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Abstract
We consider the problem of designing uniformly stable first-order optimization algorithms for em-
pirical risk minimization. Uniform stability is often used to obtain generalization error bounds for
optimization algorithms, and we are interested in a general approach to achieve it. For Euclidean ge-
ometry, we suggest a black-box conversion which given a smooth optimization algorithm, produces
a uniformly stable version of the algorithm while maintaining its convergence rate up to logarithmic
factors. Using this reduction we obtain a (nearly) optimal algorithm for smooth optimization with
convergence rate𝑂 (1/𝑇2) and uniform stability𝑂 (𝑇2/𝑛), resolving an open problem of Chen et al.
(2018); Attia and Koren (2021). For more general geometries, we develop a variant of Mirror De-
scent for smooth optimization with convergence rate𝑂 (1/𝑇) and uniform stability𝑂 (𝑇/𝑛), leaving
open the question of devising a general conversion method as in the Euclidean case.

1. Introduction

We consider a canonical problem in machine learning: empirical risk minimization using first-
order convex optimization. Given a training sample 𝑆 = (𝑧1, . . . , 𝑧𝑛) of 𝑛 instances, the goal is to
minimize the empirical risk 𝐿𝑆 (𝑥) ≜ 1

𝑛

∑𝑛
𝑖=1 ℓ(𝑥; 𝑧𝑖) where ℓ(·, 𝑧) is a convex loss function. Our

focus is on the smooth case which contains a variety of first-order algorithms including gradient
descent (GD) and Nesterov’s celebrated accelerated gradient method (Nesterov, 1983). In statistical
learning, the empirical risk is used as a proxy and our true goal is to minimize the population risk
𝐿 (𝑥) ≜ 𝔼𝑧∈D [ℓ(𝑥; 𝑧)] of an unknown distributionD. The performance of a learning algorithmA

is evaluated by the expected excess population risk,

𝔼𝑆 [𝐿 (𝐴(𝑆)) − 𝐿 (𝑥★)],

where 𝑥★ ∈ argmin 𝐿 (𝑥), which is often bounded by managing the trade-off between the expected
optimization and generalization errors:

𝔼𝑆 [𝐿 (𝐴(𝑆)) − 𝐿 (𝑥★)] = 𝔼𝑆 [𝐿 (𝐴(𝑆)) − 𝐿𝑆 (𝐴(𝑆))︸                      ︷︷                      ︸
generalization

] + 𝔼𝑆 [𝐿𝑆 (𝐴(𝑆)) − 𝐿𝑆 (𝑥★)︸                    ︷︷                    ︸
optimization

] .

Thus, for a given optimization method to minimize the empirical risk, we are often interested in
bounding the generalization error of its solution. A fundamental framework for obtaining such
bounds is algorithmic stability (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al., 2009).
Algorithmic stability has emanated as a central tool for generalization analysis of learning al-

gorithms. The pioneering work of Bousquet and Elisseeff (2002) introduced the notion of uniform
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stability, arguably the most common notion of algorithmic stability in learning theory. Essentially,
to this day, stability analysis is the only general approach for obtaining tight, dimension free general-
ization bounds for convex optimization algorithms applied to the empirical risk (see Shalev-Shwartz
et al., 2009; Feldman, 2016).
Although stability analysis has proved to be an effective tool for generalization bounds, it unfor-

tunately applies for specific combinations of algorithms, objectives and geometries. For example,
gradient descent is known to be uniformly stable for smooth objectives in ℓ2 geometry (Hardt et al.,
2016; Feldman and Vondrak, 2018; Chen et al., 2018), but the stability analysis fails in other ge-
ometries (e.g., ℓ1) due to a lack of the contractivity property for gradient steps (Asi et al., 2021).
Another example is Nesterov’s gradient method, for which uniform stability is quadratic in the num-
ber of steps over quadratic objectives (Chen et al., 2018) but for general smooth objectives grows
exponentially fast (Attia and Koren, 2021).
The last example is particularly intriguing: as highlighted by Chen et al. (2018) and Attia

and Koren (2021), it is currently not known whether there exists an optimal method for smooth
optimization, with convergence rate 𝑂 (1/𝑇2), which also exhibits the optimal uniform stability rate
𝑂 (𝑇2/𝑛) for general smooth objectives. This is an important issue as momentum-based methods,
inspired by Nesterov’s optimal method, are being extensively used for empirical risk minimization in
practice and understanding their stability propertieswould help in shedding light on the generalization
ability of such methods. Developing an optimal and uniformly stable method (or proving that one
does not exist) was thus left as an open problem by Chen et al. (2018); Attia and Koren (2021).

1.1. Contributions

In this paper, motivated by the open question of Chen et al. (2018); Attia and Koren (2021), we
study general techniques for uniformly stable empirical risk optimization with smooth and convex
objectives. First, we focus on the Euclidean case and give a general and widely-applicable technique
for converting optimization algorithms to uniformly stable ones. Then, we move on to develop
uniformly stable algorithms for smooth convex optimization in more general normed spaces.

General reduction in Euclidean geometry. We provide an algorithm, USOL2 (see Algorithm 1),
which performs a black-box conversion from a given optimization algorithm for convex, smooth
and Lipschitz objectives to a uniformly stable algorithm with nearly the same convergence rate.
Following is an informal version of our first main result (stated formally at Theorem 6).

Theorem 1 (informal). Assume an optimization algorithm A with convergence rate 𝑂 (𝑇−γ) over
convex, smooth and Lipschitz functions w.r.t. the Euclidean norm. Then applying USOL2 to A yields
an algorithm with convergence rate 𝑂 (𝑇−γ) whose 𝑇’th iterate is 𝑂 (𝑇γ/𝑛)-uniformly stable.

Thus, the conversion preserves the rate ofA (up to logarithmic factors) and exhibits essentially
the best convergence vs. stability trade-off one could hope for: indeed, any improvement to one of
the rates (without compromising the other) would lead to a contradiction to statistical lower bounds
(this is discussed is detail by Chen et al., 2018 1 ). Applying this result to Nesterov’s accelerated
gradient method, we obtain an algorithm with (nearly) optimal convergence rate 𝑂 (1/𝑇2) and a

1. We remark that the setting of Chen et al. (2018) did not include a Lipschitz assumption (in addition to smoothness),
as they discuss in their Section 4.2. That said, a straightforward modification of the proof of Theorem 7 in Chen et al.
(2018) can accommodate the Lipschitz assumption by a simple scaling of the loss function.
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matching optimal stability rate of 𝑂 (𝑇2/𝑛), resolving an open problem posed by Chen et al. (2018)
and reiterated by Agarwal et al. (2020) and Attia and Koren (2021).
Our conversion procedure is based on two simple observations. The first is that the minimizer

of a strongly convex objective is uniformly stable. The second is that with smoothness, converging
very close to the minimizer of a regularized objective comes almost for free (at the cost of only
a logarithmic factor) since strong convexity and smoothness together allow for linear rates of
convergence. Carefully combining the two leads to a simple yet effective way to achieve stability in
smooth convex optimization with a minimal degradation in convergence rate.

Stable Mirror Descent for general norms. We move on to address uniform stability in more
general normed spaces. A general approach to optimization with general norms is the so called
Mirror Descent (Nemirovskij and Yudin, 1983) which has convergence rate 𝑂 (1/𝑇) for smooth
objectives (e.g., Bubeck, 2015) and accelerated variants with rate𝑂 (1/𝑇2) (Tseng, 2008; Allen-Zhu
and Orecchia, 2017). A natural followup question to our investigation in the Euclidean case is
whether there exists a variant of (accelerated) Mirror Descent with a similar convergence rate, which
is also uniformly stable.
This general scenario poses additional challenges, as even for simple non-accelerated Mirror

Descent, previous work by Asi et al. (2021) gave an indication that a standard Mirror Descent
gradient step fails to be contractive (in fact, it is slightly expansive). This questions the primary
approach for proving stability of iterative methods in the context of Mirror Descent.
As it turns out, a general conversion scheme as the one we use in Algorithm 1 does not easily

extends to general geometries. In a nutshell, the issue is the following: given a black-box algorithm
for smooth and convex optimization, the standard reduction for obtaining a linear rate assuming the
function is also strongly convex is based on a contraction argument relating the convergence rate
upper bound to the squared distance from the minimizer, via strong convexity; for general norms,
however, the convergence (e.g., of Mirror Descent) depends in general on the Bregman divergence
rather than the squared distance and the argument does not go through.
Instead, we devise a specialized algorithm called USMD (Algorithm 2), which obtains the

following result (stated formally at Theorem 13), and leave the problem of designing a generic
conversion method for general geometries as an open question.

