Moga, and Danny Eytan. Hemody-
namic patterns before inhospital cardiac arrest in
critically ill children: An exploratory study. Criti-
cal care explorations, 3(6), 2021.

Madalina Fiterau, Suvrat Bhooshan, Jason Fries,
Charles Bournhonesque, Jennifer Hicks, Eni
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Appendix A. Appendix

A.1. HiRID dataset

Note: This dataset was acquired through Physionet
credentialing. Only authors on this paper who were
given credentialing to use this dataset, had read
permissions on the saved data. If you wish to use this
dataset, you must request for access via physionet.

HiRID is a public dataset containing data relat-
ing to almost 34 thousand patient admissions to the
Department of Intensive Care Medicine of the Bern
University Hospital, Switzerland (ICU). The dataset
contains de-identified demographic information and
a total of 681 routinely collected physiological vari-
ables, diagnostic test results and treatment param-
eters for patients admitted during the period from
January 2008 to June 2016. Data is stored with a
uniquely high time resolution of one entry every two
minutes. To reduce missingness and have a consis-
tent frequency in measurements of physiological sig-
nals, we use the processing of data (imputed stage)
as described in the original publication. This data
has been down sampled to 5 minutes, and imputed.
They also merge many variables into meta variables,
description of which can be found on their website 4.

For training all baselines, we took the imputed
stage for the patients who have at least 2 days of data
recorded. Overall, samples with more than 40% miss-
ing measurements were excluded from the datasets.
All other samples are left imputed so the length of the
signals are a multiple of 4 days. The mask channel is
used to indicate these imputations.

For the Mortality Prediction experiment, we
again pick patients with at least 2 days of data, and a
discharge status not recorded as null. We remove the
12 hours prior to discharge, and make our predictions
based on the information available up to that point
in time. The total number of samples are 6700 for
training, 1300 for validation and 1600 for test, with
a positive to negative ratio of ∼ 0.10.

For the Diagnostic group (Apache Prediction
Data), we take the first 24 hrs of data for the ex-
act same patients, and store their apache groups
assigned to them. We take the apache IV code
if available, otherwise we take the apache II code.
The total number of samples are 6100 for train-
ing and 1500 for test. We categorize patients
with no apache code into the ’other’ category. We

4. https://hirid.intensivecare.ai/data-details
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Figure A.8: Distribution of Apache States after re-
moving low count categories

then drop categories with less than 200 patients.
The apache groups included are as follows: Cardio-
vascular, Pulmonary, Gastrointestinal, Neurological,
Sepsis, Trauma, Metabolic/Endocrinology, Hematol-
ogy, Other, Surgical Cardiovascular, Surgical Respi-
ratory, Surgical, Gastrointestinal, Surgical Neurolog-
ical, Surgical Trauma, Surgical Urogenital, Surgical
Gynecology, Surgical Orthopedics, Urogenital, Surgi-
cal others, and Intoxication.

For the Circulatory Failure Prediction Data,
we use the definition of circulatory failure in Hy-
land et al. (2020): ”A patient is defined as being in
circulatory failure if (1) arterial lactate is elevated
(≥ 2 mmol l–1), and (2) either mean arterial pres-
sure (MAP) ≤ 65 mmHg, or the patient is receiv-
ing vasopressors or inotropes”. We identified the va-
soporessors in the dataset as being doses of Nora-
drenalin or Vasopressin and inotropes as being doses
of Adrenalin, Dobutrex, Corotrop, or Simdax. We
note all places the patients were administered an in-
otrope or vassopressor, and consider the next hour
as them being on an inotrope or vassopressor. These
pharmaceuticals informations are available as part of
the dataset. 5

For patients that do experience circulatory failure,
we take the last 2 days of data before they first expe-
rience it. For patients that do not experience circu-
latory failure, we take a random 2 day period during
their stay and store this.

