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Abstract

We study universal consistency of non-i.i.d. processes in the context of online learning. A stochas-
tic process is said to admit universal consistency if there exists a learner that achieves vanishing
average loss for any measurable response function on this process. When the loss function is
unbounded, Blanchard et al. (2022) showed that the only processes admitting strong universal con-
sistency are those taking a finite number of values almost surely. However, when the loss function
is bounded, the class of processes admitting strong universal consistency is much richer and its
characterization could be dependent on the response setting (Hanneke, 2021b). In this paper, we
show that this class of processes is independent from the response setting thereby closing an open
question of Hanneke (2021a) (Open Problem 3). Specifically, we show that the class of processes
that admit universal online learning is the same for binary classification as for multiclass classifi-
cation with countable number of classes. Consequently, any output setting with bounded loss can
be reduced to binary classification. Our reduction is constructive and practical. Indeed, we show
that the nearest neighbor algorithm is transported by our construction. For binary classification on
a process admitting strong universal learning, we prove that nearest neighbor successfully learns at
least all finite unions of intervals.

Keywords: online learning, universal consistency, open problem, statistical learning, invariance,
bounded loss, stochastic processes, nearest neighbour

1. Introduction

Problem setup. We consider the online learning framework where we observe a sequence of input
points X = (X});>1 from a separable metric instance space (X, p) and the associated target values
Y = (¥3)+>1 from some separable near-metric value space (), ¥). We assume that the output data
stream Y is generated from X in a noiseless fashion through an unknown function f* : X — ),
i.e. we have Y; = f*(X;) for all t > 1. Learning occurs sequentially: at a time step ¢ > 1, the
learner observes a new input X; (covariates) and outputs a prediction Y; based on the historical
data (X<4_1, Y<;_1). The performance of the learning rule used by the learner is measured by the
long-run average loss 7 Z?:l ((Y;,Y;). We say that a learning rule is universally consistent under
X if the long-run average loss converges to 0 almost surely, for any measurable function f*. If such
a learning rule exists, we say that X admits strong universal online learning. Following Hanneke
(2021a), we are interested in the set SUOL containing processes X that admit strong universal online
learning. A priori, SUOL may depend on the setup (X', p, ), £) so we may specify SUOLx ,, y ¢)-
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Prior work and meotivations. In universal learning, the goal is to design learning rules that are
consistent with a large variety of data generating processes (X, Y). A celebrated example, Stone
(1977); Devroye et al. (1994) show that the k-nearest neighbour learning rule with &/ logt — oo and
k/t — 0 is consistent with any i.i.d process under mild hypothesis. More recently, Hanneke et al.
(2021); Gyorfi and Weiss (2021); Cohen and Kontorovich (2022) gave algorithms that are consistent
for any i.i.d. process for any metric space X that admits such an algorithm. In this paper, we
primarily focus on strong consistency, where we ask the average loss to decay to zero almost surely
(Gordon and Olshen, 1978). The literature has also widely investigated weak consistency (Miiller,
1987), where convergence is in expectation. If randomness or noise is allowed in f*, consistency is
attained when the average loss converges to the loss corresponding to the best deterministic function,
i.e. the Bayes loss (Stone, 1977; Devroye et al., 2013). For this reason, universal consistency is
sometimes referred to as Bayes risk efficiency (Gordon and Olshen, 1978). For simplicity, this
paper assumes that f* is noiseless and rather focuses on relaxing the assumptions on the input
process X.

Indeed, most of the work on universal learning requires the input X to be drawn i.i.d from
a joint distribution (Stone, 1977; Haussler et al., 1994; Hanneke et al., 2021). Alternatively it is
asked to be stationary ergodic (Morvai et al., 1996; Gyorfi and Ottucsak, 2007; Gyofi and Lugosi,
2002), to satisfy a law of large numbers (Morvai et al., 1996; Steinwart et al., 2009) or to admit
convergent relative frequencies (Hanneke, 2021a). Another line of work, (Littlestone, 1988; Ben-
David et al., 2009) makes no assumption on the input data stream X but restricts the hypothesis
class to functions f*, e.g. to functions admitting finite Littlestone dimension. Many other setups
have been considered, mixing restrictions on the pair (X, f*) (Ryabko and Bartlett, 2006; Urner and
Ben-David, 2013; Bousquet et al., 2021).