Theorem 2 (informal). Assume a convex loss function ℓ, which is smooth and Lipschitz (w.r.t. a
norm ∥·∥) and a 1-strongly convex regularization 𝑅 (w.r.t. the same norm). Then USMD applied to
the empirical risk with regularizer 𝑅 has convergence rate 𝑂 (1/𝑇) and its output after 𝑇 steps is
𝑂 (𝑇/𝑛)-uniformly stable.

Hence, USMD has the desired uniform stability of𝑂 (𝑇/𝑛) and has nearly the same rate as Mirror
Descent. The algorithm is also based on the simple approach of optimizing a regularized objective;
however, as regularization in general norms can impair smoothness (e.g., 12 ∥·∥

2
𝑝 for 1 < 𝑝 < 2 is not

smooth, see Appendix C), our analysis is based on relative smooth convex optimization (Lu et al.,
2018) (the regularization is smooth w.r.t. itself), exploiting the linear rate to converge to a stable
minimizer.

Examples. We discuss two example applications of our general algorithm.
• ℓ𝑝 geometry (1 < 𝑝 ≤ 2): In the case whereX is the ℓ𝑝 unit ball and ℓ(·, 𝑧) is convex, smooth and
Lipschitzw.r.t. ℓ𝑝 norm for all 𝑧, applyingTheorem13with themirrormap 𝑅(𝑥) = ∥𝑥∥2𝑝/2(𝑝 − 1),
USMD has convergence rate 𝑂 (1/(𝑝 − 1)𝑇), and is 𝑂 (𝑇/𝑛)-uniformly stable.
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• ℓ1 geometry: In the case where X = {𝑥 ∈ ℝ𝑑≥0 : ∥𝑥∥1 = 1} and ℓ(·, 𝑧) is convex, smooth and
Lipschitz w.r.t. ℓ1 norm for all 𝑧, applying Theorem 13 with negative entropy as the mirror
map 𝑅(𝑥) =

∑𝑑
𝑖=1 𝑥𝑖 log 𝑥𝑖 , the convergence rate is 𝑂 (log(𝑑)/𝑇),2 and the algorithm is 𝑂 (𝑇/𝑛)-

uniformly stable.

Open problems. A couple of interesting questions remain open for investigation. The first is
whether we can remove the additional log factors from both the Euclidean and general geometry
methods, thus obtaining stability “for free.” The second iswhetherwe can devise a general conversion
method, analogous to the one we developed in the Euclidean case, that would apply to more general
norms.

1.2. Related work

Classical generalization theory appealed to uniform convergence of the empirical risk to the popu-
lation risk. Without further assumptions on convex functions, the rate of uniform convergence for
stochastic convex optimization is dimension-dependent and lower bounded by Ω(

√︁
𝑑/𝑛) (Shalev-

Shwartz et al., 2010; Feldman, 2016). Using a stability analysis, recent progress was made on
stochastic optimization generalization bounds of convex risk minimizers, starting with the influen-
tial work of Bousquet and Elisseeff (2002) and Shalev-Shwartz et al. (2009). A variety of notions
of algorithmic stability exists in the literature and differ in the distance measure and aggregation of
multiple changes (Bousquet and Elisseeff, 2002; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010;
London, 2017; Lei and Ying, 2020). Data dependent generalization bounds based on stability argu-
ments were also studied by Maurer (2017); Kuzborskij and Lampert (2018). Recent work derived
tighter bounds of generalization from stability (Feldman and Vondrak, 2018, 2019; Bousquet et al.,
2020; Klochkov and Zhivotovskiy, 2021), and the approach of stability analysis has been influential
in a variety of settings (e.g., Koren and Levy, 2015; Gonen and Shalev-Shwartz, 2017; Charles and
Papailiopoulos, 2018).

Significant interest in the stability properties of iterative methods has arisen recently. The
work of Hardt et al. (2016) gave the first bounds on the uniform stability of stochastic gradient
descent (SGD) for convex and smooth optimization, showing it grows linearly with the number of
optimization steps. Their result apply with minor modification to full-batch gradient descent (GD)
as seen in following work (Feldman and Vondrak, 2018; Chen et al., 2018). Bounds for the stability
of SGD and GD in the non-smooth case was studied by Lei and Ying (2020); Bassily et al. (2020)
and revealed a significant gap in stability between smooth and non-smooth optimization, indicating
the importance of smoothness for stability. Furthermore, algorithmic stability was instrumental in
stochastic mini-batched iterative optimization (e.g., Wang et al., 2017; Agarwal et al., 2020), and
has been pivotal to the design and analysis of differentially private optimization algorithms (Wu
et al., 2017; Bassily et al., 2019; Feldman et al., 2020), both of which focused mainly on smooth
optimization.

2. Throughout, logarithmic factor of the space dimension are not suppressed by the 𝑂 notation.
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2. Preliminaries

2.1. Smooth convex optimization

In this work we are interested in optimization of convex and smooth functions over a closed convex
set X ⊆ ℝ𝑑 . A function 𝑓 is said to be β-smooth w.r.t. a norm ∥·∥ if its gradient is β-Lipschitz
w.r.t. ∥·∥, namely ∥∇ 𝑓 (𝑥) − ∇ 𝑓 (𝑦)∥∗ ≤ β∥𝑥 − 𝑦∥ for all 𝑥, 𝑦 ∈ X. Here ∥·∥∗ is the dual norm
of ∥·∥. This smoothness condition also yields the following quadratic bound for all 𝑥, 𝑦 ∈ X:
𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + β

2 ∥𝑦 − 𝑥∥
2. A function 𝑓 is said to be α-strongly convex w.r.t. a

norm ∥·∥ if for all 𝑥, 𝑦 ∈ X, we have 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + α
2 ∥𝑦 − 𝑥∥

2.

2.2. Algorithmic stability

In this work we consider the well known uniform stability (Bousquet and Elisseeff, 2002) in the
following general setting of supervised learning. There is an unknown distributionD over a sample
set Z from which examples are drawn. Given a training set 𝑆 = (𝑧1, . . . , 𝑧𝑛) of 𝑛 samples drawn
i.i.d. fromD, the objective is finding a model 𝑥 ∈ X with a small population risk:

𝐿 (𝑥) ≜ 𝔼𝑧∼D [ℓ(𝑥; 𝑧)],

where ℓ(𝑥; 𝑧) is the loss of the model described by 𝑥 on an example 𝑧. We cannot evaluate the
population risk directly, thus, optimization will be applied on the empirical risk with respect to the
sample 𝑆, given by

𝐿𝑆 (𝑥) ≜
1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑥; 𝑧𝑖).

We use the following notion of uniform stability.3

Definition 3 (uniform stability). Algorithm 𝐴 is ϵ-uniformly stable if for all 𝑆, 𝑆′ ∈ Z𝑛 such that
𝑆, 𝑆′ differ in at most one example, the corresponding outputs 𝐴(𝑆) and 𝐴(𝑆′) satisfy

sup
𝑧∈Z
|ℓ(𝐴(𝑆); 𝑧) − ℓ(𝐴(𝑆′); 𝑧) | ≤ ϵ.

A known result of Bousquet and Elisseeff (2002) is a bound on the expected generalization error
of an ϵ-uniformly stable algorithmA,

𝔼𝑆 [𝐿 (A(𝑆)) − 𝐿𝑆 (A(𝑆))] ≤ ϵ.

2.3. Relatively-smooth convex optimization

In order to handle regularization over general norms we will need the framework of relatively smooth
and convex functions. Given a 1-strongly convex function 𝑅 : X ↦→ ℝ, the Bregman divergence
of 𝑅 is defined as 𝐷𝑅 (𝑦, 𝑥) ≜ 𝑅(𝑦) − 𝑅(𝑥) − ∇𝑅(𝑥) · (𝑦 − 𝑥). With the definition of Bregman
divergence we can define relative smooth and strong convexity.

