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Abstract
In this paper, we consider learning scenarios where the learned model is evaluated under an un-
known test distribution which potentially differs from the training distribution (i.e. distribution
shift). The learner has access to a family of weight functions such that the test distribution is a
reweighting of the training distribution under one of these functions, a setting typically studied
under the name of Distributionally Robust Optimization (DRO). We consider the problem of de-
riving regret bounds in the classical learning theory setting, and require that the resulting regret
bounds hold uniformly for all potential test distributions. We show that the DRO formulation does
not guarantee uniformly small regret under distribution shift. We instead propose an alternative
method called Minimax Regret Optimization (MRO), and show that under suitable conditions, this
method achieves uniformly low regret across all test distributions. We also adapt our technique
to have strong guarantees when the test distributions are heterogeneous in their similarity to the
training data. Given the widespead optimization of worst case risks in current approaches to robust
machine learning, we believe that MRO can be an attractive framework to address a broad range of
distribution shift scenarios.
Keywords: Distribution shift, covariate shift, distributionally robust learning

1. Introduction

Learning good models for scenarios where the evaluation happens under a test distribution that dif-
fers from the training distribution has become an increasingly important problem in machine learn-
ing and statistics. It is particularly motivated by the widespread practical deployment of machine
learning models, and the observation that model performance deteriorates when the test distribution
differs from the training distribution. Some concrete scenarios where these issues are particularly
salient range from class imbalance between training and test data (Galar et al., 2011; Japkowicz,
2000) to algorithmic fairness (Dwork et al., 2012; Barocas and Selbst, 2016). Consequently, several
recent formalisms have been proposed to develop algorithms for such settings, such as adversarial
training (Goodfellow et al., 2014; Madry et al., 2017; Wang et al., 2019), Invariant Risk Minimiza-
tion (Arjovsky et al., 2019; Ahuja et al., 2020a; Rosenfeld et al., 2020) and Distributionally Robust
Optimization (Duchi and Namkoong, 2021; Namkoong and Duchi, 2016; Staib and Jegelka, 2019;
Kuhn et al., 2019). While the specifics differ across these formulations, at a high-level they all min-
imize the worst-case risk of the learned model across some family of test distributions, and spend
considerable effort on finding natural classes of test distributions and designing efficient algorithms
to optimize the worst-case objectives.
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In this paper, we consider this problem from a learning theory perspective, by asking if it is
possible to obtain regret bounds that hold uniformly across all test distributions. Recall that in
supervised learning, we are given a function class F and a loss function `(z, f(z)), where z denotes
a sample. For a test distribution P , we are interested in learning a prediction function f ∈ F using
the training data, so that the risk of f under P : RP (f) = Ez∼P `(z, f(z)), is small. In classical
learning theory, an estimator f̂ is learned from the training data, and we are interested in bounding
the regret (or excess risk) of f as follows

RegretP (f̂) = RP (f̂)− inf
f∈F

RP (f) = RP (f̂)−RP (fP ),

where fP minimizes RP (f) over F . If the training data (z1, . . . , zn) are drawn from the same dis-
tribution as the test distribution P , then standard results imply that the empirical risk minimizaiton
(ERM) method, which finds an f̂ with a small training error, achieves small regret. A natural ques-
tion we would like to ask in this paper is whether there exists an estimator that allows us to achieve
small regret with distribution shift? More precisely, suppose we are given a family of distributions
P with P0 ∈ P . Given access to n samples (z1, . . . , zn) from P0, we would like to find an estimator
f̂ from the training data so that the uniform regret

sup
P∈P

RegretP (f̂) = sup
P∈P

[
RP (f̂)− inf

f∈F
RP (f)

]
(1)

is small. Here the model class F can be statistically misspecified in that it may not contain the
optimal model f? that attains the Bayes risk in a pointwise manner.

We note that this objective is different from the objective of Distributionally Robust Optimiza-
tion (henceforth DRO), which directly minimizes the risk across all test distributions as follows:

fDRO = arginf
f∈F

sup
P∈P

RP (f). (2)

We observe that the objective (1) is less sensitive than DRO to heterogeneity in the amount of noise
in test distributions. Moreover, when the model is well-specified, our criterion directly measures the
closeness of the estimator f̂ and the optimal model f? for each distribution P ∈ P , which is often
desirable in applications. We call the criterion to minimize regret uniformly across test distributaions
Minimax Regret Optimization (MRO), and its population formulation seeks to minimize the worst-
case regret (1):

fMRO = arginf
f∈F

sup
P∈P

RegretP (f). (3)

Compared to DRO, MRO evaluates the regret of a candidate model f on each distribution P ∈ P
as opposed to the raw risk. As we show in the following sections, regret is comparable across
distribution in a more robust manner than the risk, since the subtraction of the minimum risk for
each distribution takes away the variance due to noise. We note that a similar approach to remove
the residual variance to deal with heterogenous noise arises in the offline Reinforcement Learning
setting (Antos et al., 2008), which we comment more on in the discussion of related work. Similar to
ERM, which replaces the regret minimization problem over a single test distribution by its empirical
minimization counterpart, we consider an empirical minimization counterpart of MRO, and analyze
its generalization performance.
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Our contributions. With this context, our paper makes the following contributions.

1. The objective (3), which gives an alternative to DRO, alleviates its shortcomings related to noise
overfitting, and provides a robust learning formulation for problems with distribution shift.

2. We show the empirical couterpart to (3) can be analyzed using classical tools from learning the-
ory. When the loss function is bounded and Lipschitz continuous, we show that the regret of our
learned model f̂MRO on each distribution P can be bounded by that of fMRO along with a devia-
tion term that goes down asO(1/

√
n). Concretely, we show that if supz : dP0(z)>0 dP (z)/dP0(z) ≤

B for all P ∈ P , then with high probability,

sup
P∈P

RegretP (f̂MRO) ≤ inf
f∈F

sup
P∈P

RegretP (f) +O
(
B√
n

)
,

where we omit the dependence on the complexities of F and P as well as the failure probability,
and use a simplified assumption on dP/dP0 than in our formal result of Theorem 2, for ease of
presentation. The bound stipulates that f̂MRO has a bounded regret on each distribution in P , so
long as there is at least one function in our class with a uniformly small regret. For squared loss,
if the class F is convex, we show that our rates improve to O(B/n) (Theorem 4). The result
follows naturally as the empirical regret concentrates to population regret at a fast rate in this
setting. We also show that the worst-case risk of f̂DRO cannot approach the worst case risk of
fDRO at a rate faster than 1/

√
n (Proposition 6), which demonstrates a theoretical benefit of our

selection criterion.

3. We present SMRO, an adaptation of our basic technique which further rescales the regret of each
distribution differently. We show that SMRO retains the same worst-case guarantees as MRO,
but markedly improves upon it when the distributions P ∈ P satisfy an alignment condition,
which includes all well-specified settings (Theorems 7 and 8). The rescaling parameters are
fully estimated from data.

4. Algorithmically, we show that our method can be implemented using access to a (weighted) ERM
oracle for the function class F , using the standard machinery of solving minimax problems as
a two player game involving a no-regret learner and a best response player. The computational
complexity scales linearly in the size of P and as n2 in the number of samples.

We conclude this section with a discussion of related work.

1.1. Related Work

Distributional mismatch between training and test data has been studied in many settings (see
e.g. (Quinonero-Candela et al., 2009)) and under several notions of mismatch. A common set-
ting is that of covariate shift, where only the distribution of labels can differ between training and
test (Shimodaira, 2000; Huang et al., 2006; Bickel et al., 2007). Others study changes in the propor-
tions of the label or other discrete attributes between training and test (Dwork et al., 2012; Xu et al.,
2020). More general shifts are considered in domain adaptation (Mansour et al., 2009; Ben-David
et al., 2010; Patel et al., 2015) and transfer learning (Pan and Yang, 2009; Tan et al., 2018).

