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Abstract

Provably sample-efficient Reinforcement Learning (RL) with rich observations and function ap-
proximation has witnessed tremendous recent progress, particularly when the underlying function
approximators are linear. In this linear regime, computationally and statistically efficient methods
exist where the potentially infinite state and action spaces can be captured through a known feature
embedding, with the sample complexity scaling with the (intrinsic) dimension of these features.
When the action space is finite, significantly more sophisticated results allow non-linear function
approximation under appropriate structural constraints on the underlying RL problem, permitting
for instance, the learning of good features instead of assuming access to them. In this work, we
present the first result for non-linear function approximation which holds for general action spaces
under a linear embeddability condition, which generalizes all linear and finite action settings. We
design a novel optimistic posterior sampling strategy, TS® for such problems. We further show
worst case sample complexity guarantees that scale with a rank parameter of the RL problem, the
linear embedding dimension introduced here and standard measures of function class complexity.

Keywords: Reinforcement Learning, Exploration, Low-rank MDPs, Posterior sampling

1. Introduction

Designing sample-efficient techniques for Reinforcement Learning (RL) settings with large state
and action spaces is a key question at the forefront of RL research. Typical approaches for these
scenarios rely on the use of function approximation to generalize across the state and/or action
spaces. When a sufficiently expressive feature embedding is available to the learner, and linear
functions of these features are used for learning, a number of recent results provide computation-
ally and statistically efficient techniques to handle continuous state, as well as action spaces with
dependence only on an intrinsic dimensionality of the features (Yang and Wang, 2020; Jin et al.,
2020; Zanette et al., 2020b; Agarwal et al., 2020a). However, practitioners typically rely on neural
networks to parameterize the learning agent, a case not covered by the linear results. A parallel line
of work (Jiang et al., 2017; Sun et al., 2019; Jin et al., 2021; Du et al., 2021) studies more general
settings that allow the use of non-linear function approximation, and provides sample complexity
guarantees in terms of a structural parameter called the Bellman rank of the RL problem. The power
of these conditions is elucidated in recent representation learning results (Agarwal et al., 2020b; Ue-
hara et al., 2021; Modi et al., 2021), that leverage low Bellman rank to learn a good feature map that
captures a near-optimal policy and/or the transition dynamics. However, these methods crucially
rely on having a finite number of actions, and the guarantees scale with the cardinality of the action
set. With this context, our paper asks the following question:
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Structural Other approaches
complexity for TS3 PP
V -type Bellman rank d; 2K OLIVE (Jiang et al., 2017),
+ K actions ! V-type GOLF (Jin et al., 2021)
Linear MDP &3 LSVI-UCB (Jin et al., 2020),

(effective feature dim d) Q@-type GOLF (Jin et al., 2021)
Mixture of MDPs w/ Bellman Contextual PC-IGW
rank d; + K actions (Foster et al., 2021)
Rank d dynamics + ranking L
out of K items (Example 1)

2K

d*KL 7

Table 1: Settings captured by our assumptions and prior approaches for them. Our setting subsumes
finite action MDPs with a small V' -type Bellman rank and infinite action linear MDPs. All
problems with a small Q-type Bellman rank are not covered (see Appendix A). Prior works
use different methods for V-type Bellman rank with finite actions and linear MDP with
infinite actions, unlike this work.

Can we design sample-efficient and non-linear RL approaches for large state and action spaces?

In this paper, we study this question in the framework of a Markov Decision Process (MDP),
and focus on problems that admit a good bound on a generalization of the Bellman rank parameter
introduced by Jiang et al. (2017). While the definition of Bellman rank applies to both discrete and
continuous action spaces, the OLIVE algorithm of Jiang et al. (2017) applies only to discrete action
spaces. The presence of a small action set facilitates uniform exploration for one time step, which
lets the agent collect valuable exploration data in the vicinity of states it has already explored,
allowing the discovery of successively better states. When good features are available, like in a
linear MDP, a basis in the feature space serves an analogous role and indeed recent works (Foster
etal., 2021) show that experimental design in the right feature space can replace uniform exploration
over discrete actions.

However, this strategy fails beyond (generalized) linear settings, where there is no easy mech-
anism for obtaining a good exploration basis over the action set apriori. Indeed, the results of Hao
et al. (2021) imply that some dependence on the size of the action space in general is unavoidable
for a polynomial sample complexity in all relevant parameters (see Appendix C for further dis-
cussion). This situation motivates the investigation of additional structures between the hopeless
worst-case result and the limiting small action settings. To this end, our approach is motivated by
the recent work of Zhang (2021) on the Feel-Good Thompson Sampling (FGTS) algorithm, which
they analyze for bandits and a class of RL problems under a linear embeddability assumption using
a modified Thompson Sampling approach.

Our Contributions. With this context, our work makes the following contributions.

1. We introduce a new structural model for RL where a generalized form of Bellman rank is small,
and a further linear embeddability assumption on the Bellman error is satisfied. We show that this
setting subsumes prior works on both linear MDPs as well as finite action problems with a small
Bellman rank. Crucially, in both linear MDPs and finite action problems, the embedding features
in our definition are known apriori, while we also handle problems with an unknown linear
embedding, which constitutes a significant generalization of the prior works. As an example,
this allows us to generalize the combinatorial bandits setting to long horizon RL (Table 1).
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2. We introduce a new algorithm, Two timeScale Two Sample Thompson Sampling (TS?), which is
motivated from FGTS (Zhang, 2021). The algorithm design incorporates a careful two timescale
strategy (that is, a fast learning rate for the max operation and a slow learning rate for the min
operation) to solve an online minimax problem for estimating Bellman residuals, and a decou-
pling between roll-in and roll-out policies crucial for the online minimization of these residuals.
Both ideas appear novel relative to prior posterior sampling approaches in the literature. The use
of nested posterior sampling to solve online minimax problems might be of independent interest.

3. We show that TS? solves all problems where the generalized Bellman factorization and lin-
ear embeddability conditions hold, under additional completeness and realizability assumptions.
The guarantees scale polynomially in 1/e, horizon H, Bellman rank and linear embedding pa-
rameters, as well as the function class complexity. The result generalizes both guarantees for
linear MDPs in terms of feature dimension with no dependence on action cardinality, as well
as Bellman rank-based and representation learning guarantees to linearly embeddable infinite
action spaces. Overall, our method provides the first approach to representation learning with
continuous action spaces. We summarize the settings covered in this paper in Table 1.

We remark that the convergence rate guarantees obtained here likely have room for improvement,
given that they do not match the prior results for discrete actions. We leave this as an important
direction for future work, and comment on the potential sources of looseness in our analysis in the
later sections of the paper. We now formalize the setting before discussing our structural assump-
tions and our approach. Detailed discussion of the related works can be found in Appendix A.

2. Setting

We study RL in an episodic, finite horizon Contextual Markov Decision Process (MDP) that is pa-
rameterized as (X, A, R, D, P), where X is a state space, A is an action space, R is a distribution
over rewards, D and P are distributions over the initial context and subsequent transitions respec-
tively. An agent observes a context z' ~ D for some fixed distribution D.! At each time step
h € {1,..., H}, the agent observes the state ", chooses an action a”, observes 7" ~ R(- | x,, ay,)
and transitions to 2" ! ~ P(- | 2", a"). We assume that 2" for any h > 1 always includes the con-
text 2! to allow arbitrary dependence of the dynamics and rewards on . Following prior work (e.g.
Jiang et al., 2017), we assume that 7" € [0,1] and 3" 7" € [0,1] to capture sparse-reward set-
tings (Jiang and Agarwal, 2018). We make no assumption on the cardinality of the state and/or
action spaces, allowing both to be potentially infinite. We use 7 to denote the agent’s decision pol-
icy, which maps from X — A(.A), where A(-) represents probability distributions over a set. The
goal of learning is to discover an optimal policy 7, which is always deterministic and conveniently
defined in terms of the @, function (see e.g. Puterman, 2014; Bertsekas and Tsitsiklis, 1996)

e (a) = argmax Qi(",a), Q" a") =E[F" + max Qi (a"tt d) | 2" d", (1)
ac

ThQh(ah,ah)
where we define Q7! (z,a) = 0 for all z, a.

In this work, we focus on value-based approaches, where the learner has access to a function
class F C {X x A — [0, 1]}, and uses this function class to approximate the optimal value function
Q. Letus denote [H] := {1,2,..., H}. We make two common expressivity assumptions on F.

1. We intentionally call 2* a context and not an initial state of the MDP as we will soon make certain structural assump-
tions which depend on the context, but take expectation over the states.
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Assumption 1 (Realizability) For all h € [H], we have Q" ¢ F.

There are well-known lower bounds on the sample complexity of RL (Sekhari et al., 2021), even
under the structural assumptions we will make when realizability is not approximately satisfied. Let
us use 7¢(x) = argmax,c 4 f(z,a) and f(x) = max, f(x,a) forany f € F.

Assumption 2 (Completeness) For any function f € F andh € [H), 3 g € F suchthat g(z",a") =
T f(eh,a) == Bl + f(a, my (o) | 2, o]

The completeness assumption is not essential information-theoretically and OLIVE (Jiang et al.,
2017) does not require it. However, we make this assumption to facilitate scaling to infinite action
sets, which seems challenging without completeness, as we discuss later. We now present the main
structural conditions we impose on the environment, and motivate them with some examples.

3. Structural Conditions

In this section, we present the two main structural conditions, namely generalized Bellman rank and
linear embeddability. We define the Bellman residual of f € F using another g € F as:

Mg, f,2",a") = g(a",a") = Tf(a",a"). 0)
We now state a generalized Bellman error decomposition for contextual setups.

Assumption 3 (Generalized Bellman decomposition) We assume that for all f, f' € F, and h €
[H), there exist (unknown) functions u", )"~ and an inner product (-, -) such that for any starting
state t* € X:

Eph o & (f fr2" mp(2)) = ("1 2h), a" (F,2)).
We assume that sup sc r y1cx |u(f,2Y)|2 < Bi.

Notice that both factors depend on 2!, and a similar definition is recently considered in Foster
et al. (2021) to cover contextual RL setups (Abbasi-Yadkori and Neu, 2014; Modi et al., 2018).
The technical treatment of contextual dependency requires a conversion of RL problems into online
learning, as in Foster et al. (2021) and in this paper. Techniques used by other earlier works on
decomposition of average Bellman error cannot handle such a dependency. This definition allows
mixtures of MDPs with a small Bellman rank for each context x!, without any explicit scaling with
the number of contexts in our results. We now make an effective dimension assumption on ¢, u”
instead of requiring them to be finite dimensional like Jiang et al. (2017).

