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Abstract
We initiate the study of a fundamental question concerning adversarial noise models in statistical
problems where the algorithm receives i.i.d. draws from a distribution D. The definitions of these
adversaries specify the type of allowable corruptions (noise model) as well as when these corrup-
tions can be made (adaptivity); the latter differentiates between oblivious adversaries that can only
corrupt the distribution D and adaptive adversaries that can have their corruptions depend on the
specific sample S that is drawn from D.

We investigate whether oblivious adversaries are effectively equivalent to adaptive adversaries,
across all noise models studied in the literature, under a unifying framework that we introduce.
Specifically, can the behavior of an algorithm A in the presence of oblivious adversaries always
be well-approximated by that of an algorithm A′ in the presence of adaptive adversaries? Our first
result shows that this is indeed the case for the broad class of statistical query algorithms, under all
reasonable noise models. We then show that in the specific case of additive noise, this equivalence
holds for all algorithms. Finally, we map out an approach towards proving this statement in its
fullest generality, for all algorithms and under all reasonable noise models.
Keywords: Statistical problems, Adversary models, Robustness, Statistical query algorithms

1. Introduction

The possibility of noise pervades most problems in statistical estimation and learning. In this paper
we will be concerned with adversarial noise models, as opposed to the class of more benign random
noise models. Adversarial noise models are the subject of intensive study across statistics (Huber,
1964; Hampel, 1971; Tukey, 1975), learning theory (Valiant, 1985; Haussler, 1992; Kearns and Li,
1993; Kearns et al., 1994; Bshouty et al., 2002), and algorithms (Diakonikolas et al., 2019; Lai et al.,
2016; Charikar et al., 2017; Diakonikolas and Kane, 2019). The definition of each model specifies:

1. The type of corruptions allowed. For example, the adversary may be allowed to add arbitrary
points (additive noise (Huber, 1964; Valiant, 1985)), or in the context of supervised learning,
allowed to change the labels in the data (agnostic noise (Haussler, 1992; Kearns et al., 1994)).

2. The adaptivity of the adversary.
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The latter is the focus of our work. Consider any statistical problem where the algorithm is given
i.i.d. draws from a distribution D. On one hand we have oblivious adversaries: such an adversary
corrupts D to a different distribution D̂, from which the algorithm then receives a sample. On the
other hand we have adaptive adversaries: such an adversary first draws a sample S from D, and
upon seeing the specific outcomes in S, corrupts it to Ŝ which is then passed on to the algorithm.
One can further consider adversaries with intermediate adaptive power, but we think of this as a
dichotomy for now. A coupling argument shows that adaptive adversaries are at least as powerful
as oblivious ones (Diakonikolas et al., 2019; Zhu et al., 2019). In this work we investigate whether
they can be strictly more powerful.

Question 1 Fix the type of corruptions allowed. Is it true that for any algorithm A, there is an
algorithm A′ whose behavior in the presence of adaptive adversaries well-approximates that of A
in the presence of oblivious adversaries?

The distinction between oblivious and adaptive adversaries is frequently touched upon in works
concerning statistical problems. Sometimes this distinction is brought up in service of emphasiz-
ing that the algorithms given in these works are robust against adaptive adversaries; other times it
is brought up when the algorithms are shown to be robust against oblivious adversaries, and the
viewpoint of an adaptive corruption process is provided as intuition for the noise model. How-
ever, the relative power of oblivious and adaptive adversaries in the statistical setting has not been
systematically considered in the literature.

1.1. Our contributions

1.1.1. A UNIFIED FRAMEWORK FOR CHARACTERIZING DATA ADVERSARIES.

To reason generally about Question 1, we associate every type of allowable corruptions with a cost
function ρ between distributions. An oblivious ρ-adversary therefore corrupts D to some D̂ that is
η-close with respect to ρ, meaning that ρ(D, D̂) ≤ η. An adaptive ρ-adversary corrupts a sample
S drawn from D to some Ŝ such that the uniform distribution over Ŝ is η-close with respect to ρ
to that over S. For example, when ρ(D, D̂) is the total variation distance between D and D̂, the
resulting adaptive adversary represents nasty noise as defined in Bshouty et al. (2002), where the
adversary is allowed to change an arbitrary η-fraction of the points in S. We discuss this framework
in more detail in Section 3.

1.1.2. YES TO QUESTION 1 FOR ALL SQ ALGORITHMS

Our first result is an affirmative answer to Question 1 for the broad class of statistical query (SQ)
algorithms. Our proof will require a mild assumption on this cost function, the precise statement of
which we defer to the body of the paper. For now, we simply refer to cost functions satisfying this
assumption as “reasonable”, and mention that it is easily satisfied by all standard noise models, and
can be seen to be necessary for our result to hold.

Theorem 1 (SQ algorithms are robust to adaptive adversaries) 1 For all reasonable cost func-
tions ρ and SQ algorithms A, the behavior of A′ := A in the presence of adaptive ρ-adversaries
well-approximates that of A in the presence of oblivious adversaries.

1. See Theorem 5 for the formal version of this theorem.
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A key ingredient in our proof of Theorem 1 is a novel reduction, using duality, from a k-query
SQ algorithm to a single “representative” SQ.

In other words, the SQ framework neutralizes adaptive adversaries into oblivious ones, and in
the context of Question 1, we can take A′ to be A itself. Looking ahead to our other results, we
remark that such a statement cannot be true for all algorithms: there are trivial examples of (non-SQ)
algorithms A for which A′ has to be a modified version of A.2

Theorem 1 adds to the already-deep connections between the SQ framework and noise tolerance.
The SQ framework was originally introduced in learning theory, where it continues to be influential
in the design of learning algorithms that are resilient to random classification noise (Kearns, 1998).
Most relevant to the topic of this paper, to our knowledge across all noise models, all existing
statistical algorithms that have been shown to be robust to adversarial noise can be cast in the SQ
framework.

1.1.3. YES TO QUESTION 1 FOR ADDITIVE NOISE

Our second result is an affirmative answer to Question 1 for one of the most natural types of corrup-
tions:

Theorem 2 3 The answer to Question 1 is “yes” for additive noise.

In additive noise, an oblivious adversary corrupts D to D̂ = (1 − η)D + ηE for an arbitrary
distribution E of their choosing. An adaptive adversary, on the other hand, gets to inspect the sample
S drawn from D, and adds η

1−η |S| many arbitrary points of their choosing to S. The oblivious
version of additive noise was introduced by Huber (Huber, 1964) and has become known as Huber’s
contamination model; the adaptive version is commonly called “data poisoning” in the security and
machine learning literature.

Additive noise also captures the well-studied malicious noise (Definition 16) from learning the-
ory (Valiant, 1985) (see also (Kearns and Li, 1993)). Theorem 2 therefore shows that Huber’s
contamination model, the malicious noise model, and the adaptive version of additive noise, are in
fact all equivalent. Our proof of Theorem 2 is constructive: we give an explicit description of how
A′ can be obtained from A, and A′ preserves the computational and sample efficiency of A up to
polynomial factors.

1.1.4. YES TO QUESTION 1 IN ITS FULLEST GENERALITY? AN APPROACH VIA SUBSAMPLING

Our proof of Theorem 2 is actually an instantiation of a broader approach towards answering Ques-
tion 1 affirmatively in its fullest generality: showing that the answer is “yes” for all (reasonable)
types of allowable corruptions and all algorithms. We introduce the following definition:

Definition 1 (Neutralizing filter) Let ρ be a cost function and A be an algorithm for a statistical
problem over a domain X . We say that a randomized function Φ : X ∗ → X ∗ is a neutralizing filter
forA with respect to ρ if the following holds. For all distributions D, with high probability over the
draw of S from D, the behavior of

2. One such example is D = Bernoulli( 1
2
) and A = 1[number of 1’s in the sample is 0 mod 100]. As the sample

size grows, an oblivious adversary can barely change the acceptance probability of A, whereas an adaptive one can
change it completely.

3. See Theorem 7 for the formal version
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A on Φ(Ŝ), where Ŝ is a corruption of S by an adaptive ρ-adversary,

well-approximates the behavior of

A on a sample from D̂, where D̂ is a corruption of D by an oblivious ρ-adversary.

Perhaps the most natural filter in this context is the subsampling filter. For an n-sample algo-
rithm A, we request for a larger sample of size m ≥ n, allow the adaptive adversary to corrupt it,
and then run A on a size-n subsample of the corrupted size-m sample. We call this the “m → n
subsampling filter” and denote it as Φm→n. The hope here is for the randomness of the subsampling
step to neutralize the adaptivity of the adversary.

The efficiency of the subsampling filter is measured by the overhead in sample complexity that
it incurs, i.e. how much largerm is relative to n. Subsampling from a sample that is roughly the size
of the domain of course makes adaptive adversaries equivalent to oblivious ones, but this renders
a sample-efficient algorithm inefficient. We are interested whether the subsampling filter can be
effective while only incurring a mild overhead in sample complexity.

We propose the following conjecture as a general approach towards answering Question 1:

Conjecture 1 For all reasonable cost functions ρ and n-sample algorithms A, the subsampling
filter Φm→n is a neutralizing filter for A with respect to ρ with m = poly(n, log(|X |)).

We obtain Theorem 2 by proving Conjecture 1 in the case of ρ being additive noise. While we
have not been able to prove Conjecture 1 for all ρ’s and all algorithms, we can show the following:

Theorem 3 (If it is possible, subsampling neutralizes adaptivity) 4 Let ρ be a cost function and
A be an n-sample algorithm. Suppose there is an m-sample algorithm A′ whose behavior in the
presence of adaptive ρ-adversaries well-approximates that of A in the presence of oblivious ρ-
adversaries. Then ΦM→n is a neutralizing filter for A with respect to ρ with M = O(m2).

We note that in the context of Theorem 3, we do not require A′ to be computationally efficient:
as long as A′ is sample efficient, then our resulting algorithm, the subsampling filter applied to A,
inherits the computational efficiency of A.

