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Appendices

Appendix A. Standout Solution Details

This appendix gives more details on the leaderboard contributions. In the section header,
we give the paper title along with their achieved ranks in the core/extended competition in
parentheses. For each submission, we also give an inference diagram which in our opinion is
supposed to summarize the approach from an information-flow perspective by linking to the
trained models, the data used in training rather than to the architecture details and to the
ensembling.

A.1. oahciy: U-Net + Multi-Task Learning

(Lu, 2021) presents an amazingly simple multi-task learning framework by randomly sampling
data from all available cities and training the models to jointly predict future tra�c for
di↵erent cities. (Lu, 2021) uses ensembles by averaging 9/7 di↵erent U-Net models with
varying architecture and seeds, all trained on all data for 4 training cities and 4 core cities.
The models in the core competition are trained for 5 epochs, the models for the extended
competition for 50’000 steps only.

(Lu, 2021) argues that the multi-task learning can be regarded as an implicit data
augmentation and regularization technique preventing overfitting when trained on one city
only and forcing to learn city-agnostic representations and improving data e�ciency. (Lu,
2021) reports the results of a comparison with a series of domain-adaptation techniques and
find that their approach is superior in both competitions and report to have tried di↵erent
ensembling techniques. For temporal domain adapation, he conducted experiments by using
3 of the training cities as training data and 1 city (Bangkok) for evaluation; his findings
suggest that training on the target city is crucial in comparison to more data from the 3
training cities and that adding 2019 and 2020 data for at least one city is crucial encouraging
the model to learn to adapt to temporal domain shifts during training. With respect to the
core competition, they achieved good performance in the extended competition by reducing
the number of parameters in the U-Net model and adopting an early stopping strategy. (Lu,
2021) suggests performance could be improved by fine-tuning models in a city-dependent
manner and using manually designed features like time of day.
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Figure 10: Inference oahciy (Lu, 2021) (left: core competition, right: extended competition).

A.2. sungbin: U-Net Ensemble

The approach of (Choi, 2021) is very similar to (Lu, 2021), also using di↵erent U-Net
architectures and averaging ensembles. In contrast to (Lu, 2021), (Choi, 2021) trains on
target city-dependent training data, too, resulting in ensembles of 16/4 models in the two
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competitions; each prediction comes from an ensemble of 7/4 models, of which 3/- are
city-dependent. (Choi, 2021) reports that in previous participations (Choi, 2019, 2020)
having training data from di↵erent cities hurt performance; (Choi, 2021) suggests that the
additional cities for training only make the di↵erence; however, no ablation studies are
presented for this claim. As Berlin and Istanbul are in the core competition target cities
as in the previous competition, we miss the exploration of the performance of last year’s
approach and of the contribution of static road data.
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Figure 11: Inference sungbin (Choi, 2021) (left: core competition, right: extended competi-
tion).

A.3. sevakon: U-Net with Temporal Domain Adaptation

(Konyakhin et al., 2021) also base their approach on the success of U-Nets in previous
competitions. However, in contrast to (Lu, 2021) and (Choi, 2021), they train their models
on the target city in the core competition only (they did not participate in the extended
competition). They use three di↵erent architectures (vanilla U-Net, DenseNet, and E�cient-
Net pre-trained on Imagenet (Deng et al., 2009)), a static mask derived from dynamic data
and a per-pixel and per-channel temporal domain-adaptation factor. Their final prediction
is derived from the 3 models; each model is used with and without TDA, resulting in 6
predictions to which the static mask is applied and which are then averaged. They find
slightly better results are achieved by using a static pixel-wise binary mask generated from
the training and test data for non-zero values among all channels. In addition to their TDA
heuristics, (Konyakhin et al., 2021) also investigated pseudo-labelling without improvement;
pseudo-labels are generated by applying the model on the (unlabelled) samples from the
target domain and use these in training; pseudo-labelling had been used as an entropy
regularization for probabilistic multi-class classification tasks (Jaiswal et al., 2019; Lee,
2013).

vanilla_ 
unet[C]: {C}

dense 
net[C]: {C}

efficient 
netb5[C]: {C}

test[i,C] avg prediction[i,C]TDA[C] mask[C]TDA[C]-1

Figure 12: Inference sevakon (Konyakhin et al., 2021) (core competition). The city mask is
derived from the training and test data.