Definition 1 (Effective Bellman rank) Given any probability measure p on F. Let

2 (p. ) = Epp(f,2") @ 01 (f "), KM(3) = sup trace (" (p,a") + A2 (pah))

p,a

where & is the vector outer product. Ye > 0, define the effective Bellman rank of the MDP as

br(e) = ébrh_l(e), b~ (e) = inf {Kh_l()\) KM < 62} :
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When dim(y"~!) = dim(u") = d, then K"(\) < d for all A > 0 so that br(0) < dH.
This might appear a factor of H larger than the Bellman rank, but note that we aggregate over the
horizon, while taking a supremum like Jiang et al. (2017) simply incurs that factor in the sample
complexity analysis instead. More generally, the following result gives the behavior of br(e) under
typical spectral decay assumptions on %",

Proposition 2 (Rank bounds under spectral decay) Suppose that ||¢(f,z')|| < 1 forall f € F,
x! € X. Let \;(A) denote the iy, largest eigenvalue of a psd matrix A. Suppose we have:

e Geometric decay: if Jo € (0,1): sup \(ZP(p,2!)) < o, thenbr(e) < H+2H-W.
h,p,x!

a/1—
e Polynomial decay: if 3 € (0,1), sup trace((X"(p,z'))?) < Ry, then br(e) < H - (%) "
h.px!

We provide a proof of Proposition 2 in Appendix E. Jin et al. (2021) study a related log-determinant
based effective dimension for Bellman rank, but this definition is more natural in our analysis.
While Assumption 3 and Definition 1 facilitate scaling to infinite dimensional factorizations
with a low intrinsic dimension, this is still not sufficient to succeed in problems with large action
spaces due to the existing lower bounds on learning under sparse transitions (see Hao et al. (2021)
and Appendix C). We now introduce the second structural condition, inspired by the recent work
of Zhang (2021) on contextual bandits and RL with deterministic dynamics, to handle this issue.

Assumption 4 (Linearly embeddable Bellman error) For all f € F, h € [H|, 2" € X and
al € A, there exist (unknown) functions w", ¢" and an inner product (-, -) such that

ENf, fra" a") = (W"(f, "), ¢" (2", a")).
We assume that sup ;e z yh e w"(f, 2") < Ba.

Note that the function w" is allowed to depend on z", which makes this assumption significantly
weaker than embedding Bellman errors in a fixed feature space. For instance, suppose |A| = K.
Then we can always define ¢(z", a") = e,n € R to be the indicator of the action a’ and
wh(f,z") = (f(z",a1),..., f(z", ax)) to satisfy Assumption 4. This shows that all finite ac-
tion problems satisfy this assumption, meaning that we strictly subsume prior V-type factoriza-
tions (Jiang et al., 2017; Du et al., 2019). In linear MDPs, w"(f,z") only depends on f and
#" (2", a") are the features defining the transition dynamics (Jin et al., 2020). Similar to Assump-
tion 3, we allow the embeddings w”, ¢ to have a small effective dimension.

Definition 3 (Effective Embedding Dimension) Given any probability measure p on F, define

4D, ) = BfpBamr, (00" (¢, 0) & 6" (2,0), K"(N) = suptrace (£ (p,2) + A1) 7S (p, ) ).

p7x

For any € > 0, define the effective embedding dimension of as

H
de(e) = };dch(e), where dc'(e) = )1\1;% {Kh()\) MK < 62}.
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The definition of K" (\) measures the (approximate) condition number of the covariance for the
worst distribution p. If dim(¢") = d, then K(\) < d. In this case, we get dc(0) < dH. For
infinite dimensional ¢", we obtain bounds similar to Proposition 2.

Comparison with Bellman-Eluder dimension (Jin et al., 2021). Jin et al. (2021) present an
alternative (J-type Bellman rank and its distributional generalization based on the Eluder dimen-
sion (Russo and Van Roy, 2013). However, both Eluder dimension based results (Wang et al., 2020;
Feng et al., 2021) and the Q-type Bellman-Eluder dimension do not capture all finite action, non-
linear contextual bandit problems with a realizable reward (see Appendix B). Our setup captures
this setting, just like the V-type Bellman rank of Jiang et al. (2017), but does not include all prob-
lems with a small Q-type Bellman rank. The most prominent example of linear MDP with infinite
actions covered by the GOLF algorithm of Jin et al. (2021) is also captured by our assumptions.

So far, we have explained how both the settings of a bounded Bellman rank with a finite action
set, as well as linear MDPs with infinite actions satisfy both of our assumptions with good bounds
on br(e) and dc(e). Next we discuss some examples beyond these where our assumptions hold
and which go beyond either of these two known special cases. For the examples, we assume that
the underlying MDP has low-rank transition dynamics (Jiang et al., 2017; Jin et al., 2020) so that
T f(z,a) = (wg,¥(x,a)) for all functions f : X x A — [0, 1] with ¢(z, a) being the state-action
features which factorize the dynamics. For such problems, Assumption 3 always holds (Jiang et al.,
2017) and Assumption 4 is equivalent to checking that f(x, a) is linearly embeddable.

Example 1 (Linear embedding of combinatorial actions) Many recommendation settings consist
of combinatorial action spaces such as lists, rankings and page layouts. While these problems are
intractable in the worst-case, a line of work originating in combinatorial bandits (Cesa-Bianchi
and Lugosi, 2012) assumes linear decomposition of rewards for tractability. For concreteness, let
us consider a ranking scenario where the system observes some state features x depending on the
current user state and any other side information, and wants to choose a ranking a of L items
ai,...,ar froma base set Q, with |Q)| = K. We observe that |A| = (IL() - L! in this example, which
grows as O(K¥). Hence the sample complexity of direct exploration over rankings is O(K™).

Mirroring the setup from combinatorial bandits and its contextual generalization (Swaminathan
etal, 2017), Ie et al. (2019) propose the SlateQ model where the ), function takes the form:

Q*(z,a) = ZP(a|x, a)g(z, a). 3)
aca
Here P(alx, ) is the probability of a user (with features x) choosing the item « when the ranking a
is presented, and g(x, o) is an unknown value of recommending the item o in state x to the user. This
assumption is motivated from typical approaches in the user-modeling literature in recommendation
systems, and effectively posits that the QQ-value of a ranking in a state depends on the unknown
values of the base items in that ranking, weighted by a user interaction model P.

The user model, which encodes the likelihood of the user choosing a particular item in a rank-
ing is often estimated separately from the RL task using a click probability model, or a cascade
model (see e.g. le et al., 2019, for a discussion). In such scenarios, we can define a class F by
parameterizing the function g, and obtain linear embedding of Bellman residuals whenever the
MDP also has low-rank dynamics in some features 1, using ¢(x,a) = (P(- | z,a),¢(x,a)) as
the concatenation of the user model with dynamics features. Here 1)(x,a) intuitively encodes the
information needed to describe how the state x of a user evolves across interactions, which could
be low-dimensional, for instance, if there is a set of representative user types.
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Algorithm 1 Two timeScale Two Sample Thompson Sampling (TS?)
Require: Function class F, prior pg € A(F), learning rates 7, v and optimism coefficient \.

1: Set Sy = 0.
2: fort=1,...,T do
3:  Observe 2} ~ D and draw h; ~ {1,..., H} uniformly at random.

4 Define ;(g]f) = p(glf. Si—1) o polg) exp(—y Y421 Al=(g, £)?).> Inner loop TS update

5. Define L'(f) = nAl(f, f)z—&-% InEyq, 1) [exp(—wA?(g, 1)?)| > Likelihood function

6:  Define pi(f) = p(fISi1) o po(f)exp(Tiy(Af(xl) — LP=(f))) as the posterior.
> Outer loop Optimistic TS update

7:  Draw fi, f{ ~ p; independently from the posterior. Let m, = =y, and m, = = -
> Two independent samples f;, f; from posterior

8: Play iteration ¢ using m; for h = 1,..., hy — 1 and 7} for h; onwards.

9:  Update S, = S, U {z], al,rl 21} for h = h,.

10: end for

11: return (mq,...,77).

Notably, these choices lead to a linear embedding dimension which grows as K. In many appli-
cations, the position of an item in the ranking is a dominant effect, in which case we can consider
« to consist of an item-position tuple, leading to an K L-dimensional factorization. In either case,
this yields an exponential saving in the sample complexity compared with direct exploration in the
ranking space, mirroring prior results (Cesa-Bianchi and Lugosi, 2012; Swaminathan et al., 2017;
le et al., 2019), which either do not consider exploration or work in simpler bandit settings. We
are not aware of other existing approaches that can handle rich observation RL and combinatorial
action spaces simultaneously.

In Appendix D, we give another example of using a basis expansion in the action space, where
Assumption 4 holds in a natural manner. We now proceed to describe our algorithm.

4. The Two timeScale Two Sample Thompson Sampling algorithm

Having presented our structural conditions, we now present our main algorithm in this section,
which is based on Thompson Sampling (Thompson, 1933) and its FGTS adaptation in Zhang
(2021). To define the algorithm, we need some additional notation. At any round ¢ of the algo-

rithm, using the observed tuple (], al, r}, z11), we define

Al(g, f) = gla},al) —rit — fath), (4)

as a TD approximation of (g, f, 2}, a}'). The algorithm is presented in Algorithm 1.

At a high-level, the algorithm performs standard Thompson Sampling updates to the posterior
given the observations, with three modifications. First is that we incorporate an optimistic bias in
the distribution p; over f (Line 6), similar to the FGTS approach. The second difference arises
from the challenges in estimating the Bellman error, while the third is in how we sample from the
posterior to obtain the agent’s policy at each time. We now explain the latter two issues in detail.
Inner loop to estimate Bellman error. Note that we would ideally define the likelihood function
as E(f, f,x,ms(x))? for any z, but this requires a conditional expectation over the sampling of the
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next state 2’ ~ P(- | z,ms(x)). Replacing the expectation with a single random sample suffers
from bias due to the double sampling issue (Antos et al., 2008), which arises from the non-linearity
of squared loss inside the expectation. An ideal solution to this, following Antos et al. (2008) is to
define the cumulative likelihood as:

t
ZA? (f, f)? —mmZA (g9, 1) (5)

However, doing exact minimization over g creates instability in the online learning analysis of the
distributions p;. To ameliorate this, we instead replace the optimization over g with sampling from
an appropriate distribution conditioned on f (Line 4). This distribution favors functions g which
approximately minimize Zi,:l Agé (g, f)?. We then form a surrogate for the ideal likelihood of (5)
for each round ¢ in Line 5, where the second term acts as a soft minimization over g, given f.

Two samples to decouple roll-in and roll-out Using the likelihood function, it is straightforward
to define a Thompson sampling distribution p; over f € F. Our definition in Line 6 incorporates
the optimistic term as well, giving higher weight to functions f that predict large values in the initial
step. This resembles both the design of FGTS (Zhang, 2021) as well as OLIVE (Jiang et al., 2017).
At this point, a typical TS approach would draw f; ~ p; and act according to the resulting greedy
policy. Doing so, however, creates a mismatch between the likelihood function we use to evaluate
ft and the guarantees we need on it for learning. This issue is most easily seen if we imagine the
distribution p; to be fixed across rounds (which is a reasonable intuition for a stable online learning
algorithm). Then the likelihood at round ¢ contains samples collected at prior rounds, when we
drew fs ~ p independently of f; for s < t. Thus we expect the likelihood of f to approach
EfonpE e arymr, [ECf5 ] 2", a™)?]. However, when we choose actions according to f;, we require

Exmﬂft[ (ft, fi, 2", 7, (21))?] to be small.