A recent line of work on Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) considers
particularly broad generalization to unseen domains from which no examples are available at the
training time, motivated by preventing the learning of spurious features in ERM based methods. The
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idea is to find an estimator which is invariant across all potential test distributions. Although most
empirical works on IRM use gradient-penalty based formulations for algorithmic considerations,
one interpretation of IRM leads to a minimax formulation similar to the MRO objective (3):

fIRM = arginf
f∈F

RP0(f) s.t. sup
P∈P

RP (f)−RP (fP ) ≤ ε, (4)

where the familyP consists of all individual domains in the training data and P0 is the entire training
data pooled across domains. However, it is not obvious how to meaningfully analyze the distribu-
tional robustness of IRM method (4) in the classical learning theory setting, and some subsequent
works (Ahuja et al., 2020b; Kamath et al., 2021) formalize IRM as minimizing a DRO style worst-
case risk objective, instead of regret as in the original paper. In contrast, our MRO formulation is
motivated by extending regret-driven reasoning to settings with distribution shift.

Distributionally robust optimization, which forms a starting point for this work, has a long his-
tory in the optimization literature (see e.g. (Ben-Tal et al., 2009; Shapiro, 2017)) and has gained
recent prominence in the machine learning literature (Namkoong and Duchi, 2016; Duchi and
Namkoong, 2021; Duchi et al., 2021; Staib and Jegelka, 2019; Kuhn et al., 2019; Zhu et al., 2020).
DRO has been applied with mixed success in language modeling (Oren et al., 2019), correcting class
imbalance (Xu et al., 2020) and group fairness (Hashimoto et al., 2018). For most of the theoretical
works, the emphasis is on efficient optimization of the worst-case risk objective. While Duchi and
Namkoong (2021) provide sharp upper and lower bounds on the risk of the DRO estimator, they do
not examine regret, which is the central focus of our study.

We note that the raw risk used in DRO is sensitive to heterogeneous noise, in that larger noise
leads to larger risk. Such sensitivity can be undesirable for some applications. Challenges in learn-
ing across scenarios with heterogeneous noise levels has been previously studied in supervised
learning (Crammer et al., 2005), and also arise routinely in reinforcement learning (RL). In the set-
ting of offline RL, a class of techniques is designed to minimize the Bellman error criterion (Bert-
sekas and Tsitsiklis, 1996; Munos and Szepesvári, 2008), which has known challenges in direct
unbiased estimation (see e.g. Example 11.4 in Sutton and Barto (1998)). To counter this, Antos
et al. (2008) suggest removing the residual variance, which is akin to considering regret instead of
risk in our objective, and yields similar minimax objectives as this work.

On the algorithmic side, we build on the use of regret minimization strategies for solving two
player zero-sum games, pioneered by Freund and Schapire (1996) to allow for general distribution
families P as opposed to relying on closed-form maximizations for specific families, as performed
in many prior works (Namkoong and Duchi, 2016; Staib and Jegelka, 2019; Kuhn et al., 2019).
Similar approaches have been studied in the presence of adversarial corruption in Feige et al. (2015)
and in the context of algorithmic fairness for regression in Agarwal et al. (2019).

2. Setting

We consider a class of learning problems where the learner is given a dataset sampled from a dis-
tribution P0 of the form z1, . . . , zn with zi ∈ Z . We also have a class P of distributions such that
we want to do well relative to this entire class of distributions, even though we only have access to
samples from P0. In Minimax Regret Optimization, we formalize the property of doing uniformly
well for all P ∈ P through the objective (3). As mentioned in the introduction, this is closely related
to the DRO objective (2). The following result shows that small risk does not lead to small regret,
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which means DRO does not solve the MRO objective (3). The construction also shows that under
heterogenous noise, DRO tends to focus on a distribution P ∈ P with large noise level, which can
be undesirable for many applications.

Proposition 1 (DRO is sensitive to noise heterogeneity) Let P = {Ber(µ, 1) : µ ∈ [1/2, 1]},
F = [0, 1] and `(f, z) = (f−z)2. Then supP∈P RegretP (fDRO) = 1/4 = 4 supP∈P RegretP (fMRO).

In words, as the noise level varies from a constant noise at µ = 1/2 to a vanishing noise for
µ → 1, we observe that fDRO ends up being governed solely by the high-noise distributions, and
incurs a large worst case regret. fMRO balances regret across the distribution family better, attaining
a constant factor smaller regret.
Proof For this choice of P , let Rµ(f) be the risk corresponding to Ber(µ). Then we see that

Rµ(f) = f2 − 2µf + µ and Regretµ(f) = (f − µ)2.

As a result, we have

max
µ∈[1/2,1]

Rµ(fDRO) = min
f∈[0,1]

max
µ∈[1/2,1]

f2 − 2µf + µ

= min

(
min

f∈[0,1/2]
f2 + (1− 2f), min

f∈[1/2,1]
f2 +

1

2
(1− 2f)

)
=

1

4
,

where the solution fDRO = 1/2 is the minimizer of Rµ(f) for µ = 1/2, when the distribution has
the largest amount of noise. Furthermore, we have

max
µ∈[1/2,1]

Regretµ(fDRO) = max
µ∈[1/2,1]

(
1

2
− 1

)2

=
1

4
.

In contrast, for MRO, we see that

max
µ∈[1/2,1]

Regretµ(fMRO) = min
f∈[0,1]

max
µ∈[1/2,1]

(f − µ)2 =
1

16
,

where fMRO = 3
4 = 1+1/2

2 focuses on the mid-point of the mean parameter family.

Note that while the worst-case regret of MRO is always better than that of DRO, this does not
imply that the function fMRO is always preferable under each distribution P ∈ P to fDRO. For
instance, even in the example above, it can be argued that the DRO solution is preferable for the
distribution corresponding to µ = 0.5, or more generally in the range µ ∈ [0.5, 5/8], where it
attains a smaller regret than fMRO. Next we give another such example where fDRO achieves an
arguably better trade-off in balanced performance across distributions. This situation can happen
in real applications when functions achieving minimum risks vary greatly across distributions, po-
tentially due to overfitting. The example shows that both MRO and DRO may have advantages or
disadvantages under different conditions.
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Example 1 (Heterogeneous regrets across domains) Suppose the target class P consists of two
distributions over z ∈ [0, 1] and our function class F consists of 3 functions {f1, f2, f3}. Let us
assume that the risks of these functions under the two distributions are given by:

R1(f1) = 0, R1(f2) = 0.5, R1(f3) = 0.5 + ε, R2(f1) = 1, R2(f2) = 0.9, and R2(f3) = 0.4.

Then f1 is easily disregarded under both MRO and DRO, since it has poor performance under P2.
For both f2 and f3, their regrets on P1 are larger than P2, so MRO selects the better function for
P1, that is, fMRO = f2. DRO, on the other hand, prefers f3 as it has a smaller worst-case risk,
which is arguably the right choice in this scenario.

More generally, one can always find a distribution P ∈ P under which the regret of fDRO is smaller
than that of fMRO and vice versa, but the ordering in the worst-case is clear by definition. In the
context of these observations, we next discuss how we might estimate fMRO from samples, for which
it is useful to rewrite the objective (3) in an equivalent weight-based formulation we discuss next.