Finally, we show that the bound on m in Conjecture 1 cannot be further strengthened to be
independent of |X |, the size of the domain:

Theorem 4 (Subsampling lower bound) 5 Let ρ be the cost function for additive noise and η be
the corruption budget. There is an n-sample algorithmA such that form ≤ Oη(n log(|X |)/ log2 n),
Φm→n is not a neutralizing filter for A with respect to ρ.

While Theorem 4 shows that some dependence on |X | is necessary, we remark that the log(|X |)
dependence in Conjecture 1 is fairly mild—this is the description length of a sample point x ∈ X .
Theorem 4 also shows that the quantiative bounds that we achieve for Theorem 2 has an optimal
dependence on |X |.

4. See Theorem 6 for the formal version
5. See Theorem 8 for the formal version
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1.2. Other related work

A separation result Recently, Deng et al. gave a separation between the adaptive adversary, which
they call “data-aware”, and the oblivious adversary (Deng et al., 2021). Specifically they showed
that there are settings in which a natural Lasso-based algorithm for feature selection will often fail
to select the correct features in the presence of an adaptive additive adversary, but would succeed
in the presence of an oblivious additive adversary. Our Theorem 2 implies that this Lasso-based
algorithm would succeed if it used the subsampling filter to preprocess its sample.

The online and dynamic setting While the focus of our work is on the statistical setting, the
distinction between adaptive and oblivious adversaries has also been the subject of recent study in
the online (Haghtalab et al., 2021; Alon et al., 2021) and dynamic (Beimel et al., 2022) setting,
albeit with a notably different notion of adaptivity. In these settings, the adaptive adversaries can
change the input distribution in response to the previous behavior of the algorithm, while oblivious
adversaries must choose a fixed input distribution before the algorithms run.

Adaptive data analysis We emphasize the distinction between the focus of our work and the re-
cent fruitful line of work on adaptive data analysis (Dwork et al. (2015); Hardt and Ullman (2014);
Steinke and Ullman (2015); Bassily et al. (2021)). The focus of our work is on the adaptivity of the
adversary, whereas the focus of this line of work is on the adaptivity of the SQ algorithm. Through-
out this work, we reserve the use of “adaptive” to refer to the adversary, and all SQ algorithms will
inherently be adaptive.

1.3. Discussion and future work

Implications of our results Theorem 1 says that for all reasonable cost functions, all SQ algo-
rithms (existing and future ones) that are resilient to oblivious adversaries are “automatically” also
resilient to adaptive adversaries. Likewise, lower bounds against adaptive adversaries immediately
yield lower bounds against oblivious ones. The same remark further applies for all algorithms in
the case of additive noise and malicious noise, by Theorem 2.

As a concrete example, we recall that the agnostic learning framework was originally defined
with respect to oblivious adversaries (Haussler, 1992; Kearns et al., 1994). As in the PAC model
there a concept class C, but the target function f is no longer assumed to lie within C—hence the
name of the model. The learning algorithm is expected to achieve error close to opt, the distance
from f to C. However, many papers on agnostic learning provide the viewpoint of an adaptive
corruption process as intuition for the model: the data is assumed to be a labeled according to a
function f ∈ C, but an adversary corrupts an opt fraction of the labels given to the learning algo-
rithm. This adaptive version was subsequently defined as a separate model called nasty classification
noise (Bshouty et al., 2002) (as a special case of the nasty sample noise model introduced in that
paper). Theorem 1 therefore shows that the agnostic learning model and the nasty classification
noise model are in fact equivalent when it comes to SQ algorithms.

When can quantifiers be swapped? The distinction between oblivious and adaptive adversaries
can be viewed as a difference in the order of “for all” and “with high probability” quantifiers in the
performance guarantees of statistical algorithms. An algorithm succeeds in the presence of oblivious
adversaries if for all distributions D̂ that are close toD, the algorithm succeeds with high probability
over a sample S drawn from D̂. On the other hand, an algorithm succeeds in the presence of adaptive
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adversaries if with high probability over a sample S drawn from D, the algorithm succeeds for all
corruptions Ŝ that are close to S. Our work formalizes the question of when these quantifiers can
be swapped, and our results provide several answers.

Future work In this work we initiate the systematic study of the power of adaptivity in statistical
adversaries. A concrete direction for future work is to answer Question 1 for other broad classes of
algorithms and natural noise models, either via the subsampling filter (Conjecture 1) or otherwise.
Here we highlight the specific case of subtractive noise: having resolved the case of additive noise in
this work, doing so for subtractive noise as well would be a significant step towards resolving Ques-
tion 1 for all three generic noise models described in Section 3.

2. Preliminaries

We use boldface (e.g. x ∼ D) to denote random variables. Throughout this paper X denotes an
arbitrary finite domain, and we write S ∈ X ∗ to represent a multiset of elements in X , meaning
S ∈ X 0 ∪X 1 ∪X 2 . . .. We use the notation a = b± ε to indicate that |a− b| < ε. For any m ∈ N,
the notation [m] indicates the set {1, 2, . . . ,m}.

Distributions. For any S ∈ X ∗, we use U(S) to refer to the uniform distribution over S. For
simplicity, we enforce that all distributions only have rational probabilities, meaning Prx∼D[x = x]
is rational for any distribution D and element x ∈ X .6 For any distributions D1,D2 and parameter
θ ∈ [0, 1], we use θD1 + (1− θ)D2 to refer to the mixture distribution which samples from D1 with
probability θ and from D2 with probability (1− θ)

Definition 2 (Total variation distance) Let D and D′ be any two distributions over the same do-
main, X . It is well known that the following are equivalent definitions for the total variation distance
between D and D′, denoted distTV(D,D′):

1. It is characterized by the best test distinguishing the two distributions:

distTV(D,D′) := sup
T :X→[0,1]

{
E

x∼D
[T (x)]− E

x∼D′
[T (x′)]

}
.

2. It is characterized by the coupling which makes the two random variables different with the
smallest probability.

distTV(D,D′) := inf
(x,x′) a coupling of D,D′

{
Pr[x 6= x′]

}
.

3. Adversarial noise models

To reason generally about various noise adversarial models, we represent the types of allowable
corruptions by a budget η and cost function ρ, which maps each ordered pair of distributions to
some non-negative cost (or infinity). The cost need not be symmetrical.

6. Alternatively, one could enforce that the cost function smoothly interpolate to irrational probabilities, which is the
case for all standard noise models.
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Definition 3 ((ρ, η)-oblivious adversary) Given some cost function ρ and budget η, an algorithm
operating in the oblivious adversary model will receive the following input: If the true data distri-
bution is D, then the algorithm will receive iid samples from an adversarial chosen D̂ satisfying
ρ(D, D̂) ≤ η.

Definition 4 ((ρ, η)-adaptive adversary) Given some cost function ρ and budget η, an n-sample
algorithm operating in adaptive adversary model will receive the following input: If the true data
distribution is D, first a clean sample S ∼ Dn is generated, and then the algorithm will get an
adversarially chosen Ŝ satisfying ρ(U(S),U(Ŝ)) ≤ η.

Throughout this paper, we use ̂ to denote the corrupted version of a set or distribution.
We remark that the adaptive adversary as defined in Definition 4 is slightly stronger than the

definitions usually considered, in the sense that there is usually a bound on the size of Ŝ the adver-
sary is allowed to produce. For example, in the nasty noise model (Definition 7), the adversary is
only allowed to change points in the sample, and so |Ŝ| = |S|. All of our results apply regardless
of the size of Ŝ.

3.1. Standard noise models from the literature

In this subsection, we present three generic adversary models and show how they are special cases
of our framework with an appropriate choice of cost function. Other standard models, and how they
fit within our framework, are given in Appendix A.

Definition 5 (Additive noise) Given a size-n sample S ∈ X n and a corruption budget η, the
adaptive additive noise adversary is allowed to add bn · η/(1− η)c points to S arbitrarily.

The additive noise model is captured by the cost function:

costadd(D, D̂) := inf
η∈R≥0

{
D̂ = (1− η)D + ηE

}
for some distribution E .

The oblivious version of additive noise is the well-known Huber contamination model (Huber,
1964).

Definition 6 (Subtractive noise) Given a size-n sample S ∈ X n and a corruption budget η, the
adaptive subtractive noise adversary is allowed to remove bηnc points from S arbitrarily.

The subtractive noise adversary is captured by the cost function:

costsub(D, D̂) := costadd(D̂,D).

Definition 7 (Nasty noise) Given a size-n sample S ∈ X n and a corruption budget η, the adaptive
nasty noise adversary is allowed to change up to bηnc of the points in S arbitrarily.

This noise model is also known as strong contamination, and as nasty sample noise (or simply nasty
noise) in the context of supervised learning (Bshouty et al., 2002). It is captured by the cost function
ρ = distTV.
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4. Overview of Theorem 1: The SQ framework neutralizes adaptive adversaries

In this section we formally state and prove Theorem 1—namely that the behaviour of a Statistical
Query (SQ) algorithm in the presence of adaptive adversaries is equivalent to its behaviour in the
presence of oblivious adversaries.

Basics of the SQ framework. Let D be a distribution over some domain X . A statistical query is
a pair (φ, τ) where φ : X → [−1, 1] is the query and τ > 0 is a tolerance parameter. These queries
can be answered by a statistical query oracle STATD which, given an SQ (φ, τ), returns a value v
equal to Ex∼D[φ(x)] up to an additive error of τ i.e. v ∈ Ex∼D[φ(x)]± τ .

Throughout this section, we will use some convenient shorthand. For any distribution D and
multiset S ∈ X ∗, we write

φ(D) := E
x∼D

[φ(x)] and φ(S) := φ(U(S)) =
1

|S|
∑
x∈S

φ(x).

A k-query statistical query algorithm,A, is an algorithm that makes a sequence of statistical queries
to the oracle STATD one by one, using the result of the previous queries to decide which statistical
query to make next.