Jiang et al. (2017) address the distributional mismatch over x™ using Bellman factorization,
while the discrepancy between a* = my, and ah = T, (z") is addressed in OLIVE by a one-
step uniform exploration over a finite action space, which is also adopted by subsequent works. In
this paper, we replace this one-step uniform exploration by a second, independent sample from the
posterior. Under the linear embedding assumption, this allows us to perform one-step exploration
in infinite action spaces without any knowledge of the embedding features. One main insight of this
work is to demonstrate the effectiveness of such a two sample strategy (Line 8). Specifically, we
execute 7, for the first h; time steps, and then complete the roll-out using 7} with h; € [H]| chosen
uniformly, and we use only the samples from step h; in our likelihood at time ¢. The decoupling
of the two samples is crucial to our analysis, although it will be interesting to investigate whether a
single sample strategy can be analyzed using a different approach.

h

5. Main Results

In this section, we present our main sample complexity guarantee for TS3. To do so, we need to
introduce some measures of the complexity of our value function class F, which we do next.

Definition 4 For any f € F, we define the set F(e, f) = {g € F : sup, . EM(g, fi2,a)| < €}
of functions that have a small Bellman error with f for all x,a. Further assume that F has an Ly
cover fi,...,fn € F for N = N(e), so thatVf € F, min;sup, , |f(x,a) — fi(z,a)| < e Then
we define r(€) = sup se x — Inpo(F (e, f)) and r'(€) = In N (€) , where pg € A(F) is the prior.
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If F is finite with | F| = N, then we can choose pg to be uniform over F to get x(e) = £’ (€) =
In N. We state our guarantee in terms of the regret of the learned policies with respect to the optimal
policy m, (1), that we define for a greedy policy 7 with some f € F as:

H
Regret(f,z') = R(my,2') — R(ms,2'), where R(m, z') = E(z,a,)r|a! Z rh
h=1

The following result gives our main sample complexity bound for TS3.

Theorem 5 Under Assumptions 1-4, suppose we run TS® (Alg. 1) with parameters v = 0.1 and
n < c¢/(k(€) + K'(€) + InT) for a universal constant c. Then choosing any e = O(1/T), we have

T
E ZRegret(ft,x%) =0

t=1

<’W FAT 4+ é(A/n)T> ,

where €(\/n) = inf,~0 [8(A/n)dc(e2) Hp? + 2uHea By + ptbr(er) + e HB1 .

Note that the bound above is not a bound on the online regret of TS?, since the policy we execute
at round ¢ is not 7, but a mixture of 7; and 7} (line 8 of Algorithm 1). However, the bound implies
a PAC guarantee, when the contexts are i.i.d., as we can choose a policy 7y, . . ., 7 uniformly, and
use a standard online-to-batch conversion (Cesa-Bianchi et al., 2004) to obtain a regret bound for
the returned policy.

To interpret the general guarantee of Theorem 5, we now consider some special cases where the
parameters can be set optimally to simplify our result. We start with the well-studied setting of a
finite function class, with Bellman rank and linear embedding dimensions being finite as well.

Corollary 6 (Finite dimensional embeddings and finite F) Under conditions of Theorem 5, as-
sume further that |F| = N < oo, br(0) < dy and dc(0) < da. Then TS? with py as uniform on F,
v =0.1,1n=01/In(NT)) and X\ = T3/*H (d3dy)~"/*(In(NT))'/? returns a policy with an
average regret at most O (H d§/4 dy In(NT) T_1/4).

The bound has a favorable dependence on all the complexity parameters, with mild scaling
in the horizon, dimensions and function class complexity. However, the average regret decays at
a rate of 7'/4. In the case of a small Bellman rank and finite actions, our sample complexity is
O (H*(dyIn(NT))? | Al e *), which is suboptimal and slower than that of OLIVE in € dependence.
In the setting of a linear MDP, where di = ds = d, the scaling with dimension is ER

The main source of the suboptimality in € is that our analysis relies on a decoupling argument
that leverages Assumption 4 with an extra Cauchy-Schwarz inequality than in the typical analysis.
The importance weighting over a uniform distribution in OLIVE does not lose an exponent in this
step, and this can be extended to infinite action setting if the embedding feature ¢"(-,-) is known
(see Section 6). However, with unknown ¢"(-,-), improving the analysis is an open direction for
future work. Note however that all prior works that studied both finite action non-linear and infinite
action (generalized) linear settings employ different algorithms for the two cases (Jin et al., 2021;
Du et al., 2021; Foster et al., 2021), unlike our unified approach.
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As a first example of our general result, we can instantiate the setting of Example 1, where our
sample complexity only scales with O(K L) instead of O(K ). In the setting of Example 2, we
only depend on the size of the (potentially unknown) basis.

Under the infinite-dimensional examples of Proposition 2, we note that the geometric case is
almost identical to the finite dimensional setting up to log factors, since the effective rank only
scales as log(1/€), so that we can always make the additional terms coming from € to be lower
order. The polynomial case does yield qualitatively different results, which we show next.

Corollary 7 (Polynomial spectral decay and finite 7) Under conditions of Theorem 5, assume
further that | F| = N < 0o, By = By = B and br(¢),dc(e) < H dye29/1=9 for some q € (0, 1).
Then TS® with pg as uniform on F, v = 1/36, along with appropriate settings of n and X returns a
policy with an average regret at most O (H(ln(NT))(lfq)2/2d<37q)(lfq>/4 T7(17q>2/4Bq(37q)/2).

The result matches that of Corollary 6 for ¢ = 0 corresponding to the case of finite dimensions.
More generally, we allow scaling to infinite dimensional states and actions, as long as the Bellman
rank and linear embedding assumptions have a low intrinsic dimension.

Our results have a qualitatively similar flavor to those of Zhang (2021), but for two important
differences. Zhang (2021) do not need to account for the residual variance term in the likelihood
due to the deterministic dynamics assumption, and hence they do not incur the loss in rates that
we suffer. They also do not work under the low Bellman rank assumption on the problem, which
significantly limits the class of problems where their guarantees hold.

We finally illustrate the benefits of our contextual formulation by studying mixtures of MDPs
with a small Bellman rank.

Corollary 8 (Mixture of low-rank MDPs) Consider a collection of M different MDPs {M;}M,
over the same state and action space, each with a Bellman rank at most d. Let 2! ~ D where
D is uniform over [M)], with the subsequent transitions happening according M;. Suppose |F| =
N. Then under the parameter settings of Corollary 6, TS® returns a policy with a regret at most

@ <H dy* \/dy In(NT) T—1/4>.

Comparing Corollaries 8 and 6, we observe that the mixture setting poses no extra challenge.
In contrast, the mixture problem has a Bellman rank scaling with M, as we need to concatenate the
respective embeddings for each M, causing a naive application of OLIVE to incur an extra M?
term in the sample complexity. We believe the difference arises since the average Bellman error of
OLIVE mixes samples across different contexts, while we use the squared Bellman error which can
leverage the structure for individual transitions more effectively. Of course, this comes at the price
of an additional completeness assumption.

6. Experimental design for known linear embedding features

In this section, we study a special case of our setting where the features ¢(z, a) in Assumption 4
are known, and finite dimensional, with ¢(z,a) € R% . For this setting, we consider an adaptation
of TS? which replaces the two sample strategy with experimental design in the feature space. The
algorithm is presented in Algorithm 2.
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Algorithm 2 Two timeScale Thompson Sampling with Design (TS?-D)
Require: Function class F, prior py € A(F), learning rates 7, v and optimism coefficient A.

1: Set Sy = 0.
2: fort=1,...,T do
3. Observe z; ~ D and draw h; ~ {1,..., H} uniformly at random.

4: Define g;(g|f) = p(glf, Se-1) < po(g) exp(—y S_0_} Al=(g, f)?).> Inner loop TS update
s:  Define LI'(f) = nAl(f, f)2+% mEg qc1f) exp(—yAl (g, f)2)] .> Likelihood function

6 Define pu(f) = p(f1S1) o po(f)exp(SIE M (al) — Lie(f) as the posterior.
> Outer loop Optimistic TS update

7. Draw f; ~ p; and let m; = 7y,. Execute al = my(zP) forh =1,... hy — 1to observe x

Let pr € A(A) b: a G-optimal design for ¢(z", a),e4 (Equation 6). Draw aj,, ~ p and

t+1

AR

I
i

observe rft and x > G-optimal design
9:  Update S; = S;_1 U {a],al,rP, a1} for h = hy.
10: end for
11: return (7q,...,77).

Before we delve into the pseudocode, recall that the G-optimal design, given a set of vectors
{¢(x,a)}aea is adistribution p(z) € A(A) over the action space, given by (see e.g. Fedorov, 2013;
Kiefer and Wolfowitz, 1960).

p(x) = argminmax [|¢(x, a)[[3;, -1 where  Tu(p) = Eanpd(@,a)d(z,a) . (6)
pEA(A) acA

g(z,p)

If ¥, (p) is not full rank, then we can replace ¥, (p) ! by the corresponding pseudo-inverse. Fur-
thermore, by the Kiefer-Wolfowitz theorem (Kiefer and Wolfowitz, 1960), it is known that the
design p(x) satisfies g(z, p(x)) = rank({¢(x,a) : a € A}) < ds. The criterion g(p) corresponds
to worst prediction variance at some action a, of an ordinary least squares estimator given samples
drawn from p(x). For intuition in the finite action setting, where ¢(x, a) = eq, p(z) corresponds to
a uniform distribution over the action set and ds = |.A| is the variance of importance sampling.

With this context, TS2-D is a relatively natural adaptation of TS?, when ¢(z,a) is a known
feature map. Concretely, we no longer use the two sample scheme. Instead, we only draw one
function f; ~ p; in Line 7 and execute the first h; — 1 actions using the corresponding greedy
policy. Having observed x?t, we now choose the action at time ¢ using a (G-optimal design in
the feature space for this particular state in Line 8. That is, the action sampling distribution p;
corresponds to p(m?t) from Equation 6, and the design is done individually at each state. We then
observe the reward and next transition for this action, which gets recorded into our dataset as before.

Theorem 9 Under Assumptions 1-4, suppose further that dc(0) = do and the features ¢ (x, a) are
known. Suppose we run TS*-D (Alg. 2) with v = 0.1 and n < ¢/(k(€) + K'(€) + InT) for some

11
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constant c. Then for any e = O(1/T), €1 > 0 and \™' = v/T min {0.5, br(e;)do H}, we have

T
E ) Regret(fi,z;) = O <e1H31 4 (k(€) + K(€) + InT) bf(ﬂTMzH) .
t=1

Thus, in the setting of Corollary 6, we immediately get a 1/+/7 rate in the above bound, leading
to a O(dyda H In?(NT)/€?) sample complexity. This bound is superior or comparable to that for
OLIVE in all the problem parameters, except for an extra dependency on In N. This extra depen-
dency is caused by the two timescale learning rates (discrepancy between 7 and -y) in the online
minimax game analysis, which might be possible to improve in future work. For tabular problems
with S states and A actions, where d; = S, do = AandIn N = @(SAH ), the bounds for TS2-D
as well as OLIVE scale as S A2, with an additional H? term in OLIV E compared to the bound of
TS2-D. For linear MDPs with finite dimensional features, d; = dy = d and In N = O(d), so that
our bound scales as O(d4), which is a factor of d worse relative to LSVI-UCB (Jin et al., 2020), and
a factor of d? worse relatively to (Zanette et al., 2020b). One reason for the suboptimality in d is due
to our choice of V-type Bellman rank instead of ()-type Bellman rank to allow non-linear scenarios.
For the nicer setting of ()-type Bellman rank, an analysis of a single sample based Thompson sam-
pling is recently carried out in Dann et al. (2021), leading to a result that matches that of (Zanette
et al., 2020b) for linear MDPs. Another reason for the suboptimality is because our MDP model
allows long range contextual dependency on x}, which is not allowed in most prior works. If we
remove this dependency by considering only non-contextual MDP models, then we can replace the
online regret analysis of this paper by the uniform convergence analysis of (Dann et al., 2021). Do-
ing so avoids the slow-fast learning rate issue in our online minimax analysis and implies a sample
complexity of O(dydaH In(NT)/e?). However, the technique cannot be used to analyze double-
posterior sampling, and thus we do not consider it in this paper. Note that the recent work of Foster
et al. (2021) also analyzes design-based approaches for model based RL, but both their problem
setting and algorithmic details differ significantly from ours. The result of Theorem 9 demonstrates
that the suboptimality in € in our more general result of Theorem 5 stems purely from the harder
setting of unknown linear embedding features. We leave the development of corresponding results
for spectral decay and combinatorial action settings to the reader.