Following the work of Hanneke (2021a), we make no assumption on the input data X other than
the fact that it is a stochastic process. We are particularly interested in the set SUOL x ,y ) of
processes X that admit strong universal online learning, i.e. such that there exists a learner which
achieves vanishing average loss for any choice of measurable function f* : X — ). When the
loss function is unbounded, i.e. sup,, ,, ¢ (y1,y2) = oo, this set contains exactly the processes that
take a finite number of values almost surely (Blanchard et al., 2022) and is therefore independent
of the value space (), £). When the loss function is bounded, i.e. sup,, ,,, £(y1,y2) < oo, Hanneke
(2021a) conjectured that such processes are characterized by a simple condition that we call SMV,
standing for sublinear measurable visits, which is also independent of the setting. He posed as an
open question whether SUOL (x ,, y ¢y would depend on the setting (), ¢) subject to the loss being
bounded (Hanneke (2021a), Open Problem 3).

One interest of characterizing the set SUOL is to identify learning rules which are universally
consistent for all processes in SUOL, i.e. that achieve universal consistency whenever it is possible
(Hanneke, 2021a). These optimistically universal learning rules enjoy the convenient property that
if they fail to achieve universal learning for a specific input process X, any other online learning
rule would fail as well. For unbounded loss, the simple memorization learning rule was shown to
be optimistically universal (Blanchard et al., 2022) for any setting (), ¢). For bounded loss, an
important question—very related to (Open Problem 3 Hanneke (2021a))—is whether the existence
of an optimistically universal learning rule depends on the setting (), ¢).

Contributions. We close a conjecture formulated in Hanneke (2021a) by showing that the set of
universally learnable sequences SUOL is invariant with respect to the setting (), ¢) when the loss
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is bounded. Precisely, we show that any learning task can be reduced to the binary classification
setting ({0, 1}, £o1) where £p; is the binary indicator loss. Our main result is stated as follows.

Theorem 1 For any separable near-metric space (Y, €) with 0 < £ < oo, we have SUOL x ,y ¢ =
SUOL (x .{0,1},01)-

This shows that to characterize the set SUOL it suffices to focus on universal binary classification.
Our work builds upon Hanneke (2021a) which proves that universal learning can be reduced to ei-
ther binary classification ({0, 1}, ¢p1) or multiclass classification with countable number of labels
(N, £o1). Thus, we show the invariance of SUOL to the learning setting by proving that universal
binary classification and universal countably-many classes classification are equivalent. Further,
our proof is constructive and therefore would provide a construction of an optimistically univer-
sal learning rule for any setting (), ¢) given an optimistically universal learning rule for binary
classification—if such learning rule exists.

Theorem 2 The existence of an optimistically universal learning rule is invariant to the output
space (Y, 1) when 0 < { < oco. In particular, provided an optimistically universal learning rule for
binary classification ({0, 1}, £o1) one can construct an optimistically universal learning rule for a
general setup (Y, £) with 0 < { < cc.

Last, we make practical use of this construction to analyze the simple nearest neighbour learning
rule. In the restricted setting X = R we show that for processes that admit strong universal learning,
the nearest neighbour learning rule successfully learns functions f* : R — {0, 1} which represent
finite union of intervals i.e. is capable of solving simple classification tasks.

Outline of the paper. The paper is organized as follows. In Section 2 we formally introduce the
universal online learning setup and recall some useful results from Hanneke (2021a). We then prove
the main reduction theorems and present a class of learning rules that are preserved by this reduction
in Section 3. This class includes for instance the nearest neighbor rule. Finally, we focus on this
learning rule in Section 4 proving that is consistent for simple classification tasks.

Notations. In the following, ¢o; will denote the indicator loss function ¢y (7, j) = 1(i # j) irre-
spective of the output space ). Note that it satisfies the relaxed triangle inequality with constant
ce = 1. When the space X is clear from the context, we simplify the notation SUOL y y ¢ to
SUOLy ). We might also omit the loss function £ when there is no ambiguity.

2. Background and Preliminaries

2.1. Formal Setup

Instance and value space. Recall that the sequence of inputs X = (X¢);>1 comes from a separa-
ble metric instance space (X, p) and the targets Y = (Y}):>1 belong to some separable near-metric
value space (Y, ). The near-metric loss function £ : J? — [0, 00) is assumed to satisfy symmetry
(y1,y2) = £(y2,y1), discernibly ¢(y1,y2) = 0 if and only if y; = yo, as well as a relaxed triangle
inequality Yy1,y2,y3 € V3 : €(y1,y3) < co(£(y2,y1) + £(y2,y3)), where ¢, is a finite constant. For
instance, the squared loss that is classically used in regression settings satisfies this identity with
ce = 2. In the following, we will denote by ¢ = SUPy, yocy (Y1, y2) the supremum of the loss
function. In particular, the loss function is said to be bounded when ¢ < oo.
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Data generation process. The stream of input points X will be modeled as a general stochastic
process with respect to the o-algebra induced by the metric p on X. This differs substantially
from most of the statistical learning literature which often imposes additional hypothesis such as
being i.i.d., or satisfying the law of large numbers. The stream of output data Y is assumed to be
generated from X in a noiseless fashion through an unknown fixed measurable function f* : X —
Y. Precisely, we have Y; = f*(X;) for all ¢ > 1. When considering bounded time horizon ¢ > 1,
we will use the following notation: X<; = {X1,..., X3} and Xy = { X3, ..., X4 1 }.