Definition 8 (k-query SQ Algorithm) A k-query SQ algorithm A is a sequence of k SQs

(φ(1), τ (1)), (φ(2)
v1 , τ

(2)), (φ(3)
v1,v2 , τ

(3)), . . . , (φ(k)
v1,...,vk−1

, τ (k))

to STATD, where A’s choice of the (i+ 1)-st SQ can depend on v1, . . . , vi which are the answers of
STATD to the previous i SQs. For notational simplicity, we make the standard assumption that all
the τ ’s are the same.

Using mechanisms to implement STATD. The SQ framework is a stylized model that cleanly
facilitates theoretical analyses; It allows the algorithm designer to abstract away an algorithm’s
interaction with a random sample and instead assume φ(D) can be accessed up to ±τ accuracy.

For an SQ algorithm to be useful, the STATD oracle must be implemented. This is done by a
mechanism which uses a random sample S ∼ Dn to simulate STATD with high probability. The
interaction between a mechanism and SQ algorithm is depicted in Figure 1.

1. Fix some k-query SQ algorithm A that is unknown to the mechanismM and a distri-
bution D that is unknown to both A andM.

2. Draw a sample S ∼ Dn that is revealed toM but not A.
3. For i = 1, . . . , k,

(a) A chooses a query φ(i) (as a function of responses to previous queries).
(b) M chooses a response vi for the query which is revealed to A.

Figure 1: The interaction between a mechanismM and SQ algorithm A.

Definition 9 ((τ, δ)-accurate mechanisms) A mechanism M is (τ, δ)-accurate for k-query SQ
algorithms, if for any distribution D and SQ algorithm A, with probability at least (1− δ) over the
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randomness of S andM,

vi = φ(i)(D)± τ for all i = 1, . . . , k

where vi and φ(i) are defined as in Figure 1.

In this work, we focus on the τ -rounding mechanism.

Definition 10 (τ -rounding mechanism) Given a sample S ∈ X n and query φ, the τ -rounding
mechanism, denotedMτ , returns the answer v = round(φ(S), τ) where round(x, τ) refers to x
rounded to the nearest integer multiple of τ .

Fact 1 (The τ -rounding mechanism is accurate) For any k ∈ N and δ, τ > 0, the τ -rounding
mechanism with a sample size of

n = O

(
k log(1/τ) + log(1/δ)

τ2

)
is (τ, δ) accurate for k-query SQ algorithms.

Proof For each query, theMτ can return one of only O(1/τ) possible values (after rounding). The
ith query is chosen as a function of v1, . . . , vi−1, so there are at mostO(1/τ)i−1 possible choices for
the ith query, and only O(1/τ)k total unique queries A could choose. Using a Chernoff bound and
union bound over all possible queries, the probabilityA asks a query, φ, where |φ(S)−φ(D)| ≥ τ/2
is at most

exp
(
−Ω(τ2n) +O(k log(1/τ))

)
For the n given in Fact 1, that probability is at most δ. The desired result follows from triangle
inequality and |round(φ(S), τ)− φ(S)| ≤ τ/2.

The existence of accurate mechanisms (as in Fact 1) is the key to the SQ framework: SQ algo-
rithms can assume that they have access to a STATD oracle, because for modest sample sizes and
tiny failure probabilities, mechanisms are a STATD oracle.

4.1. The SQ framework in the presence of adversarial noise.

The SQ framework naturally extends to oblivious adversaries.

Definition 11 (k-query SQ Algorithm with an oblivious adversary) Fix a cost function ρ and bud-
get η. An k-query SQ algorithm, A, in the presence of a (ρ, η)-oblivious adversary is a sequence of
k SQs

(φ(1), τ), (φ(2)
v1 , τ), (φ(3)

v1,v2 , τ), . . . , (φ(k)
v1,...,vk−1

, τ)

each of which are answered according to STATD̂ for some D̂ satisfying ρ(D, D̂) ≤ η. This D̂ is
the same for all queries, but adversarially chosen. A’s choice of the (i + 1)-st SQ can depend on
v1, . . . , vi which are the answers of STATD̂ to the previous i SQs.

9
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Once again, to run an SQ algorithm, the STATD̂ oracle is implemented by a mechanism. Given
a sample S ∼ D̂, any mechanism satisfying Definition 9 will be able to simulate the STATD̂ oracle.

In the presence of (ρ, η)-adaptive adversaries, first a clean sample S ∼ Dn is drawn, and then
the adversary chooses an η-corruption Ŝ that is passed to the mechanism, as shown in Figure 2.

1. Fix some k-query SQ algorithm A that is unknown to the mechanismM and a distri-
bution D that is unknown to both A andM.

2. Draw a sample S ∼ Dn that is revealed to neither A orM.
3. An adversary chooses an Ŝ that is η-close to S which is revealed toM but not A.
4. For i = 1, . . . , k,

(a) A chooses a query φ(i) (as a function of responses to previous queries).
(b) M chooses a response vi for the query which is revealed to A.

Figure 2: The interaction between a mechanismM and SQ algorithm A in the presence
of an adaptive adversary.

Our goal is to show that there are mechanisms that can simulate STATD̂ for some D̂ η-close to
D given just the corrupted sample Ŝ.

Definition 12 ((τ, δ)-accurate in the presence of adaptive noise) Fix a cost function ρ, budget η.
A mechanismM is said to be (τ, δ)-accurate for k-query SQ algorithms in the presence of adaptive
noise, if for any distribution D and SQ algorithm A, the following holds. With probability at least
1− δ over the randomness of S ∼ Dn,

vi = φ(i)(D̂)± τ for all i = 1, . . . , k

for some D̂ η-close to D, where vi and φ(i) are defined as in Figure 2. In particular, this holds
regardless of how the adversary chooses Ŝ.

If A succeeds given STATD̂ for every distribution D̂ that is η-close to D (i.e. A is resilient to
oblivious adversaries), then, with high probability, A also succeeds in the presence of an adaptive
adversary when using a mechanism satisfying Definition 12. We will show that the rounding mech-
anism meets Definition 12 whenever ρ is “reasonable” in the sense of the following definition; this
property is easily satisfied by all standard cost functions.

Definition 13 (Closed under mixtures) We say that ρ is closed under mixtures if for any distribu-
tions D1,D2, D̂1, D̂2 and θ ∈ (0, 1),

ρ(θD1 + (1− θ)D2, θD̂1 + (1− θ)D̂2) ≤ max(ρ(D1, D̂1), ρ(D2, D̂2)).

Requiring that ρ is closed under mixtures enforces that the adaptive and oblivious adversaries
“match up” in the sense of making the same types of changes. This is formalized in the following
fact, for which we provide a short proof in Appendix F.

10
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Fact 2 Let ρ be closed under mixtures, D be a distribution over X , η be a corruption budget, and
n ∈ N. Suppose that for all S ∈ X n, there is a corresponding Ŝ satisfying ρ(U(S),U(Ŝ)) ≤ η.
Let D̂ be the distribution where x ∼ D̂ is generated by: 1) Drawing S ∼ Dn and 2), drawing
x ∼ U(Ŝ). Then, ρ(D, D̂) ≤ η.

Our quantitative bounds will depend on a parameter that is related to the types of corruption
the adversaries can make. Suppose that the adaptive adversary is required to keep the size of the
corrupted sample the same as the clean sample (|Ŝ| = |S|). In this case, we require that if two
samples S1 and S2 differ in only one point, then for any Ŝ1 that is η-close to S1, there is some
Ŝ2 that is η-close to S2 where Ŝ1 and Ŝ2 differ in only a small number of points. The following
definition generalizes that notion to the case where the adversary can also change the number of
points in the sample.

Definition 14 (`-local) For any ` > 0, a cost function ρ with budget η is `-local if for any dis-
tributions D1,D2 and η-corruption D̂1 of D1, there is some η-corruption D̂2 of D2 satisfying
distTV(D̂1, D̂2) ≤ ` · distTV(D1,D2)

All of the adversary models in Section 3 are 1-local with the exception of the η-subtractive
noise, which is 1

1−η -local. We encourage the reader to think of ` as a constant.
We are now ready to state the formal version of Theorem 1, which generalizes Fact 1 to the

setting of adversarial noise.

Theorem 5 (Formal version of Theorem 1) For any `-local cost function, adversary budget η,
δ, τ > 0 , and k ∈ N, the τ -rounding mechanism with a sample size of

n = O

(
`2(k log(1/τ) + log(1/δ))

τ2

)
is (τ, δ) accurate for k-query SQ algorithm in the presence of adaptive noise.

Proof sketch. Here, we prove Theorem 5 contingent on Lemmas 1 and 2, which we prove in
Appendix B.

First, we will prove the special case where A makes only a single query.7

Lemma 1 (Theorem 5 in the case of a single SQ) Let Ψ : X → [−1, 1] be a statistical query,
T ∈ [−1, 1], and suppose:

Ψ(D̂) ≤ T for all D̂ that are η-close to D.

Then, for any τ > 0 and sample size n ∈ N, the probability over S ∼ Dn that there is some Ŝ that
is η-close to S satisfying

Ψ(Ŝ) ≥ T +
τ

2

is at most exp
(
− τ2n

8`2

)
.

7. To prove Theorem 5 in the case of a single statistical query, we could apply Lemma 1 twice: Once to bound how
large the adversary can make Ψ(Ŝ) and once to bound how small it can make Ψ(Ŝ). Instead, we will directly apply
Lemma 1 to prove the multi-query case of Theorem 5.

11



BLANC LANGE MALIK TAN

In order to prove Theorem 5, we want to bound the probability that for a random S ∼ Dn, there
is some corruption Ŝ for whichMτ is not τ -accurate. In detail, that means, for

v1 := round(φ(1)(Ŝ), τ)

vi+1 := round(φ(i+1)
v1,...,vi(Ŝ), τ) for i ∈ {0, 1, . . . , k − 1},

(1)

and, for every D̂ that is η-close toD, there is some i for which |vi−φ(i)
v1,...,vi−1(D̂)| > τ . Consider a

single possible choice for v1, . . . , vk (which also fixes the k-statistical queries, φ(1), . . . , φ(k)). We
use the separating hyperplane theorem to reduce to the case of a single statistical query.