In terms of analysis, the only change is that we are able to do different handling of a decoupling
step using the property of optimal design in the analysis of Theorem 9, and the error terms in
the linear embedding can be ignored due to the finite dimensional assumption. The rest of our
arguments stay the same, and we provide a proof in Appendix I. We now give an overview of our
analysis techniques.

7. Proof sketch of Theorem 5

In this section, we provide the analysis for our main result on the sample complexity of TS?. To
begin, We recall a standard result on the online regret of any value-based RL algorithm.

Proposition 10 (Jiang et al. (2017)) Given any f € F and z' € X1, we have

H
Regret(f,xl) = Z E(mh,ah)Nmelgh(fa /5 :Eha ah) - Af(:El), where Af(xl) = f(:El) - }((xl)
h=1

12
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The proposition is a consequence of a simple telescoping argument. The RHS looks related
to the likelihood function in our update (line 6 in Algorithm 1), but there are a few important
differences. First, we do not have access to the Bellman error, which is instead approximated
through the difference of the TD term A, ( f, f)? and the residual variance measured using A; (g, f)2.
If the posterior of g concentrates around the Bellman projection of f onto F, then we can expect
our likelihood to resemble (£, f, 2" a")2. The presence of a squared term instead of the linear
dependence in Proposition 10 is typical to algorithms which use completeness (Jin et al., 2021).
However, there are two more significant issues. On the RHS of Proposition 10, the function f whose
Bellman error is measured is identical to the one whose greedy policy picks all the actions. On the
other hand, in our algorithm, we control the regression loss of a function f that is different from
the roll-in policy. For non-linear functions f, prior works (Jiang et al., 2017; Agarwal et al., 2020b)
control this change in measure over the states using the low-rank property, while the distribution of
the final action is corrected by importance weighting over the finite action set. For linear functions,
change of measure over both z” and a” can be done using a similar use of the low-rank property,
without explicit weighting over the actions (Jin et al., 2020; Du et al., 2021; Jin et al., 2021).

In our case, we adopt a slightly different approach to analyze the Bellman error term in Propo-
sition 10. We first apply the low-rank property to decouple the roll-in policy from the f being
evaluated. We subsequently use the linear embeddability assumption to decouple the action selec-
tion at step h. This part of our analysis resembles that of (Zhang, 2021) for the contextual bandit
setting, which is the reason we adopt the name decoupling coefficient as their work, for the measure
of the linear embeddability dimension. We call these two results decoupling lemmas, which can be
found in Appendix G. Using the two decoupling coefficients, we can obtain the following result.

Proposition 11 (Decoupling) For anyt > 1, we have
AE Regret(f;, ;) <E Efs,_, —AAf(z}) 4 0.50EM (f, f, xt ,at ) } + Ae(N/n),

where €(\/n) = inf 50 [8(A/n)dc(e2) Hp? + 2uHea By + ptbr(er) + e HB1 .

For optimal parameter settings, the bound scales with \/ dc(e2) EE F1S:-1 E(f, [, ,ai”)Q, and

this square root is responsible for our O(e~*) rate. In contrast with Proposition 10, Proposition 11
measures the squared Bellman error of functions f according to the states =/ and actions a? ob-
served during the algorithm’s execution, and which we can hope to control if the TS? updates
converge to their respective optima for both the time scales. The remainder of our analysis focuses
on this online learning component, details of which are presented in Appendix H. We now give our
main result to control the regret of the online learning process.

Proposition 12 (Outer loop convergence) Assume that v = 0.1 and < 0.01. Then we have

T T
=Y EEps, AASf(x) + (1 = 6n)e POy TRE s, EM(f, £y ap)’
t=1 t=1
T
<n(1 + 61)e'2n1+6m ZEEf,g\St EM(g, fratt a2 4+ NeT + dnTe® + k(e) + 1.5X\T.
t=1
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We prove Proposition 12 in Appendix H.2. The LHS of the proposition qualitatively resembles
the RHS of Propositoin 11. Indeed, we subsequently set the constants so that they match. This
means that the regret in Proposition 10 can be further upper bounded by the RHS of Proposition 12.
The first term in the bound is intuitive. It bounds the Bellman residual of f in terms of quality of the
functions g ~ p(- | f, S;_1) in capturing the Bellman operator applied to f. If the inner loop of TS?
converges at a reasonable rate, we expect this error to be small by the completeness assumption.
The next three terms on the RHS are a bound on the log-partition function in our outer loop updates,
which are controlled by using typical potential function arguments in the analysis of multiplicative
updates. The final term can be controlled by appropriate setting of the optimism parameter .

We now give the main bound on the convergence of our inner updates to control the first term
on the RHS of Proposition 12.

Proposition 13 Assume that v = 0.1. Given any absolute constant ¢y > 0, there exists an absolute
constant cy such that when con(r(e) + £'(€) +InT) < 0.5¢1y < 0.1, then

T

T
E ZEf,g‘St_IShf(g, fralt a2 <O(eT + k(e) + '(e) + 1) + 20172E \EMe(f, £, al)?.
t=1 t=1

The proof of Proposition 13 is rather long and technical. For the reader’s convenience, we first
prove a simpler result which yields a worse O(¢~®) sample complexity in Appendix H.3. We then
show how to improve the bound to obtain Proposition 13 in Appendix H.4.

With these results, we set both ¢; and 7 sufficiently small so that (1 — 677) exp(—12(1 — 67)) —
2(1 + Gn)clfyel2"(1+6”) > 0.5 along with the stated values of ¢ and . Plugging these into the
bounds of our intermediate results and simplifying gives the conclusion of Theorem 5. Finally, we
summarize the proof of Corollary 6 and defer that of Corollary 7 to Appendix F.

Proof [Proof of Corollary 6] We set the parameters as follows. Since ¢; = €5 = 0, we minimize
over p to get u = (din/(deNH ))1/ 3. We now optimize over the choice of 7, for which the leading
order terms are 77 In N/ + T&(\/n). Then optimizing for A by including the In N/ term yields
the stated guarantee. |

8. Conclusion and Discussion

In this paper, we combine the framework of low Bellman rank with a linear embedding assumption
over the action space to introduce a new class of rich problems which encompasses all settings
with finite actions and linear function approximation, and enables new ones such as combinatorial
action spaces. We show that TS? solves this class of problems under the usual completeness and
realizability assumptions on the value function class. We believe that the identification of this linear
embedding structure over actions as the key enabler of one-step exploration in the action space has
the potential to apply to broader algorithmic approaches beyond TS?.

The most immediate direction for future work is to improve our sample complexity results by
sharpening our decoupling results. Understanding if similar results are attainable without complete-
ness is another challenge. Finally, it would be interesting to understand what structures beyond
linear embeddability afford sample-efficiency, and study applications of these ideas to continuous
control problems.
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Appendix A. Related Work

Settings for sample-efficient RL. There is substantial recent literature (Jiang et al., 2017; Sun
et al., 2019; Jin et al., 2020; Yang and Wang, 2020; Du et al., 2019, 2021; Jin et al., 2021; Foster
et al., 2021) on structural conditions that enable sample-efficient RL. Of these, the Bellman rank
framework and its recent generalization in the Bilinear classes model remain the broadest known
frameworks for which provably sample-efficient methods are known. While Bellman rank itself
makes no assumptions on the complexity of the action space (Jiang et al. (2017) show small Bell-
man rank for LQRs), the algorithm OLIVE developed for this setting crucially relies on importance
sampling over a discrete action set. Ideas from these works have further been developed to a rep-
resentation learning setting, where the transition dynamics of the MDP are linear in some unknown
features and the agent learns this map, given a class of candidate features (Agarwal et al., 2020b;
Uehara et al., 2021; Modi et al., 2021), which captures rich non-linear function approximation in the
original state and action. Jin et al. (2021) developed the Bellman-Eluder dimension notion to better
capture infinite action sets using a notion they call Q-type Bellman rank, while the original version
of Jiang et al. (2017) is termed the V-type Bellman rank. Note, however, that the GOLF algorithm
of Jin et al. (2021) for problems with a small Q)-type Bellman rank, which scales to infinite action
spaces, cannot be used for feature learning and does not capture all contextual bandit problems (see
Section B for a lower bound), showing the limitations of this approach in terms of the non-linearity
it permits. For V-type Bellman-Eluder dimension, Jin et al. (2021) also rely on uniform exploration
over actions similar to OLIVE. The techniques developed here do scale to feature learning, cap-
ture contextual bandits fully and apply to infinite action scenarios satisfying the linear embedding
assumption. At the same time, our assumptions do not capture all problems with a small Q-type
Bellman rank, so there are problems that GOLF can handle which we do not. That said, perhaps the
most prominent example for GOLF in the infinite action setting is that of linear MDPs, where the
linear embedding assumption made here holds.

Continuous control. Large action spaces are the standard framing in continuous control, where
the action is typically a vector in R for some control input dimension d. While there has been a
number of recent results at the intersection of learning and control (see e.g. Dean et al., 2020; Mania
et al., 2019; Agarwal et al., 2019; Simchowitz and Foster, 2020), a large body of work typically
focuses on highly structured settings such as the Linear Quadratic Regulator (LQR), where online
exploration is is straightforward due to the presence of a Gaussian noise in the dynamics. More
recent results (Kakade et al., 2020; Mania et al., 2020) do combine online control and exploration,
they typically focus on model-based settings and still rely on access to good features. We note
that Mhammedi et al. (2020) carry out feature learning for continuous control, but their setting does
not have a small Bellman rank and hence is not admissible in our conditions either.