A.4. nina: U-Net++ on Patches

(Wiedemann and Raubal, 2021) also use a U-Net variant, but in patch-based manner, as it
was shown beneficial in other segmentation tasks (Zhang et al., 2006; Ghimire et al., 2020)
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(also (Misra et al., 2020) in classification), without using the static road information. Using
patches allowed them to use parameter-heavier UNet++ with more skip connections (Zhou
et al., 2019, 2018), which they suggest to have been helpful in light of the sparsity of the
data. They subsample from the available labelled data, processing 1000 patches for two
epochs and then re-sampling (10 patches from 100 files). At inference time, the predictions
are built by averaging the per-cell predictions from all patches that contain the cell.

They compare di↵erent model variants and di↵erent patch sizes and strides; their best
performance was achieved in both competitions with quadratic 100 ⇥ 100 patches and
stride 10. They show that the ensemble-like behaviour of patch-wise prediction accounts
for small but significant increase in performance with smaller strides; they argue that the
main advantage of the method lies in the simplification of the problem by splitting the
data into smaller parts. Furthermore, (Wiedemann and Raubal, 2021) did an error analysis:
the overwhelming part of the error is due to the predictions in the speed channels and
volumes are zero most of the time. They further looked into those cells with non-zero
volume data and derive speed MSE on those cells, which seems to be “hardly better than
chance”, at least for a small validation set from the labelled data. They even investigated
into training with a loss function that masked out speed on zero ground truth volumes.
At test time, the speed of zero-predicted-volumes is imputed with zero. However, the
current competition metric does not reflect the joint volume-speed distribution directly
and under MSE di↵erent speed predictions might be less penalized. In discussion, the
authors also pointed out that MSE masked this way might incentivize models to learn to
predict “free flow speed” (i. e. speeds taken without the presence of other vehicles, see
e. g. https://en.wikipedia.org/wiki/Fundamental_diagram_of_traffic_flow) in case
of zero volume or a speed appropriate to the current tra�c situation and not needing to
gamble for the data collection gaps (as the GPS probes come from vehicle fleets representing
only a part of total tra�c).

split  
into

patches
test[i,C] avg prediction[i,C]

u++: {T*,C*}patch
position

patch

Figure 13: Inference nina (Wiedemann and Raubal, 2021) (core competition and extended
competition).

A.5. ai4ex: SWIN-Transformer

(Bojesomo et al., 2021) uses a Swin-UNet structure where all convolution blocks are replaced
by shifted window self attention; downsampling in the encoder is achieved by trainable
patch merging layers and upsampling by patch expanding layers in the decoder branch; skip
connections are implemented by a combination of addition and concatenation. The paper
compares 3 di↵erent configurations with di↵erent embedding dimensions, feature mixing to
find the best model in the leaderboard.

swin
unet3d:
{C*}

test[i,C] prediction[i,C]

Figure 14: Inference ai4ex (Bojesomo et al., 2021) (core and extended competition).
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A.6. dninja: Graph-Based U-Net

(Hermes et al., 2022) are the only graph-based contribution in the competition; they aim to
leverage prior knowledge on the underlying structure of the street network, ignoring areas
without any tra�c information, and thereby to achieve better generalization and transfer by
using a graph-based approach. Vanilla graph layers do not capture 2-dimensional topology
like CNNs do – in order to capture this information, they enhance existing graph layers by
using 4 subgraphs corresponding to the 4 headings of the challenge data. They show that
these subgraphs are consistently beneficial for all cities; edge features contain a CNN-based
embedding of the road graph as image; a global state vector contains the summed-up and
scaled node features and encoding of time of day and day of week. (Hermes et al., 2022) use
these Graph layers in a UNet architecture, where the 2D node positions are use for up and
downsampling on graphs: downsampling works by taking the feature-wise max of node and
edge features, while upsampling works by introducing edges from the input graph to the
target graph and using graph propagation. This up- and downsampling approach e↵ectively
expands the receptive field of the graph approach without requiring too deep GNNs, which
are thought to lead performance drop at a certain depth. Although ablation studies and
extensive hyperparameter tuning are missing in their work, the work seems promising.