Lemma 2 (k-query SQ algorithm to a single SQ) Fix any k statistical queries φ(1), . . . , φ(k) :
X → [−1, 1] and k values v1, . . . , vk. Suppose that there is no D̂ that is η-close to D satisfying

φ(i)(D̂) ∈ vi ± τ for every i ∈ [k].

Then there exists a single statistical query Ψ : X → [−1, 1] and threshold T with the following
properties.

1. Ψ(D̂) ≤ T for every D̂ that is η-close to D.

2. For any sample Ŝ satisfying φ(i)(Ŝ) ∈ vi ± τ
2 for each i ∈ [k], it is also true that Ψ(Ŝ) ≥

T + τ
2 .

Applying Lemmas 1 and 2, for any fixed choice of v1, . . . , vk, the probability there is some Ŝ
η-close to a sample S ∼ Dn satisfying Equation (1), and for every D̂ that is η-close to D, there
is some i for which |vi − φ(i)

v1,...,vi−1(D̂)| > τ is only exp
(
− τ2n

8`2

)
. Since each vi ∈ [−1, 1] is an

integer multiple of τ , there are at most ( 2
τ + 1)k many choices for (v1, . . . , vk). A union bound over

all these choices completes the proof of Theorem 5.
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Appendix A. Other standard noise models

Here, we list other standard noise models and show they fall under our framework.

Definition 15 (Nasty classification noise (Bshouty et al., 2002)) Let the domain be X = X × Y .
Given a size-n sample S ∈ X n and a corruption budget η, the adaptive nasty classification noise
adversary is allowed to choose bηnc points and for each one, change it from (x, y) to (x, ŷ) for
arbitrary ŷ ∈ Y .

This model is captured by the cost function:

costagn(D, D̂) =

{
∞ if D and D′ do not have the same marginal distribution over X
distTV(D, D̂) otherwise

The (costagn, η)-oblivious adversary corresponds exactly to the well-studied agnostic learning
model (Haussler, 1992; Kearns et al., 1994). Hence, Theorem 1 implies that nasty classification
noise and the agnostic learning model are identical for SQ algorithms.

The final noise model that we discuss is defined with respect to an adversary that has interme-
diate adaptive power:

Definition 16 (Malicious noise (Valiant, 1985)) In the malicious noise model where the adver-
sary has corruption budget η, a sample is generated point-by-point. For each point, independently
with probability 1− η, that point is x ∼ D. Otherwise, the adversary is allowed to make that point
an arbitrary x ∈ X with knowledge of the previous points sampled but not the future points.
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On the relationship between malicious noise and additive noise. The malicious noise adversary
does not have full adaptivity, as when they decide what point to add, they only have knowledge of
previous points sampled and not future ones. We now show how to encode the fully adaptive version
of malicious noise, in which the adversary knows all points in the sample when deciding corruptions,
in our framework.

We first augment the domain to X ′ = X ∪ {∅} where ∅ will be used to indicate the adversary
can change this point arbitrarily. We then let D′ be the distribution satisfying, for each x ∈ X :

D′ = (1− η)D + ηD∅

where D∅ is the distribution that always outputs ∅. We define the cost function to be

costmal(D′, D̂′) =


∞ if Pr

x∼D̂′ [x = ∅] > 0

∞ if Pr
x∼D̂′ [x = x] < Pr

x∼D̂[x = x] for any x ∈ X
0 otherwise.

Note that in order for D̂′ to be a valid corruption of D′ (i.e. costmal(D′, D̂′) 6= ∞), all of the
probability mass of D̂′ must be over X , with none on ∅. The above provides an encoding of
an adaptive adversary that is at least as powerful as malicious noise. To further understand the
corresponding oblivious adversary, we note that, after fixing η,

costmal(D′, D̂′) 6=∞ if and only if D̂′ = (1− η)D + ηE for some distribution E .

Hence, the oblivious adversary corresponding to malicious noise is the same as the oblivious ad-
versary for additive noise. Theorem 2 implies that the adaptive and oblivious versions of additive
noise, as well as malicious noise, are all equivalent.

A.1. Technical remarks

Fixed budget vs. variable budget. Consider the nasty noise model (Definition 7), corresponding
to ρ = distTV in our framework. Given a size-n clean sample S, the adaptive adversary can
choose any η-fraction of the points to change arbitrarily to create the corrupted sample Ŝ. Often
an alternative definition is used where the adversary is allowed to arbitrarily change m points in S,
where m can vary based on the specific sample S, as long as the marginal distribution of m over
samples S ∼ Dn is Bin(n, η). This definition is used by (Diakonikolas et al., 2019; Zhu et al.,
2019) to show that the adaptive adversary can simulate any oblivious adversary. Technically, for our
definition of an adaptive adversary with fixed budget η, this fact is not strictly true.8 However, all our
results are readily extendable to these slightly stronger adaptive adversaries with random-budgets.

We define an adversary model which encompasses those adversaries with variable budgets.
First, the adversary will generate a corrupted data set Ŝ. Then, it is allowed to change some points
in that set to create Ŝ

′
as long as, most of the time, Ŝ

′
and Ŝ are close.

Definition 17 (Strong (ρ, η)-adaptive adversary) Given a cost function ρ and budget η, an n-
sample algorithm operating in the strong (ρ, η)-adaptive adversary model will receive as input the
sample Ŝ

′
where

8. For example, suppose X = {0, 1}, D is the identically 0 distribution, and η = 0.1. If a size-10 sample is taken,
under our adaptive definition, Ŝ will never have more than a single 1. However, the oblivious adversary can choose
D̂ that returns 1 with probability 0.1 and as a result is a non-zero chance that two 1’s appear in a size-10 sample.
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1. If the true data distribution is D, first a clean sample S ∼ Dn is generated.

2. The adversary chooses a Ŝ satisfying ρ(U(S),U(Ŝ)) ≤ η.

3. The adversary chooses some Ŝ
′

where, over the randomness of the original sample and the
adversaries decisions, the following holds.

Pr
Ŝ,Ŝ

′

[
distTV(U(Ŝ),U(Ŝ

′
)) ≥ t

]
≤ exp(−O(nt2)) for all t ∈ (0, 1). (2)

All of our upper bounds on the strength of adaptive adversaries also apply to the strong adaptive
adversary. See Remark 1 for changes in the proof needed for Theorem 1. For Theorems 2 and 3, we
can use an even weaker restriction on the adversary and only require that

E
Ŝ,Ŝ

′

[
distTV(U(Ŝ),U(Ŝ

′
))
]

= O(1/
√
n) (3)

in place of Equation (2). See Remark 4 for how Equation (3) can be used to make Theorems 2 and 3
work with strong adaptive adversaries.

Finite vs infinite domains. For our analyses, we assume that the domain, X , is finite. Our goal is
to understand when an algorithm that succeeds in the presence of an oblivious adversary implies an
algorithm that succeeds in the presence of an adaptive adversary. Any algorithm that succeeds in the
presence of an oblivious adversary can only read finitely many bits of each data point, effectively
discretizing the domain.

That said, Theorem 1 also applies to infinite domains. If the domain is infinite, a more general
definition of closed under mixtures is required in place of the simpler Definition 13

Definition 18 (Closed under mixtures, infinite domain) We say that ρ is closed under mixtures
if for any distributions D,D′, and coupling of x ∼ D, x′ ∼ D′ and a latent variable z (over any
domain),

ρ(D,D′) ≤ sup
z

{
ρ((x | z), (x′ | z))

}
.

When the domain is finite, Definitions 13 and 18 are equivalent. When it is infinite, Definition 18 is
needed to prove Fact 2. The remainder of the proof of Theorem 1 is identical.

Appendix B. Missing Lemmas from the proof of Theorem 5

We will use a few standard technical tools:

Fact 3 (Separating hyperplane theorem) LetA,B ∈ Rk be disjoint, nonempty, and convex. There
exists a nonzero vector w ∈ Rk and T ∈ R such that a · w ≤ T and b · w ≥ T for all a ∈ A and
b ∈ B.

Fact 4 (McDiarmid’s inequality) Suppose that f : X n → R satisfies the c-bounded difference
property: for any (x1, . . . , xn), (x′1, . . . , x

′
n) ∈ X n that differ on only on a single coordinate, f

satisfies ∣∣f(x1, . . . , xn)− f(x′1, . . . x
′
n)
∣∣ ≤ c.
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Then, for any τ > 0 and any distribution D over X ,

Pr
S∼Dn

[f(S)− µ ≥ τ ] ≤ exp

(
−2τ2

c2n

)
where µ := E

S∼Dn
[f(S)].

We prove the following two Lemmas, restated for convenience.

Lemma 1 (Theorem 5 in the case of a single SQ) Let Ψ : X → [−1, 1] be a statistical query,
T ∈ [−1, 1], and suppose:

Ψ(D̂) ≤ T for all D̂ that are η-close to D.

Then, for any τ > 0 and sample size n ∈ N, the probability over S ∼ Dn that there is some Ŝ that
is η-close to S satisfying

Ψ(Ŝ) ≥ T +
τ

2

is at most exp
(
− τ2n

8`2

)
.

Proof For any sample S ∈ X n, define

f(S) := sup
Û(S) is η-close to U(S)

{
Ψ(Û(S))

}
.

We will show that f satisfies the c := 2`
n -bounded difference property. Consider any samples

S, S′ ∈ X n that differ in only a single point. We will show that for every point in the set

{Ψ(Û(S)) | Û(S) is η-close to U(S)},

there is some point in the set

{Ψ(Û(S′)) | Û(S′) is η-close to U(S′)}

that differs from it by at most ±2`
n , and vice versa. This implies that f satisfies the c := 2`

n -bounded
difference property.