Online learning. Formally, an online learning rule is defined as a sequence f. = {f;}7°; of
measurable functions f; : X1 x Y71 x X — Y. Given t — 1 training examples of the form
(Xi, f*(X;)) € XxY and anew input sample X; € X, the online learning rule f; makes prediction
fi(Xey, Yoo, Xy) for f*(X;). We wish to minimize the asymptotic loss,

T

Cx(fr ) =limsup = > " 0(fi(Xar, Yer, X), f(X2)).
T—o0 =1

We say that the online learning rule f. is consistent under the input process X and for the target

function f* if Lx(f., f*) =0 (a.s.).

Processes admitting strong universal online learning. We say that a stochastic process X admit
strong universal online learning if there exists a learning rule {f;};2, that is consistent for all
measurable target functions f* : X — ) on X. We denote by SUOL (v, y ¢ the set of all processes
admitting strong universal online learning. Note that learning rules are allowed to depend on the
process X. If a given learning rule is universally consistent under all processes in SUOL x , y ) We
say it is optimistically universal.

2.2. Comparing the general setting to binary and countable classification

One of the main contributions of the paper is to show that the set SUOL of input processes X admit-
ting universal learning is invariant to the choice of value space subject to the loss being bounded.
To do so, we compare SUOLy, ) for different value spaces (V,£). Specifically, to show that
SUOLy ¢y C SUOL(y ¢y, one aims to construct a universally consistent learning rule for V', 0
from a universally consistent learning rule for (), £) under any fixed process X € SUOL(y ;). In
this section, we recall two important known inclusions that hold for any bounded loss setup (), £).
The first result compares the general setting to binary classification.

Proposition 3 (Hanneke (2021a)) For any separable near-metric space (Y, €) with 0 < £ < 0o,
SUOL(y’g) C SUOL({O,I},Em)'

This shows that binary classification is in essence the easiest setting: whenever universal online
learning is achievable for some setting (), £), the learning rule that works on this setting should be
able to perform binary classification (note that we simply require )’ to contain at least two elements).
A formal proof is given in Appendix A, we note that it does not require the boundedness of /.

In the same spirit, we now recall that any process X admitting strong universal online learning
for countable classification (N, £y ) admits strong universal online learning on any separable value
space (), £). Hence, countable classification is in essence the hardest setting.
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Theorem 4 (Hanneke (2021a)) For any separable near-metric space (), ) with 0 < { < oo,
SUOL (n,¢5,) € SUOL y ).

A proof of this theorem is given in (Hanneke (2021a) Theorem 45). It uses a number of intermedi-
ary lemmas that are not introduced in this paper. Instead, we provide novel arguments that greatly
simplify the proof and that will have practical use in Section 4.

Proof We fix a process X € SUOLy, ,), and let N be the corresponding strongly consistent
learning rule. By separability, there exists a dense countable sequence (y%);>1 of ) i.e. such that
Vy € Y : infien £(y',y) = 0. Following Hanneke (2021a), given a prediction task on (), /) and
e > 0, we reduce it to a countable classification using the function he : y € Y +— inf{i € N :
{(y',y) < €} € N. This allows to define the e-learning rule f€ as follows: given z<; € X and
Yor € YL,

[t (x<t,y<t, 1) = yfp(xft’he(y“)’xt)-

By construction, at each step if the prediction on h. is successful, the loss of f; is at most e. If the
prediction of h fails, we can upper bound the loss by ¢:

Off (et yat, 20),yt) < €+ 0 Loy (FN(@<t, he(y)<t, 1), he(y)r)

where he(y) := (he(yt))e>1. Therefore, for any target measurable function f* : X — ), we
obtain Eggy’g)(ff, 7)< 6+Z£§§N’€Ol)(f.€, heo f*;T'), where E%N’goﬂ(f.e, heo f*;T7) — 0 (a.s.).
Unfortunately, using the learning rule f¢ only ensures Eg’é)( f&, f*) < e almost surely. Thus, the
final learning rule will use the learning rules f* for a sequence of ¢, decreasing to 0 e.g. ¢, = 27F.
Intuitively, each learning rule £ with prediction y° effectively predicts that the output ; belongs
to the set B{* := By(y', ex) \ Ui<j<i By(y7, €) where we used the notation By(y,¢) = {y €
Y, l(y,y’) < e} for the “ball” induced by the loss £. We now consider the learning rule on (), ¢)
denoted f.(y’é) which successively checks consistency of these set predictions f, f etc. and
outputs a point § € ) close to the consistent intersection of these sets. Formally,

N 76 . N €
I @y ) = [ (@ yarw) forp=max 1< p<t, () Bl

x§t7y<t,fﬂt)
1<k<p

In this definition, the upper bound p < t is put for simplicity only to ensure that there is a finite
maximum. We can now show that this learning rule is universally consistent.