A.7. resuly: 3DResNet and Sparse-UNet

(Wang et al., 2021a) use 3DResnet (Wang et al., 2021b) with 3D convolutions in 4 residual
block and an output block of sequential CNN layers to restrain the temporal relationship
in the core competition and Sparse U-Net (Graham, 2014; Choy et al., 2019) with data
in Coordinate Format (COO) for the extended competition. They enhance data loading
by two-level shu✏ing over day files and then over indices, randomly picking up a number
of files as training samples in each epoch. To ensure spatial and temporal diversity, these
day files need to include all available cities in 2019 and 2020 and cover all seven days of
the week. They show large training speed-ups for the Sparse UNets. Comparing the two
approaches by training on each city separately, the find no consistently better method, with
considerable di↵erences in the convergence behaviour and the final loss achieved; above all,
they conjecture that sparse UNets generalize better on the extended challenge but perform
worse on the core challenge, however without giving systematic comparison of the same
method applied in both settings.

Resnet3D:
{T*,C*}test[i,C] mask[C] prediction[i,C]

Figure 15: Inference resuly (Wang et al., 2021a) (left: core competition, right: extended
competition). The mask is derived from the test data.

A.8. jaysantokhi: Dual-Encoding U-Net

(Santokhi et al., 2021) use a dual encoding U-Net architecture aiming at a lightweight
approach for real world deployments containing significantly fewer parameters and shorter
training times. The architecture consists of two encoders one of which has skip connections
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to the decoder; encoder and decoder consist of Convolutional LSTM layers. The skip
connections are not vanilla, but designed to carry the hidden and cell states of the encoder
LSTM to the decoder LSTM, which is crucial for the approach. In both competitions, 4
models are pre-trained on the training cities and fine-tuned on the core competition cities.
In the core competition, the city-specific fine-tuned model is used, whereas in the extended
competition an architecture with fewer parameters is used and predictions are built by
averaging over the outputs of all 4 models; in addition, in the core competition, the model
outputs directly 6 frames, whereas the model in the extended competition outputs 12 frames.
In both competition, a mask derived from the test data was found to be more performant
than the static mask or mask based on the training data.

cc_ 
finetune 

[C]: {T*,C}
test[i,C] mask[C] prediction[i,C]

ec_ finetune_ 
Chicago: {T*,C4}

ec_ finetune_ 
Berlin: {T*,C1}
ec_ finetune_ 

Istanbul: {T*,C2}
ec_ finetune_ 

Melbourne: {T*,C3}

test[i,C] avg mask[C] prediction[i,C]
prediction_ 

bin_ 
select

Figure 16: Inference jaysantokhi (Santokhi et al., 2021) (left: core competition, right:
extended competition). The city mask is derived from test data.
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Appendix B. Relating MSE to the Variance in the Data: Where do

Models Struggle?

Here, we detail on Section 3.2.
For the analysis, we took standard deviation on the ground truth data of the 100 tests

of the core competition (i. e. 18 time bins each, the 1 hour input and the 6 prediction
slots from the 1 hour prediction horizon, see (Eichenberger et al., 2022) for the test slot
sampling details). We compute MSE for each directional pixel (863280 = 495 · 436 · 4 in
total), separately for volume and speed. Finally, we plot MSE per std bin to find “hot
spots”.

B.1. Relating speed variance to speed MSE

We have a strong asymmetry in the MSE levels in both competitions (see Figure 32), e. g.
for Lu (2021), the winner of our core competition, we have speed mse: 148.427, vol mse:
10.440, all mse: 79.434 for MSE on the city of Berlin only (plots and data can be found in
Eichenberger and Neun (2021)). Therefore, we put the focus of our analysis on relating speed
variance to speed MSE. If we bin the test data by speed standard deviation as in Figure 17,
we see that most directional pixels have little standard deviation. This is indicated by the
gray line going down almost monotonically showing the counts for every speed std bin. Also
notice that we do not show the full y range on the left.

If we relate this to MSE for speed of the submissions in the core competition, we see
that speed MSE per directional pixel in the bin is going up almost monotonically and faster
than in a linear fashion Figure 17. The curves of the di↵erent participants are pretty in
parallel, so it looks as if they struggle at the same places. The di↵erent participants are
represented by di↵erent colors.

If we multiply the two curves of Figure 17 top, we get the dashed curves of Figure 17
bottom, which shows the sum of the MSEs of all directional pixels in the bin. This allows us
to see which speed std areas contribute most to the total speed MSE. The monotonic growing
solid curve are the cumulative sums of the dashed ones, containing the same information as
the dashed ones. A peak in the dashed curves is reflected by steepness in the solid curve.
The final value top right is the sum over all (495, 436, 4) virtual speed detectors of the city,
summing the per-pixel and per-heading MSE over all 100 test slots. If we divide the final
cumulated number by the the number of such directional pixels, we get the speed mse of
148.