A weight-based reformulation. Having shown the potential benefits of our population objective,
we now consider how to optimize it using samples from P0. Notice that the objective (3) does not
depend on P0 explicitly, which makes it unclear how we should approach the problem given our
dataset. We address this issue by adopting an equivalent reweighting based formulation as typically
done in DRO. Concretely, let us assume that P is absolutely continuous with respect to P0 for all
P ∈ P , so that there exists a weighting function w : Z → R+ such that dP (z) = w(z)dP0(z),
with EP0 [w] = 1. We can equivalently rewrite the objective (3) as

fMRO := arginf
f∈F

sup
w∈W

{
Regretw(f) := Rw(f)− inf

f ′∈F
Rw(f ′) = Rw(f)−Rw(fw)

}
, (5)

where W = {w : w(z) = dP (z)/dP0(z) for P ∈ P} and Rw(f) = Ez∼P0 [w(z)`(z, f(z))].
It is also straightforward to define an empirical counterpart for this objective. Given n samples
z1, . . . , zn ∼ P0, we can define the (weighted) empirical risk and its corresponding minimizer as

R̂w(f) =
1

n

n∑
i=1

w(zi)`(zi, f(zi)) and f̂w = arginf
f∈F

R̂w(f).

With these notations, a natural empirical counterpart of the population objective (5) can be
written as

f̂MRO := arginf
f∈F

sup
w∈W

[
R̂w(f)− inf

f ′∈F
R̂w(f ′)

]
= arginf

f∈F
sup
w∈W

[
R̂w(f)− R̂w(f̂w)

]
. (6)

We now give a couple of concrete examples to instantiate this general formulation.

Example 2 (Covariate shift in supervised learning) Suppose the samples consist of tuples z =
(x, y) where x ∈ Rd are features and y ∈ R is a prediction target. Suppose that the class W
contains functions W = {w(z) = wθ(x) : θ ∈ Θ}, where Θ is some parameter class. That
is, we allow only the marginal distribution of x to change while the conditional P0(y|x) is iden-
tical across test distributions (Shimodaira, 2000; Huang et al., 2006). In our formulation, it is
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easy to incorporate the covariate shift setting with a general class W under the restriction that
supxwθ(x) ≤ B. It is possible to add additional regularity on the class Θ, such as taking the unit
ball in an RKHS (Huang et al., 2006; Staib and Jegelka, 2019). We note that most prior works
on DRO imposed conditions on the joint perturbations of both (x, y), which leads to closed form
solutions. However, directly instantiating W in DRO with a bounded f -divergence or MMD per-
turbation for only the marginal P0(x) (instead of the joint distribution of (x, y)) does not yield a
nice closed form solution. This results in additional computational and statistical challenges as
discussed in Duchi et al. (2019).

We now demonstrate the versatility of our framework with another example from offline rein-
forcement learning.

Example 3 (Offline contextual bandit learning) In offline contextual bandit (CB) learning, the
data consists of z = (x, a, r) with x ∈ Rd denoting a context, a ∈ [K] being an action out of
K possible choices and r ∈ [0, 1], a reward. There is a fixed and unknown joint distribution P0

over (x, r(1), . . . , r(K)). The object of interest is a decision policy π which maps a context x
to a distribution over actions, and we seek a policy which maximizes the expected reward under
its action choices: π? = argmaxπ∈Π EE[r(a) | a ∼ π(·|x), x], where Π is some given policy
class. In the offline setting, there is some fixed policy µ which is used to choose actions during the
data collection process. Then the training data can be described as z = (x, a, r) where x ∼ P0,
a ∼ µ(·|x) and r ∼ P0(·|x, a), and this differs from the action distributions that other policies
in Π induce. Existing literature on this problem typically creates an estimator η for E[r|x, a] and
estimates the expected reward of π as

∑n
i=1

∑
a π(a|xi)η(r|a, xi), and the quality of the resulting

estimate critically relies on the accuracy of η. A particularly popular choice is the class of doubly
robust estimators (Cassel et al., 1976; Dudı́k et al., 2014) which solve a (weighted) regression
problem to estimate η ≈ argminf

∑
i
π(ai|xi)
µ(ai|xi)(f(xi, ai) − ri)2. Since we require the reward model

to predict well on the actions selected according to different policies π ∈ Π, the ideal regression
objective for any policy π reweights the data as per that policy’s actions, and doing this weighting
results in a significant performance gain (Su et al., 2020; Farajtabar et al., 2018). Typically this
weighting is simplified or skipped during policy learning, however, as one needs to simultaneously
reweight for all policies π ∈ Π, and MRO provides an approach to do exactly this by choosing
W = {w(x, a, r) = π(a | x)/µ(a | x) : π ∈ Π} in the optimization for estimating η.

Boundedness and complexity assumptions We now make standard technical assumptions on the
function class F , the loss function ` and the weight classW . To focus attention on the essence of
the results, we omit relatively complex results such as chaining or local Rademacher complexity,
and use an `∞- covering for uniform convergence over F , where we use N(ε,F) to denote the `∞-
covering number ofF with an accuracy ε. For parametric classes, such an analysis is optimal up to a
log factors. We also make a boundedness and Lipschitz continuity assumption on the loss function.

Assumption 1 (Bounded and Lipschitz losses) The loss function `(z, v) is bounded in [0, 1] for
all z ∈ Z and v ∈ {f(z) : f ∈ F , z ∈ Z} and is L-Lipschitz continuous with respect to v.

We also assume that the weight class satisfies a boundedness condition.

Assumption 2 (Bounded importance weights) All weights w ∈ W satisfy w(z) ≤ Bw ≤ B for
all z ∈ Z and some constant B ≥ 1.
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To avoid the complexity of introducing an additional covering number, throughout this paper,
we assume that the weight class W is of finite cardinality, which is reasonable for many domain
adaptation applications. We adopt the notations dF (δ) = 1 + log N(1/(nLB),F)

δ and dF ,W(δ) =
dF (δ) + ln(|W|/δ) to jointly capture the complexities of F andW , given a failure probability δ.

3. Regret Bounds for Bounded, Lipschitz Losses

We begin with the most general case with fairly standard assumptions on the loss function, and the
function and weight classes and show the following result on the regret of f̂MRO for any w ∈ W .

Theorem 2 Under assumptions 1 and 2, suppose further that EP0 [w2] ≤ σ2
w for any w ∈ W . Then

with probability at least 1− δ, we have ∀w ∈ W:

Regretw(f̂MRO) ≤ inf
f∈F

sup
w′∈W

Regretw′(f) + sup
w′∈W

O
(√

σ2
w′dF ,W(δ)

n
+
Bw′dF ,W(δ)

n

)
︸ ︷︷ ︸

εw′

.

We prove the theorem in Appendix A. The bound of Theorem 2 highlights the main difference
of our objective compared with DRO style approaches. The bound states that we our solution f̂MRO
has a small regret for each w ∈ W , as long as at least one such function exists in the function class,
up to the usual finite sample deviation terms. Thus, f̂MRO attains the uniform regret guarantee we
asked for. To better interpret our result, we state a corollary in a setting where the distributions
admit a common approximate minimizer, before making some additional remarks.

Corollary 3 Under conditions of Theorem 2, suppose further that ∃f? ∈ F such that Rw(f?) ≤
Rw(fw) + ε̃w for all w ∈ W . Then with probability at least 1− δ, we have

∀w ∈ W : Rw(f̂MRO) ≤ Rw(f?) + sup
w′∈W

ε̃w′ + sup
w′∈W

εw′︸ ︷︷ ︸
εW

.