Let k£ > 1. Note that if the predictions at step ¢ > k of f;' were correct for all 1 < [ < k, then
the true output y; belongs to each set prediction y; € ﬂlglg k B;’:l (s ycre)’ thus p > k. Now let

any y € ﬂlglgﬁ BZEZ ootz by relaxed triangle inequality we would have

0 @t yers )y me) < ca@(F @ty yer, 20),7) + Ly, 1)) < colep + €) < 2cqep.

Hence,

k
g(ft(ng) (xStv Y<t, xt)a yt) < QCfﬁk + Z Z gOl(ftN(xfh hﬁk (y)<t7 .’L‘t), hek (y)t)v
=1
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and for any measurable function f* : X — ), we have Eg’g)(f.(y’e), 1) < 2cpei (a.s.). By
union bound, almost surely this holds for any £ > 1 simultaneously. Therefore, almost surely

[’ggy,g) ( f'(y,e)’ f*) = 0 and the learning rule f.(y’e) is universally consistent. [ |

The results of Hanneke (2021a) offer more details that are not required in the rest of the paper but
can be found in Appendix D.

2.3. Open problem 3

For any near-metric space (), /), the inclusions SUOL(n,¢,) € SUOL(y ) C SUOL (0,1} 1)
given in Proposition 3 and Theorem 4 do not answer whether SUOL y, 4, is invariant to the setup
when the loss is bounded. The remaining question is whether SUOL (10,1} ¢,,) C SUOL y 4,,) holds
or not. We answer positively to this question in the next section, thereby providing a solution to the
following open problem.

Open Problem 3 (Hanneke (2021a)): s the set SUOL invariant to the specification of (Y, {),
subject to (), £) being separable with 0 < { < o0?

Remarks on Open Problem 3. In words, the open problem asks whether any universal learning
task is achievable whenever universal binary classification is possible. In order to answer affirma-
tively it would suffice to show that the countable classification setting can be reduced to the binary
classification setting. Given a process X admitting universal learning for binary classification and a
countable classification task f* : X — N, a natural idea would be to solve separately each of the
binary classification tasks f**(-) = 1(f*(-) = i) for i € N and to merge the results together. This
proof technique works when f* takes only a finite number of values, giving rise to the following
lemma. Its proof can be found in Appendix B.

Lemma 5 Forany k > 2, SUOL (3] 40,) = SUOL (40,1} ¢0,)-

o1

Unfortunately, the proof technique used to show that finitely-many classification reduces to bi-
nary classification does not extend to countably-many classification. Indeed, the rate of convergence
of the average loss on the tasks f*%(-) = 1(f*(-) = 4) is not uniform across i € N. Thus, although
we can wait for the convergence of a fixed number of these predictors—say the predictions for
functions f*!,..., f**—we do not have any guarantee on the average losses of the predictions for
the next functions f*¢ for i > k. Essentially, we can only guarantee low average loss for a finite
number of predictors which use binary classification.

Our proof differs substantially from this approach by considering instead a very large set of
predictors—uncountably many. However, we introduce a probability distribution on these predic-
tors, which allows to have guarantees on the average loss for the predictor with high probability
on both the stochastic process X and the predictor. More precisely, instead of learning the indi-
vidual label i, f*(-) = 1(f*(-) = i), we use predictors of sets of labels ¢ € P(N) as follows:
fx(-) = L(f*(-) € o). We can now introduce a uniform distribution for the variable o and test the
hypothesis f*(z;) = ¢ by analysing the probability (in o) of the prediction for f; to be consistent
with this hypothesis i.e. fi(x:) = 1if f*(x) € o and f}(x¢) = 0if f*(2¢) ¢ o. Intuitively, for the
right hypothesis ¢* = y;, this probability will be close to 1, while for a wrong hypothesis ¢* # y;
consistency either results from errors in the predictors, or that both ¢, i* € ¢ or both 7,i* ¢ o which
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happens with probability 1/2. This discrepancy in probability will allow to discriminate which is
the true hypothesis with sublinear number of mistakes.

3. Reduction of countable classification to binary classification
We now present the proof of the main technical result of this paper.
Theorem 6 SUOL (¢ 1} ¢,,) C SUOL(y ¢, )-

Proof Suppose you have a process X € SUOLyq ;). We want to show that there exists some
universal learner for the input process X and the setting (N, ¢p1). Denote by f. := {fi}{2; the
universal learner in the binary classification setting ({0, 1}, £1) for sequence X and by f* : ¥ — N
the unknown function to learn. For some subsets of outputs S C N we will consider learning the
binary valued function f&(-) = 1(f*(:) € 5).