3. The definition is suitable for deterministic algorithms and is sufficient for the scope of this work. A more general
definition exists for randomized algorithms (e.g., Hardt et al., 2016; Feldman and Vondrak, 2018).
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Definition 4 (relative strong convexity). A function 𝑓 : X ↦→ ℝ is α-strongly convex relative to
𝑅 : X ↦→ ℝ if for any 𝑥, 𝑦 ∈ X, 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + α𝐷𝑅 (𝑦, 𝑥) ≤ 𝑓 (𝑦).

Definition 5 (relative smoothness). A function 𝑓 : X ↦→ ℝ is β-smooth relative to 𝑅 : X ↦→ ℝ if
for any 𝑥, 𝑦 ∈ X, 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + β𝐷𝑅 (𝑦, 𝑥) ≥ 𝑓 (𝑦).

Our analysis relates to the so called Mirror Descent method which is used in both smooth and
relatively-smooth convex optimization (Nemirovskij and Yudin, 1983; Lu et al., 2018). The standard
step of Mirror Descent over β-smooth (or relatively smooth) functions with a 1-strongly convex
regularization 𝑅(·) is as follows:

𝑥𝑡+1 = argmin
𝑥∈X

{
∇ 𝑓 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + β𝐷𝑅 (𝑥, 𝑥𝑡 )

}
. (1)

3. General reduction in Euclidean geometry

In this section, we present a general method for converting a black-box smooth optimization al-
gorithm with a given convergence guarantee to a uniformly stable algorithm with nearly the same
convergence rate. Let A be an iterative algorithm for minimization of β-smooth convex functions
with convergence rate of the form

𝑓 (𝑥𝑡 ) − 𝑓 (𝑥★) ≤
𝐶β∥𝑥0 − 𝑥★∥2

𝑡γ
,

where 𝑥★ ∈ argmin𝑥∈X 𝑓 (𝑥), 𝑥𝑡 = A( 𝑓 ,β, 𝑥0, 𝑡) is the output of the algorithm at step 𝑡 on a β-
smooth function 𝑓 initialized at 𝑥0, and constants 𝐶, γ > 0. Note that it is enough to consider
0 < γ ≤ 2, as 𝑂 (1/𝑡2) is the optimal convergence rate for smooth optimization.

Algorithm 1: USOL2(A): Uniformly Stable Optimization in L2
Input: Sample 𝑆 = (𝑧𝑖)𝑛𝑖=1, base algorithmA, initialization 𝑥0, parameters β,𝐺,𝐷
Output: A sequence of iterates {𝑥𝑡 }.
α0 ← β

4 ; 𝑦0 ← 𝑥0; 𝑡0 ← 0.
for 𝑘 ← 0, 1, . . . do

𝐽𝑘 ← max
{
1, 2 log2(α𝑘𝐷𝑛/𝐺)

}
; 𝑁𝑘 ←

(
4𝐶 (1 + β/α𝑘)

)1/γ; 𝑡𝑘+1 ← 𝑡𝑘 + 𝑁𝑘𝐽𝑘 .
𝑥𝑡𝑘 , 𝑥𝑡𝑘+1, . . . , 𝑥𝑡𝑘+1−1 ← 𝑦𝑘 .
𝑦𝑘,0 ← 𝑦𝑘 .
for 𝑗 ← 0 to 𝐽𝑘 − 1 do

𝑦𝑘, 𝑗+1 ← A(𝐿𝑆 (𝑥) + α𝑘

2 ∥𝑥 − 𝑥0∥
2,α𝑘 + β, 𝑦𝑘, 𝑗 , 𝑁𝑘).

end
𝑦𝑘+1 ← 𝑦𝑘,𝐽𝑘 ; α𝑘+1 ← α𝑘/2.

end

Our general black-box conversion procedure, we name USOL2, is presented in Algorithm 1. It
is based on running the base algorithmA in epochs, where in each epoch we optimize a regularized
version of the empirical risk, 𝐿 (𝑘)

𝑆
(𝑥) = 𝐿𝑆 (𝑥) + α𝑘 ∥𝑥 − 𝑥0∥2/2. To do so, we invoke A for 𝐽𝑘

times, each time halving the distance to the regularized minimizer by performing 𝑁𝑘 steps. Between
epochs, we halve the regularization magnitude.
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The basic idea behind USOL2 is simple: in each epoch the algorithm converges close to the
minimizer of the regularized objective 𝐿 (𝑘)

𝑆
(𝑥), which is a stable function of the sample thanks to the

added strongly convex regularization. The convergence to the minimizer can be exponentially fast
since 𝐿 (𝑘)

𝑆
(𝑥) is strongly convex and smooth, thus the output of each epoch is also stable. Following

each epoch we decrease the regularization, thus converging closer and closer to the actual minimizer
of the empirical (unregularized) risk while still maintaining uniform stability.
Note that ifA is a first-order algorithm that uses only gradient access to the empirical risk (such

as GD or NAG), then USOL2(A) can also be implemented using first-order access, as we only add
a simple L2 regularization term to the empirical risk whose gradient is easy to compute.
The main result of this section is the following theorem which establishes convergence and

stability guarantees for USOL2.

Theorem 6. Assume ℓ(·, 𝑧) is convex, β-smooth and 𝐺-Lipschitz w.r.t. ∥·∥2 on X. Let A be an
optimization algorithm with convergence rate 𝐶β∥𝑥0 − 𝑥★∥2/𝑡γ. Then the iterates {𝑥𝑡 }𝑡 produced
by USOL2(A) initialized at 𝑥0 such that 𝐷 ≥ ∥𝑥0 − 𝑥★∥ satisfy the following, for all 𝑡:

(i) 𝑥𝑡 is 𝑂 (𝐺2𝑡γ/𝐶β𝑛)-uniformly stable.

(ii) 𝐿𝑆 (𝑥𝑡 ) − 𝐿𝑆 (𝑥★) = 𝑂 (𝐶β𝐷2/𝑡γ).

Following are lemmas needed to prove Theorem 6. In the lemmas we will refer to the values
computed in USOL2 (such as 𝑦𝑘 , 𝑥𝑡 , etc.) for an arbitrary input. We will use the notation 𝐿 (𝑘)𝑆 (𝑥) =
𝐿𝑆 (𝑥) + α𝑘

2 ∥𝑥 − 𝑥0∥
2 for the regularized objective we optimize at iteration 𝑘 of the algorithm, and

𝑥★
𝑘
to be its minimizer. Deferred proofs can be found in Appendix A.
We start with a technical lemma relating a regularized minimizer to the minimizer of the

regularization and the minimizer of the function.

Lemma 7. Let 𝑓 (𝑥) be a convex function and let 𝑓 (α) (𝑥) = 𝑓 (𝑥) + α
2 ∥𝑥 − 𝑥0∥

2 for some α > 0 and
𝑥0. Let 𝑥★ ∈ argmin𝑥 𝑓 (𝑥) and 𝑥★α ∈ argmin𝑥 𝑓 (α) (𝑥). Then

∥𝑥0 − 𝑥★α∥2 + ∥𝑥★α − 𝑥★∥2 ≤ ∥𝑥0 − 𝑥★∥2.

Proof. It is enough to show that (𝑥0 − 𝑥★α) · (𝑥★α − 𝑥★) ≥ 0. To see this, note that ∇ 𝑓 (α) (𝑥★α) = 0
implies ∇ 𝑓 (𝑥★α) + α(𝑥★α − 𝑥0) = 0, thus 𝑥0 − 𝑥★α = 1

α
∇ 𝑓 (𝑥★α). By convexity,

(𝑥0 − 𝑥★α) · (𝑥★α − 𝑥★) = 1
α
∇ 𝑓 (𝑥★α) · (𝑥★α − 𝑥★) ≥ 1

α

(
𝑓 (𝑥★α) − 𝑓 (𝑥★)

)
≥ 0. ■

Following lemma present the convergence in both function value and parameter distance of 𝑦𝑘+1
with respect to 𝐿 (𝑘)

𝑆
.