We find two critical ranges of speed std where most of the final MSE is accumulated:
around 35–55 and around 105–125. In the lower critical range (35–55), average MSE per
speed std bin more than, doubles and increases monotonically, while the number of pixels
per bin is slightly decreasing, which cumulates heavily; so despite the medium average MSE
level, this translates into a peak in the per-bin cumulated MSE bin curves. The higher
band (105–125) covers very high average MSE, but at a low number of pixels, which also
translates into a peak.

B.1.1. Mapping out the two critical ranges

We now visualize the locations of these two critical speed std ranges.
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Figure 17: Relating MSE to std for speeds in BERLIN core: distribution of std among
directional pixels (axis capped) and average MSE (top); summed MSE and
cumulated summed MSE (bottom).
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Figure 18 shows the locations of the 35–55 speed std band on the left side. This covers
the main arteria as well as parts of long-range country roads where commuting tra�c starts
early in the morning. So these may be areas that are naturally hard to predict. This stems
on the one hand from medium “free flow speeds” and high speed variance or no data, and on
the other hand from relatively high “free flow speeds” and a lot of no-data in o↵-peak times.

The 105–125 speed std band on the right side in Figure 18 shows areas with usually high
speeds and some no-data during the night.

Figure 18: Locations (red) of the 35–55 (left) and 105–125 (right) speed std bands

B.1.2. Revisiting 3 Berlin locations

If we take each cell and heading as a speed detector, we have 495 · 436 · 4 virtual speed
detectors. We can now plot the mean against the std speed for data collected from the test
slots of the core competition, see Figure 19. Each dot corresponds to one cell in the grid

Figure 19: Critical ranges and sample situations in Berlin.

and one heading. Since a lot of cells never encounter any GPS probes, most of those points
are close to the origin of the mean-std coordinates system. We choose 6 Berlin locations in
Figure 20. In Figure 21, we plot volumes and speeds for one sample day for each of them
and discuss these illustration with respect to the two critical ranges.
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Figure 20: Speed std heatmap for Berlin showing the max of all 4 headings per pixel, showing
the 3 Berlin locations.

#1 is a highway in the outskirts has high speed mean and high speed std. This reflects the
high speeds during day time and the data sparsity during night time. #1 is close to
the 105–125 critical range; it has many no-data points and the average speed is even
higher, so every no-data is penalized a lot if the prediction is too high.

#2 is a main ringroad highway, has high speed mean and relatively high speed std. Although,
there is more data in the night, the sporadic speed drops make standard deviation
still pretty high. Pretty high free flow speed with a few or no-data points is hard to
guess, as every no-data is penalized considerably if the prediction is too high. The
zero-volumes during the first hours of the day might be a production artifact, but the
location has sparse tra�c during the night in all other days we checked.

#3 is a boulevard in the center of Berlin, which shows that moderate free flow speed and
frequent no-data can make the prediction task hard, too.

#4 is an example from 105–125 speed std critical range, which translates visually into a
very spiky speed curve over day. Notice that volumes are low and the spikes mainly
come from the no data points. The variance in the speed measurements masked on
non-zero volume would be much lower.

#5 is an example of very low speed std. It shows that there are many directional pixels
not or extremely sparsely covered with tra�c data, either due to the fleet bias (not
covering full tra�c) or because there is no tra�c in those regions at all.

#6 is similar to #3, but with slightly higher volumes, lower speed levels and a clearer
di↵erence between day and night tra�c, which is plausible for a location on the main
arteria but not on a highway.
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(a) #1 highway outskirts (489, 359, NE). vol: 6.78± 6.68, speed=186.46± 101.55

(b) #2 highway main ringr. (329, 92, NE). Vol: 16.80±15.112, speed=159.69±44.37

(c) #3 boulevard center (345, 262, NE). Vol: 2.57± 43.15, speed=46.69± 43.56

(d) #4 (494, 62, SE) in 105–125 speed std r. Vol: 2.78±3.48, speed=137.87±108.55

(e) #5 (359, 416, SW) with low std. Vol: 0.04± 0.73, speed=0.23± 3.69

(f) #6 (319, 307, NE) in 35–55 speed std r. Vol: 5.67± 7.35, speed=82.94± 54.94
Figure 21: Data from one day in the target domain of the core competition for the 3 Berlin

locations and 3 sampled for low speed std, and the two critical speed std ranges.
Speed curve in red and volume bars in blue, along with mean lines and std hulls,
mean and std from all test slots of the core competition (input and ground truth).
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B.2. Relating vol variance to vol MSE

The corresponding plot for volumes is Figure 22.