Posteroior sampling. Posterior sampling methods for RL, motivated by Thompson sampling Thomp-
son (1933), have been extensively developed and analyzed in terms of their expected regret under
a Bayesian prior by many authors (see e.g. Osband et al., 2013; Russo et al., 2017; Osband et al.,
2016) and are often popular as they offer a simple implementation heuristic through approximation
by ensembles trained on random subsets of data. Worst-case analysis of TS in RL settings has also
been done for both tabular (Russo, 2019; Agrawal and Jia, 2017) and linear (Zanette et al., 2020a)
settings. Our work is most closely related to the recent Feel-Good Thompson Sampling strategy
proposed and analyzed in (Zhang, 2021), primarily for bandits but also for RL problems with deter-
ministic dynamics. They study problems with a similiar linear embeddability assumption, but the
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absence of any further structure like a small Bellman rank precludes their techniques for application
to general stochastic dynamics. We also observe that FGTS retains the significant optimistic com-
ponent of other exploration techniques like LSVI-UCB (Jin et al., 2020) and OLIVE (Jiang et al.,
2017), which partly explains its success in worst-case settings. On the other hand, the approach has
the remarkable property of working for both linear bandits and non-linear bandits with finite action
sets with an identical algorithm and analysis, and we extend that benefit to RL in this work.
Minimax objectives in RL. FGTS algorithm uses a likelihood term for Thompson Sampling based
on the TD error, which is well-known to have a bias in estimating the Bellman error (Antos et al.,
2008; Sutton and Barto, 1998) for stochastic dynamics. The usual technique of removing the resid-
ual variance from Antos et al. (2008) creates a minimax objective, which we also use in this paper.
Other minimax formulations (Dai et al., 2018) to remove this bias are also possible in general, but
we find that the one from Antos et al. (2008) is the most natural under our structural assumptions.
We also note that approach of keeping two timescales (Borkar, 2009) used here has been used pre-
viously in offline RL for TD learning methods (Sutton et al., 2009), but its online analysis in TS
appears novel, and different from the analysis in Dann et al. (2021), which cannot handle general
nonlinear feature learning considered here.

Appendix B. Lower bound for ()-type Bellman rank

We now instantiate a contextual bandit problem where the realizability assumption holds, but the
Q-type Bellman rank grows linearly in the number of contexts. The construction is due to Dann
(2018), but has not appeared in the literature. Note that the V-type Bellman rank of Jiang et al.
(2017), which we further generalize in this work, is always 1 for a contextual bandit problem. The
lower bound is demonstrated using a typical hard instance for contextual bandit problems. Let us
consider a context distribution which is uniform on [N], where we have N unique contexts. We
have two actions {a1, az}. We also have |F| = N + 1 with the following structure.

ff(z,a1) = fns1(z,a1) =0, and  f*(z,a2) = fni1(z,a2) = 0.5.

Fori < N + 1, we have f;(z,a) = f*(z,a) when z # i, and f;(z,a1) = 1, fi(x,a2) = 0.5 so that
fi makes incorrect predictions on the context ¢ for action a;. Notice that the design of F also ensures
that for each context 7, there is a policy 7, (greedy wrt f*) which picks the action a9, while another
policy m; (greedy wrt f;) which picks action a;. Since this is a problem with horizon H = 1, the
Bellman error is simply equal to f(x,a)— f*(z,a) forany z, a. Let E?(f, 7) = By onrnE(f, f, 2, 0)
be the Q-type Bellman error. Then, we observe that for 1 < ¢, 5 < N:

zz~7rj —f*(x,a)] = 7"

fza 7r] =

||Mz

where 1(-) is an indicator function. Hence, we see that the Bellman error matrix contains an identity
submatrix of size N, so that its rank is at least V.

Appendix C. Connection with sparse RL

In this section, we formalize the relationship between representation learning and RL with sparsity.
Concretely, let us consider two formulations.
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P(2' | z,a) = ¢'"(z,a) " (z/), where (¢, p'") € QF, (P1)

is the standard model-based representation learning formulation for RL (Agarwal et al., 2020b;
Uehara et al., 2021). Here we consider a slightly generalized setup where the feature maps (¢, i)
are available as pairs from a joint set Q" instead of separate classes for ¢ and y, which reduces
to the more typical framing with separate classes for ¢ and 1 when we set Q" to be the cartesian
product of their respective sets. However, all existing representation learning algorithms can handle
this setup for a general Q" without any extra difficulty. Let us denote d'" = dim(¢'"), where we use
the superscript I to denote the low-rank problem P1. The second formulation is the sparse linear
MDP setup of Hao et al. (2021).

P2 | x,a) = Z ¢ (x,a)ip®(x");,  where |Z| = k < d® = dim(¢*%), (P2)
i€T
with the feature maps ¢°, 1° considered known in P2, but the index set Z is unknown. We now
show that the two problems are equivalent when d'" - |Q"| = d* and k = d!", in that any solution to
P1 can solve P2 at no additional sample cost, and vice versa.
In one direction, We define the concatenated feature map for all 2, a and z':

¢ (z,a) = ($1(x,a), pa(z,a), ..., ¢n(z,a)), where N = |Q], and
p @’y = (p (@), pa (2, .. pn (),

where ¢;, ju; refer to the i, feature maps in Q. Clearly, the assumption ¢!, u" € Q guarantees
that P(z' | z,a) = ¢*(x,a) " p® (') with dim(¢) = d'"|Q"| = d*, by construction. However,
the transitions are also sparse in the features (¢!, %), in that we can choose the d'" coordinates
of ¢, 2 which correspond to the index of (¢!, u!") in Q!". Consequently, any solution to P2
for k = d'" which uses samples that are O(poly(klog d*) can be used to solve P1 with a sample
complexity of O(poly(d'" log(d"|Q!"|)), which is considered the standard goal of the representation
learning problem P1.

In the other direction, let us say we have a solution to P1 with a sample complexity that is
O(poly(d'" log(|Q2"])). Then we given a pair of high-dimensional feature maps ¢*, 1i*, we define a
class Q" as follows:

Qfr = {(p,p) : ¢(x,0) = ¢°(x,a) 7, p(x') = p(2") 7, where J C {1,...,d*} with |T| = k}.

In words, we add features corresponding to every subset of size k from the original d* features
as a candidate representation to Q. Then |Q"| = (‘f) = O((d*)*) and each feature map in Q!
has d"" = k. Clearly the sparse linear MDP assumption in the definition of P2 (P2) implies that Q'
contains a pair (¢, u) under which the MDP is linear. Furthermore, our method for representation
learning applied to the sparse linear MDP has a sample complexity of O(poly(k log d®)).

The above reduction show that any obstacle to sparse linear MDP learning also results in a lower
bound for representation learning. In particular, the construction of Hao et al. (2021) precludes
learning sparse linear MDPs where the action set has a cardinality O(d®), so that we cannot expect

to carry out representation learning in arbitrarily large action spaces without further assumptions.
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Appendix D. Additional example satisfying Assumption 4

Example 2 (Basis expansions in action space) For continuous action problems, Asadi et al. (2021)
study the class of deep radial basis value functions, where any f € F takes the form

SN exp(—Blla — ai(w;0)])vi(x;0)
SN exp(—Blla — ai(z;0)])

where a;(x;0) are a (state and 6-dependent) basis, while v;(x;0) are some reference values at
these points. If we consider the case where the a;(x;0) are only dependent on the state x, but
fixed across 0, then this definition satisfies Assumption 4 with w(f,x) = v;(z;0) and ¢(x,a); =
exp(—Blla—ai(@)|))/SN | exp(—Blla—a;(2)|)). More generally, whenever there is a basis set of actions such
that f(x,a) = ZZ]\L L iz a)g(x, a;) for some functions oy and gy, then the assumption holds.
Such a basis can be obtained, for instance, by standard approximation techniques such as trian-
gulation in an appropriate metric or other finite element methods in the action space (Zienkiewicz
et al., 2005), as long as f is sufficiently smooth in a.

f(x,a;0) =

9

Appendix E. Proof of Proposition 2

We start by reviewing the bound on br(e) for the finite dimensional case. In this case, let {\;}¢_,
be the eigenvalues of ¥(p, z') in decreasing order, for some distribution p € A(F) and 2! € X,
where we recall that Ay > 0 since ©"(p, z!) is a covariance matrix. Then we have

d d
i
trace((X"(p, x1) + M) 712 (p, 21)) = E Iy < E 1<d.
i=1 L=l

Proof for geometric decay case. This follows effectively by reducing to the finite dimensional
case. For any positive integer n, we have

n

trace((4 () + M) 'S pa')) €t s
Choosing n = [ng] such that (1061124) = ¢2/2, we see that
2
AKR(N) < nX+ X
so that we can set A\ = €2 /2ng. With these settings, we have
2nga™0 log %
K'")) <ldng+ 5 =2ng=1+2—""%
e2(1 — ) log =

where the last equality follows from our setting of ng.
Proof for polynomial decay case. In this case, the assumption on trace guarantees that

> X <R,
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Now since ¢ € (0,1), we have

i
A+ N

trace((X"(p, z1) + M) 718 (p, b)) < Z

At A
Nl

<) L4
T A=\ T\

)

With this, we have AK"(\) < A!=9R{, so that we choose

)\0 — (GQR;q)l/(l_Q) .

A a
§Z< ) (z? >z forz < landgq € (0,1))

With this choice, we get
R? _ 1-
Kh()\O)ST;I: (6 2Rq)q/( q)‘
0

Appendix F. Proof of Corollary 7

Proof [Proof of Corollary 7] The calculations for setting the parameters in this case are a little
more tedious. We work under the assumption p > 1, which is subsequently satisfied. Then op-

o . . . . 4\ (1—a)/(1+q)

timizing the leading order terms under this assumption yields ¢; = (ﬁg) and eg =
(1-q)/(1+q)

(Aand> . Now the optimal setting of 1 = (1/(AH))(*~9/(3=49) under our assumption of

© > 1. We now set 1 as in Theorem 5 and optimize to get
=0 (T—(3—q)(1+q)/4(1n N)(1_q2+2q)/2cq—(3—q)(1+q)/4) ’

where ¢, = dgl_q)/ (144) pr4/((3-a)(1+9)) p2a/(1+4) Substituting this back into Theorem 5 completes
the proof. |

Appendix G. Proofs of decoupling results

In this section, we prove Lemma 11. This is done across two smaller lemmas which provide one
level of decoupling using the Bellman rank and another using the linear embedding. The first
lemma’s proof technique resembles the recently used “one-step back” inequalities in low-rank MDP
literature (Agarwal et al., 2020b; Uehara et al., 2021). Throughout this section, we use u ! v to denote
(u, v) even for infinite dimensional vectors with a slight abuse of notation to improve readability.

Lemma 14 (Bellman Rank Decoupling) Consider any distribution p over F. The following in-
equality holds for any €, i1 > 0.