Lemma 8. For all 𝑘 ≥ 0,

𝐿
(𝑘)
𝑆
(𝑦𝑘+1) − 𝐿 (𝑘)𝑆 (𝑥

★
𝑘 ) ≤

α𝑘 ∥𝑦𝑘 − 𝑥★𝑘 ∥
2

2𝐽𝑘+1
and ∥𝑦𝑘+1 − 𝑥★𝑘 ∥

2 ≤
∥𝑦𝑘 − 𝑥★𝑘 ∥

2

2𝐽𝑘
.

Each time we update the regularization we start from the last 𝑦𝑘 iteration. The following lemma
bounds the distance of the last iteration to the new minimizer.

Lemma 9. For all 𝑘 ≥ 0 it holds that ∥𝑦𝑘 − 𝑥★𝑘 ∥ ≤ ∥𝑥0 − 𝑥
★
𝑘
∥.

7
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Next lemma yields the convergence guarantee of the 𝑦𝑘 sequence.

Lemma 10. For all 𝑘 ≥ 0,

𝐿𝑆 (𝑦𝑘+1) − 𝐿𝑆 (𝑥★) ≤
3α𝑘 ∥𝑥0 − 𝑥★∥2

4
.

Proof of Lemma 10. By the strong convexity of 𝐿 (𝑘)
𝑆
,

𝐿
(𝑘)
𝑆
(𝑦𝑘+1) − 𝐿 (𝑘)𝑆 (𝑥

★) = 𝐿 (𝑘)
𝑆
(𝑦𝑘+1) − 𝐿 (𝑘)𝑆 (𝑥

★
𝑘 ) + 𝐿

(𝑘)
𝑆
(𝑥★𝑘 ) − 𝐿

(𝑘)
𝑆
(𝑥★)

≤ 𝐿 (𝑘)
𝑆
(𝑦𝑘+1) − 𝐿 (𝑘)𝑆 (𝑥

★
𝑘 ) −

α𝑘

2
∥𝑥★𝑘 − 𝑥

★∥2.

Hence, using the definition of 𝐿 (𝑘)
𝑆
,

𝐿𝑆 (𝑦𝑘+1) − 𝐿𝑆 (𝑥★) ≤ 𝐿 (𝑘)𝑆 (𝑦𝑘+1) − 𝐿
(𝑘)
𝑆
(𝑥★) + α𝑘

2
∥𝑥★ − 𝑥0∥2

≤ 𝐿 (𝑘)
𝑆
(𝑦𝑘+1) − 𝐿 (𝑘)𝑆 (𝑥

★
𝑘 ) +

α𝑘

2

(
∥𝑥★ − 𝑥0∥2 − ∥𝑥★𝑘 − 𝑥

★∥2
)

≤
α𝑘 ∥𝑦𝑘 − 𝑥★𝑘 ∥

4
+ α𝑘 ∥𝑥

★ − 𝑥0∥2

2
. (Lemma 8 and 𝐽𝑘 ≥ 1)

By Lemma 9,

𝐿𝑆 (𝑦𝑘+1) − 𝐿𝑆 (𝑥★) ≤
α𝑘

4

(
∥𝑥0 − 𝑥★𝑘 ∥

2 + 2∥𝑥★ − 𝑥0∥2
)
.

We conclude by applying Lemma 7. ■

The following standard lemma bounds the distance between the minimizers of two functions
where one of them is strongly convex.

Lemma 11. Let 𝑓1, 𝑓2 : X ↦→ ℝ be convex and α-strongly convex functions (respectively) defined
over a closed and convex domainX ⊆ ℝ𝑑 , and let 𝑥1 ∈ argmin𝑥∈X 𝑓1(𝑥) and 𝑥2 ∈ argmin𝑥∈X 𝑓2(𝑥).
Then for ℎ = 𝑓2 − 𝑓1 we have

∥𝑥2 − 𝑥1∥ ≤
2
α
∥∇ℎ(𝑥1)∥∗.

Following is the stability guarantee for the 𝑦𝑘 iterates of USOL2.

Lemma 12. For 𝑘 ≥ 0, the iterate 𝑦𝑘+1 produced by USOL2 is (6𝐺2/𝑛α𝑘)-uniformly stable.

Proof of Lemma 12. Let 𝑆 = (𝑧1, . . . , 𝑧𝑛) and 𝑆′ = (𝑧1, . . . , 𝑧𝑖−1, 𝑧′𝑖 , 𝑧𝑖+1, . . . , 𝑧𝑛) be two neighbor-
ing datasets and let {𝑦𝑘}𝑘 , {𝑦̃𝑘}𝑘 be the two “𝑦𝑘” iterates obtained from USOL2 respectively. Using
the triangle inequality,

∥𝑦𝑘+1 − 𝑦̃𝑘+1∥ ≤ ∥𝑦𝑘+1 − 𝑥★𝑘 ∥ + ∥𝑥
★
𝑘 − 𝑥

★
𝑘 ∥ + ∥𝑥

★
𝑘 − 𝑦̃𝑘+1∥.

Using Lemma 8 and the definition of 𝐽𝑘 ,

∥𝑦𝑘+1 − 𝑥★𝑘 ∥ ≤
∥𝑦𝑘 − 𝑥★𝑘 ∥
2𝐽𝑘/2

≤
𝐺∥𝑦𝑘 − 𝑥★𝑘 ∥
𝐷𝑛α𝑘

.

8
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Combining Lemma 9 and Lemma 7,

∥𝑦𝑘 − 𝑥★𝑘 ∥ ≤ ∥𝑥
★
𝑘 − 𝑥0∥ ≤ ∥𝑥

★ − 𝑥0∥ ≤ 𝐷.

Thus ∥𝑦𝑘+1 − 𝑥★𝑘 ∥ ≤
𝐺
𝑛α𝑘

, and similarly ∥𝑥★
𝑘
− 𝑦̃𝑘+1∥ ≤ 𝐺

𝑛α𝑘
. Hence,

∥𝑦𝑘+1 − 𝑦̃𝑘+1∥ ≤ ∥𝑥★𝑘 − 𝑥
★
𝑘 ∥ +

2𝐺
𝑛α𝑘

.

We will now focus on bounding ∥𝑥★
𝑘
− 𝑥★

𝑘
∥. By invoking Lemma 11 with 𝐿 (𝑘)

𝑆
and 𝐿 (𝑘)

𝑆′ ,

∥𝑥★𝑘 − 𝑥
★
𝑘 ∥ ≤

2∥ℓ(𝑥★
𝑘
; 𝑧′
𝑖
) − ℓ(𝑥★

𝑘
; 𝑧𝑖)∥∗

𝑛α𝑘
≤ 4𝐺
𝑛α𝑘

,

where we have used the fact that ℓ(·, 𝑧𝑖) and ℓ(·, 𝑧′𝑖) are 𝐺-Lipschitz. Thus, ∥𝑦𝑘+1 − 𝑦̃𝑘+1∥ ≤
6𝐺
𝑛α𝑘

.

Again using the fact that ℓ(·, 𝑧) is Lipschitz,

sup
𝑧∈Z
|ℓ(𝑦𝑘+1; 𝑧) − ℓ( 𝑦̃𝑘+1; 𝑧) | ≤ 𝐺∥𝑦𝑘+1 − 𝑦̃𝑘+1∥ ≤

6𝐺2

𝑛α𝑘
,

hence we establish uniform stability. ■

We are now ready to prove Theorem 6.

Proof of Theorem 6. If 0 < 𝑡 < 𝑡1 then 𝑦𝑡 = 𝑥0 and uniform stability is immediate. Regarding
convergence, by smoothness,

𝐿𝑆 (𝑥0) − 𝐿𝑆 (𝑥★) ≤
β𝐷2

2
≤ β𝐷2(𝑁0𝐽0)γ

2𝑡γ
= 𝑂

(
𝐶β𝐷2

𝑡γ

)
.

Let 𝐾 = max{𝑘 : 𝑡𝑘+1 ≤ 𝑡} for some 𝑡 > 0 which implies 𝑥𝑡 = 𝑦𝐾+1. To obtain uniform stability by
Lemma 12 we need to lower bound α𝐾 . Thus,

𝑡 ≥ 𝑡𝐾+1 ≥ 𝑁𝐾 𝐽𝐾 ≥
(
4𝐶β
α𝐾

)1/γ
=⇒ α𝑘 = Ω

(
𝐶β

𝑡γ

)
.