As S and S′ only differ in a single piont,

distTV(U(S),U(S′)) ≤ 1

n
.

Furthermore by Definition 14, for any Û(S) that is η-close to U(S), there is some Û(S′) that is
η-close to U(S′) satisfying

distTV(Û(S), Û(S′)) ≤ `

n
.

Using the Definition 2 and the fact that the range of Ψ is a length-2 interval, the above implies that∣∣∣Ψ(Û(S))−Ψ(Û(S′))
∣∣∣ ≤ 2`

n
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proving that f satisfies the 2`
n -bounded difference property. By McDiarmid’s inequality, f(S) con-

centrates around its mean. Lastly, we show that

E
S∼Dn

[f(S)] ≤ T. (4)

Suppose for the sake of contradiction that E[f(S)] > T + ε for some ε > 0. For each S ∈ X n,
let Û(S) be η-close to U(S) and satisfy Ψ(Û(S)) ≥ f(S)− ε (which exists by the definition of f ).
We can define D̂ as the distribution where, to sample x ∼ D̂, we

1. Draw an i.i.d. sample S ∼ Dn.

2. Draw x ∼ Û(S) uniformly.

By Fact 2, D̂ is η-close to D. Then,

T ≥ Ψ(D̂) = E
S∼Dn

[Ψ(Û(S))] ≥ E
S∼Dn

[f(S)− ε] = E[f(S)]− ε > T.

This is a contradiction, so Equation (4) holds. Lemma 1 follows from McDiarmid’s inequality
applied to f .

Lemma 2 (k-query SQ algorithm to a single SQ) Fix any k statistical queries φ(1), . . . , φ(k) :
X → [−1, 1] and k values v1, . . . , vk. Suppose that there is no D̂ that is η-close to D satisfying

φ(i)(D̂) ∈ vi ± τ for every i ∈ [k].

Then there exists a single statistical query Ψ : X → [−1, 1] and threshold T with the following
properties.

1. Ψ(D̂) ≤ T for every D̂ that is η-close to D.

2. For any sample Ŝ satisfying φ(i)(Ŝ) ∈ vi ± τ
2 for each i ∈ [k], it is also true that Ψ(Ŝ) ≥

T + τ
2 .

Proof We’ll actually prove a slightly more general result. We’ll show that for any any distribution
E satisfying φ(i)(E) ∈ vi ± τ

2 for each i ∈ [k], it is also true that Ψ(E) ≥ T + τ
2 . Lemma 2 follows

by setting E = U(Ŝ).
We define A ∈ Rd to be

A :=
{(
φ(1)(D̂), . . . , φ(k)(D̂)

)
| D̂ is η-close to D

}
,

which is convex since the cost function is closed under mixtures (Definition 13). We define B to be

B :=
{
b ∈ Rk | bi ∈ vi ± τ for all i ∈ [k]

}
,

which is convex since it is the intersection of halfspaces. By the assumptions of Lemma 2, A and B
are disjoint. Let w ∈ Rk and T ∈ R be the vector and threshold respectively guaranteed to exist by
the separating hyperplane theorem, normalized so that ‖w‖1 = 1. We define

Ψ(x) :=
∑
i∈[k]

wi · φ(i)(x).
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As ‖w‖1 = 1 and the range of each φ(i)(x) ∈ [−1, 1] for each x ∈ X , it is also true that Ψ(x) ∈
[−1, 1]. We show that Ψ, T meet the two criteria of Lemma 2. The first criteria holds by the
separating hyperplane theorem. The second criteria is equivalent to showing that any b ∈ Binner

satisfies b · w ≥ T + τ
2 where

Binner :=
{
b ∈ Rk | bi ∈ vi ± τ

2 for all i ∈ [k]
}
.

There must be a minimal point for b · w at a “corner” of B. Let b? be such a minimal point (i.e.
(b?)i = vi + ci · τ for ci ∈ {±1}). For any b ∈ Binner

b · w = b? · w +
∑
i∈[k]

wi(bi − b?i )

= b? · w +
∑
i∈[k]

|wi| · |bi − b?i | (b? minimal for b · w over b ∈ B)

≥ b? · w +
∑
i∈[k]

|wi| · τ2 (|bi − b?i | ≥ τ/2 for b ∈ Binner)

≥ T + τ
2 . (Separating hyperplane theorem, ‖w‖1 = 1)

This implies the second criteria of Lemma 2.

Remark 1 Theorem 5 also holds with strong adaptive adversaries (Definition 17 in Appendix A.1)
rather than just adaptive adversaries, with the appropriate changes in constants. The proof only
differs in Lemma 1. We then wish to bound the probability that the adversary can make Ψ(Ŝ

′
) ≥

T + τ/2, where Ŝ and Ŝ
′

are as in Definition 17. For constant `,

Pr[Ψ(Ŝ
′
) ≥ T + τ/2] ≤ Pr

Ŝ,Ŝ
′

[
|Ψ(Ŝ)−Ψ(Ŝ

′
)| ≥ τ/4

]
+ Pr

Ŝ
[Ψ(Ŝ) ≥ T + τ/4]

≤ Pr
Ŝ,Ŝ

′

[
distTV(U(Ŝ),U(Ŝ

′
)) ≥ τ/8

]
+ exp(−O(τ2n)) (Lemma 1)

≤ exp(−O(τ2n)). (Definition 17)

Once Lemma 1 is modified to handle strong adaptive adversaries, the remainder of the proof of
Theorem 5 applies unchanged.

Appendix C. Proof of Theorem 3: If adaptivity can be neutralized, subsampling
does it

Towards tackling Question 1 for all algorithms, we define the subsampling filter, a natural “wrapper
algorithm” that operates only on samples and can be applied to any existing algorithm:

Definition 19 (Subsampling Filter) Define the subsampling filter Φm→n : Xm → X n that, given
a set S ∈ Xm, subsamples n elements S′ ∼ U(S)n and returns them. We will also write Φ∗→n
when the size of S is variable.
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Intuitively, by requesting a large number of points m and randomly subsampling points for the
original algorithm, the filter should able to neutralise some of the power of the adaptive adversary,
since the adversary cannot know which subsample the algorithm will receive. In this section we will
prove Theorem 3 which, informally speaking, states that if the noise model is such that adaptivity
can be neutralised, then subsampling does it. In the next section, we carry out this proof strategy
for the specific case of additive noise and establish Theorem 2.

C.1. Definitions and the formal statement of Theorem 3

We begin by formalizing what it means for the behavior of an algorithm A in the presence of
an oblivious adversary to be equivalent to that of an algorithm A′ in the presence of an adaptive
adversary. Roughly speaking, that corresponds to the range of acceptance probabilities A can have
with all possible oblivious adversaries being close to the range of acceptance probabilities that A′
can have with all possible adaptive adversaries.

Definition 20 Fix a cost function ρ, budget η ≥ 0, and distribution D over X . For an algorithm
A : X ∗ → {0, 1}, we define:

Oblivious-Maxρ,η(A,D, n) := sup
ρ(D,D̂)≤η

{
E

S∼D̂n
[A(S)]

}
,

Oblivious-Minρ,η(A,D, n) := inf
ρ(D,D̂)≤η

{
E

S∼D̂n
[A(S)]

}
,

the maximum and minimum acceptance probabilities of A given an obliviously corrupted D. We
similarly define the adaptive versions:

Adaptive-Maxρ,η(A,D,m) := E
S∼Dm

[
sup

ρ(U(S),U(Ŝ))≤η

{
A(Ŝ)

}]
,

Adaptive-Minρ,η(A,D,m) := E
S∼Dm

[
inf

ρ(U(S),U(Ŝ))≤η

{
A(Ŝ)

}]
.

Definition 21 (ε-equivalent) Fix a cost function ρ and a budget η ≥ 0. Let A,A′ : X ∗ → {0, 1}
be two algorithms. We say that A in the presence of (ρ, η)-oblivious adversaries is (n,m, ε)-
equivalent to A′ in the presence of (ρ, η)-adaptive adversaries if the following holds for all distri-
butions D over X :

Adaptive-Maxρ,η(A′,D,m) = Oblivious-Maxρ,η(A,D, n)± ε,

and likewise for Min instead of Max. If the algorithms A or A′ are randomized, then these expec-
tations are also over the randomness of the algorithms.

We now state the formal version of Theorem 3:

Theorem 6 (Formal version of Theorem 3: If it is possible, subsampling does it) Fix a cost func-
tion ρ and budget η ≥ 0. Suppose that A and A′ are algorithms where A in the presence of (ρ, η)-
oblivious adversaries is (n,m, ε)-equivalent to A′ in the presence of (ρ, η)-adaptive adversaries.

20



ON THE POWER OF ADAPTIVITY IN STATISTICAL ADVERSARIES

Consider the subsampling algorithm Asub := A ◦ Φ∗→n which, given a sample S ∈ X ∗,
subsamples n elements S′ ∼ U(S)n and returns A(S′). For

M := O

(
m2 log(1/ε)2

ε5

)
,

we have that A in the presence of (ρ, η)-oblivious adversaries is (n,M, 9ε)-equivalent to Asub in
the presence of (ρ, η)-adaptive adversaries.

Remark 2 (Search to decision reduction) In both Theorems 2 and 3, we focus on decision algo-
rithms that output a single bit {0, 1}, rather than the more general setting of search algorithms that
output an answer from some set Y . This is without loss of generality. Given a search algorithm
A : X ∗ → Y , and any set of “good outputs” Y ⊆ Y , we could define an algorithm B := 1Y ◦ A
where B(S) = 1 iff A(S) ∈ Y . Then, we can directly apply Theorems 2 and 3 to B. Hence, Theo-
rems 2 and 3 hold for search algorithms with the appropriate definition of “equivalence” for search
algorithms: We say A : X ? → Y and A′ : X ? → Y are ε-equivalent if for every Y ⊆ Y , 1Y ◦ A
and 1Y ◦ A′ are ε-equivalent (according to Definition 21).