B fpB o ahym 21 E(f5 fr 2", a")
<O OB Bt 0 [EppE? (f, 500, 7y (2))2] + €y
g'LLlEf/NpEthﬂ_f,|x1]Epr[gh(f, Fral wp(@™)?) + py e (e) + eBy.
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Proof We have

EfpBot ahyrm o1 E(f5 [ 2", a)
:EprEwthﬂxlSh(f;:rh, mr(x))
=Eropu(f,2") " (f, 2t (Assumption 3)
<\ KDY NE o (f,21) T (S0 (p, 21 + M )uh(f, 1)

E[uTv] < \/E[HUH?W] E[||v][3,-.] for psd M by Cauchy-Schwarz and Definition 1)

S\/Kh‘l(/\)Efwuh(faJ?l)T(Eprwh‘l(f’, ah)phL(f7 2t Dut(f, 2t

AR ) E g it (£, 213 (VaTb<a+Vbfora,b>0)
=/ KO N E g B oo (uh (£, 2) TORL(f, 21))2 4 (A=Y, ) B b (£, 2|

(@) , _
= \/Kh 1()‘)EprEf/Np(E(zh)~7rf/\xlgh(f’ f;xh’ﬂ-f(xh)))z + \/)‘Kh 1()‘ap)]Epr||uh(f’xl)H%

(b)
< SKT T OB f g BBy ot (EM(F, frah mp(@h)))?) 4\ AKD (N E oyl (a1, £)]3

Here (a) holds by using Assumption 3 once more to rewrite the inner product as a Bellman error,
while (b) is a consequence of Jensen’s inequality. Now we recall that

[u"(f,2")]2 < B
By taking the largest A so that A sup,, K h=1(X,p) < €2, we obtain the desired bound. |

The next decoupling lemma separates the sampling of the action a” from the function f whose
Bellman error is being evaluated by using Assumption 2, which is crucial for the analysis as ex-
plained in Section 7. Note that in this particular derivation, we reduce squared Bellman error to the
square root of a decoupled squared Bellman error, which loses rate. It may be possible to improve
this reduction by a more careful analysis in future work.

Lemma 15 (Linear Embedding Decoupling) We have for all z" € X" and probability measures
pon F and g, €2 > 0:

Eypl€(f, f32", 7y (2")?) <2/ (OB mp prpBanor,, [EM(f, [, ah)?] + 2By
SZ}LQEprJ/NpEahNﬂ.f,gh(f, £ aM)? + 2u5 1 dc" (€) 4 2¢Bs.

Proof We have

Efep [EM(f, 1" mp(2™)] = Epuy |0 (f,2") T ¢ (@", 7p ()] (Assumption 4)

< [Bpap (") T + A2 7 [Bppd e,y (@) T (5 4 AL (a8 ()
(Cauchy-Schwarz)
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where 2" is short for X" (p, ™). Therefore we have

Ejp[€"(f, fr2", mp(a™))]?
S2Es W [|EM(f, fr2", mp(2™))]] (EM(f, f; 2", mp(zh))| < 2since 7, f(x, a) € [0,1])

\/ Egp(wh(f, @) T (S + ADwh(f,20)] [Epap(h(ah, 7y (2)T (54 + A1 (ah, mp ()|

Ef~p,f/~pEah~7rf, (wh(f, ah)T(@h(ah, ah)ph(ah,ah)T + XDywh(f,z"))| Kh(X)

®

IA

2

2\/ E o g By, (M, it a2 + N (£,2) [B)] B*(Y

Ef~p,f'~pEah~7rf,(5h(f,f;osh,ah)2)] Kh (A +2\/)\Kh NE fpl[wh (f, 27)|2.
(Va+b<ya+ Vb

Here (a) holds due to the definition of K" (Definition 3). Note that
lw"(f,2")]l2 < Ba.

By taking the largest A so that Xsupp K hil(j\, p) < €2, we obtain the first desired bound. The
second bound follows by Cauchy-Schwarz inequality. |

Proof of Proposition 11. Using the two lemmas above, it is easy to establish Proposition 11.
Proof [Proof of Proposition 11] Since x} is randomly drawn from D, it is independent of f;. There-

fore we have

AE Regret(f, z;) + AEE (s, _, Afl(z}) = AE Regret(fr, z1) + AE Afl (z})
H
=A ZE E(:ﬂ:h,ah)’vﬂft‘xtlgh(fta ft7 xha ah) = AHE 5ht(fta fta Ly 70’1’5“)
h=1

<@ HBy + iy "br(er) + HIE Epjs, " (f, f,a}*, mp (o))’

<A {2u1u2HE Epis, E"(f, Fi20 a*)® + 2pa 5 " de(en) + 20 HBy + e HBy + i br(el)] -
The first equality used the independence of x; and f;. The second equality used Proposition 10. The
third equality used the fact that h; is uniformly drawn from [H]. The first inequality used Lemma 14.
The second inequality used Lemma 15. Note that the last two steps crucially use that the function

ft used to draw :ci”, f{ to draw a,’;‘t and f ~ p being evaluated are all mutually independent. Taking
w1 = pand po = n/(4 1 H), we obtain the desired result. [ |

Appendix H. Convergence of the online learning in TS?

In this section, we study the convergence of the online learning updates for the f and g functions.
To do so, it is helpful to define some additional notation.
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Define 0 = 2, and let
) =T f(al,al) — [l + fP (@)t

be the noise in the Bellman residuals. We observe that |é#(f)| < o for all t € [T], h € [H] and

f € F under our normalization assumptions. For convenience, we use ¢ to denote this upper bound

on the é7'( ) to avoid carrying constants. We also have the following observations about the noise.
For each h > 1, we also define:

(g, f) = AMg, /) — e f)?,
Sg(f) = ngp(g|f,5t_1)8f<g, f)? and

X 1 .
Zgl(f) = _; In Eng(g\f,St_ﬂ exp(—’y(sf(g, 1)) (7

Here 5;‘ (g, f) measures how well g captures the Bellman residual of f and 5?( f) measures the
quality of our posterior distribution over g in doing so. Finally Z/*(f) is a log-partition function for
the posterior. We further define the log-partition function for the posterior over f:

Z(Si) = —InEj.p, exp (Z AAf(zh) —n Y [0k (f. ) — Z?S(f)]) ,

s=1 s=1

where
Af(a') = f(z') - Qi(a").

We also introduce the following definition
. . 1 . .
Zt = Ztht = _6 lnEf|St_1 €xp (_n[(s?t (f7 f) - Ztht(f)]) )

which is the normalization factor of p(f|S:)/p(f|Si—1).

Let ¢(z) = (e* — z — 1)/z2. It is known that v(2) is an increasing function of 2. We organize
the rest of this section as follows. We begin with some basic properties of Bellman residuals, then
analyze the convergence of outer and inner updates respectively.

H.1. Properties of Bellman residuals

Lemma 16 For any f that may depend on Sy_1:
h
E it pjat ap n=nft (f) =0,
and for any constant by independent of é(f):

~h 2 2
oottt o PEL () < exp(to?/2)

The first equality follows since the conditional expectation only acts over the MDP rewards and
dynamics, which are conditionally independent of any f that even depends on S;_;. The second
bound is a consequence of the sub-Gaussian bound for bounded random variables in the proof of
Hoeffding’s inequality.
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Lemma 17 Given any g, f. We have
—0® <6(g, f) = EMg, fi),af)? + 281 ()EM (9, 2 at) <1+ 20.
Therefore
max (|97 (f, f) = ZH ()L 107 (f, £) = 5t () < (1+0)
Moreover for any t € [T], h € [H], € X and a € A, we have
E[Sf(g, £ 2t ap] = EMg, fi),a)?, [5h(9 F? |2t af) < 55%EM(g, fia,a))?,
and for any c > 0,
Elexp(edy' () | 27, af] < exp(e(1 + 2c0%)Ey 15, ,E(9, f321, at)?),
Elexp(cdf' (g, f) | 27, af] < exp(e(L + 2c0%)E(g, f 27, af)?),
Elexp(—cdf (g, f) | 2f,ay] < exp(—¢(1 — 2c0®)E(g, f3 2, af')?).

Proof We note that

0/ (g, f) = E"g. frat,al)® + 28/ (£)E" (g, frat, ar).
This implies the first result. We note that Lemma 16 implies that

A~

h h
E (g, f, xZ, CL) = E'r?,aj?’+1|z?:m,a?:a5t (g, f)
This implies the second result. Moreover, Lemma 16 implies that
Sh h ~h h
Er?7$?+l|$?=x7a?=a5t (gv f)2 :g (97 f; €, CL>4 + 4Erilvlg+1‘$?:$,af:a6t (g’ f)28 (g7 f; z, a)Q
<(o® +40%)E"(g, f;2,0)%,

where the final inequality uses |£(g, f;z,a)?| < o, since g(z,a) € [0,1] and r + f(z/, 7¢(z")) €
[0,2]. This implies the third result. The last three inequalities follow by using the first part
of the lemma and then using the sub-Gaussian exponential bound from Lemma 16 with b, =
cE(g, f; 2, al) and by = —cE(g, f;x}, al) respectively for the two bounds. |

H.2. Convergence of the outer updates

In this section, we build the necessary results to prove Lemma 12. We begin with the following
bound for Z}!(f).

Lemma 18 We have
0 () = v (vo ) By s, 07 (9 ) < Z7(F) < 31 (f)-
Assume that
o = exp(yo?(1 — 2v0?))/(1 — 2y0?) > 0.
Then for any f that may depend on Sy_1:

h h _h\2 ~h
Ext,at,rt\ht:h Eg|f,5t_1g (g7 f7 wt ) a’t) S a,EZ‘t,at,Tt‘ht:h Zt (f)

27



AGARWAL ZHANG

Proof We have

_’YZAth(f> =In ngp(g\f,St_ﬂ eXp(_’VSél(ga f))

<Eyep(glf,5i_1) eXP(—70} (g, f)) — 1 (nz<z—1)
“Eypiolr s ) |00 (9, 1)+ 720109, )6 g, )] ((2) is increasing in 2)
<Egp(glf,Si-1) [_75?(9, )+ 727#(702)5?(9, f)Q} . (Lemma 17)

This can be simplified to obtain the first half of the first inequality. The second half of the first
inequality follows directly from Jensen’s inequality.
Now conditioned on h; = h, we have

- 7E$t7at,7“t Z[L(f)

_gh , .
<Egs, a0 Eg~p(g‘f7st71)Exil+l7Th|xiz,a?€ ¢ (9,f) (Jensen’s inequality)

<Ez, a,r In Eg~p(g\f,st_1)677(172%2)@(g’f’x"at)2 (Lemma 17)

S]Ext,at,’f’t [EQNP(Q\ﬁStA)6_7(1_2702%@(g’fm’at)Q -1 (nz<z-1)

< —Egpapm E e 17 020775 (1 — 24902)EM (g, f, 4, ar)?.

g~p(glf,St—1)

Here the last inequality used e % — 1 < —e %'z for 0 < z < z’. This implies the desired bound. W

Lemma 19 We have . . .
Zy < Ef|St_1[5iI,‘lt(f7 f) - Z;Lt(f)L

and R
|Z < (1+ 0)2.

Proof The first inequality follows from Jensen’s inequality. The second inequality follows from
Lemma 17. |

We also require a bound on the log-partition function.

Lemma 20 [f2vo? < 1, thenforallt < T:

E Z(S;) < AeT + 4nT€* + k(e).