Figure 22: Relating MSE to std for volumes: distribution of std among oriented pixels and
average MSE (top); summed MSE and cumulated summed MSE (bottom). The
shaded gray areas highlights the two critical speed std ranges.
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B.3. Limitations of the analysis and future work

As remarked in Section 3.2, MSE does not optimize each directed location independently, so
the interpretation here has to be taken cum grano salis. Despite this limitation, we think it
is relevant. Future work should address the following points:

• it is important to relate the binning of the directional pixels is based on std in the test
slots (input hour and ground truth predictions), it should be checked whether this
binning is robust when taking not only the sampled data for the test slots;

• conduct the analysis for other cities as well;

• in the analysis, the mean or percentiles in the data should be taken into account to
put the interpretation of related the tra�c patterns onto a more solid basis;

• in the same spirit, the analysis should be carried for day and night time separately
and compared to the full day.

• in addition to looking at raw MSE values, it might also be interesting to calculate the
per-pixel R2 values for di↵erent models.
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Appendix C. Outlier Special Prize

Here, we give more details on the Outlier Special Prize introduced in Section 3.4.

C.1. Outlier Special Prize

Quality of tra�c prediction heavily relies on the performance in anomalous situations. We
aim to have a first look at how models from the t4c21 perform in those situations, both
quantitatively as well as qualitatively. Even without sparsity due to vehicle fleets nor daytime
nor regional sparsity, outliers are rare in the data and hence MSE does not give a lot of weight
to them. Also, typically there are many plausible future scenarios in an outlier situation
with a fat tail of scenarios. We invited all Summit/Symposium Participants of Tra�c4cast
2021 to re-run their models on a new test set for the Tra�c4cast 2021 Outlier Special Prize.
Every participant was allowed to submit two predictions: one with the ”plain vanilla” model,
as used for the original submission, and one with further training applied. The score was
not disclosed to the participants and re-submission was not allowed. The participants were
asked to make a prediction on the full without disclosing the outlier location nor the heading.
As in the core and extended competitions, only time of day and day of week were disclosed.
Also, we did not disclose whether the new slots would before or after the Covid shift.

C.2. Outlier Heuristics

We tackled outliers in a very pragmatic way. We were not interested in a general definition
of outliers, but very much in finding some examples and plot what the models predict in
these situations. The outcome of a few trial-and-error iterations was a heuristic that finds
outlier situations in a single directional cell.

We compute quantiles on the data for each pixel and each channel separately and use
them for a lower and an upper threshold criterion, respectively. Also, in order to focus on
situations were a continuous flow is hold down by some jam situation, we focus on 8am to
8pm. In order to exclude situations too short to be sure whether they are false positives, we
search for situations were the above criteria hold for at least two consecutive time bins. And
finally, we take also the 2h mean speed and mean volume into consideration. We choose
outlier situations from 9 Tuesdays in September and October 2019 and two cities from the
core competition (Berlin and Istanbul, 100 tests for each city). This should give us situations
without temporal shift with respect to the training data, neither due to Covid nor due to
summer holiday.

In summary, we search and select pixels (just one speed and volume channel) using the
following conjunctive filter criteria:

1. volume and speed quantiles (volume above 90% quantile, speed below 5% quantile)and
volume threshold (volume above 5)

2. time between 8 A.M. 8P.M.

3. outlier duration (at least two consecutive time bins)

4. outlier mean volume and speed (outlier mean volume above 1.5 times 2h mean, outlier
mean speed above 0.7 times 2h speed mean)
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These criteria might be highly redundant and we did not check for a minimal set. These
criteria are supposed to give us situations where volume is high and speed is low in contrast
to normal situation as reflected by full-day quantiles and 2h means and which are robust
(two consecutive positives and excluding sparse situations during night time). Formally, an
outlier is a quintuple (row, column, heading, start time of day, duration).

For each test, we keep a mask that evaluates MSE on one pixel and two channels, the
volume and speed channels of the outlier heading.