C.2. Proof of Theorem 6

Our proof of Theorem 6 relies on the following simple lemma. Roughly speaking, it states that
sampling with replacement and sampling without replacement are nearly indistinguishable when
the population is a quadratic factor larger than the number of samples.

Lemma 3 For any distribution D and integers m,M ∈ N, let ΦM→m ◦ DM be the distribution
with the following generative process: first draw a size-M sample S ∼ DM , and then subsample,
with replacement, m points from S. Then

distTV(Dm,ΦM→m ◦ DM ) ≤
(
m
2

)
M

.

Proof We describe a coupling of S ∼ Dm and S′ ∼ ΦM→m◦DM such that Pr[S 6= S′] ≤
(
m
2

)
/M .

1. Initialize S and S′ to be empty sets, and y1, . . . , xM to be unset variables.

2. Repeat m times:

(a) Draw i ∼ [M ] uniformly.
(b) If yi is unset, draw x ∼ D and set yi ← x. Then, add x to both S and S′.
(c) Otherwise, add yi to S′ and sample x ∼ D to add to S.

It is straightforward to verify that the above generative process leads to the distribution of S and S′

being that of Dm and ΦM→m ◦ DM respectively. Furthermore, if S 6= S′, that means there is some
index i ∈ [M ] that was sampled at least twice. If we fix j1 6= j2 ∈ [m] and some i ∈ [M ], the
probability i is the index chosen at steps j1 and j2 is 1/M2. Union bounding over the M choices
for i and

(
m
2

)
for j1, j2 gives that

Pr[S 6= S′] ≤
(
m
2

)
M

.

The desired result follows from the definition of total variation cost, Definition 2.

Lemma 3 will be used in conjunction with the following fact:
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Fact 5 Suppose there exists a test which, given c samples from a distribution E that is either D0

or D1, returns 0 if E = D0 with probability at least 3
4 , and returns 1 if E = D1 with probability at

least 3
4 . Then,

distTV(D1,D2) ≥ 1

2c
.

Together, Lemma 3 and Fact 5 imply that for appropriately chosenm andM , there is no sample-
efficient test distinguishing Dm from ΦM→m ◦DM with high probability. We will use this to prove
Theorem 6 by contradiction. Using the assumption that A′ is equivalent to A, we will design a
sample-efficient test that approximates Oblivious-Maxρ,η and Oblivious-Minρ,η forAwith respect
to both Dm and ΦM→m ◦DM . We then show that ifAsub := Φ∗→n ◦A is not equivalent toA, then
these values will distinguish the two distributions.

The following lemma carries out the first part of this plan:

Lemma 4 Let A and A′ be as in Theorem 6. There is an estimator Est-Maxρ,η that uses

m′ :=
m log(2/ε)

2ε2

samples from a distribution D and returns an estimate of Oblivious-Maxρ,η(A,D, n) that is accu-
rate to±2εwith probability at least 1−ε, and likewise an estimator Est-Minρ,η for Oblivious-Minρ,η.
Formally, for all distributions D over X ,

Pr
S∼Dm′

[
Est-Maxρ,η(S) = Oblivious-Maxρ,η(A,D, n)± 2ε

]
≥ 1− ε,

and likewise for Est-Minρ,η and Oblivious-Minρ,η.

Proof We will prove the lemma for Est-Maxρ,η and Oblivious-Maxρ,η; the proof for Min instead
of Max is identical. Est-Maxρ,η computes an estimate satisfying:

Pr
S∼Dm′

[
Est-Maxρ,η(S) = Adaptive-Maxρ,η(A′,D,m)± ε

]
≤ ε. (5)

This is sufficient to guarantee that Est-Maxρ,η’s estimate is within±2ε of Oblivious-Maxρ,η(A,D, n)
by our assumption thatA is (n,m, ε)-equivalent toA′. To provide such an estimate, Est-Maxρ,η(S)
draws log(2/ε)/(2ε2) many size-m samples S′ ∼ Dm. For each, it computes:

sup
ρ(Ŝ′,S′)≤η

{
A′(Ŝ′)

}
(6)

and returns the average of these supremums. By the Chernoff bound, this average satisfies Equa-
tion (5).

Remark 3 We are only concerned with the sample efficiency of these estimators, not their time
efficiency or even whether they are computable. Indeed, as stated, an algorithm computing the
estimators would need to loop or infinitely many Ŝ′ ∈ X ∗ to compute Equation (6). For us they
are just an analytical tool used to prove Theorem 6, the conclusion of which gives an algorithm
Asub := A ◦ Φ∗→n that inherits the time efficiency of A.
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The next lemma notes that the Adaptive-Maxρ,η of Asub := A ◦ Φ∗→n can be expressed in
terms of the Oblivious-Maxρ,η of A. Formally:

Lemma 5 Adaptive-Maxρ,η(Asub,D,M) = E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
, and like-

wise for Min instead of Max.

Proof The lemma follows from this series of identities:

Adaptive-Maxρ,η(Asub,D,M) = E
S∼DM

[
sup

ρ(U(S),U(Ŝ))≤η

{
Asub(Ŝ)

}]
(Definition of Adaptive-Maxρ,η)

= E
S∼DM

[
sup

ρ(U(S),U(Ŝ))≤η

{
(A ◦ Φ∗→n)(Ŝ)

}]
(Definition of Asub)

= E
S∼DM

[
sup

ρ(U(S),E)≤η

{
E

S′∼En
[A(S′)]

}]
(Definition of the subsampling filter Φ∗→n)

= E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
,

(Definition of Oblivious-Maxρ,η)

where the penultimate identity also uses our convention that distributions have rational weights, and
therefore can expressed as the uniform distribution over a sufficiently large multiset of elements.

The following lemma completes the proof of Theorem 6.

Lemma 6 Let m′ be as in Lemma 4 and define M := 14(m′)2/ε. Then

E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
= Oblivious-Maxρ,η(A,D, n)± 9ε,

and likewise for Min instead of Max.

Proof Our proof proceed by contradiction: assuming thatES∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
is more than 9ε far from Oblivious-Maxρ,η(A,D, n), we will prove that

distTV(Dm′ ,ΦM→m′ ◦ DM ) ≥ ε

14
. (7)

From Lemma 3, we know that

distTV(Dm′ ,ΦM→m′ ◦ DM ) <
(m′)2

M
=

ε

14
,

which yields the desired contradiction. To establish Equation (7), we design an algorithm that given
d6
εe ≤

7
ε samples from either Dm′ from ΦM→m′ ◦ DM is able to distinguish them with probability

3
4 . Once we do, the desired result follows from Fact 5.
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Let µ := Oblivious-Maxρ,η(A,D, n). First, we define

δ := Pr
S∼DM

[
|Oblivious-Maxρ,η(A,U(S), n)− µ| > 4ε

]
and we bound

E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
≤ (1− δ) · (µ+ 4ε) + δ · 1 ≤ µ+ 4ε+ δ.

Similarly,

E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
≥ (1− δ) · (µ− 4ε) + δ · 0

≥ µ− 4ε− δ. (µ− 4ε ≤ 1)

Hence by our assumption that∣∣∣∣ E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
−Oblivious-Maxρ,η(A,D, n)

∣∣∣∣ > 9ε,

we can conclude that δ > 5ε.
Now let E be eitherDm′ or ΦM→m′◦DM . Our test to determine which E is will do the following:

draw d6
εe samples from E , S ∼ E , and run Est-Maxρ,η(S) on each. If less than a 2ε fraction of

the estimates returned by Est-Maxρ,η(S) differ from µ in more than ±2ε, return that E = Dm′ .
Otherwise, return that E = ΦM→m′ ◦DM . We will prove this test succeeds with probability at least
1− e−2 ≥ 3

4 . We consider the two possible cases:

1. Case 1: E = Dm′ . In this case, given a sample from E , Est-Maxρ,η(S) returns an estimate
that is within ±2ε of µ with probability at least 1 − ε. By the Chernoff bound, given 6

ε such
samples, the probability more than 2ε fraction deviate from µ by more than ±ε is at most
exp(−1

3 ·
6
ε · ε) = e−2. Therefore, the test succeeds with probability at least 1− e−2.

2. Case 2: E = ΦM→m′ ◦ DM . We showed above that with probability at least 5ε over a
sample S ∼ DM we have |Oblivious-Maxρ,η(A,U(S), n)− µ| > 4ε. When that’s the case,
Est-Maxρ,η(S) returns an estimate that is further than ±2ε from µ with probability at least
1 − ε. Therefore, on a single sample, the probability that the estimate of A deviates from µ
by more than ±2ε is at least 5ε(1 − ε) ≥ 4ε. By the Chernoff bound, given 6

ε samples, the
probability that at most 2ε fraction deviate µ by at most±2ε is at most exp(−1

8 ·
6
ε ·4ε) = e−3.

Therefore, the test succeeds with probability at least 1− e−2.

Hence, given d6
εe samples, it is possible to distinguish Dm′ from ΦM→m′ ◦ DM with a success

probability of at least 3
4 . Equation (7) follows from Fact 5, completing the proof by contradiction.