Comparison with DRO approaches. While Proposition 1 already illustrates the improved ro-
bustness of MRO to differing noise levels across target distributions, it is further instructive to
compare the guarantees for the two approaches. Concretely, in our setting, it can be shown that with
probability at least 1− δ, we have for all w ∈ W:

Rw(f̂DRO) ≤ inf
f∈F

sup
w′∈W

Rw′(f) + sup
w′∈W

εw′ . (7)

Compared with Theorem 2, this bound can be inferior when the different distributions identified by
w ∈ W have vastly different noise levels. For instance, in the setting of Corollary 3, the bound (7)
yieldsRw(fDRO) ≤ supw∈W Rw(f?)+εW , which has additional dependence on the worst case risk
of f? across all the w ∈ W . Similarly, if the data distribution is Gaussian with an identical mean
but different variances across the w, then we see that the two bounds reduce to:

Rw(f̂MRO) ≤ Varw + εW and Rw(f̂DRO) ≤ supw′∈W Varw′ + εW ,

where Varw is the variance of the Gaussian corresponding to importance weights w. Overall, these
examples serve to illustrate that the DRO objective is reasonable when the different distributions
have similar noise levels, but is not robust to heterogeneity in noise levels.
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Dependence on the complexity of W . For discrete W , our results incur a union bound penalty
of ln |W|. We suspect that this dependency is unavoidable in the general case. If we define W
using a bound constraint such as w(z) ≤ B, or an f -divergence based constraint as in the DRO
literature, then the worst-case w has a simple solution in the DRO setting, with no explicit depen-
dence on the complexity of W . These results are easily adapted to MRO as well by observing
supw∈W Regretw(f) = supw∈W supf ′∈F Rw(f) − Rw(f ′). For instance, if WB = {w : 0 ≤
w(z) ≤ B,EP0 [w] = 1} is the class of all bounded importance weights, then the results of Shapiro
(2017) adapted to MRO imply that

supw∈WB
Regret(f) = supf ′∈F infη∈R

{
η +BEP0

[
(`(f)− `(f ′)− η)+

]}
. (8)

Similar arguments hold for the family of Cressie-Read divergences studied in Duchi and Namkoong
(2021). However, these closed form maximizations rely on doing joint perturbations over (x, y) in
the supervised learning setting and do not apply to covariate shifts (Duchi et al., 2019).

Remarks on standard learning theory extensions. We focus on the most classical learning the-
ory setting in this paper to clearly communicate the key ideas. All our results are completely com-
posable with more refined techniques, however. For instance, the logarithmic factors in our results
can be improved by replacing the naı̈ve union bound with a chaining argument to obtain a de-
pendence on Dudley’s entropy integral instead. We also focus on the parametric or VC regime
where the log-covering number of F behaves as d log 1

ε , for some function class parameter d. In
non-parametric scenarios, this dependence scales as O(1/εp) for some exponent p depending on
the smoothness and other structural properties of F . In such settings, the discretization at a level
O(1/n) used in our proofs is clearly too aggressive, and we need to instead optimize over the dis-
cretization accuracy ε depending on the exponent p. Note that obtaining optimal results in these
settings requires further use of localization arguments. We do not pursue this extension in the cur-
rent work.

Proof [Sketch of the proof of Theorem 2] For a fixed f , we can bound |R̂w(f) − Rw(f)| us-
ing Bernstein’s inequality. This requires bounding the range and variance of the random variable
w(z)`(z, f(z)). Since the losses are bounded in [0, 1], the two quantities are bounded by σ2

w and
Bw respectively. Assumption 1 allows us to further get a uniform bound over f ∈ F with an ad-
ditional dependence on dF (δ). Standard arguments now yield closeness of R̂w(f) − R̂w(f̂w) to
Rw(f)−Rw(fw) simultaneously for all f ∈ F and w ∈ W , and utilizing the definition of f̂MRO as
the minimizer of supw∈W R̂w(f)− R̂w(f̂w) completes the proof.

4. Fast Rates for Squared Loss and Convex Classes

A limitation of Theorem 2 is that it does not leverage any structure of the loss function beyond
Assumption 1, and as a result obtains a 1/

√
n dependence on the number of samples. For the case

of a fixed distribution, it is well known that self-bounding properties of the loss variance can be
used to obtain faster 1/n bounds on the regret of the ERM solution, and here we show that this
improvement extends to our setting. For ease of exposition, we specialize to the squared loss setting
in this section. That is, our samples z take the form (x, y) with x ∈ X ⊆ Rd, y ∈ [−1, 1] , our
functions f map from X to [−1, 1] and and `(z, f(z)) = (f(x) − y)2. We make an additional
convexity assumption on the function class F .
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Assumption 3 The class F is convex: ∀ f, f ′ ∈ F , αf + (1− α)f ′ ∈ F for all α ∈ [0, 1].

Note that convexity of F is quite different from convexity of f in its parameters, and can always be
satisfied by taking the convex hull of a base class. The assumption can be avoided by replacing our
ERM based solution with aggregation approaches (see e.g. Tsybakov, 2003; Dalalyan and Salmon,
2012). However, we focus on the convex case here to illustrate the key ideas.

Theorem 4 Under assumptions 1, 2 and 3, with probability at least 1− δ, we have ∀w ∈ W:

Regretw(f̂MRO) ≤Regret? +O
(√

Regret? ·BdF ,W(δ)/n+BdF ,W(δ)/n
)

=O
(

Regret? +
BdF ,W(δ)

n

)
, where Regret? = inff∈F supw′∈W Regretw′(f).

We prove the theorem in Appendix B. Theorem 4 crucially leverages the following property of
convex classes F and squared loss.

Lemma 5 For a convex class F and squared loss `(y, f(x)) = (y − f(x))2, we have for any
distribution P and f ∈ F: EP [(f(x)− fP (x))2] ≤ RegretP (f).

Note that a similar result holds for the squared loss and any class F , if we replace fP with the
unconstrained minimizer of RP (f) over all measurable functions, but using this property in our
analysis would result in an additional approximation error term in the bound of Theorem 4, which
is undesirable when considering regret within the function class.
Proof [Sketch of the proof of Theorem 4] The only difference with the proof of Theorem 2 is in
the handling of the variance of A = w(z)(`(z, f(z)) − `(z, fw(z)), which we use as our random
variable of interest in this case. Since w(z) ≤ Bw almost surely, we get

EP0 [A2]
(a)

≤ 16BwEw[(f(x)− fw(x))2] ≤ 16BwRegretw(f),

where the inequality (a) follows from the boundedness of f ∈ F and y and the final inequality uses
Lemma 5. We can now follow the usual recipe for fast rates with a self-bounding property of the
variance. Rest of the arguments mirror the proof of Theorem 2.

Comparison with DRO. It is natural to ask if it is possible to obtain fast rate for DRO under the
conditions of Theorem 4. Of course it is not possible to show a regret bound similar to Theorem 4
for DRO, since it does not optimize the worst-case regret as Proposition 1 illustrates. Nevertheless,
we investigate if DRO can achieve fast rate for the raw risk. Unfortunately, the following result
shows that even under the assumptions of Theorem 4, the worst-case risk criterion for DRO is still
subject to the slower 1/

√
n rate. The reason is that regret has a markedly smaller variance than the

risk, and the latter usually deviates at a 1/
√
n rate even for squared loss. The following lower bound

is given for the standard DRO formulation. Other variants such as self-normalization will not fix
the problem.
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Proposition 6 Under the assumptions of Theorem 4, there is a family of distributionsW with |W| =
2, satisfying Bw ≤ B = 2, and a function class F with dF = O(lnn), such that with probability at
least 2/45, we have

sup
w∈W

Rw(f̂DRO)− sup
w∈W

Rw(fDRO) = Ω

(√
1

n

)
.

The proof of this lower bound is given in Appendix B.2.