Thus, 𝑥𝑡 is 𝑂
(
𝐺2𝑡γ/𝐶β𝑛

)
-uniformly stable. For the convergence result we need to upper bound α𝐾

and invoke Lemma 10. First we bound 𝑁𝑘 by a geometric series,

𝑁𝑘 =

(
4𝐶

(
β

α𝑘
+ 1

))1/γ
=

(
4𝐶

(
2𝑘+2 + 1

) )1/γ
≤

(
20𝐶 · 2𝑘

)1/γ
=⇒

𝑘∑︁
𝑖=0

𝑁𝑖 ≤ (20𝐶)1/γ
2(𝑘+1)/γ

21/γ − 1
.

Thus, using the definition of 𝐽𝑘 ,

𝑡 < 𝑡𝐾+2 =
𝐾+1∑︁
𝑘=0

𝐽𝑘𝑁𝑘 ≤ max
{
1, 2 log2

β𝐷𝑛

4𝐺

} 𝐾+1∑︁
𝑘=0

𝑁𝑘 ≤ (20𝐶)1/γmax
{
1, 2 log2

β𝐷𝑛

4𝐺

}
2(𝐾+2)/γ

21/γ − 1
.

Rearranging the terms and using 0 < γ ≤ 2,
1
2𝐾+2

≤ 10𝐶
𝑡γ
(
1 − 2−1/γ

)γ max{1, 2 logγ2 β𝐷𝑛4𝐺 }
= 𝑂

(
𝐶

𝑡γ
max

{
1, 2 logγ2

β𝐷𝑛

4𝐺

})
.

We conclude using Lemma 10 with 𝑥𝑡 = 𝑦𝐾+1 and α𝐾 = β/2𝐾+2,

𝐿𝑆 (𝑥𝑡 ) − 𝐿𝑆 (𝑥★) ≤
3α𝐾𝐷2

4
= 𝑂

(𝐶β𝐷2
𝑡γ

max
{
1, logγ

(β𝐷𝑛
𝐺

)})
. ■
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4. Stable Mirror Descent for general norms

In this sectionwe provide a uniformly stable variant ofMirrorDescent for empirical riskminimization
in general normed spaces. The algorithm, which we term USMD is presented in Algorithm 2). Here
we assume that the loss function ℓ : X × Z ↦→ ℝ is convex, β-smooth and 𝐺-Lipschitz (in its first
argument) w.r.t. a general ∥·∥.
Like the standard Mirror Descent, the algorithm is parameterized by a regularization function

𝑅(𝑥) which is 1-strongly convex w.r.t. ∥·∥. Let 𝑥0 = argmin𝑥∈X 𝑅(𝑥), 𝑥★ ∈ argmin𝑥∈X 𝐿𝑆 (𝑥) and
let 𝐷2 ≥ 𝑅(𝑥★) − 𝑅(𝑥0). In each step of USMD we perform linearization of 𝐿𝑆 (𝑥𝑡 ) and use α𝑅(𝑥)

Algorithm 2: USMD: Uniformly Stable Mirror Descent
Input: Sample 𝑆 = (𝑧𝑖)𝑛𝑖=1, smoothness β, 𝑥0, regularization parameter α, number of steps 𝑇 .
for 𝑡 ← 0 to 𝑇 − 1 do

𝑥𝑡+1 ← argmin
𝑥∈X

{∇𝐿𝑆 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + β𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥)}.

end
Output: 𝑥𝑇 .

as a regularization in addition to the Bregman of the mirror descent step, which lets us obtain linear
rate convergence on the regularized objective. Hence, we obtain stability by converging near to a
regularized minimizer at a minimal cost. α is carefully tuned to balance the stability and empirical
error. Note that the update step of USMD is in fact a Mirror Descent step on the regularized function
𝐿
(α)
𝑆
(𝑥) ≜ 𝐿𝑆 (𝑥) +α𝑅(𝑥) with smoothness of α+β. This can be seen by comparing the argmin step

of USMD and that of Mirror Descent (Eq. (1)), and is written formally in the proof of Theorem 13.
Further, note that first-order access to the empirical risk suffices for implementing our method

as we only access it by performing linearization in each step. Following is the main result for this
section, describing the stability and convergence of Algorithm 2.

Theorem 13. Assume ℓ(·, 𝑧) is convex, β-smooth and𝐺-Lipschitz w.r.t. ∥·∥ on X, 𝑅(𝑥) is 1-strongly
convex w.r.t. ∥·∥ on X, 𝑥0 = argmin𝑥∈X 𝑅(𝑥) and 𝐷2 ≥ 𝑅(𝑥★) − 𝑅(𝑥0). Then given 𝑇 ≥ 2 log β𝐷𝑛

𝐺
,

the output of USMD (the final iterate 𝑥𝑇 ) with α =
β

𝑇
max

{
1, 2 log2

β𝐷𝑛

𝐺𝑇

}
satisfies the following:

• 𝑥𝑇 is 𝑂 (𝐺2𝑇/β𝑛)-uniformly stable.

• 𝐿𝑆 (𝑥𝑇 ) − 𝐿𝑆 (𝑥★) = 𝑂 (β𝐷2/𝑇).

The following lemmas are used in order to prove Theorem 13. We defer their proofs to Ap-
pendix B. As we mentioned, adding regularization can impair smoothness (cf. Appendix C), hence
we cannot appeal directly to classical bounds for smooth Mirror Descent. The next lemma show
that adding regularization, although not necessarily smooth, is indeed relatively smooth and strongly
convex.

Lemma 14. Let 𝑓 (𝑥) be a convex and β-smooth function w.r.t. ∥·∥. Let 𝑅(𝑥) be 1-strongly convex
w.r.t. ∥·∥. Then 𝑓 (α) (𝑥) ≜ 𝑓 (𝑥) +α𝑅(𝑥) for α > 0 is (α+β)-smooth and α-strongly convex relative
to 𝑅(𝑥).

Hence, one can take advantage of the method of Lu et al. (2018) for relatively-smooth convex
optimization. The following lemma is derived from the analysis of Lu et al. (2018).
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Lemma 15. Let 𝑓 (𝑥) be β-smooth and α-strongly convex relative to 𝑅(𝑥). Then the sequence {𝑥𝑡 }
defined by Eq. (1) satisfy:

(i) { 𝑓 (𝑥𝑡 )}𝑡 is monotonically decreasing.

(ii) Let 𝑥★ ∈ argmin𝑥∈X 𝑓 (𝑥). For all 𝑡 ≥ 1, 𝐷𝑅 (𝑥★, 𝑥𝑡 ) ≤
(
1 − α

β

) 𝑡
𝐷𝑅 (𝑥★, 𝑥0).

(iii) For all 𝑡 ≥ 1 and 𝑥 ∈ X, 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥) ≤ α𝐷𝑅 (𝑥,𝑥0)
(1+ α

β−α )
𝑡−1 .

We are now ready to prove Theorem 13.

Proof of Theorem 13. We start with showing that 𝐷𝑅 (𝑥★α, 0) ≤ 𝐷2. This inequality will be used
for both stability and convergence results. By the zero-order optimality of 𝑥★α and 𝑥★,

𝐿𝑆 (𝑥★α) + α𝑅(𝑥★α) ≤ 𝐿𝑆 (𝑥★) + α𝑅(𝑥★)

=⇒ 𝑅(𝑥★) − 𝑅(𝑥★α) ≥
𝐿𝑆 (𝑥★α) − 𝐿𝑆 (𝑥★)

α
≥ 0.

From the first-order optimality of 𝑥0 which implies ∇𝑅(𝑥0) · (𝑥0 − 𝑥★α) ≤ 0,

𝐷𝑅 (𝑥★α, 𝑥0) = 𝑅(𝑥★α) − 𝑅(𝑥0) − ∇𝑅(𝑥0) · (𝑥★α − 𝑥0) ≤ 𝑅(𝑥★α) − 𝑅(𝑥0).