C.3. Test Slot Distribution

The procedure just described was applied on 9 Tuesdays in September/October 2019 before
Covid temporal shift. Due to data scarcity, the above criteria were not applicable to Chicago
and Melbourne from the core competition, so we excluded them as we were interested in the
qualitative analysis of the situations. We randomly sample 100 outliers situations per city
from 559 (Berlin) and 1266 (Istanbul). The other two cities of the core competitions turn
out not to match the pre-conditions of the heuristics and are not included in the Outlier
Special Prize. We generate tests such that the first outlier time bin is the last bin of the 1
hour test input window.

The spatial and temporal distribution of the slots are shown in Figures 23–24, respectively.
As expected, the spatial distribution is concentrated along main arteries with continuous
flow, and the temporal distribution reflects the morning and afternoon peak hours.

(a) Berlin (b) Istanbul

Figure 23: Spatial Distribution of Special Prize Tests.

C.4. Outlier Special Prize Submissions and Leaderboard

We invited all Summit/Symposium Participants of Tra�c4cast 2021 to re-run their models on
a new test set for the Tra�c4cast 2021 Outlier Special Prize, and from 8 summit participants
invited, 7 participated with a total of 11 submissions. 4 participants submitted the solution
from re-running their core competition best model, but also submitted a second solution:
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(a) Berlin

(b) Istanbul

Figure 24: Temporal Distribution of Special Prize Tests.

oahciy v1 is obtained by exactly the same models that as for the core competition (Lu,
2021).

oahciy v2 is obtained by further fine-tuning the models for 1 epoch on BERLIN and
ISTANBUL data only. ]

ai4ex 36 Epoch=36: This is exactly the submissions for the competition (plain vanilla)
(Bojesomo et al., 2021).

ai4ex 43 Epoch=43: further training the model.

nina orig the predictions of the original model (Unet++ patch-based prediction with
100x100 patch and stride s=10 as explained in (Wiedemann and Raubal, 2021)).

nina special trained the original model further on the two cities separately. In detail, they
loaded the model weights, then trained for 500 further epochs on Berlin, and predicted
the values for the new Berlin test set. Same for Istanbul (starting again from the
weights of the original submission).

sungbin 1 is from best run models on core task (Choi, 2021).

sungbin 2 is from best run models on extended task with di↵erent training methods which
had not used in the core task (data augmentation method: input image flipping).

The other 3 submissions are jaysantokhi (Santokhi et al., 2021), GraphUNet luca (Hermes
et al., 2022) and Bo (Wang et al., 2021a).

For each test, we keep a mask that evaluates MSE on one pixel and two channels, the
volume and speed channels of the outlier heading, see Figure 25. Hence, the quantitative
evaluation takes place on much less data than the full city (as in Figure 26): We observe that
oahciy v2 (Lu, 2021), sungbin 1 (Choi, 2021) and oahciy v1 (Lu, 2021) are very close on
masked MSE. Surprisingly, sungbin 2 (Choi, 2021) based on the winning extended challenge
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Figure 25: Leaderboard special prize (anomalies) based on masked MSE highlighting one
cell and one heading.

is much poorer than sungbin 1, so it seems that sungbin 2 is too “conservative” in this
setting where the best guess in most situations is predicting a normalization of the situation.
The solutions ai4ex 43/aiex 36 (Bojesomo et al., 2021), nina special/nina orig (Wiedemann
and Raubal, 2021), jaysantokhi (Santokhi et al., 2021), GraphUNet luca (Hermes et al.,
2022) and Bo (Wang et al., 2021a) are clearly beaten in the Special Prize challenge as well.

Figure 26: Unmasked MSE in special prize (anomalies) based on masked MSE.

As a sanity check, Figure 26 shows the unmasked MSE, which again shows similar level
of MSE overall and for volume and speed separately as in the core competition. We see here
the same top-3 submissions as in the core competition (oahciy v1 marginally better than
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oahciy v2, Sungbin 1, ai4ex 36, the third prize winner did not participate in the Special
Prize). Sungbin 2 trained for unseen cities is clearly inferior to Sungbin 1 in both evaluations.