5. Adapting to Misspecification through Non-uniform Scaling across Distributions

Our result so far guarantees uniform regret, with learning complexity that depends on the worst
case complexity over all distributions w. For example, if the complexity of the distribution family
is characterized by Bw as in our analysis, then the bound depends on supw Bw. In this section,
we show that it is possible to improve such dependence using an adaptive scaling of the objective
function. To better illustrate the consequences of this approach, let us assume that we can rewrite
our guarantees in the form that for each w ∈ W and f ∈ F , we have with probability at least 1− δ,

Regretw(f) ≤ c(R̂w(f)− R̂w(f̂w)) + cwε, (9)

where the scaling function cw is a quantity which depends on the underlying distribution P , and
is known to the algorithm. For instance, under conditions of Theorem 2, we get this bound with
c = 1, cw = σw + Bw/

√
n and ε = dF ,W(δ)/

√
n (assuming dF ,W(δ) ≥ 1). Under conditions

of Theorem 4, we can use c = 3, cw = Bw and ε = dF ,W/n, by taking the second O(B/n)
bound of Theorem 4. While this does worsen our dependence on dF ,W(δ) in the first case, this
is preferable to assuming that dF ,W(δ) is known and setting of cw = σw + Bw

√
dF ,W(δ)/n and

ε =
√
dF ,W(δ)/n.

Since we assume cw is known, then we can define the estimator (Scaled MRO, or SMRO):

f̂SMRO := arginf
f∈F

sup
w∈W

(R̂w(f)− R̂w(f̂w))/cw, (10)

We now present our main results for the statistical properties of f̂SMRO under the assumptions
of Theorems 2 and 4, before comparing the results and discussing some key consequences.

Theorem 7 Under assumptions of Theorem 2, consider the estimator f̂SMRO with cw = σ̂w +
Bw/
√
n, where σ̂2

w = 1
n

∑n
i=1w(zi)

2 is the empirical second moment of the importance weights.
Then with probability at least 1− δ, we have ∀w ∈ W:

Regretw(f̂SMRO) ≤ cw inf
f∈F

sup
w′∈W

Regretw′(f)

cw′
+ dF ,W(δ) O

(√
σ2
w/n+Bw/n

)
︸ ︷︷ ︸

ε′w

.

We can also state a version for squared loss and convex classes.

11
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Theorem 8 Under assumptions of Theorem 4, consider the estimator f̂SMRO with cw = Bw. Then
with probability at least 1− δ, we have

∀w ∈ W : Regretw(f̂SMRO) ≤ Bw

[
Regret? +O

(√
Regret? ·

dF ,W(δ)

n
+
dF ,W(δ)

n

)]
,

where Regret? = inff∈F supw′∈W
Regretw′ (f)

Bw′
.

Proofs for both the theorems are given in Appendix C. Comparing Theorems 7 and 8 with their
counterparts of MRO, we notice a subtle but important difference. The finite sample deviation term
ε′w in Theorem 7 depends on the weights w for which the bound is stated, while the corresponding
term in Theorem 7 is supw′∈W εw′ . In other words, the heterogeneous scaling in SMRO allows us to
obtain a regret bound for each distribution depending on the deviation properties of that particular
distribution, unlike in the basic MRO approach. To see the benefits of this approach, we state a
corollary of Theorems 7 and 8 next.

Corollary 9 (Aligned distribution class) Suppose that P0 andW satisfy that Rw(fw) = Rw(f?)
for all w ∈ W , with f? ∈ F . Under conditions of Theorem 7, with probability at least 1− δ:

∀w ∈ W : Rw(f̂SMRO) ≤ Rw(f?) + dF ,W(δ) O

(√
σ2
w

n
+
Bw
n

)
.

In the same setting, under the assumptions of Theorem 8, we have with probability at least 1− δ:

∀w ∈ W : Rw(f̂SMRO) ≤ Rw(f?) +O
(
BwdF ,W(δ)

n

)
.

Both results follow by choosing f = fw = f? in Theorems 7 and 8. This result shows that
the rescaling allows our bounds to adapt to the closeness of a target distribution to the data collec-
tion distribution, simultaneously for all target distributions. The alignment condition of a shared
f? is always true in well-specified problems, and we illustrate a consequence of Corollary 9 for
well-specified linear regression in Appendix D. Specifically, we observe that in well-specified lin-
ear regression, when the distribution P0 has a well-conditioned covariance, then we can directly
estimate the true regression coefficients β? in `2 error, and hence predict well on any other distri-
bution. However, a direct application of our earlier results in Theorems 2 or 4 results in a scaling
with the importance weight bound even for this setting, which is clearly sub-optimal. On the other
hand, whenever the weight class contains the function w(z) ≡ 1, so that P0 ∈ P , we see that the
guarantee of Theorems 8 recovers a similar estimation guarantee for the SMRO predictor as direct
regression under P0. Since regression under P0 is statistically efficient in this scenario, we do not
expect to do better, and the SMRO approach achieves this ideal guarantee (up to an extra ln |W|
term), while being robust to potential misspecification.

6. Algorithmic considerations

So far our development has focused on the statistical properties of MRO. In this section, we discuss
how the MRO estimator can be computed from a finite dataset, given some reasonable computational
assumptions on the function class F .

12
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Definition 10 (Empirical Risk Minimization oracle) Given a dataset of the form (ωi, zi)
n
i=1, an

empirical risk minimization (ERM) oracle for F solves the weighted empirical risk minimization
problem: minf∈F ωi`(zi, f(zi)).

While we assume access to an exact ERM oracle, we can weaken the notion to an approximate
oracle with an optimization error comparable to the statistical error from finite samples. Given such
an oracle, we can now approximately solve the MRO objective (6) (or (10)) by using the well-known
strategy of solving minimax problems as two player zero-sum games.

For finiteW which we consider in this paper, it is also possible to find the approximate ρ̂ and
f̂MRO efficiently, using the celebrated result of Freund and Schapire (1996) to solve this minimax
problem through no-regret dynamics. We use the best response strategy for the P -player, as finding
the best response distribution given a specific ρ is equivalent to finding the function f ∈ F that
minimizes Ew∼ρR̂w(f). This minimzation can be done through one call to the ERM oracle. For
optimizing ρ, we use the exponentiated gradient algorithm of Kivinen and Warmuth (1997) (closely
related to Hedge (Freund and Schapire, 1997)), which is a common no-regret strategy to learn a
distribution over a finite collection of experts, with each w ∈ W being an “expert” in our setting.
More formally, we initialize ρ1 to be the uniform distribution overW and repeatedly update:

ft = arginf
f∈F

Ew∼ρtR̂w(f), ρt+1(w) ∝ ρt(w) exp

(
η

(
R̂w(ft)− R̂w(f̂w)

))
. (11)

Let us denote the distribution Pt = (f1 + . . . + ft)/t for the iterates generated by (11). Then the
results of Freund and Schapire (1996) yield the following suboptimality bound on Pt.

Proposition 11 Assume that the class F is compact and |W| < ∞. For any T and using η =√
ln |W|
B2T

in the updates (11), the distribution PT satisfies

Ef∼PT sup
w

[R̂w(f)− R̂w(fw)] ≤ inf
f∈F

sup
w∈W

[
R̂w(f)− R̂w(f̂w)

]
+ 2B

√
ln |W|
T

.

It implies that there exists t ∈ [T ] such that

sup
w

[R̂w(ft)− R̂w(fw)] ≤ inf
f∈F

sup
w∈W

[
R̂w(f)− R̂w(f̂w)

]
+ 2B

√
ln |W|
T

.

At a high-level, Proposition 11 allows us to choose T = n2 to ensure that the optimization error is
no larger than the statistical error, allowing the same bounds to apply up to constants. In particular,
this proposition allows us to use the distribution w ∼ ρt, in place of w ∈ W , and its ERM solution
ft to solve the problem. More generally, for infinityW , we have the following result.

Proposition 12 Consider any compact F and W . Assume that Assumption 1 and Assumption 2
hold. Then there exists ρ̂ ∈ ∆(W) so that the solution of MRO is equivalent to the following
solution of the weighted ERM method:

f̂MRO = argmin
f∈F

Ew∼ρ̂R̂w(f).

