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Abstract

Deep learning excels at learning low-level task information from large amounts of data,
but struggles with learning high-level domain knowledge, which can often be directly and
succinctly expressed. In this work, we introduce Pylon, a neuro-symbolic training framework
that builds on PyTorch to augment procedurally trained neural networks with declaratively
specified knowledge. Pylon allows users to programmatically specify constraints as PyTorch
functions, and compiles them into a differentiable loss, thus training predictive models
that fit the data whilst satisfying the specified constraints. Pylon includes both exact
as well as approximate compilers to efficiently compute the loss, employing fuzzy logic,
sampling methods, and circuits, ensuring scalability even to complex models and constraints.
A guiding principle in designing Pylon has been the ease with which any existing deep
learning codebase can be extended to learn from constraints using only a few lines: a
function expressing the constraint and a single line of code to compile it into a loss. We
include case studies from natural language processing, computer vision, logical games, and
knowledge graphs, that can be interactively trained, and highlights Pylon’s usage.
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Introduction

Deep learning models are able to learn even the most complex of tasks, provided enough
data is available. However, they often struggle with learning high-level domain knowledge
that can often be much more succinctly expressed declaratively, such as using programmatic
constraints. Unfortunately, existing frameworks are not able to learn from such declarative
knowledge, and instead attempt to learn it from available data, leading to overfitting to
spurious patterns, learning functions that are unfaithful to rules of the underlying task.

Neuro-symbolic reasoning methods aim to straddle the line between deep learning and
symbolic reasoning, combining high-level procedural knowledge with data, during learning.
They aim to learn functions that fit the data while remaining faithful to the rules of the
underlying domain, which empirically translates into performance improvements and more
efficient learning. These systems are not without their challenges, however. Most frameworks
make use of custom languages (Rajaby Faghihi et al.; Guo et al., 2020; Manhaeve et al.,
2018; Stewart and Ermon, 2017) or logic (Bach et al., 2017; Diligenti et al., 2017; Fischer
et al., 2019; Hu et al., 2016; Li and Srikumar, 2019; Nandwani et al., 2019; Rocktäschel et al.,
2015; Xu et al., 2018; Zhang et al., 2016) to express such knowledge, making it unnatural,
unwieldy, or even impossible to express many forms of knowledge. Furthermore, they often
require porting to their own ecosystem, making them arduous to integrate with existing
code. Finally, each such method presents with a unique set of trade-offs, and is effective on
a limited set of domains and constraints, often unbeknownst to the user.

We introduce Pylon1, a package built on top of PyTorch that offers practitioners the
ability to seamlessly integrate declarative knowledge into deep learning models. The user
expresses the knowledge as a Python function that defines the constraint in terms of PyTorch
tensors. Picking an appropriate compiler, Pylon compiles the function into an efficient,
differentiable loss that is compatible with PyTorch trainers, providing a unifying interface
to existing neural-symbolic methods that integrate declarative knowledge into learning.

Pylon Overview 1 # Only a person can live in a location
2 def check_livesin_subj(entity, relation):
3 # If a word is subject of livesIn, it should be PER
4 return all(entity[relation==LIVESIN_SUBJ] == PER)
5

6 livesin_loss = constraint_loss(check_livesin_subj)
7

8 # There should be more non-people tokens than people
9 numppl_loss = constraint_loss(

10 lambda entity: sum(entity!=PER) > sum(entity==PER))
11

12 for i in range(train_iters):
13 ...
14 entity_logits = entity_model(x)
15 relation_logits = relation_model(x)
16 loss = livesin_loss(entity_logits, relation_logits)
17 loss += CE(relation_logits, relation_labels)
18 loss += numppl_loss(entity_logits)

Figure 1: Enforcing a constraint using Pylon

Example Consider the code snip-
pet in Figure 1, where we consider
the task of entity-relation extraction.
That is, given a sentence x, the model
on line 14 classifies each word into
a corresponding entity (e.g. person,
organization), and for every pair of
entities whether they are related, and
if so, the type of relation that holds
between them (e.g. works for).

We wish to enforce two con-
straints that capture our domain
knowledge on the learned model: 1) the subject of a lives in relation is always a person,
and 2) that the majority of predicted entities are not person. The above constraints are

1. Pylon website is available at https://pylon-lib.github.io/
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expressed as the PyTorch function check livesin subj defined in Figure 1 on lines 2-4 and
the lambda function on line 10, respectively.

The challenge then is, how to integrate these discrete, Boolean functions with differentiable
learning. We will show how this can be achieved by interpreting the model outputs as
inducing a distribution over the output space, and reducing our problem to one of probabilistic
reasoning: we wish to find the set of parameters that maximize the probability of satisfying
the user-defined constraints under the network’s probability distribution.