Remark 4 (Strong adaptive adversaries) IfA : X n → {0, 1} in the presence of oblivious adver-
saries is (n,M, ε)-equivalent to Asub := A ◦Φ∗→n in the presence of adaptive adversaries, then it
is also (n,M, 2ε)-equivalent to Asub in the presence of strong adaptive adversaries (Definition 17
in Appendix A.1) as long as M = Ω(n2/ε2). This applies to both Theorem 6 in this section and
Theorem 7 in the next.
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Let Ŝ and Ŝ
′

be defined as in Definition 17. Then, for any strong adaptive adversary supplying
the sample Ŝ

′
, there is some adaptive adversary supplying the sample Ŝ, so we wish to compare

E[Asub(Ŝ
′
)] to E[Asub(Ŝ)]. Recall that Asub first subsamples to n points, so∣∣∣E[Asub(Ŝ

′
)]− E[Asub(Ŝ)]

∣∣∣ ≤ n E
Ŝ,Ŝ

′
[distTV(U(Ŝ),U(Ŝ

′
))]

≤ O(n/
√
M) = ε. (by Equation (3))

Appendix D. Proof of Theorem 2: The subsampling filter neutralizes adaptive
additive noise

In this section, we prove the following theorem:

Theorem 7 (Formal version of Theorem 2)
Fix a budget η ≥ 0, distribution D over X , and algorithm A : X n → {0, 1}. Consider the

subsampling algorithm Asub := A ◦ Φ∗→n which, given a sample S ∈ X ∗, subsamples n elements
S′ ∼ U(S)n and returns A(S′). For

M := O

(
n4 log(|X |)

ε2

)
,

we have thatA in the presence of (costadd, η)-oblivious adversaries is (n,M, ε)-equivalent toAsub

in the presence of (costadd, η)-adaptive adversaries.

Implicit in the proof of Theorem 6, we proved the following.

Lemma 7 Fix a cost function ρ, budget η ≥ 0, and ε > 0. Suppose that for an algorithm A :
X n → {0, 1}, there are estimators Est-Maxρ,η,Est-Minρ,η : Xm → {0, 1} that use m samples
from a distribution D and returns estimates satisfying

Pr
S∼Dm′

[
Est-Maxρ,η(S) = Oblivious-Maxρ,η(A,D, n)± 2ε

]
≥ 1− ε,

and likewise for Min instead of Max. Then, for

M =
14m2

ε
,

we have that A in the presence of (ρ, η)-oblivious adversaries is (n,M, 9ε)-equivalent to Asub :=
A ◦ Φ∗→n in the presence of (ρ, η)-adaptive adversaries.

In order to prove Theorem 7, we’ll construct the estimator Est-Maxcostadd,η (and likewise for Min).
The goal is to estimate

Oblivious-Maxcostadd,η(A,D, n) := sup
D̂=(1−η)·D+η·E

{
E

S∼D̂n
[A(S)]

}
.

The key insight is rather than trying all possible distributions E , to compute a ±ε approximation, it
suffices to consider those E that are equal to U(T ) for some T ∈ X n2/ε. Our final result will have
a logarithmic dependence on the number of E we need to try, which results in just a logarithmic
dependence on |X |.

The following definition and accompany fact will be useful.
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Definition 22 (Stochastic function) For any sets X ,Y , a stochastic function f : X → Y is a
collection of distributions {Dx | x ∈ X} each supported on Y where the notation f(x) indicates
an independent draw from Dx.

Fact 6 For any distribution D1,D2 supported on a domain X , and any stochastic function f :
X → Y , let f ◦ Di be the distribution where to sample y ∼ f ◦ Di, we first sample x ∼ Di and
then sample y = f(x). Then,

distTV(f ◦ D1,f ◦ D2) ≤ distTV(D1,D2).

Proof Given a coupling of x1 ∼ D1 and x2 ∼ D2, consider the coupling of y1 ∼ f ◦ D1 and
y2 ∼ f ◦D2 where if x1 = x2 then y1 = y2 = f(x1) and otherwise y1 = f(x1) and y2 = f(x2)
independently. Then,

Pr[y1 6= y2] ≤ Pr[x1 6= x2],

implying the desired result by Definition 2.

To prove Theorem 7, we will design the estimators Est-Maxcostadd,η and Est-Mincostadd,η.
Plugging the sample complexity of those estimators into Lemma 7 would be sufficient for The-
orem 7 with the slightly worse M = n6 log(|X |)2/ε7. To get the optimal log(|X |) dependence
on the domain size (and an improved dependence on n and ε), we need a more refined version
of Lemma 7 that takes advantage of the structure of the particular estimators we derive. The fol-
lowing Lemma applies for any cost function ρ, but we will then design F satisfying Equation (8)
specifically for ρ = costadd in Lemma 9.

Lemma 8 Fix a cost function ρ, budget η ≥ 0, ε ∈ (0, 1], and algorithm A : X n → {0, 1}.
Suppose there is a set of stochastic functions F each X → X , that satisfy, for any distribution D
over X ,

max
f∈F

{
E

S∼Dn
[A(f(S))]

}
= Oblivious-Maxρ,η(A,D, n)± ε, (8)

and likewise for Min instead of Max, where f(S) is shorthand for applying f element wise and
independently to S. Then:

1. There are estimators Est-Maxcostadd,η and Est-Mincostadd,η meeting the requirements of
Lemma 7 for

m′ = O

(
n log(|F|/ε)

ε2

)
.

In particular, this implies that for

M = O

(
n2 log(|F|/ε)2

ε5

)
,

we have that A in the presence of (ρ, η)-oblivious adversaries is (n,M, 9ε)-equivalent to
Asub in the presence of (ρ, η)-adaptive adversaries.
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2. More directly, for

M = O

(
n2 log(|F|/ε)

ε

)
(9)

we have that A in the presence of (ρ, η)-oblivious adversaries is (n,M, 5ε)-equivalent to
Asub in the presence of (ρ, η)-adaptive adversaries.

Proof We first give Est-Maxcostadd,η satisfying the first item. For r := O( log(|F|/ε)
ε2

), let

Est-Maxcostadd,η = max
f∈F

{
E

trial∈[r]

[
E

S∼Dn
[A(f(S))]

]
︸ ︷︷ ︸

:=Est(f)

}
.

We note that as long as the samples are reused across different f ∈ F that m′ = rn samples from
D suffices to compute the above expression. By Hoeffding’s inequality, for any fixed f ∈ F , with
probability at least 1− ε

T

Est(f) = E
S∼Dn

[A(f(S))]± ε.

By union bound, with probability at least 1−ε, the above holds for every f ∈ F . If so, Est-Maxcostadd,η

has the desired accuracy by Equation (8).

Next, we prove the M from Equation (9) suffices. By Lemma 5, it suffices to prove that

E
S∼DM

[
Oblivious-Maxρ,η(A,U(S), n)

]
= Oblivious-Maxρ,η(A,D, n)± 5ε,

and likewise for Min instead of Max. Applying Equation (8) to both sides of the above equation, it
is sufficient to prove that

E
S∼DM

[
max
f∈F

{
E

Sn∼U(S)n
[A(f(Sn))]︸ ︷︷ ︸

:=g(f)(S)

}]
= max

f∈F

{
E

S∼Dn
[A(f(S))]

}
± 3ε. (10)

Fix a single f ∈ F . We’ll use McDiarmid’s inequality (Fact 4) to say that g(f)(S) concentrates
around its mean. Take any S ∈ XM and suppose we change one point in it to create S′. Then
|g(f)(S) − g(f)(S′)| is at most the probability that the changed point appears in Sn, which is at
most n

M . Applying McDiarmid’s inequality,

Pr
S∼Dm

[
g(f)(S) = µ(f) ± ε

]
≥ 1− 2 exp

(
− 2ε2

(n/M)2M

)
where µ(f) := ES∼DM

[
g(f)(S)

]
≥ 1− ε

|F|
. (using M = O

(
n2 log(|F|/ε)

ε

)
)

By union bound, with probability at least 1− ε, for every f ∈ F we have that g(f)(S) = µ(f) ± ε
allowing us to bound the left hand side of Equation (10),

E
S∼DM

[
max
f∈F

{
g(f)(S)

}]
= max

f∈F

{
µ(f)

}
± ε± Pr

S∼Dm

[
g(f)(S) 6= µ(f) ± ε for some f ∈ F

]
= max

f∈F

{
µ(f)

}
± 2ε.
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Lastly, we want to compare the above to the right hand side of Equation (10) to maxf∈F µ
(f). Fix

any f ∈ F . Using the notation of Lemma 3,

µ(f) = E
S∼ΦM→n◦DM

[A(f(S))] .

Therefore,∣∣∣∣max
f∈F

{
µ(f)

}
−max

f∈F

{
E

S∼Dn
[A(f(S))]

}∣∣∣∣ ≤ max
f∈[F ]

∣∣∣∣µ(f) − E
S∼Dn

[A(f(S))]

∣∣∣∣
≤ distTV(Dn,ΦM→n ◦ DM ) (Definition 2)

≤
(
n
2

)
M
≤ ε. (Lemma 3)

Therefore, the left hand term of Equation (10) is within ±2ε of maxf∈F µ
(f) and the right hand

term is within ±ε of maxf∈F µ
(f). Hence, Equation (10) holds, completing this proof.

In order to use Lemma 8, we need to design F and prove that it satisfies Equation (8) when
ρ = costadd. The below lemma completes the proof of Theorem 7.

Lemma 9 Fix a budget η ≥ 0, ε ∈ (0, 1], and algorithm A : X n → {0, 1}. Let F be the set of
|X |n2/ε stochastic functions defined below.

F := {f (T ) | T ∈ X n2/ε} where f (T )(x) :=

{
x with probability 1− η
y where y ∼ U(T ) with probability η.

Then for any D over X ,

max
f∈F

{
E

S∼Dn
[A(f(S))]

}
= Oblivious-Maxcostadd,η(A,D, n)± ε

= sup
D̂=(1−η)·D+η·E

{
E

S∼D̂n
[A(S)]

}
± ε,

and likewise for Min instead of Max.

Proof Fix any distributionD. First, we note that the distribution of f (T )(x) where x ∼ D is simply
that of (1− η) · D + η · U(T ). Therefore, one direction of the desired result is easy:

max
f∈F

{
E

S∼Dn
[A(f(S))]

}
≤ Oblivious-Maxcostadd,η(A,D, n).