Specifically, we introduce a random set ¢ C N defined on the product topology of independent
Bernoullis. Let (B;);>0 a sequence of i.i.d. Bernouilli B(1/2), we define o = {j > 1: B; = 1}.
Based on learning the functions f we now define a statistical test which we will use to define a
learning rule for the countable classification. Precisely, given a time ¢t > 0, define for all ¢ € N,

Py [ft(z<t, Ly € o)<ty ) = 1|1 € o] + Py [fe(wt, Ly € 0) <ty 1) =07 & ‘7]_

Pt(x<t73/<t737t§i> = 2

where we slightly abuse notations and write 1(y € o) to denote (1(y € 0))¢>1. Intuitively,
p'(X<t, Yoy, Xy;4) gives the proportion of subsets o for which the hypothesis f*(X;) = i would
be consistent with the prediction on the model trained to predict f(X;). We first note that although
the definition of p'(x <, y<¢, z¢;7) involves computing expectations over the product measure for
o, its computation can be made practical by considering the values of B; for observed values j, i.e.
j € {yp : t' <t} := ). Indeed, we can conveniently write p' (2, y<¢, T¢;7) as

, 1
Pty Y, T437) = b1 Z Plfe(z<t, (by, v <t xe) = 1]1(b; = 1)
(bj)jey€{0,1}1¥
+ P[fi(z<t, (by, v <t, T¢) = 0]1(b; = 0),
where the probability is taken on the possible randomness of the learning rule only. As a result, the

function p’(-, -, -; -) can be practically computed and is also measurable.
Note that if the learning rule f. had no errors we would have a simple discrimination as follows

Po [fo(Xi) =1]i€o]+ P [f5(Xe) =0]i¢o]l )1 if f*(Xi) =14,
2 1/2 otherwise.

We are now ready to define a learning rule f ={ ft 7=, for countable classification as follows

3
. . t . . . i3 . 3
. min<i: p(xet, Yer, e i) > } if 3i e N, p"(xey, yar, ;1) > 3
Je(r<t, y<t,my) := ¢ €N { 4 4
0 otherwise.
This is a valid measurable learning rule as a result of the measurability of p'(-,-,-;-) for all t > 1.

We now show that the learning rule f is universally consistent. By hypothesis of binary classification
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universal consistency, for any subset S € P(N), we have Px[Lx(f., f§: T) P 0] = 1. Because this

result is true for any subset .S, we get

Px o [ﬁX(f-,fi;T) = 0} =1

where the randomness is taken on both X and ¢ — and potentially the learning process f.. Therefore,
we have

P, [L’X(f.,f;;T) SN 0} —1, as.inX
T—oo

Denote by £ this event of probability 1. We will show that on this event, the learning rule is
consistent. We now fix an input trajectory X falling in £ which we denote by x = (z¢);2, to
make clear that there is no randomness on the trajectory anymore — one can think of a deterministic
process. We additionally denote y = ()2 := (f*(x¢))52, for simplicity.

By construction, for any € > 0 we have

Py [La(f., foit) <e, VE>T] ——1

T—oo

We can then define for any € a time 7T, > 0 such that

Po [Lo(fs fa5t) <€, VE>T]>

ool

We define the event A, = {L,(f., f¥;t) <e, Vt>T.}. Animportant remark is that both 7, and
the event A, are dependent on the specific trajectory z: the learning rate of our rule depends on the
realization of the input trajectory. We will show that from time 7, the error rate of f is at most 8e.
Lett > 0 and if = f*(x¢) be the true (random) value that we want to predict. We have for the true
value 7},

Po [fi(x<t, f3(xat),x0) =0 if € 0] + Py [fi(@<t, f3(xat), x0) =1 i ¢ 0]
2

pt(l‘<t7 Y<t, Tt; ZI) =1-
>1- Pa[ﬂe] - B, |:<]lft(x<t7f§(r<t),rt):07if€‘7 + ]lft($<tvf;(m<f)’wt):1’i:¢o> ILAE]
1 * *
Z 1— g — EU [E(ft($<t7 fa($<t)7l‘t)7 f0($t))]1Ae]