13
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Proof Assumption 2 implies thatW is compact, and there exists a finite subsetWε ofW so that for
all w ∈ W , there exists w′ ∈ Wε such that supi |w(zi)−w′(zi)| ≤ ε. Now we apply Proposition 11
to the weight classWε and choose f̂MRO, ρ̂ as:

t0 = argmin
t∈[T ]

sup
w∈Wε

R̂w(ft)− R̂w(f̂w), f̂MRO = ft0 , ρ̂ = ρt0 .

Now Proposition 11 implies that for any ε′ > 2ε (choosing T appropriately), we have

sup
w

[R̂w(f̂MRO)− R̂w(fw)] ≤ inf
f∈F

sup
w∈Wε

[
R̂w(f)− R̂w(f̂w)

]
+ ε′ − 2ε

≤ inf
f∈F

sup
w∈W

[
R̂w(f)− R̂w(f̂w)

]
+ ε′.

By setting ε′ → 0, and using the compactness of F , we obtain the result.

The optimization strategy used here bears some resemblance to boosting techniques, which also
seek to reweight the data in order to ensure a uniformly good performance on all samples, though the
reweighting is not constrained to a particular classW unlike here. Note that while the optimization
error scales logarithmically in |W|, the computational complexity is linear in the size of this set,
meaning that our strategy is computationally feasible for sets W of a modest size. On the other
hand, our earlier discussion (8) suggests that alternative reformulations of the objective might be
computationally preferred in the case of classW which are continuous. Handling the intermediate
regime of a large discrete classW in a computationally efficient manner is an interesting question
for future research.

7. Conclusion

In this paper, we introduce the MRO formulation to address problems with distribution shift, and
establish learning theoretic properties of optimizing the MRO criterion from samples. We demon-
strate the many benefits of reasoning with uniform regret as opposed to uniform risk guarantees, and
we expect these observations to have implications beyond the setting of distribution shift.

On a technical side, it remains interesting to further develop scalable algorithms for large
datasets and weight classes. Better understanding the statistical scaling with the size of the weight
class and refining our techniques for important scenarios such as covariate shift are also important
directions for future research.

Acknowledgments

We thank the anonymous reviewers for constructive comments towards improving the manuscript
and spotting an error in the initial proof of Proposition 6.

References

Alekh Agarwal, Miroslav Dudı́k, and Zhiwei Steven Wu. Fair regression: Quantitative definitions
and reduction-based algorithms. In International Conference on Machine Learning, pages 120–
129. PMLR, 2019.

14



MINIMAX REGRET OPTIMIZATION FOR ROBUST MACHINE LEARNING UNDER DISTRIBUTION SHIFT

Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk min-
imization games. In International Conference on Machine Learning, pages 145–155. PMLR,
2020a.

Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R Varshney.
Empirical or invariant risk minimization? a sample complexity perspective. arXiv preprint
arXiv:2010.16412, 2020b.
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Appendix A. Proof of Theorem 2

Recalling our assumptions that for any w ∈ W , we have maxz w(z) ≤ B and Ez∼P0w(z)2 ≤ σ2
w,

we know that for a fixed w ∈ W and f ∈ F , we have, with probability at least 1− δ:∣∣∣R̂w(f)−Rw(f)
∣∣∣ = O

(√
σ2
w ln(1/δ)

n
+
Bw ln(1/δ)

n

)
. (12)

This is a consequence of Bernstein’s inequality applied to the random variable A = w(z)`(z, f(z))
which is bounded by Bw almost surely, and has a second moment at most σ2

w when z ∼ P0. Since
`(z, f(z)) is L-Lipschitz in the second argument, if ‖f − f ′‖∞ ≤ 1/(nLB), we have for any
w ∈ W and any z:

|w(z)`(z, f(z))− w(z)`(z, f ′(z))| ≤ BwL

nLB
≤ 1

n
,

where the second inequality follows since Bw ≤ B for all w ∈ W by assumption. Hence, defining
F ′ to be an `∞ cover of F at a scale 1/nLB, a union bound combined with the bound (12) yields
that with probability 1− δ, we have for all f ∈ F ′:∣∣∣R̂w(f)−Rw(f)

∣∣∣ = O

(√
σ2
w ln(N(F , 1/(nLB))/δ)

n
+
Bw ln(N(F , 1/(nLB))/δ)

n

)
.

Using the Lipschitz property of the loss and further taking a union bound over w ∈ W , this gives
for all f ∈ F and w ∈ W , with probability at least 1− δ:∣∣∣R̂w(f)−Rw(f)

∣∣∣ = O

(√
σ2
w ln(N(F , 1/(nLB))|W|/δ)

n
+
Bw ln(N(F , 1/(nLB))|W|/δ)

n

)
+

1

n

= O

(√
σ2
wdF ,W(δ)

n
+
BwdF ,W(δ)

n

)
=: εw, (13)
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where the second equality recalls our definition of dF ,W = 1 + ln N(1/(nLB),F)
δ + ln |W|δ . We now

condition on the 1 − δ probability event that the bound of Equation 13 holds to avoid stating error
probabilities in each bound. In particular, applying the bound above to the empirical minimizer f̂w
for any w ∈ W , we observe that

Rw(f̂w) ≤ R̂w(f̂w) + εw ≤ R̂w(fw) + εw ≤ Rw(fw) + 2εw.

Hence, for any f ∈ F :

sup
w∈W

[
Rw(f̂MRO)−Rw(fw)

]
≤ sup

w∈W
[Rw(f̂MRO)− R̂w(f̂w)] + sup

w
εw

≤ sup
w∈W

[R̂w(f̂MRO)− R̂w(f̂w)] + 2 sup
w
εw

≤ sup
w∈W

[R̂w(f)− R̂w(f̂w)] + 2 sup
w
εw

(since f̂MRO = arginff∈F supw∈W R̂w(f)− R̂w(f̂w))

≤ sup
w∈W

[Rw(f)−Rw(f̂w)] + 4 sup
w
εw

≤ sup
w∈W

[Rw(f)−Rw(fw)] + 4 sup
w
εw.

Taking an infimum over f ∈ F completes the proof of the theorem.

Appendix B. Proofs for Section 4

We first prove Theorem 4 using Lemma 5, before proceeding to prove the lemma.
Proof [Proof of Theorem 4] We begin with the deviation bound for a fixed f ∈ F and w ∈ W as
before, but use the regret random variable A = w(z)(`(z, f(z)) − `(z, fw(z)) this time. Then by
Lemma 5, we have

EP0 [A2] ≤ BwEP0 [w(z)(`(z, f(z))− `(z, fw(z)))2] = BwEw[(`(z, f(z))− `(z, fw(z)))2]

= BwEw
[(

(f(x)− y)2 − (fw(x)− y)2
)2]

= BwEw
[
(f(x)− fw(x))2(f(x) + fw(x)− 2y)2

]
≤ 16BwEw

[
(f(x)− fw(x))2

]
((|f(x)|, |fw(x)|, |y| ≤ 1)

≤ 16BwRegretw(f). (Lemma 5)

Thus we see that for any fixed f ∈ F and w ∈ W , we have with probability 1− δ:

|Regretw(f)− [R̂w(f)− R̂w(fw)]| = O

(√
BwRegretw(f) ln(1/δ)

n
+
Bw ln(1/δ)

n

)

≤ γRegretw(f) + (1 + γ−1)O
(
Bw ln(1/δ)

n

)
.

where γ > 0 is arbitrary.
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Hence, with probability at least 1− δ, we have for a fixed f and w:

(1− γ)Regretw(f) ≤ (R̂w(f)− R̂w(fw)) + (1 + γ−1)O
(
Bw ln(1/δ)

n

)
, and

R̂w(f)− R̂w(fw) ≤ (1 + γ)Regretw(f) + (1 + γ−1)O
(
Bw ln(1/δ)

n

)
.