The remainder of this proof is devoted to proving the left hand side of the above equation is at most
ε smaller than the right hand side. Fix any distribution E and consider D̂ = (1 − η) · D + η · E .
We’ll show that

E
T∼En2/ε

[
E

S∼Dn
[A(fT (S))]

]
≥ E

S∼D̂n
[A(S)]− ε. (11)
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In particular, the above implies there is a single choice for T that is within ε of E
S∼D̂n [A(S)]. As

this holds for all corruptions D̂, it implies the desired result.
To sample from D̂n where D̂ = (1 − η) · D + η · E we can first draw S ∼ En and then return

h(S), applied element wise, where:

h(x) :=

{
y where y ∼ D with probability 1− η
x with probability η.

Therefore, the distribution of fT (S) on the left hand side of Equation (11) is h ◦ Φn2/ε→n ◦ En
2/ε

(using the notation of Lemma 3 and Fact 6). Finally, we prove Equation (11) (recalling that D̂ =
(1− η) · D + η · E)∣∣∣∣ E

T∼En2/ε

[
E

S∼Dn
[A(fT (S))]

]
− E

S∼D̂n
[A(S)]

∣∣∣∣ ≤ distTV(h ◦ Φn2/ε→n ◦ En
2/ε,h ◦ En)

(Definition 2)

≤ distTV(Φn2/ε→n ◦ En
2/ε, En) (Fact 6)

≤ ε. (Lemma 3)

Appendix E. Proof of Theorem 4: Lower bounds against the subsampling filter

In this section, we show a lower bound on m needed for the subsampling filter to work. Our lower
bound holds in the setting of additive noise and therefore also shows that the dependence on |X |
in Theorem 7 is optimal.

Theorem 8 (Formal version of Theorem 4) For any sample size n, domain X with |X | = 2d

for an integer d, adversary budget η, and ε > 0, there exists an algorithm A : X n → {0, 1} and
corresponding subsampled algorithmAsub := A◦Φ∗→n for whichA in the presence of (costadd, η)-
oblivious adversaries is not (n,m, 1−ε)-equivalent toAsub in the presence of (costadd, η)-adaptive
adversaries for any m = Oη(n log |X |/ log2 n).

Proof overview Without loss of generality, we can consider the domain to be the Boolean hyper-
cube, X = {±1}d. Otherwise, we could map the domain to the hypercube. For an appropriate
threshold t, we’ll define

A(x1, . . . , xn) =

{
1 if for every xi, there is an xj with j 6= i s.t. 〈xi, xj〉 ≥ t,
0 otherwise.

Let D be uniform over X . For any ε > 0, n, and d, we’ll show that there is a choice of t such that:

1. Lemma 10: Oblivious-Maxcostadd,η(A,D, n) ≤ ε/2, meaning, for any D̂ = (1− η)D+ ηE ,
it is the case that E

S∼D̂n [A(S)] ≤ ε/2.
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2. Lemma 11: Adaptive-Maxcostadd,η
(A,D,m) ≥ 1− ε

2 wheneverm = Oη(n log |X |/ log2 n),
meaning that for S ∼ Dm, the adaptive adversary can choose bm · η/(1 − η)c points T to
add to the sample for which

E[Asub(Ŝ)] ≥ 1− ε
2 where Ŝ = S ∪ T .

Together, these prove that A in the presence of (costadd, η)-oblivious adversaries is not (n,m, 1−
ε)-equivalent to Asub in the presence of (costadd, η)-adaptive adversaries.

Lemma 10 For any distribution E and D̂ = (1− η)D + ηE ,

E
S∼D̂n

[A(S)] < ε/2.

Proof First, we note that for any x′ ∈ X and a clean sample x ∼ D, the probability that 〈x, x′〉 ≥ t
is small: by Hoeffding’s inequality, Prx∼D[〈x, x′〉 ≥ t] ≤ exp(−t2/2d). Combining this with
a simple union bound, we can show that the probability of even a single clean point forming a
correlated pair in the sample is small:

E
S∼D̂n

[A(S)] ≤ ηn + E
S∼D̂n

[A(S) | at least one clean point in S]

= ηn + E
x∼D

S∼D̂n−1

[A(S ∪ {x})]

≤ ηn + Pr
x∼D

S∼D̂n−1

[∃x′ ∈ S with 〈x,x′〉 ≥ t] (weaken to just one clean point)

≤ ηn + (n− 1) Pr
x∼D
x′∼D̂

[〈x,x′〉 ≥ t] (union bound over S)

≤ ηn + n exp

(
− t

2

2d

)
. (Hoeffding’s, over the randomness of x)

This will be vanishingly small for the particular choice of t determined in Lemma 11.

Lemma 11 For anym = Oη(nd/ log2 n), there exists an adversarial strategy that, given S ∈ Dm,
chooses bm · η/(1− η)c points T to add to the sample for which

E[Asub(Ŝ)] ≥ 1− ε/2 where Ŝ = S ∪ T

Proof Let C = bm · η/(1− η)c be the number of points the adversary can add and denote the
sample S = {x(1), . . .x(m)}. The adversary constructs T = {y(1), . . . ,y(C)} by setting each y(j)

to be the elementwise majority of k chosen points from S (where k will be determined later). The
idea is that y(j) is a cluster center that will form a correlated pair with every one of these k points,
with high probability.

More formally, for each j = 1, . . . , C, define S(j) = {x(1+(j−1)k (mod |S|)), . . . , x(jk (mod |S|))}
to be the j-th chunk of k points from S, with the indices wrapping around to the start of S as nec-
essary. We take y(j) to be the elementwise majority9 of the points in S(j):

9. We can assume k is odd for simplicity.
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y
(j)
` := Maj

x∈S(j)

{x`} for ` = 1, . . . , d. (12)

First, we note that for a given y(j), with high probability, any point in x ∈ S(j) will have a large
dot product with y(j):

E
S(j)∼Dk

[〈x,y(j)〉] =

d∑
`=1

E
S(j)∼Dk

[
x`y

(j)
`

]
=

d∑
`=1

(
Pr

S(j)∼Dk

[
x` = y

(j)
`

]
− Pr

S(j)∼Dk

[
x` 6= y

(j)
`

])

=
d∑
`=1

(
Pr

u∼Bin(k−1, 1
2

)

[
u ≥ (k − 1)

2

]
− Pr

u∼Bin(k−1, 1
2

)

[
u <

(k − 1)

2

])

= d Pr
u∼Bin(k−1, 1

2
)

[
u =

(k − 1)

2

]
=

√
2

π

d√
k

(1± o(1)).

Define µ := (
√

2/π)(d/
√
k). We will take t = µ/2 as the threshold for A, both here and in

Lemma 10 as well. For S(j) ∼ Dk, with y(j) the elementwise majority of S(j), and any x ∈ S(j),
this gives:

. Pr
S(j)∼Dk

[
〈x,y(j)〉 < t

]
= Pr

S(j)∼Dk

[
〈x,y(j)〉 < µ

2

]
≤ exp

[
−Θ

(
µ2

d

)]
(Hoeffding’s inequality)

= exp

[
−Θ

(
d

k

)]
. (13)

The subsampling filter Φ∗→n takes a random subsample of size n from Ŝ = S ∪ T (with
replacement). We want to show, with high probability over size n subsamples S′ ∼ U(Ŝ)n, that
A(S′) = 1. For any point x ∈ S, we say y(j) ∈ T is “good” for x if x was in the cluster used
to compute y(j), meaning x ∈ S(j). Similarly, for any y(j) ∈ T , we say that x ∈ S is “good”
for y(j) is x ∈ S(j). By construction, a given x ∈ S participates in the computation of at least
bCk/mc = Θη(k) many cluster centers y(j)’s, and so for each x ∈ S, there are Θη(k) good
y’s ∈ T . Similarly, there are exactly k good x’s ∈ S for each y ∈ T . As Ŝ has size Θη(m), for
any x ∈ S′, using cx to denote the number of good points for x that show up in S′, we have that
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cx is distributed as Bin(n,Ωη(k/m)). This gives:

Pr
S′∼U(Ŝ)n

[A(S′) = 0] = Pr
S′∼U(Ŝ)n

[∃x ∈ S′ s.t. ∀x′ ∈ S′, 〈x,x′〉 < t]

≤ n Pr
x,S′∼U(Ŝ)n

[∀x′ ∈ S′, 〈x,x′〉 < t] (union bound)

≤ n

[
Pr[cx = 0] + Pr

x,S′∼U(Ŝ)n
[∀x′ ∈ S′, 〈x,x′〉 < t | cx ≥ 1]

]

≤ n

[
Pr[cx = 0] + Pr

x,S′∼U(Ŝ)n
[〈x,yx〉 < t]

]
(weaken to good point)

≤ n
(

1−Θη

(
k

m

))n
+ n exp

[
−Θη

(
d

k

)]
. (from Equation (13))

Setting of parameters. To complete the proof of Theorem 8, we need to choose m and k so
that, all the terms in Lemma 10 and Lemma 11 are vanishingly small. In particular, we need
n (1−Θη (k/m))n → 0 and n exp (−Θη (d/k)) → 0 as n → ∞. If k = Ωη(m log n/n) and
d = Ωη(k log n) = Ωη(m log2 n/n) with sufficiently large constant factors, we get the desired
result. In other words, as long as m ≤ Oη(nd/ log2 n), the adaptive adversary is stronger than the
oblivious adversary.

Appendix F. Proof of Fact 2

Proof By a standard inductive argument, Definition 13 implies that for any m ∈ N, weights
θ1, . . . , θm ≥ 0 summing to 1 and distributions D1, . . . ,Dm, D̂1, . . . , D̂m, that

ρ

∑
i∈[m]

θiDi,
∑
i∈[m]

θiD̂i

 ≤ max
i∈[m]

{
ρ
(
Di, D̂i

)}
.

The distribution D and D̂ can be written as the mixtures

D =
∑
S∈Xn

Pr
S∼Dn

[S = S]U(S),

D̂ =
∑
S∈Xn

Pr
S∼Dn

[S = S]U(Ŝ).

Since ρ(U(S),U(Ŝ)) ≤ η for every S ∈ X n, we can conclude ρ(D, D̂) ≤ η.
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