C.5. Special Prize Qualitative Analysis

Out of the 200 tests (100 for Berlin and Istanbul each), we choose 4 sample situations (see
the outlier locations in Figure 27 and describe the anomalies qualitatively:

(a) Berlin

(b) Istanbul
Figure 27: Sample situations

BERLIN 00 Figure 28 : the anomaly started 40 minutes before, stop and go during input
hour, normalizing in prediction hour after 10 minutes. We see speed drops during the
night and in the evening due to zero volume. The outlier is in the afternoon peak.
Prominently, speed has gone down and volume has gone up. The prediction seems
to go beyond the mean speed and volume in the input, approximating normalization
to “free flow speed”. The highlighted gray area seems to be only at the second half of
the jam. However, there was already a partial resolution of the jam, hence our outlier
detection heuristic detected two consecutive outlier ane we see only the second sampled
here. The winner prediction (oahciy v2 (Lu, 2021)) suggests a steady normalization of
volume and speed.
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BERLIN 02 Figure 29 unsteady flow during input hour, anomaly started 5 minutes before:
peak just before prediction start, normalizing over 30 minutes

BERLIN 97 Figure 30: anomaly 15 minutes before, the jam does not fully resolve during
the prediction horizon and we suspect multiple minor go and stops during the prediction
horizon (there are two volume peeks in the prediction horizon with low speeds at the
same time, which of course could be due measurement error), with speed going up
only slowly at the end of the prediction horizon. In this case, the model again predicts
a smooth normalization, but far too soon. If we look at the full day ground truth,
however, we see that the jam resolved shortly after the prediction horizon, so in some
sense the model anticipated that with one smoothed idealised guess, reflecting multiple
scenarios only in a statistical sense.

ISTANBUL 25 Figure 31: slowdown started 30 minutes before, going back to normal over
30 minutes

Without a quantitative verification, Figures 28–31 seem to suggest there are 3 typical
behaviours:

monotonic normalization The first type is a monotonic normalization to close to free
flow speed as in the two examples shown. This is the normal red level we see before the
anomaly starts on the left. And the dashed red line gradually creeps back to that level
over the one hour prediction horizon left to the vertical now line. The same happens for
volume (blue) which goes down when the jam resolves. However again, the prediction
does not fully recover so the model probably learns from the training data to expect
to expect not full resolution of the jam over the prediction horizon. They seem to
provide a “smoothing” of the anomaly going back to normal. Clearly overestimating
in Berlin 97, where the situation does not normalize during the prediction horizon.

monotonic towards mean of input The second class does predictions which are mono-
tonic towards mean of input. The mean of the input is shown by the faint horizontal
red line. So it looks as if in these cases only consider the local e↵ects in the input.

static The third class does a jump and stay prediction. Some models jump to the mean
speed of the input as in the example shown on the right-hand side. Other models of
the third class jump even to something close to free flow speed.

All models seem to predict pretty high volumes from what we would expect as the
non-jammed normal volume from the input hours in the left half of the plots.

In summary, the best models predict smoothed version of a jam resolution (Berlin 00),
underestimating speed and overestimating density; models are fooled in case jam does not
resolve (Berlin 97), MSE makes prediction blurred towards the mean in the data, never
predicting a rare scenario such as jam resolving more or less quickly than in expectation;
MSE for volume and speed is at the same level.

We do not provide a thorough and systematic exploration of this classification, but we
think it still illustrates some shortcomings of the current task formulation discussed in the
main text.
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Figure 28: Predictions Berlin 00. Top: Daytime curve of ground truth data for 288 bins from
midnight to midnight with speeds (red curve) and volumes blue bars. Outlier
in darker gray area with input and prediction hour in light gray separated by a
blue vertical line. Middle, bottom: The dashed lines show the speed and volume
predictions of the di↵erent submissions compared to ground truth (solid lines);
the vertical blue line separates input from output in time.

Figure 29: Predictions Berlin 02
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Figure 30: Predictions Berlin 97

Figure 31: Predictions Istanbul 25
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Appendix D. Leaderboards Core and Extended Competitions

In this appendix, we highlight some aspects of the leaderboard to highlight some features of
MSE evaluation in the Tra�c4cast setting. The code used to generate them and more plots
can be found in (Eichenberger and Neun, 2021).

Figure 32 shows the dominance of speed channels in both competitions.

Figure 32: MSE Volume vs. speed bias: MSE over all channels and MSE on volumes
and speeds separately for core competition (temporal shift, top) and extended
competition (spatio-temporal shift, bottom). MSE is the average of volumes and
speed MSE by definition.
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