However, for any i # iy,

Po [fix<t, fo(2<t), 2) = 1[0 € o] + By [fi(w<s, [5(x<t), 20) = 0| 7 ¢ 0]
2

pt(l'<t7 Yty Tt Z) =

< + EO’ []1ft(x<t,f§ (x<t),xe)=1i€0,if ¢o + ]lft(x<t,f; (x<t),x¢)=0,i¢0,if €0

1
2
1
< B} + P, [A] + E, |:<]lft(CL‘<taf;(I<t)7$t):1,i60,iz‘§§0' + Hft(x<t,f;(aj<t)7xt):0,i¢o—7ireo->HA€:|
1 1 " "
<57tg3 + Eo [U(fe(x<t, fo(m<t), me), fo(24))DA,]

Note that the term e; := E, [((fi(z<t, f2(z<t),xt), fE(x))1 4.] is a simple scalar. Therefore, by

the previous estimates on p’, whenever e; < é, the learning rule classifies the new input point
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correctly: 1 Frlmetyetmn) il <1, 1 We will now show that the bad event e; > % only happens

with sublinear rate in ¢. By construction, in A, for any ¢ > T¢,

t

S o e m), fi() < €

u=1
Therefore, for any ¢t > T, we have

t

T
T3 ew= Y B e, folwar). ), S 1] < €

u=1 u=1

The loss of our learning rule on trajectory x now satisfies for all t > T,

¢
8
< tz:leug&.
u=

Thus, Ex(f., f*) < 8e. Taking € > 0 arbitrarily small shows that Ex(f., f*) = 0 and hence, the
learning rule is consistent on trajectory x. Therefore, f is consistent on the event £ for the input
sequence X, which has probability 1. To summarize, Lx(f., f*) = 0 (a.s.) for any measurable
function f*, showing that f is universally consistent and thus X € SUOLY. This ends the proof of
the theorem. |

t

L".Z’(f'7 f*7t) = ; Z ]]_fu($<u7y<u:xu)?éiz S E Z ﬂeuZ

u=1 u=1

—
—_

ool

Together with Theorem 4, this theorem ends the proof of the main result Theorem 1. Theorem
2 is also a direct consequence from the proof of Theorem 6, Theorem 4 and Proposition 3 since
the learning rules were all constructed independently from the stochastic process X. The complete
proof is given in Appendix C .

3.1. Learning rules preserved by the reduction

Though its definition is little abstruse, the countable classification learning rule that is derived from
the proof of Theorem 4 leaves many learning rules unchanged. In particular, the following propo-
sition shows that learning rules based on a representant which depends only on the historical input
sequence e.g. nearest neighbor rule, are transported by our construction.

Proposition 7 Let { f;}7°, be a learning rule defined by representant function ¢(t) € {1,...,t —1}
which at step t only depends on (x1, .., z¢) as follows,

fe(z<t, y<t, vt) = Yo(t)-

Note that this learning rule can be defined for any output setting (Y, 0). If {f:}72, is universally
consistent on a process X for binary classification, it is also universally consistent on X for any
separable near-metric setting (Y, {) with bounded loss.

Proof We first show that the learning rule f. = {f;};2, is transported by our construction in
Theorem 6 for classification with countable number of classes. In the rest of the proof, we will
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denote by ¢(+) the representant function of f.. With

(Po [fe(r<t, 1y € 0)<t,2) = 1] i € 0]
+ Py [ft(z<t, 1(y € 0)<t,24) =0 ¢ 0]),

we define our learning rule f := {f}22, for countably-many classification as in Theorem 6:

pt($<t,y<t,xt;i) =

DN |

A . .

@t yers 7)) = 11211{11 {Z P (@t y<r, w15 0) > 4} if 3i € N, p'(zey,yer, zi31) > 3
) 9y *

0 otherwise.

We now show that fX is in fact defined with a similar representant function. Indeed,

Py [1(ypy € 0) =1]i € 0| + Py [L(ypw) €0) =0]i & o]
2

pt(x<t7 y<t7$t;i) =

ity =i
3 if Yoir) # 4

Therefore, we obtain f} (x4, y<¢, 2¢) = Ys(t)> Which shows that fN = f. i.e. that the learning rule
f. is transported by the construction.

We now fix a separable near-metric space (), ¢) and a process X such that f. is universally
consistent for binary classification. By the above arguments, Theorem 6 shows that f. is also uni-
versally consistent for countable classification. We now aim to show that f. on (), ¢) is universally
consistent on X. Let f* be a measurable target function and ¢ > 0. We take a sequence (y');>1
dense on ) with respect to ¢ and construct the function h(y) = inf{i > 1,£(y’,y) < €}. Then,
yft(x<t,hk(y<t)’zt) = yh(ya;(z)). Hence, if ft($<t7 h(y<t);xt> = h(yt) we obtain yh(y¢(t)) = yh(yt)‘
Therefore, we can write

g(yqb(t)’ v) < ¢ Hft($<t’h(y<t) @) #h(ye) T E(Z/(j)(t), yt)]lft(x<t7h(y<t)790t)=h(yt)
< e I[ft (T<t,h(y<t),t)#(yt) + Cg(f(y¢(t), yh(yé(t))) + E(yh(yt)a yt))
Cor(fe(z<t, M(y<t), e), h(yr)) + 2cee.