Using identical arguments as the proof of Theorem 2 allows us to turn both statements into uniform
bounds over all f ∈ F and w ∈ W . Defining ε′ = BdF ,W(δ)/n, we now have with probability at
least 1− δ:

R̂w(fw) ≤ R̂w(f̂w) + (1 + γ−1)ε′. (14)

Now we reason about the quality of f̂MRO as before:

(1− γ) sup
w∈W

Regret(f̂MRO)

≤ sup
w∈W

[R̂w(f̂MRO)− R̂w(fw)] + (1 + γ−1)ε′

≤ sup
w∈W

[R̂w(f̂MRO)− R̂w(f̂w)] + (1 + γ−1)ε′ (R̂w(fw) ≥ R̂w(f̂w))

≤ sup
w∈W

R̂w(f)− R̂w(f̂w) + (1 + γ−1)ε′ (since f̂MRO = arginff∈F supw∈W R̂w(f)− R̂w(f̂w))

≤ sup
w∈W

R̂w(f)− R̂w(fw) + 2(1 + γ−1)ε′ (Equation 14)

≤ (1 + γ) sup
w∈W

[Rw(f)−Rw(fw)] + 3(1 + γ−1)ε′

= (1 + γ) sup
w∈W

Regretw(f) + 3(1 + γ−1)ε′.

Taking an infimum over f ∈ F and γ = min(0.5,
√
ε′/ inff∈F supw∈W Regretw(f)) com-

pletes the proof.

We now prove Lemma 5.

B.1. Proof of Lemma 5

Since F is convex, if f1 ∈ F and f2 ∈ F , then αf1 + (1 − α)f2 ∈ F for α ∈ [0, 1]. Then using
fP = arginff∈F RP (f), we have for any distribution P and f ∈ F :

0 ≤ RP (αf + (1− α)fP )−RP (fP )

= αEP [(αf(x) + (2− α)fP (x)− 2y)(f(x)− fP (x))]

= α2EP [(f(x)− fP (x))2] + 2αEP [(fP (x)− y)(f(x)− fP (x))].

Since this holds for any α ∈ [0, 1], we take the limit α ↓ 0 to conclude that for all f ∈ F

EP [(fP (x)− y)(f(x)− fP (x))] ≥ 0. (15)
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This inequality further allows us to conclude for any f ∈ F

RP (f)−RP (fP ) = EP [(f(x) + fP (x)− 2y)(f(x)− fP (x)]

= EP [(f(x)− fP (x))2] + 2EP [(fP (x)− y)(f(x)− fP (x))]

≥ EP [(f(x)− fP (x))2].

B.2. Proof of Proposition 6

We consider a simple problem where there is a class P = {P1, P2} consisting of two distributions
that we want to do well under. Each distribution Pi is degenerate, so that x ∼ Pi gives the sample
x = µi with probability 1. We choose 0 ≤ µ1 ≤ µ2 ≤ 2 without loss of generality, for a constant
C to be set appropriately. The function class F = [0, 2]. Under these conditions, the loss function
(f−µi)2 is 4-Lipschitz, so that dF = O(lnn) by discretizing the interval [0, 2] to a precision 1/4n.
Let ∆µ = µ1 − µ2 be the difference of means. Let us choose P0 to be supported over R × {1, 2}
so that z = (x, 1) where x ∼ P1 with probability 0.5 and z = (x, 2) with x ∼ P2 with probability
0.5. We set w1(z) = 1 if z2 = 1 and similarly w2(z) = 1 if z2 = 2. Let us define g(z) = f(z1) for
f ∈ F . Since g(z) is equivalent to f(x) with x = z1 in this example, we stick to using the notation
f ∈ F for the rest of the proof for consistency with our notation throughout. Let us use Ri, R̂i to
denote the empirical and expected risks on samples from Pi (equivalently wi). Then it is easily seen
that

Ri(f) = (f − µi)2, and R̂i(f) =
ni
n

(f − µi)2,

where ni =
∑n

j=1wi(zj) is the number of samples observed from the distribution Pi, when sam-
pling from P0. Then we further have

fDRO = argmin
f∈F

max
i
Ri(f) = argmin

f∈F
max{(f − µ1)2, (f − µ2)2} =

µ1 + µ2

2
,

and the best worst case risk is given by maxiRi(fDRO) = ∆2
µ/4. Now let us examine the empirical

situation. We have

f̂DRO = argmin
f∈F

max
i
R̂i(f) = argmin

f∈F
max{n1(f − µ1)2, n2(f − µ2)2}.

Let us denote f̂i = µi as the minimizer of R̂i(f). Then we observe that :

0 = R̂1(f̂1) ≤ R̂2(f̂1) and R̂1(f̂2) ≥ R̂2(f̂2) = 0. (16)

Consequently, since both R̂1(f) and R̂2(f) are continuous functions of f , they are equal for some
f ∈ [µ2, µ1]. So conditioned on E , we seek a solution to

n1(f − µ1)2 = n2(f − µ2)2,

for which, it suffices to choose

f̂DRO =

√
n1µ1 +

√
n2µ2√

n1 +
√
n2

.
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Now we evaluate the population worst-case risk of the empirical minimizer, which is given by:

max
i
Ri(f̂DRO) = max{(f̂DRO − µ1)2, (f̂DRO − µ2)2}

=
∆2
µ

(
√
n1 +

√
n2)2

max {n1, n2}

≥
∆2
µ

2n
max {n1, n2} ,

where the last inequality follows from Cauchy-Schwarz and recalling that n1 + n2 = n. Now we
focus on the max(n1, n2) term, which is at least n/2+ t with probability at least 2P (n1 ≥ n/2+ t)
for any t ≥ 0. Now using an anti-concentration estimate for Bernoulli sums (Matoušek and Vondrák,
2001), we see that for any t ∈ [0, n/8], P (n1 ≥ n/2 + t) ≥ 1

15 exp(−16t2/n). Let us choose
t =
√
n/4, so that we get

P
(
n1 ≥

n

2
+ t
)
≥ 1

15
exp

(
−16 · 1

16

)
≥ 1

45
,

whenever n ≥ 4 to ensure that
√
n/4 ≤ n/8. Hence, we have with probability at least 2/45

max
i
Ri(f̂DRO) ≥

∆2
µ

2n

(
n

2
+

√
n

4

)
=

∆2
µ

4
+

∆2
µ

8
√
n

= max
i
Ri(fDRO) +

1

8
√
n
,

where we choose ∆µ = 1 in the last equality. This completes the proof.

Appendix C. Proofs for Section 5

We start with a technical lemma about the concentration of empirical estimates of the second mo-
ment of importance weights, which is required for Theorem 7.

Lemma 13 Under Assumption 2, we have with probability at least 1− δ, for all w ∈ W:

EP0w(z)2 ≤ 2

n

n∑
i=1

w(zi)
2 +O

(
B2
w ln(|W|/δ)

n

)
.

Proof Consider the non-negative random variable A = w(z)2 so that A ≤ B2
w with probability 1

when z ∼ P0. Then we have

EP0 [A2] = EP0 [w(z)4] ≤ B2
wEP0 [w(z)2].

Then for a fixed w ∈ W , we have by Bernstein’s inequality, with probability at least 1− δ:∣∣∣∣∣ 1n
n∑
i=1

w(zi)
2 − EP0w(z)2

∣∣∣∣∣
= O

(√
B2
wEP0 [w(z)2] ln(1/δ)

n
+
B2
w ln(1/δ)

n

)

≤ EP0 [w(z)2]

2
+O

(
B2
w ln(1/δ)

n

)
.
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Rearranging terms and taking a union bound over w ∈ W completes the proof.

We are now ready to prove Theorem 7.