Proof For any probability distribution p on F, we have

p(f)
po(f)

t t
Es, Z(S;) <E;.,Es, (Z —AAf(x) +n Y (60 (f, f) — 22 (f)]) +Ejopln
s=1

s=1

<E;,Es, (Z _)\Af(x;) +n2<§gs(f, f)) +Efopln ;f()),

s=1 s=1
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The first inequality used the fact that p(f|S;) is the minimizer of the right hand side over p. The
second inequality used the second inequality of Lemma 18 and 2yo? < 1. Using the first half of
the third displayed inequality of Lemma 17, we further obtain

t t
Es,Z(St) < Efey [Est (Z SAAF(@h) 0 E (S xs,ay) + Byt 2 ] .
s=1 s=1

po(f)

We now recall our definition of the set F (e, f) for any f € F from Definition 4 as the set of all
functions which capture the Bellman error of f up to an error €. Then we have Vf € F(e,Qy) =

Hh ‘F(Ea Qil)
’Af(l';)‘ <6 gh(f7f7xt7at) < 2e.
We can now take
po(f)I(f € Fle,Qx))
po(F(e,@Qx)

It implies the desired bound. n

p(f) =

We are now ready to prove Proposition 12.
Proof of Proposition 12

Proof Let us define o = 6n0? < 1 Lemma 18 implies that
ZP(f) < 6(f)-
Therefore
E[Z(Si1) - 2(50)) = E [nEys, , exp (\Af(a) = nldf (£, 1) = Z*(1)]) ]
<E [mEys, , exp (AAf(x) = nldf (£, /) = 87 (£)]) | (Lemma 18)

1 . R
§§ {lnEEﬂStfl exp (3)\Af(x%)) +1In EE s, , exp (—3775?(]’, f)) + lnEEf‘SFl exp (35;”(]’))] ,

where the last inequality follows from Jensen’s inequality to show that E[XY Z] < ¢/E[X3]E[Y3]E[Z]

for non-negative random variables X, Y, Z. Now we further simplify each term by using the last

two bounds in Lemma 17, by taking a conditional expectation with respect to xf“, 7P, conditioned

on z}, al to obtain
E[Z(St-1) — Z(5¢)]
g%EEﬂSH (BAAF(x}) +9A%/2) + %mEEﬂSH exp (—(377 1820\ Er(f, £, a4, at)2>
+ %IHEEﬂSt,l exp ((377 + 1817202)Eg|f75t715ht (g, f,ze, at)2>
g%EEﬂSH (BAAS(z}) +902) — (1 — )e 31 =R g EMS, f 0, a1)?

+n(1+ oz)e3""2(1+a)EEf|st,1Eg|f,st,15h(9> frae ap)?.
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The last inequality used o = 610 < 1 and
InE¢ exp(—2(§)) < Eeexp(—2()) —1 < —exp(—mgxz({))Egz(ﬁ),

again using e * — 1 < —z2e for0 < 2 < 7. Similarly, we also get InE¢exp(2(£)) <
exp(maxg z(&))E¢z(§) for 2(£) > 0. By summing over ¢t = 1 to ¢t = 7', and note that Z(Sp) = 0
we obtain the desired bound. |

H.3. Simplified convergence analysis of the inner updates

In this section, we establish the following result, which is simpler to prove than Proposition 13.

Proposition 21 (Inner loop convergence) Suppose v < 1/2. Then we have for all € > 0:

1 1+ 3570T
SEE 715, 1€ (9, 32, ay")? < €T (e +3)(6 + 99nT) + 21997 + %(n(e) +#/(e)).

We first show how this immediately yields an O(T' -1/ 8) sample complexity of our algorithm,
before proving the statement through a series of lemmas. Though we eventually supercede this
analysis with a sharper one, several intermediate results will be reused and we believe that the
simpler analysis of this proposition illustrates the main ideas of solving the nested minimax setup.

We now state a form of Theorem 5, using Proposition 21.

Theorem 22 Under Assumptions 1-4, suppose we run TS® (Algorithm 1) with some parameters
v < /36 and n < 0.01. Then choosing any € < 0.6/T, we have

T
E ;Regret(ft, 1‘%) =0 <Z(1 +nT)(k(e) + K'(€)) + AT + ng\e) + €()\/77)T) ,

where €(\/n) = inf =0 [8(A/n)dc(e2) Hp? + 2uHea By + ptbr(er) + ey HB1 .

To get this result, we set n < 0.01 so that (1 — 67) exp(—12n(1 — 6n)) > 0.5 along with the
stated values of ¢ and . Plugging these into the bounds of Propositions 10, 11, 12 and 21, and
simplifying gives the result of Theorem 22. Further assuming the conditions of Corollary 6, we can
choose 1 = (dm/(dg)\Hz))l/g, n=1/VT,y=1/36and \ = T~ 7/3(d3dy H?)~/*(In N)3/* to
get a sample complexity of O (H (In N4 (d3dy H)'V/A T_1/8).

We begin the proof of Proposition 21 with a result that carries out a potential function analysis
for the inner updates. We recall our definition of ¢(g|f) = p(g|f, St) in line 4 of Algorithm 1,
which will be repeatedly used in this section.

Lemma 23 Assume that 2yo? < 1. Let

po(9)I(g € Fle, f))
pO(F(€7f)) ’

and Hy(f) =Ey 5 In _Pllf)

plolf) = o917, 5

Then for all t:
Es, sup Hy(f) <InEg, supexp(H;(f)) < k(e) + #'(€) + 4ve(e + 1 + o)t.
f !
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Proof Let .
Alg, /) =~ 08 (g, f)

s=1
Then for each g € F(e, f), we have:

—2ytes < Ai(g, f) < v(€® + 2e0)t.
Let fi,..., fx be a cover of F so that for any f € F, 35 such that | f*(x) — f]h(x)] < e for all z.
We know that In N < «’(€) (Definition 4). This implies that for all S;, 3j € [N], such that for all g:
—Ai(9,f) < —Ai(g, J;) + (€ + 21+ 0))t.

It follows that with py(g) = HhH:1 ph(g"), we obtain

InEsg, sup Eg~p, exp (—A? (9, f ))
fer
t ~
<vet(e +2+20) + InEg, sup Bgrpy exp ( DI fi))
1

<vet(e + 2+ 20) + In Z EgpoEs, exp
j

— 5?s(g,fj)>

s=1

(a)
<~vyet(e + 2+ 20) +IHZE9NPOESt exp< ~(1 _2702)5h(g,fga$?t,at —725 (9, f; )

J
-1
<vet(e + 2+ 20) + In Z EgpoEs, exp [ —v Z ohs (g, f])>
J
<.
<vet(e+2+20) +InN.

The first inequality used covering property. Inequality (a) uses the last bound in Lemma 17. We
thus have

Es, sup Hy(f) < InEs, sup exp(Hy(f))

feFr feFr
pglf)
=InEg, sup exp (E ~p( ) In —— =
rer -\ p(glf )

po(9) 1
=InEg, supexp |E, 5.7 In +1n +InE,p, exp (—A:(g,
Sf£-p[9“m (@) exp(—Ailg, 1) T poF (e 7)) I Eew P (e 1))

<y(€% + 2e0)t + K(€) + 2vet(e + 2 + 20) + K/ (e).

The first inequality used Jensen’s inequality. This implies the result. |

We give an upper bound on the log-partition function Zf( f). Note that this is the part of our
analysis which relies on 7 being smaller than -, and leads to a loss in rates. It is possible to sharpen
this analysis through a more careful self-bounding argument, which we carry out in the next section.
For now, we continue with a simpler argument.
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Lemma 24 Let
o =2(1+ o) exp(2n(1 + 0)?).

Then

E ZEf\St ZM(f) <eT(e+1+0)(6+4na"T) + nT(1 + 0)2” + (v~ + 0" T/v)(k(e) + K/ (¢)).

Proof We know that

p(f1Se) = p(£|Se—1) exp(—nl(67*(f, ) — Z1*(f)) — Zi)).

Since A ) )
01 (f, F) = Z{(f)) = Zi| < 2(1+ 0)?,
by Lemma 17, we obtain by using |exp(z) — 1| < |z| exp(|z]) with z = gf(f, f)— Zf(f)) — 7

exp(—=nl(6" (f. f) = Z{*(f)) = Z4]) = 1| < na". (8)
Let p; = p(f|St). We have

EfNPtI:[t<f) - Eprt—lﬁt—l(f)

p(glf) p(glf, St)
=FE+tp,—n, Eoosipnln ———tr— —Eeo o E _-1pln—F—""2_
JFrpt—pi—1Tg~p(-| f) p(glf, Si—1) frpt—pi—1g~p(-| f) p(glf, Si—1)

p(g|fa SL‘)
—Erep, Eg s, In ————.
TP TRy

Now we observe that

p(glf, St) = plglf, Si—1) exp(—v(01"* (9, ) — Z*(f))),

which allows us to further rewrite
EfNPth(f) - Eprtlet—l(f)

g, et an-2t -2 _q|g o Pl
fropi—t |: :| g~p(-|f) p(g’f, St—l)

“hy ohys e oht R .
gy | MO D EIDZZ 1| By g =019 )+ 21 (£)]
— VE fope 1 Egi 1) [ =01 (9, ) + Z{(F)]
<" B, Hi1 (f) +my(1+0)%a” =B, By p[=00" (9, ) + 21 ()]

The last inequality used |67 (g, f) + Z(f)| < (1 + )2, along with our earlier inequality (8)

pglf)

] is a KL divergence, and hence non-negative. By

and the observation that E, 5. s In
rearranging the terms, we obtain

h
EfNPt—lztt(f) <Ef~pt 1 g~p( \f (g f) + 77(1 + 0)2 "

+ 5[(1 =+ Ua//)Efwt,lHt—l(f) - ]Ef~pth(f)]-
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Note that for g € F (e, f), we have 5;” (g, f) < €2 + 2e0. By summing over ¢, we obtain

1 R
E ZEﬂst ZPH(f) <ele+20)T +nT(1+0)*” + —(1+nd"T)E sup H(f).
vy t<T,fEF

We can now obtain the desired bound using Lemma 23. |

We are now ready to prove Proposition 21.
Proof of Proposition 21

Proof We have

ZEEfg\St 1 g)fvxt aat )

T

<o’ ZEEf\Stﬂth(f)

t=1
o [eT(e+1+40)(6+4na"T) + 1T (1 + 0)*a” + (v + na"T/v)(k(e) + £'(€))]
<2 [eT'(e + 3)(6 + 99nT) + 219nT + (1/~)(1 + 35nT)(k(€) + £/ (€))]

The first inequality used the last inequality of Lemma 18. The second inequality used Lemma 24.
The last inequality used our assumptions on the various parameters, which imply that o« < 0.25,
o < 2,and o < 2.7(1 + o). [ |

H.4. Proof of Proposition 13

In the following, we derive a refinement of Lemma 24, which allows us to prove Proposition 13.
In order to avoid complex constant calculations, we will use the O(+) notation that hides absolute
constants. Here we take 0 = O(1),n = O(1),7 = O(1), and ¢ = O(1). Consequently, we also
have that « = O(1) and &/ = O(y) = O(1). We also repeatedly use that for b = O(1),exp(b) <
1 + 6b for & < b by the intermediate value theorem, so that exp(b) — 1 = O(b) when b = O(1). In
particular, for the function (z) defined at the start of this section, we have

2(z) =" —2z—1=0(2%), whenz=0(1). )
We have the following high probability bound for the entropy considered in Lemma 23.

Lemma 25 In the setting of Lemma 23, for each t, event Ay, defined below, holds with probability
at least 1 — 1/T? over S;:

A= {sup Hi(f) < rle) + K (€) + dye(e + 1+ o)t + 21nT} :
feF
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Proof From Lemma 23, we obtain for each ¢t < T':

InEg, supexp(Hy(f)) < r(€) + &' (€) + 4ve(e + 1 + o)t.
feF

Using Markov’s inequality, we obtain for each ¢ < T, with probability 1 — 1/7°2,
sup exp(H;(f)) < exp (r(€) + K/ (€) + dye(e + 1+ o)t) T?
f
<exp (k(€) + £'(€) + dve(e + 1+ o)t +2InT).
This leads to the bound. |

We also have the following uniform bound for the entropy considered in Lemma 25.