Combining the two inequalities,

𝐷𝑅 (𝑥★α, 𝑥0) ≤ 𝑅(𝑥★α) − 𝑅(𝑥0) ≤ 𝑅(𝑥★) − 𝑅(𝑥0) ≤ 𝐷2. (2)

Secondly we will show that our method in fact performs mirror steps on 𝐿 (α)
𝑆
(𝑥) = 𝐿𝑆 (𝑥) + α𝑅(𝑥)

which is (α + β)-smooth and α-strongly convex relative to 𝑅(𝑥) by Lemma 14. The update step of
USMD is

𝑥𝑡+1 = argmin
𝑥∈X

{∇𝐿𝑆 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + β𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥)}.

Using the definition of 𝐷𝑅 (𝑥, 𝑥𝑡 ),

∇𝐿𝑆 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + β𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥)
= ∇𝐿𝑆 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + (α + β)𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥) − α(𝑅(𝑥) − 𝑅(𝑥𝑡 ) − ∇𝑅(𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ))
= (∇𝐿𝑆 (𝑥𝑡 ) + α∇𝑅(𝑥𝑡 )) · (𝑥 − 𝑥𝑡 ) + (α + β)𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥𝑡 ).

Thus,

argmin
𝑥∈X

{
∇𝐿𝑆 (𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + β𝐷𝑅 (𝑥, 𝑥𝑡 ) + α𝑅(𝑥)

}
= argmin

𝑥∈X

{
∇𝐿 (α)

𝑆
(𝑥𝑡 ) · (𝑥 − 𝑥𝑡 ) + (α + β)𝐷𝑅 (𝑥, 𝑥𝑡 )

}
,

which is a mirror descent step (Eq. (1)) for 𝐿 (α)
𝑆
with a smoothness of β + α. Hence, we can invoke

Lemma 15.
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Next follows the stability argument. Let 𝑆 = (𝑧1, . . . , 𝑧𝑛) and 𝑆′ = (𝑧1, . . . , 𝑧𝑖−1, 𝑧′𝑖 , 𝑧𝑖+1, . . . , 𝑧𝑛).
Let 𝑥𝑇 and 𝑥𝑇 be the outputs of USMD on 𝑆 and 𝑆′ respectively. Let 𝑥★α = argmin𝑥∈X 𝐿

(α)
𝑆
(𝑥) and

𝑥★α = argmin𝑥∈X 𝐿
(α)
𝑆′ (𝑥). Using the triangle inequality,

∥𝑥𝑇 − 𝑥𝑇 ∥ ≤ ∥𝑥𝑇 − 𝑥★α∥ + ∥𝑥★α − 𝑥★α∥ + ∥𝑥★α − 𝑥𝑇 ∥.

By Lemma 15,

𝐷𝑅 (𝑥★α, 𝑥𝑇 ) ≤
(
1 − α

α + β

)𝑇
𝐷𝑅 (𝑥★α, 𝑥0) =

( 1
1 + α

β

)𝑇
𝐷𝑅 (𝑥★α, 𝑥0).

Using the inequality
(
1 + 1

𝑥

) 𝑥
≥ 2 for 𝑥 ≥ 1, with β

α
≥ 1,

(
1 + α

β

)β/α ≥ 2. Note that β
α
≥ 1 due to

our assumption that 2 log2
β𝐷𝑛

𝐺
≤ 𝑇 . Thus,

𝐷𝑅 (𝑥★α, 𝑥𝑇 ) ≤
( 1
1 + α

β

)𝑇
𝐷𝑅 (𝑥★α, 𝑥0) ≤ 2

− α𝑇
β 𝐷𝑅 (𝑥★α, 𝑥0).

By α ≥ 2β
𝑇
log2

β𝐷𝑛

𝐺𝑇
and Eq. (2),

𝐷𝑅 (𝑥★α, 𝑥𝑇 ) ≤
𝐺2𝑇2

β2𝐷2𝑛2
𝐷𝑅 (𝑥★α, 𝑥0) ≤

𝐺2𝑇2

β2𝑛2
.

From the strong convexity of 𝑅(𝑥), 12 ∥𝑥
★
α − 𝑥𝑇 ∥2 ≤ 𝐷𝑅 (𝑥★α, 𝑥𝑇 ). Hence,

∥𝑥★α − 𝑥𝑇 ∥ ≤
√
2𝐺𝑇
β𝑛

,

and similarly ∥𝑥𝑇 − 𝑥★α∥ ≤
√
2𝐺𝑇
β𝑛
. Now we will bound ∥𝑥★α − 𝑥★α∥. Using Lemma 11 with 𝑓1 = 𝐿

(α)
𝑆

(α-strongly convex since 𝑅(𝑥) is 1-strongly convex) and 𝑓2 = 𝐿 (α)𝑆′ ,

∥𝑥★α − 𝑥★α∥ ≤
2∥ℓ(𝑥★α; 𝑧′𝑖) − ℓ(𝑥★α; 𝑧𝑖)∥∗

𝑛α
≤ 4𝐺
𝑛α
,

where we have used the fact that ℓ(·, 𝑧𝑖) and ℓ(·, 𝑧′𝑖) are 𝐺-Lipschitz. Thus, since α ≥ β/𝑇 ,

∥𝑥𝑇 − 𝑥𝑇 ∥ ≤
4𝐺
𝑛α
+ 2
√
2𝐺𝑇
𝑛β

≤ (4 + 2
√
2)𝐺𝑇

𝑛β
.

Since ℓ(·, 𝑧) is 𝐺-Lipschitz, we upper bound the uniform stability,

sup
𝑧∈Z
|ℓ(𝑥𝑇 ; 𝑧) − ℓ(𝑥𝑇 ; 𝑧) | ≤ 𝐺∥𝑥𝑇 − 𝑥𝑇 ∥ ≤

(4 + 2
√
2)𝐺2𝑇

𝑛β
= 𝑂

(
𝐺2𝑇

β𝑛

)
.

We move on to the convergence of 𝑥𝑇 .

𝐿𝑆 (𝑥𝑇 ) − 𝐿𝑆 (𝑥★) = 𝐿 (α)𝑆 (𝑥𝑇 ) − 𝐿
(α)
𝑆
(𝑥★) + α(𝑅(𝑥★) − 𝑅(𝑥𝑇 )) (𝐿 (α)

𝑆
(𝑥) = 𝐿𝑆 (𝑥) + α𝑅(𝑥))

≤ 𝐿 (α)
𝑆
(𝑥𝑇 ) − 𝐿 (α)𝑆 (𝑥

★
α) + α(𝑅(𝑥★) − 𝑅(𝑥𝑇 )). (𝑥★α = argmin𝑥∈X 𝐿

(α)
𝑆
(𝑥))

12
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Again by Lemma 15, and 𝑇 ≥ β

α
which implies

(
1 + α

β

)𝑇 ≥ 2,
𝐿
(α)
𝑆
(𝑥𝑇 ) − 𝐿 (α)𝑆 (𝑥

★
α) ≤

α𝐷𝑅 (𝑥★α, 𝑥0)(
1 + α

β

)𝑇
− 1
≤ α𝐷𝑅 (𝑥★α, 𝑥0).

Thus, using the minimality of 𝑥0,

𝐿𝑆 (𝑥𝑇 ) − 𝐿𝑆 (𝑥★) ≤ α(𝐷𝑅 (𝑥★α, 𝑥0) + 𝑅(𝑥★) − 𝑅(𝑥𝑇 )) ≤ α(𝐷𝑅 (𝑥★α, 𝑥0) + 𝑅(𝑥★) − 𝑅(𝑥0)),

and by Eq. (2) and the definition of α,

𝐿𝑆 (𝑥𝑇 ) − 𝐿𝑆 (𝑥★) ≤ 2α𝐷2 = 𝑂
(
β𝐷2

𝑇

)
. ■
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Appendix A. Proofs of Section 3

A.1. Proof of Lemma 8

Proof. From strong convexity and the rate ofA,

α𝑘

2
∥𝑦𝑘, 𝑗+1 − 𝑥★𝑘 ∥

2 ≤ 𝐿 (𝑘)
𝑆
(𝑦𝑘, 𝑗+1) − 𝐿 (𝑘)𝑆 (𝑥

★
𝑘 ) ≤

𝐶 (α𝑘 + β)∥𝑦𝑘, 𝑗 − 𝑥★𝑘 ∥
2

4𝐶
(
1 + β

α𝑘

) =
α𝑘 ∥𝑦𝑘, 𝑗 − 𝑥★𝑘 ∥

2

4
.