A Probability Distribution over Structured Outputs Let θ be the parameters of
the neural network model defined over a set of variables Y = {Y1, . . . , Yn}, where each Yi
denotes a target. Let p be a vector of probabilities for the variables Y, where pi denotes the
predicted probability of variable Yi and corresponds to a single output of the network. The
network’s outputs induce a distribution pθ(·) over all possible instantiations y of Y

pθ(y|x) =
∏

i:y|=Yi

pi
∏

i:y|=¬Yi

(1 − pi) (1)

where y |= Yi and y |= ¬Yi denote that Yi is true or false in the instantiation y, respectively.
Although we use boolean valued variables for notational simplicity, the ideas directly extend
to other discrete valued variables as well.

Training objective Having defined a distribution over all possible outputs, we now
consider the problem of learning with constraints through a probabilistic lens: the problem of
integrating our declaratively-defined functions into the learning process reduces to optimizing
for the set of network parameters such that the probability allocated by the network to
satisfying the constraints is maximized. Formally, we would like to minimize the following:

arg min
θ

L(θ|C, x) = arg min
θ

− logEy∼pθ(·|x)
[
1{C(y)}

]
(2)

where, for a given constraint C, we penalize the network with a loss that is proportional
to the extent to which the network’s beliefs violate the constraint, as measured by the
probability mass allocated by the network to all instantiations violating the constraint C.

Calculating the above expectation naively requires enumerating all instantiations y in
a brute force manner, of which there are exponentially many, and is feasible only for the
simplest of constraints. For example, for a model defined over the edges in a n× n grid (i.e.
2n2 − 2n boolean variables), an instantiation is an assignment to each of the variables, of
which there are 22n

2−2n many possibilities.

Constraint functions We encode the aforementioned declarative knowledge by means
of constraint functions. A constraint function is a Python function that accepts any
number of tensor arguments, each of shape (batch size, ...) and returns a Boolean tensor
of shape (batch size, ). Each argument corresponds to a (batched) decoding from a model.
A decoding is an assignment to all variables of a model, each variable sampled with a
probability corresponding to its likelihood under the model’s posterior. For example, in
our entity-relation extraction example, a decoding of relation logits (or entity logits)
constitutes a relation (or entity, resp.) assigned to each word in the sentence.

A constraint function defines a predicate C on the decodings of any number of models,
and returns whether or not the given decodings satisfy the constraint. For instance, lines

321



Ahmed Li Ton Guo Chang Kordjamshidi Srikumar Broeck Singh

2-4 define a constraint function over the decodings of the entity and relations classifiers
that captures that the subject of a lives in relation is always a person. Line 10 defines a
lambda constraint function over the decoding of the entity classifier, and encodes that the
majority of entities are not person. While the first constraint can be easily expressed in
logic, the same does not hold true for the second constraint: we would need to conjoin all
decodings satisfying the constraint, which would scale exponentially with the length of the
sentence — unless we resort to introducing auxiliary variables. Using Python/PyTorch, we
can capture the constraint succinctly.

Exploiting Structure of Constraint Definition Although the user can use all of
PyTorch/Python syntax to write the constraint, we parse the constraint function to see if it
expresses known structures, such as logic. When the constraints exhibit structural properties
that allow us to reuse intermediate computations, we can sidestep the intractability of Eq (2)
by compiling them into logical circuits (Xu et al., 2018). This does not, in general, escape the
complexity of Eq (2) as the circuit grows exponentially in the constraint size. In these cases,
we can utilize approximations based on fuzzy logic, computing differentiable probabilities of
logical statements without grounding them, such as using product (Rocktäschel et al., 2015),
or  Lukasiewicz (Bach et al., 2017; Kimmig et al., 2012) T-norms.

Black-box Optimization Alternatively, we can also approximate the loss in Eq (2)
by sampling decodings from the model posterior. We can use the REINFORCE gradient
estimator (Glynn, 1990; Williams, 1992) to rewrite the gradient of the expectation in Eq (2)
as the expectation of the gradient, which can be estimated using Monte Carlo sampling

∇θEy∼pθ(·|x)
[
1{C(y)}

]
= Ey∼pθ(·|x)

[
∇θ1{C(y)} log pθ(y|x)

]
(3)

This not only enables us to estimate the probability of otherwise-intractable constraints
but also enables greater flexibility in defining our constraint functions: we can issue calls to
non-differentiable resources and continue to yield a differentiable loss, hence black-box.

Pylon uses implementations of these approaches that are directly compatible with
PyTorch, as seen in lines 16 and 17, including ones that utilize the structure in the user-
defined code for efficiency (T-norm and circuit-based losses) and ones that work for any
implementation (brute-force and sampling), and is easily extensible to other techniques.

Case Studies

We include four case studies that vary in their domain, and exhibit the versatility of Pylon,
spanning vision, NLP and logical games (e.g. Li et al., 2019; Punyakanok et al., 2008):

• MNIST Addition: Presented with two MNIST digits, we require the model’s
predictions add to their summation. Model learns to predict single digits at test time.

• NLI Transitivity: The model is presented with sentence triples and predicts how
each pair is related. The model’s predictions are constrained to satisfy transitivity.

• SRL Unique Role: For each predicate in the semantic role labeling task, the model’s
predictions are constrained such that each core argument span appears at most once.

• Sudoku: Given a Sudoku, the model is trained to predict the missing entries in the
puzzle such that the elements in each individual row, column and square are unique.
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