Lemma 26 Under the Assumption of Lemma 23, for all t <T and f:
Hy(f) = O(k(e) + T).

Proof We note that in the proof of Lemma 23, we can simply bound

[ Ai(g, )l = O(T).

We thus have
: pglf)
H, =E, 515 In ————
D =Easin 17,5
po(9) 1
=E, 5.+ In +In +InE,p, exp (—As(g,
g~p(-|f) po(9) exp(—Ai(g, f)) po(F (e f)) g~po €XP (—A(g, f))
=kr(e) + O(T).
This implies the result. |

Lemma 27 We have

Ext,at,rﬂht:h’Zth(f)‘Q = O(Em,at,rt\hchZth(f))'

Proof From Lemma 18, along with (9), we obtain
128 (F)] =O(IBy1,5,_, 01 (9, )| + 1By 1.5,_,01 (9, )?)
=0(Egt,5,_, 107 (g, £)]). (since v = O(1) by assumption)
It follows that

EIt,at,Ttlht:h’Zlfl(f”Q :E:l‘z,at,Tt‘ht:hO(Eﬂf,Stfl |6£L(ga f)|2)

:E:l‘z,(lt,Tt‘ht:hO(Emf,Stflgh (97 f? '1“1’517 a’?)Z) (Lemma 17)
:Ewt,at,’r‘t\ht:hO(EgV,Stfl Zth(f))) (Lemma 18)
This proves the desired result. |
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Lemma 28 We have

Exz,at#t\ht=h’z | Emmatﬂ"tlht th|St 1 (|gh(f7faxt7at)’2+zt (f))

Proof We have from the definition of Zf

|Z{*| <Eps, , O67" (f, /)] + 128 ()],

where we used In z < z — 1 and then conventions above (9) to simplify exp(-) — 1.
Therefore we obtain

Ext,at,n|ht h‘Zt ’ :ct7at,rt|ht th|St 1 (’(i?t(f7f)|2+|2ht( )’2)
:Ext,at,m|ht=th|St_1 (‘Sh(-ﬂ Ty 7at )|2 + Zt (f))

where the second inequality used the second half of the last displayed equation of Lemma 17, and
the result of Lemma 27. |

Lemma 29 There exists an absolute constant c such that when n < ¢, then for all f € F:

h[e [ (FH=20(N=2 _

El‘t sat,rt|he=

970 (Ewt,at,TzlhchZf(f) + Ext,at,m|hz=th’|St,1‘€h<f/7 flv ?) CL?) ) .

Proof We have

E

xt,at,7t|ht=

h[e M@ (N =21 (=2 _ 1

<Er,y et [enaht(ff)wa L) FE s, B0 (=20 (1) _1] (Lemmas 18 and 19)

§025E$t at 7’t|ht:th,|St71 |:€_4n5?t (f7f) + 647]8?7: (f) + 64778;% (f/7f/) + 6_4772:% (f/) o 4] ’
(Cauchy-Schwarz)

‘We now bound each of the four terms in turn. Note that conditioned on h; = h, we have

Eq,.apme M0 1 < By, o0, exp ( (1 — 202 ER(F, £, 2P, a) )—1 <0, (Lemma 17)
and

Emt’ahne‘lnsﬁf) — 1 <E;, a,,r, €XP (477(1 + 27702)Eg\f,3t L (g fs xt , at) ) —1 (Lemma 17)

<nO (Edfhat,’/‘tEg‘fvStflgh(g? /s a:?, a?)2>

<nO (Zf(f)) ) (Lemma 18)
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Here the second inequality follows from the intermediate value theorem, since
c=4n(1+2n0H)Ey s, ,EM(g, f, 2l al)? = O(1), so that e < 1+ O(c). In the last inequality,
we use @ = O(1) in Lemma 18, since v = O(1).
E%at’”eflnz??(f’,f’) — 1 <Egy, a;,r €xXP (477(1 + 2n02)ER(F!, !, 2, alt) ) —1 (Lemma 17)
§770< wuatﬂ“tgh(f flx taat )2>
and

Evpanre V0D 1 =By, [$(—4n 20 (f) (420 ())? = mZ(f)]

Espar, (OOPZI(F)?) — ZE(f)) (W(z) = O(1)
S]El’t,at,rt (O(UQZAth(f/)) - 4772?(]0/)) (Lemma 27)
Sov

where the last inequality assumed that we choose 7 small enough so that O(n?) < 4n, and E, 4, », ZM(f) >
0, which follows from Lemma 18. [ |
Lemma 30 Foreacht < T, we have

EEps, [e—nu&?t (£ D=2 (=24 _ 1] Hooi(f)

=B Egis, , O ((Z1*(5) + " (f, £, af"))((e) + #'() + InT)) + Oln(rs(e) +1)/T).

Proof Let the indicator /(A;) denotes that the event of Lemma 25 holds. We have
ch >h 5h A
EEjs,, [e—n[(aﬁ(f,f)—zt HN=Zit _ 1} A (f)

§ht hf _ ohy N
—EE/s,_, {Ewm (e G (P2 (=2 1]] fe(f)

(Since x¢, ay, r; are independent of S;_1)
1B Eyis, O (Baparr 20 () + Baparr s, €% (', [y} al)?) Hyoa(f) (Lemma 29)
=1 Eis, O (Eaarr 2 (F) + BuvarrEpis, £ (F, £l o) ) Hy (£)I(4)
+7E By, O (E 2 () + Eavarar B, " (f, £y 2l af)?) Heea (H)(1 = (A1)

1 O (By5, 21 (F) + Eps, £ (', £/}, al)?) O(s(e) + ¥ () + InT)
(Definition of A; in Lemma 25 and E,, 4, ,, [Z[“ (] =0

+nO(k(e) + T)E(1 — I(Ay)) (Lemma 26)
B O (Egj5,_, Z1(F) + By, o£"(F £/, al")?) O(u(e) + #(€) + nT)
+1n0((k(e) + T)/T?). ( Probability of A; in Lemma 25)
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This implies the desired bound. n

Lemma 31 We have

Ewt,at Tt ‘ht:hE.ﬂStfl

:nE$t,at7Tt‘ht:th‘St—IO <€ =+ ’ght(.ﬂ f; x?? a?)|2 + Zth(f)> .

[6_"[(5?(’0’”_2? (=2 1} Egsiip) =01 (g, ) + Z{(f)]

Proof We have
161 (f, ) = Z{"(f) = 2] = O(1),

and Vg € F(e, f), we have 6" (g, f) = O(e). Therefore by the definition of (-] f) in Lemma 23,
we have

hy shig ey ohe A
M EN-ZOZN g 6, f)‘ _10(e).

Moreover,

TN T | (G S AL A ) f)‘

oo rane=nEpis O (181 (£ DI+ 122D+ 1200120 (1))

:nEzt,at,Tt‘ht:th‘StflO (|5ft (fa f)|2 + |ZAtht (f))|2 + ’ZZH |2) (CaUChy’SChwarZ)
=NEa,,ar,rehe=hEf5,_, O (‘gf(f’ e x?, a?)P + ’Zth(f)ﬂ2 + |Zth‘2> (Lemma 17)

:nEJCt,at,Vt‘ht:th‘St—lO <|gth(fa f; LB?, a?)|2 + Zf(f)))

where the second to the last equation was obtained by taking conditional expectation conditioned on

(x}, al) with respect to the transition and reward, followed by Lemma 17. The last equation used
Lemma 27 and Lemma 28. n

We are now ready to prove Proposition 13.

Proof of Proposition 13
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Proof From the proof of Lemma 24, we obtain

E[]EfNsz{t(f) - Eprtflﬁtfl(f ]
—EEfp,_, [e*n[(gft(fyf)*ztht(f))*th} _ 1} A (f)

~AEEfp . {e—"[( (D=2 =2 1] Egs1n]=01(9, ) + Z{"(f))

— VB Bfpy s By [=01" (9, ) + 27 (f)]
<NE By, (IE7(f, il al ) + Z0(F)) (5(6) + K (€) +InT) + meo(s(e) +1)/T
(Lemma 30)
+ YNcoEE fop, (\Sht(f,f,x?t,at )2+ th(f)) (Lemma 31)
—YE Efp 21" (f) + O(e) (Vg € F(e, f), we have " (g, f) = O(e))

<AVEEpop, , |EM(f, fi2) al) P — 0.59E Epp, , 21 (f) + O(e + n(k(e) + 1)/T).

The last inequality used the condition on 7 in the statement of the proposition. Now by summing
overt = 1tot =T, and applying Lemma 23 to bound EH( f), we obtain

VE Efp, 21 (f) <O(T + rle) + K'(€) + 1) + QleyZE \EPe(f, £yl al) 2.

The proof is now completed by recalling Lemma 18. |

Appendix I. Proof of Theorem 9

In this section, we provide a proof for Theorem 9. We focus on the differences from the proof of
Theorem 5, which are limited to our decoupling analysis. In particular, in the setting of Theorem 9,
we have the following improved analog for Lemma 15.

Lemma 32 (Design based decoupling) Under conditions of Theorem 9, we have for all 2" € X"
and f € F:

EMf, fiat mp(@h)? < doE™(f, f ", M ("),
where p""(z) is the G-optimal design (6) at the state x".

Proof Let X,(z") be the covariance EahNP(Ih)[qﬁh(xh, a™)¢"(x", a™)T]. The definition of G-
optimal design implies that

sup ”¢h($haah)||2g*(zh)—1 < ds. (10)
aheA

By Assumption 4, we have
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EN Fat ) = (wh (1,0, 6 " 0) )
< ()2, iy 670" Y,
< BBy (0(F,2), 6", "))
:dzgh(f,f,w YACONS

The first inequality used Cauchy-Schwarz. The second inquality used (10). |

Combining this with the Bellman rank decoupling in Lemma 14 and Proposition 10, we get

AE Regret(fi, f) + AEE s, , Af'(zf) = AHE ™ (fy, fi, 2}, a}")
<A [61HB1 + 7 tbr(er) + HuB Bpys,  E"(f, f,x)" mwp(2)))? }
S)\ |:61HBl +N;1br(€1) +Hﬂld2E ]Ef‘st 1 (f f7 $t 7p ( ht)) ]

Y [qHBl + 7 br(er) + HyndoE Bpys, £ (f, f, 2], al) }

Further choosing AH p1ds = 0.57, we get the following analog of Proposition 11.

AE Regret(f;, z}) <E B, | [ AAF(z)) + 0.508M (f, f,al, o)

2 H
+ )\ <€1HBl + M) .

Now we combine this result with Proposition 12 and Proposition 13 (both results still hold
without modification, because the proofs did not rely on how a/ is generated given z}), leading to

T

Z AE Regret(fy, 7;) <O (AT + 4nTe* + k(e) + 1.5A*T)
t=1

+ O(eT + k(e) + K'(e) + 1)

ONbr(ey ) Hid
ST <61HB1 n M”) .

This implies the result of Theorem 9.
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