Hence,

∥𝑦𝑘, 𝑗+1 − 𝑥★𝑘 ∥
2 ≤
∥𝑦𝑘, 𝑗 − 𝑥★𝑘 ∥

2

2
.
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Repeating this argument and substituting 𝑦𝑘 = 𝑦𝑘,0,

∥𝑦𝑘, 𝑗+1 − 𝑥★𝑘 ∥
2 ≤
∥𝑦𝑘,0 − 𝑥★𝑘 ∥

2

2 𝑗+1
=
∥𝑦𝑘 − 𝑥★𝑘 ∥

2

2 𝑗+1
.

Thus,

𝐿
(𝑘)
𝑆
(𝑦𝑘,𝐽𝑘 ) − 𝐿

(𝑘)
𝑆
(𝑥★𝑘 ) ≤

𝐶 (α𝑘 + β)∥𝑦𝑘,𝐽𝑘−1 − 𝑥★𝑘 ∥
2

4𝐶 (1 + β/α𝑘)
=
α𝑘 ∥𝑦𝑘,𝐽𝑘−1 − 𝑥★𝑘 ∥

2

4
≤
α𝑘 ∥𝑦𝑘 − 𝑥★𝑘 ∥

2

2𝐽𝑘+1
.

We conclude by substituting 𝑦𝑘+1 = 𝑦𝑘,𝐽𝑘 . ■

A.2. Proof of Lemma 9

First we need the following claim, proved below.

Claim 16. Let 𝑓 (𝑥) a convex function. Let 𝑥★1 and 𝑥★2 be the minimizers of 𝑓 (𝑥) + α1
2 ∥𝑥 − 𝑥0∥

2 and
𝑓 (𝑥) + α2

2 ∥𝑥 − 𝑥0∥
2 respectively, for some 𝑥0 ∈ ℝ𝑑 and α1,α2 > 0. Then,

∥𝑥★1 − 𝑥
★
2 ∥
2 ≤ α1 − α2

α1 + α2

(
∥𝑥★2 − 𝑥0∥

2 − ∥𝑥★1 − 𝑥0∥
2
)
.

Proof of Lemma 9. For 𝑘 = 0 the claim is immediate as 𝑦0 = 𝑥0. For 𝑘 > 0, using the triangle
inequality,

∥𝑦𝑘 − 𝑥★𝑘 ∥ ≤ ∥𝑦𝑘 − 𝑥
★
𝑘−1∥ + ∥𝑥

★
𝑘−1 − 𝑥

★
𝑘 ∥.

By Claim 16,

∥𝑥★𝑘−1 − 𝑥
★
𝑘 ∥
2 ≤ α𝑘−1 − α𝑘

α𝑘−1 + α𝑘

(
∥𝑥★𝑘 − 𝑥0∥

2 − ∥𝑥★𝑘−1 − 𝑥0∥
2
)
≤
∥𝑥★
𝑘
− 𝑥0∥2 − ∥𝑥★𝑘−1 − 𝑥0∥

2

3
.

Due to Lemma 8,

∥𝑦𝑘 − 𝑥★𝑘−1∥ ≤
∥𝑦𝑘−1 − 𝑥★𝑘−1∥
2𝐽𝑘/2

≤
∥𝑥0 − 𝑥★𝑘−1∥
2𝐽𝑘/2

(induction)

≤
∥𝑥0 − 𝑥★𝑘−1∥√

2
. (𝐽𝑘 ≥ 1)

Thus,

∥𝑦𝑘 − 𝑥★𝑘 ∥ ≤
∥𝑥0 − 𝑥★𝑘−1∥√

2
+

√︄
∥𝑥★
𝑘
− 𝑥0∥2 − ∥𝑥★𝑘−1 − 𝑥0∥

2

3

= ∥𝑥★𝑘 − 𝑥0∥
©­«
∥𝑥0 − 𝑥★𝑘−1∥/∥𝑥

★
𝑘
− 𝑥0∥

√
2

+

√︄
1 − ∥𝑥★

𝑘−1 − 𝑥0∥
2/∥𝑥★

𝑘
− 𝑥0∥2

3
ª®¬.

From Claim 16, ∥𝑥★
𝑘−1 − 𝑥0∥ ≤ ∥𝑥

★
𝑘
− 𝑥0∥, and since for 0 ≤ 𝑥 ≤ 1, 𝑥√2 +

√︃
1−𝑥2
3 ≤ 1,

∥𝑦𝑘 − 𝑥★𝑘 ∥ ≤ ∥𝑥
★
𝑘 − 𝑥0∥. ■
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Proof of Claim 16. From the strong convexity of 𝑓 (𝑥) + α1
2 ∥𝑥 − 𝑥0∥

2,

α1
2
∥𝑥★2 − 𝑥

★
1 ∥
2 ≤ 𝑓 (𝑥★2 ) +

α1
2
∥𝑥★2 − 𝑥0∥

2 − 𝑓 (𝑥★1 ) −
α1
2
∥𝑥★1 − 𝑥0∥

2.

Similarly,

α2
2
∥𝑥★1 − 𝑥

★
2 ∥
2 ≤ 𝑓 (𝑥★1 ) +

α2
2
∥𝑥★1 − 𝑥0∥

2 − 𝑓 (𝑥★2 ) −
α2
2
∥𝑥★2 − 𝑥0∥

2

=⇒ 𝑓 (𝑥★2 ) − 𝑓 (𝑥
★
1 ) ≤

α2
2
∥𝑥★1 − 𝑥0∥

2 − α2
2
∥𝑥★2 − 𝑥0∥

2 − α2
2
∥𝑥★1 − 𝑥

★
2 ∥
2.

Combining the two inequalities,

α1
2
∥𝑥★2 − 𝑥

★
1 ∥
2 ≤ α1 − α2

2

(
∥𝑥★2 − 𝑥0∥

2 − ∥𝑥★1 − 𝑥0∥
2
)
− α2
2
∥𝑥★1 − 𝑥

★
2 ∥
2,

and we obtain the desired result by rearranging the terms. ■

A.3. Proof of Lemma 11

Proof. The strong convexity of 𝑓2 and 𝑥2 being the minimum of 𝑓2 implies

∇ 𝑓2(𝑥1) · (𝑥1 − 𝑥2) ≥ 𝑓2(𝑥1) − 𝑓2(𝑥2) +
α

2
∥𝑥2 − 𝑥1∥2 ≥

α

2
∥𝑥2 − 𝑥1∥2.

From first-order optimality of 𝑥1, ∇ 𝑓1(𝑥1) · (𝑥1 − 𝑥2) ≤ 0. Thus,

∇ 𝑓2(𝑥1) · (𝑥1 − 𝑥2) = ∇ 𝑓1(𝑥1) · (𝑥1 − 𝑥2) + ∇ℎ(𝑥1) · (𝑥1 − 𝑥2) ≤ ∇ℎ(𝑥1) · (𝑥1 − 𝑥2).

Putting the two inequalities, together with Hölder inequality, yields

α

2
∥𝑥2 − 𝑥1∥2 ≤ ∇ℎ(𝑥1) · (𝑥1 − 𝑥2) ≤ ∥∇ℎ(𝑥1)∥∗∥𝑥1 − 𝑥2∥.

Thus, ∥𝑥2 − 𝑥1∥ ≤ 2
α
∥∇ℎ(𝑥1)∥∗. ■

Appendix B. Proofs of Section 4

B.1. Proof of Lemma 14

Proof. Due to convexity of 𝑓 , 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥). Since 𝐷𝑅 (𝑦, 𝑥) = 𝑅(𝑦) − 𝑅(𝑥) −
∇𝑅(𝑥) · (𝑦 − 𝑥),

𝑓 (𝑦) + α𝑅(𝑦) ≥ 𝑓 (𝑥) + (∇ 𝑓 (𝑥) + α∇𝑅(𝑥)) · (𝑦 − 𝑥) + α𝑅(𝑥) + α𝐷𝑅 (𝑦, 𝑥).