C.1. Proof of Theorem 7

Recall the definition σ̂2
w = 1

n

∑n
i=1w(zi)

2. Plugging the result of Lemma 13 in Equation 12, we
see that with probability at least 1− δ, for a fixed f ∈ F and w ∈ W we have:

∣∣∣R̂w(f)−Rw(f)
∣∣∣ = O

(√
(2σ̂2

w +B2
w/n) ln(2/δ)

n
+
Bw ln(2/δ)

n

)

= O

(√
σ̂2
w ln(2/δ)

n
+
Bw ln(2/δ)

n

)
.

Now following the proof of Theorem 2, with probability at least 1− δ, we have for all w ∈ W:

Rw(f̂SMRO)−Rw(fw)

= R̂w(f̂SMRO)− R̂w(f̂w) +O

(√
σ̂2
w(dF (δ) + log(|W|/δ)

n
+
Bw(dF (δ) + log(|W|/δ)

n

)

= R̂w(f̂SMRO)− R̂w(f̂w) +

(
σ̂w +

Bw√
n

)
︸ ︷︷ ︸

cw

O
(
dF ,W(δ)√

n

)
︸ ︷︷ ︸

ε

.

Now dividing through by cw, we see that for all f ∈ F , we have with probability at least 1− δ:

sup
w∈W

Rw(f̂SMRO)−Rw(fw)

cw
≤ sup

w∈W

R̂w(f̂SMRO)− R̂w(f̂w)

cw
+ ε

≤ inf
f∈F

sup
w∈W

R̂w(f)− R̂w(f̂w)

cw
+ ε

≤ inf
f∈F

sup
w∈W

Rw(f)−Rw(f̂w)

cw
+ 2ε

≤ inf
f∈F

sup
w∈W

Rw(f)−Rw(fw)

cw
+ 2ε,

where the second inequality follows from the definition of SMRO as the empirical optimizer of the
objective (10). As a result, we have for any w ∈ W , with probability at least 1− δ:

Rw(f̂SMRO)−Rw(fw) ≤ cw inf
f∈F

sup
w′∈W

Rw′(f)−Rw′(fw)

cw′
+ 2cwε.
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C.2. Proof of Theorem 8

We will be terse as the proof is largely a combination of the proofs of Theorems 4 and 7. Proceeding
as in the proof of Theorem 4, we see that with probability at least 1− δ, we have for all w ∈ W and
f ∈ F :

(1− γ)Regretw(f) ≤ [R̂w(f)− R̂w(f̂w)] + (1 + γ−1) Bw︸︷︷︸
cw

O
(
dF ,W
n

)
︸ ︷︷ ︸

ε

and

[R̂w(f)− R̂w(f̂w)] ≤ (1 + γ)Regretw(f) + (1 + γ−1) Bw︸︷︷︸
cw

O
(
dF ,W
n

)
︸ ︷︷ ︸

ε

for all γ > 0.
Dividing through by cw as before and taking a supremum over w ∈ W , we obtain with proba-

bility at least 1− δ, we have:

(1− γ) sup
w∈W

Regretw(f̂SMRO)

cw
≤ sup

w∈W

R̂w(f̂SMRO)− R̂w(f̂w)

cw
+ (1 + γ−1)ε

≤ inf
f∈F

sup
w∈W

R̂w(f)− R̂w(f̂w)

cw
+ (1 + γ−1)ε

≤ (1 + γ) inf
f∈F

sup
w∈W

Regretw(f)

cw
+ 2(1 + γ−1)ε.

Now following the remaining proof of Theorem 7 gives the desired bound.

Appendix D. Well-specified linear regression with covariate shift

Let us consider a special case of Theorem 8, where F = {β>x : β ∈ Rd, ‖β‖2 ≤ 1} is the class
of linear prediction functions with unit norm weights and the data satisfies ‖x‖2 ≤ 1. We further
assume that y = x>β? + ν, where ‖β?‖2 ≤ 1 and ν is zero-mean noise such that |y| ≤ C for some
constant C (this just causes additional scaling with C in the bounds of Theorems 4 and 8). Suppose
further that the covariance ΣP0 := Ex∼P0xx

> is full rank with the smallest eigenvalue equal to λ.
Let β̂P0 be the ordinary least squares estimator, given samples from P0. Then it is well-known that
with probability at least 1− δ,

‖β̂P0 − β?‖2ΣP0 = O
(
d ln(1/δ)

n

)
. (17)

Consequently, we have for any other distribution P over (x, y):

RP (β̂P0)−RP (β?) = EP [(x>β̂P0 − x>β?)2] = O
(
d ln(1/δ)

λn

)
,

where the inequality uses ‖x‖2 ≤ 1 and that the smallest eigenvalue of ΣP0 is at least λ. That is,
doing OLS under P0 yields a strong guarantee for all target distributions P , since we get pointwise
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accurate predictions in this scenario. However, directly applying the results of Theorem 4 would
still have additional scaling with Bw for any target distribution with importance weights w. On the
other hand, let us consider the bound of Corollary 9 for any classW such that w0 ≡ 1 is inW , so
that we always include P0 in our class of target distributions. Since Bw0 = 1 and dF = d ln(1

δ ) in
this case, the second bound of the corollary yields with probability at least 1− δ:

‖β̂SMRO − β?‖2ΣP0 = RP0(β̂SMRO)−RP0(β?) = O

(
(d ln(1/δ) + ln |W|δ )

n

)
.

This is comparable to the prediction error bound in (17) for ERM on P0, only incurring an additional
ln |W| term compared. Note that ERM is asymptotically efficient in this setting, so we cannot expect
to do better and suffer only a small penalty for our worst-case robustness. The approach of learning
on P0 alone is of course not robust to misspecification in the linear regression assumption. The

guarantee of Theorem 4, in contrast incurs a bound supw∈W BwO

(
(d ln(1/δ)+ln

|W|
δ )

n

)
, which can

be significantly worse.

Appendix E. Proofs for Section 6

It is clearly seen that the updates of ρt correspond to the exponentiated gradient (EG) algorithm
applied to the linear objective −(Ew∼ρR̂w(ft) − R̂w(f̂w))/B at round t, using a stepsize of ηB,
where the negative sign happens since the EG algorithm is designed for minimization problems,
while we apply it to a maximization problem. The regret guarantee for EG, specifically Corollary
2.14 of Shalev-Shwartz (2012) states that for any w ∈ W

−
T∑
t=1

Ew′∼ρt
R̂w′(ft)− R̂w′(f̂w′)

B
≤ −

T∑
t=1

R̂w(ft)− R̂w(f̂w)

B
+

ln |W|
ηB

+ ηBT.

Multiplying through by B and substituting ηB =
√

ln |W|/T gives

−
T∑
t=1

Ew′∼ρt [R̂w′(ft)− R̂w′(f̂w′)] ≤ −
T∑
t=1

[R̂w(ft)− R̂w(f̂w)] + 2B
√
T ln |W|.

Now recalling the definition Pt = (f1 + . . . + ft)/t, following the proof technique of Freund
and Schapire (1996) gives that
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Ef∼PT sup
w

R̂w(f)− R̂w(fw)

B

=
1

T

T∑
t=1

sup
w

R̂w(ft)− R̂w(fw)

B

≤ 1

T

T∑
t=1

Ew∼ρt
R̂w(ft)− R̂w(f̂w)

B
+ 2

√
ln |W|
T

(a)

≤ 1

T

T∑
t=1

inf
f∈F

Ew∼ρt
R̂w(f)− R̂w(f̂w)

B
+ 2

√
ln |W|
T

≤ inf
f∈F

1

T

T∑
t=1

Ew∼ρt
R̂w(f)− R̂w(f̂w)

B
+ 2

√
ln |W|
T

≤ inf
f∈F

sup
w∈W

R̂w(f)− R̂w(f̂w)

B
+ 2

√
ln |W|
T

,

where (a) follows from the best response property of ft for ρt (11).
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