This yields Lx(f., f*;T) < €Lx(f.,h o f*;T) + 2cpe. Because f. is universally consistent for
the setting (N, £o1), it is in particular consistent for target function h o f* : X — N. Therefore,
limsupy Lx(f., f*;T) < 2cge, (a.s.). This is valid for ¢, = 27 for all k& > 1. Therefore, by
union bound, Lx(f., f*;T) — 0, (a.s.), which ends the proof that f. is universally consistent on
X for the setting (), £). [

4. Properties of the 1-Nearest Neighbour learning rule

In this section, we will study some interesting properties of the simple nearest neighbour learning
rule in the context of strong universal online learning. Formally, we can define NN = {NN,}¢°, as
follows: fort > 1,

NN ((z:)i<ts (Yi)i<t, Tt) = Ygpr) Where ¢(t) = agémin p(xt, ;).
Zi<t

10
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Ties can be broken arbitrarily, for simplicity we split ties in favor of the most ancient closest input
point. We will refer to x4 as the representant of x; for the nearest neighbor rule. Proposition
3.1 shows that if nearest neighbor is universally consistent for process X in the binary classification
setting, it is also universally consistent for any bounded separable near-metric setting (), ¢). As
an immediate consequence of this result, all processes that are i.i.d admit nearest neighbour as
an universally consistent learning rule for any near-metric setting. This comes from the universal
consistency of nearest neighbour on such processes for binary classification Devroye et al. (2013).

This reduction motivates the analysis of the consistency of nearest neighbour for binary classifi-
cation. In the rest of this section, we will focus on the specific case X = R with classical Euclidian
distance p as metric. The results presented here can be extended to the d-dimensional euclidean
space R?. We will show that if the input stream X is in SUOL, the nearest neighbour learning rule
is at least able to learn functions that represent a finite union of intervals which are in some sense
“simple” functions.

Theorem 8 For any process X € SUOL, the nearest neighbour learning rule is consistent for any
finite union of intervals A = \J,_, I, for any arbitrary n > 1, i.e., for f* = 1(- € A) we have
Lx (NN, f*,T) — 0 (a.s.).

The proof of this result comes in two steps. First we show that the collections of set that are con-
sistent with the nearest neighbour learning rule is closed by complement and finite union. Second,
we show that this collection contains the intervals. Note that in order to prove universal consistency
of the nearest neighbour learning rule, we would need to prove that this collection is closed under
countable union. This is unfortunately beyond the results of this paper.

To build some intuition on the significance of the result, we provide a simple process (determin-
istic, yet not in SUOL) for which nearest neighbor fails on an interval. Let X = [—1, 1], f* = Tio,1)
and X; = (—%)t. Then, the nearest neighbor of X; is X;_; for all £ > 1, inducing an error at each
step. On the other hand, SUOL processes do not have this behavior.

Proof We fix a stochastic process X € SUOL. Recall that as a consequence X satisfies condition
SMYV (Condition 2 in Hanneke (2021a)). This condition states that X can only makes a sublinear
number of visits of different regions of any measurable partition of X'. The condition is formally
stated as follows.

Condition SMV The stochastic process X satisfies condition SMV L.if for every disjoint sequence
{AR}2, in Bwith | J;_, Ay = X (i.e., every countable measurable partition),

#{keN: A, NXep A0} =0o(T) (a.s).

We define Fx the collection of measurable sets A € B for which the nearest neighbour learning
rule is consistent on the associated indicator function 1(- € A). Formally,

Fx ={AeB|Lx(NN,1(- € A);T) — 0, (a.s.)}.

Note that Fx is stable by complement because the choice of representant in the nearest neighbor
rule is independent of the target function: for any measurable set A we have Lx (NN, 1.c4;7T) =
Lx(NN,1~ Lea;T) = Lx(NN, Leae; T).

11
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We now show that Fx is stable by finite union. Let A; € Fx fori = 1,..., k. For simplicity
we denote A := Ule A;. Again, because the choice of representant is independent from the target
function, if nearest neighbor makes a mistake at time ¢ for target function A, it makes at also a
mistake for at least one of the functions 4;, 1 <17 < k.

T
ﬁX(NN7 ]]-( € A)’ T) = Z ]]'$z€A]]-z¢(t)¢A + :H%téA:H-ﬂ%(t)EA
t=1

T k
S Z Z 1:CtEAi ]lx¢(t>$A + ]lxt¢A]lx¢<t)€Ai
t=1 i=1

k
= Lx(NN,1(- € 4);T).
=1

Since A; € Fx we have Lx(NN, 1(- € A4;); T) — 0, (a.s). Therefore, we obtain directly Lx (NN, 1(- €
A);T) —0,(a.s)ie Ae Fx.