Hence, by the definition of 𝑓 (α) (𝑥),

𝑓 (α) (𝑦) ≥ 𝑓 (α) (𝑥) + ∇ 𝑓 (α) (𝑥) · (𝑦 − 𝑥) + α𝐷𝑅 (𝑦, 𝑥),

and we conclude that 𝑓 (α) (𝑥) is α-strongly convex relative to 𝑅(𝑥). Since 𝑓 (𝑥) is β-smooth,

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + β
2
∥𝑦 − 𝑥∥2.
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Using the inequality 𝐷𝑅 (𝑦, 𝑥) ≥ 12 ∥𝑦 − 𝑥∥
2 (since 𝑅 is 1-strongly convex),

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + β𝐷𝑅 (𝑦, 𝑥).

Adding α𝐷𝑅 (𝑦, 𝑥) to both sides and using the definition of 𝐷𝑅 (𝑦, 𝑥),

𝑓 (𝑦) + α𝑅(𝑦) − α𝑅(𝑥) − α∇𝑅(𝑥) · (𝑦 − 𝑥) ≤ 𝑓 (𝑥) + ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) + (α + β)𝐷𝑅 (𝑦, 𝑥).

Hence, by the definition of 𝑓 (α) (𝑥),

𝑓 (α) (𝑦) ≤ 𝑓 (α) (𝑥) + ∇ 𝑓 (α) (𝑥) · (𝑦 − 𝑥) + (α + β)𝐷𝑅 (𝑦, 𝑥),

and we conclude that 𝑓 (α) (𝑥) is (α + β)-smooth relative to 𝑅(𝑥). ■

B.2. Proof of Lemma 15

The lemma is based on the analysis of Lu et al. (2018) (Theorem 3.1) which gives the convergence
in terms of 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥). For Theorem 13 we also need convergence in terms of 𝐷𝑅 (𝑥★,𝑥𝑡 )

𝐷𝑅 (𝑥★,𝑥0) for
𝑥★ ∈ argmin𝑥∈X 𝑓 (𝑥). Thus, we repeat the argument for completeness. The proof relies on the
following Three-Point Property:

Lemma 17 (Three-Point Property of Tseng (2008)). Letφ(𝑥) be a convex function, and let 𝐷𝑅 (·, ·)
be the Bregman distance for 𝑅(·). For a given vector 𝑧, let

𝑧+ ≜ argmin
𝑥∈X

{φ(𝑥) + 𝐷𝑅 (𝑥, 𝑧)}.

Then

φ(𝑥) + 𝐷𝑅 (𝑥, 𝑧) ≥ φ(𝑧+) + 𝐷𝑅 (𝑧+, 𝑧) + 𝐷𝑅 (𝑥, 𝑧+) for all 𝑥 ∈ X.

Proof of Lemma 15. For any 𝑥 ∈ X and 𝑡 ≥ 1, from relative smoothness,

𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡−1) + ∇ 𝑓 (𝑥𝑡−1) · (𝑥𝑡 − 𝑥𝑡−1) + β𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1).

Using Lemma 17 with φ(𝑥) = 1
β
∇ 𝑓 (𝑥𝑡−1) · (𝑥 − 𝑥𝑡−1) and 𝑧 = 𝑥𝑡−1,

1
β
∇ 𝑓 (𝑥𝑡−1) · (𝑥 − 𝑥𝑡 ) + 𝐷𝑅 (𝑥, 𝑥𝑡−1) ≥ 𝐷𝑅 (𝑥𝑡 , 𝑥𝑡−1) + 𝐷𝑅 (𝑥, 𝑥𝑡 ).

Hence,

𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡−1) + ∇ 𝑓 (𝑥𝑡−1) · (𝑥 − 𝑥𝑡−1) + β𝐷𝑅 (𝑥, 𝑥𝑡−1) − β𝐷𝑅 (𝑥, 𝑥𝑡 ).

Thus, from relative strong convexity,

𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥) + (β − α)𝐷𝑅 (𝑥, 𝑥𝑡−1) − β𝐷𝑅 (𝑥, 𝑥𝑡 ).

Note that if 𝑥 = 𝑥𝑡−1, 𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥𝑡−1). Hence, { 𝑓 (𝑥𝑡 )}𝑡 is monotonically decreasing. From the
definition of 𝑥★, 𝑓 (𝑥𝑡 ) ≥ 𝑓 (𝑥★). Hence, for 𝑥 = 𝑥★ we obtain

𝐷𝑅 (𝑥★, 𝑥𝑡 ) ≤
β − α
β

𝐷𝑅 (𝑥★, 𝑥𝑡−1) =
(
1 − α

β

)
𝐷𝑅 (𝑥★, 𝑥𝑡−1).
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Repeating this argument and we obtain

𝐷𝑅 (𝑥★, 𝑥𝑡 ) ≤
(
1 − α

β

) 𝑡
𝐷𝑅 (𝑥★, 𝑥0).

Returning to

𝑓 (𝑥𝑡 ) ≤ 𝑓 (𝑥) + (β − α)𝐷𝑅 (𝑥, 𝑥𝑡−1) − β𝐷𝑅 (𝑥, 𝑥𝑡 ),

it follows by induction that
𝑡∑︁
𝑖=1

(
β

β − α

) 𝑖
( 𝑓 (𝑥𝑖) − 𝑓 (𝑥)) ≤ β𝐷𝑅 (𝑥, 𝑥0) −

(
β

β − α

) 𝑡
β𝐷𝑅 (𝑥, 𝑥𝑡 ).

Since { 𝑓 (𝑥𝑡 )}𝑡 is monotonically decreasing,
𝑡∑︁
𝑖=1

(
β

β − α

) 𝑖
( 𝑓 (𝑥𝑖) − 𝑓 (𝑥)) ≥

𝑡∑︁
𝑖=1

(
β

β − α

) 𝑖
( 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥))

=

β
(
1 + α

β−α

) 𝑡
− 1

α
( 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥)).

Thus,

β
(
1 + α

β−α

) 𝑡
− 1

α
( 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥)) ≤ β𝐷𝑅 (𝑥, 𝑥0) −

(
β

β − α

) 𝑡
β𝐷𝑅 (𝑥, 𝑥𝑡 )

≤ β𝐷𝑅 (𝑥, 𝑥0).

Rearranging the terms yields the convergence result. ■

Appendix C. On Smoothness of ℓ𝑝 Regularization

The following lemma indicate that ∥·∥2𝑝 for 1 < 𝑝 < 2 is not smooth. Hence, using it as a
regularization can impair a smoothness assumption.

Lemma 18. Let 𝑓 (𝑥) = ∥𝑥∥2𝑝 for 1 < 𝑝 < 2 over X = ℝ𝑑 (𝑑 > 1). Then 𝑓 (𝑥) is not smooth with
respect to ∥·∥ 𝑝.

Proof. Assume by contradiction that 𝑅(𝑥) is β-smooth with respect to ∥·∥ 𝑝 for some β > 0. Let
𝑥 = (1, 0, 0, . . . , 0)𝑇 and 𝑦 = (1, ϵ, 0, . . . , 0)𝑇 for some ϵ > 0. Thus,

𝑓 (𝑦) − 𝑓 (𝑥) − ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) = (1 + ϵ𝑝)2/𝑝 − 1 − ∇ 𝑓 (𝑥) · (𝑦 − 𝑥)
= (1 + ϵ𝑝)2/𝑝 − 1 − (1, 0, . . . , 0)𝑇 · (0, ϵ, 0, . . . , 0)𝑇

= (1 + ϵ𝑝)2/𝑝 − 1.

Using the identity (1 + 𝑥)γ ≥ 1 + γ𝑥 for 𝑥 ≥ 0 and γ ≥ 1, (1 + ϵ𝑝)2/𝑝 − 1 ≥ 2
𝑝
ϵ𝑝. Since 𝑝 < 2,

lim
ϵ→0+

ϵ2

ϵ𝑝
= 0.
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We can pick sufficiently small ϵ with

ϵ2

(1 + ϵ𝑝)2/𝑝 − 1
≤ 𝑝ϵ2

2ϵ𝑝
<
2
β
,

for which

𝑓 (𝑦) − 𝑓 (𝑥) − ∇ 𝑓 (𝑥) · (𝑦 − 𝑥) = (1 + ϵ𝑝)2/𝑝 − 1 > βϵ2

2
=
β

2
∥𝑦 − 𝑥∥2𝑝,

and we get a contradiction to the smoothness assumption. ■
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