5. https://docs.google.com/spreadsheets/d/
1MjihfhyXX4dwni8Fxy3Ji5RCvSvnhipDCyjYo_6rixY/

edit?usp=sharing
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Signal Description Sample Rate

HR Heart rate derived from ECG 5 seconds
RR Resp Respiratory rate 5 seconds
Pulse Pulse rate 5 seconds
SPO2 Oxygen saturation level 5 seconds
etCO2 End-tidal CO2 5 seconds
NBPm Non-invasive blood pressure 1-60 minutes
NBPd Non-invasive blood pressure 1-60 minutes
NBPs Non-invasive blood pressure 1-60 minutes

Table A.5: Description of high-frequency ICU signals

A.2. High-frequency data from pediatric ICU
dataset

This dataset contains thousands of hours of phys-
iological signals. For each patient, we first remove
the last 5 minutes prior to arrest (if the patient does
experience an arrest), and then left pad all signals so
that the total length is an integer multiple of 7 hours.
Then it is broken into 7 hour samples. Samples with
missingness greater than 60% (i.e. samples where
>= 60% of time steps were either padded data or
had no observed value for any signal at that time
step) were removed. Note it is possible for a single
patient’s data to be broken into multiple samples.
Then, the data was forward imputed (meaning the
last observed value for a given feature is put in place
of unobserved values for that feature).

Each feature in the test set were normalized
by subtracting the mean of that signal across all
samples, and dividing by the standard deviation
of that signal across all samples. Note that these
statistics were only computed for observed values,
not imputed values. The same process was done for
the train/validation set jointly (that is the feature
mean and standard deviation are computed across
train and validation samples).

There were 5428 samples for training, and 143 of
those were positive samples (samples for which an
arrest happens at the end).

A.3. Experiment details

Refer to the CausalCNNEncoder class in
tnc/models.py for our encoder architecture. The
hyperparameters chosen for the HiRID model
was in channels=36, channels=4, depth=1, re-
duced size=2, encoding size=10, kernel size=2,
window size=12. During pruning, the initial en-
coding size of 10, was reduced down to 6. The

Pediatric ICU HiRID

ϵ 0.1 0.1
D (Number of features) 10 18
Representation size 8 10
Pruned Representation size 6 6

Table A.6: Caption

linear classifier trained on top of the encoder
for the downstream tasks was an LSTM with
hidden state of size 8. Please refer to the circula-
tory failure prediction.py for more details, as well as
hyperparameters for the classifiers like learning rate,
epochs, etc.

The hyperparameters chosen for the pediatric ICU
model was in channels=20, channels=8, depth=2, re-
duced size=30, encoding size=8, kernel size=3, win-
dow size=60. During pruning, the initial encoding
size of 8, was reduced down to 6. The linear clas-
sifier trained on top of the encoder for the down-
stream tasks was an LSTM with hidden state of size
8. Please refer to the train linear classifier function
in tnc/tnc.py for more details, as well as hyperpa-
rameters for the classifier like learning rate, epochs,
etc.

The HiRID encoder was trained with the Adam
optimizer with learning rate 0.00005, weight decay of
0.0005, and for 150 epochs.

The pediatric ICU encoder was trained with the
Adam optimizer with learning rate 0.0007, weight de-
cay of 0.0001, and for 150 epochs.

A.4. Supplementary plots

A.4.1. Performance plots:

For models predicting rare events such as mortality
and cardio pulmonary arrest, performance evalua-
tion can be challenging. Metrics like AUROC and
AUPRC provide some insight on the performance
of these models but to get a better understanding,
we have included plots of the PRC and ROC curves
for Mortality prediction on the HiRID dataset. The
model numbers in the captions refer to the classifiers
we trained on top of the single encoder (we had cross
validation of 3 for the classifiers). We also include
the loss curve of the encoder trained for HiRID.
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Figure A.9: Mortality Precision Recall Curve and Re-
ceiver Operator Characteristic Curve for Model 1

Figure A.10: Mortality Precision Recall Curve and
Receiver Operator Characteristic Curve for Model 2
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Figure A.11: Mortality Precision Recall Curve and
Receiver Operator Characteristic Curve for Model 3
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Figure A.12: Loss for our encoder trained on the
HiRID data. A couple of the loss spikes caused by
dimension pruning can be observed (at epochs 60 and
90)
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