We now show that Fx contains all intervals of the form (—oo, a) and (—oo, a] for a € R. Let
J* = Llg(—ooa) O f* = L.g(—c0,q and consider the following countable partition

P {ayuJla+2,a+2")u| J(a— 21" 0 27,
1€EZ i€Z

For any ¢ > 1, let P, € P the set of the partition in which x; falls. Observe that by construction, if
there exists v < t such that x,, € P;, then nearest neighbor classifies x; correctly. Indeed, assuming
that z; > a, we can write and P, = (a + 2°,a + 2"*!]. Then we have |z — 24| < |2, — x4
Therefore, x4y > Tt — |2y — 4| > a + 2° — 2 = a. Therefore, y, ;) = f*(2¢). The case z; < a
is symmetric, and the case x; = a is immediate. Thus, if nearest neighbor makes a mistake at time
t, the input x, visited a new set of the partition:

Lx(NN, f*T) < %\{k €N: Ay NXop £ 0},

Because X € SMYV, we can apply the property to the countable partition P and which yields
Lx(NN, f*;T) — 0, (a.s.). This ends the proof of the theorem. |

5. Conclusion

We resolve an open problem of Hanneke (2021a). We present a novel reduction from a general
(separable near-metric) setting to the binary classification setting in the context of universal online
learning. This reduction shows that the stochastic processes admitting strong universal consistency
for regression are exactly those admitting strong universal consistency for binary classification. Our
proof technique is probabilistic but enjoys the property of transporting many natural learning rules
such as nearest neighbour. We analyze this particular learning rule in the context of classification
for finite union of intervals.

Though the nearest neighbour learning rule has already been extensively studied, there remain
interesting questions related to its consistency. For a process X in SUOL, what is the class of

12
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functions f* for which nearest neighbour achieves strong consistency? In this paper, we showed
in the context of binary classification that this class must contain finite unions of intervals, but the
general class is possibly much larger. Reciprocally, can we characterize the set of processes for
which nearest neighbour is a strong universal online learning rule?

On another note, this paper highlights the importance of the open problems formulated in (Han-
neke, 2021b) for the binary classification setting — the existence of an optimistically universal
learning rule and the characterization of SUOL. The present paper shows that any solution to these
problems would transport from the binary classification setting to the general setting. The authors
note that subsequently to this paper, the reduction presented in this work was applied by Blanchard
(2022) to obtain optimistically universal learning rules for general metric value spaces.
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Appendix A. Proof of Proposition 3

Proof Lety°,y' € Y such that £(y", y') := & > 0. It suffices to observe that measurable functions
X — {0,1} can be mapped to the measurable functions X — {y°, %'} by composing with the
simple mapping ¢ such that ¢(i) = 3 for i € {0,1}. Consider a sequence X € SUOLy 4 and
let f. be a universal learner for X, we will show that X € SUOLyq 1} ¢,,) by using this learner to
perform binary classification. We define the learning rule f = ( ft)tZI as follows, for any r<; € X*
and Y<t € {07 1}t_1,

ft(‘r<t7 Y<t, .Tt) =

A {0 iff(ft($<t,¢(y)<t,$t),y0) < E(ft($<t,¢(y)<t,$t),y1)

1 otherwise.

14
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where we used the notation ¢(y) := (¢(y:)):>1. Note that by relaxed triangle inequality,

Co1(Fe(@aty et 20)s yt) < LE(fe(zat, DY) <ty 20), (We)) > L(fi(waty d(¥) <t ), D1 — 2))]
( (:L‘<t7 (y)<taxt)a¢(yt)) 5]

o(y)<t; 7t), H(yt))-

| /\

Vv
oL

N
oq\w
—~~
g
w

A

Then, for any measurable function f* : X — {0, 1} we have Lgo’l}’em)(ﬁ, fr) <2 L(y e)(f , o

= b
f*), which by universal consistency of f. shows that £§0’1}’£01)( f., f*) = 0 almost surely. Hence,
f. is a universal learner for the process X for the setting ({0,1},£01) i.e. X € SUOL ({9 1},4,)- W

Appendix B. Proof of Lemma 5

Proof By Proposition 3, it suffices to prove that any process X € SUOL (g 1} ¢,,) admits universal
learning in the setup ([k], £p1). To learn an unknown function f* : X — [k], it suffices to learn the k
individual binary functions which predict each class: f**(-) := 1(f*(-) = i) where i € [k]. Given a
universal learner f. for X for binary classification, We can therefore consider a universal learner for
k—multiclass classification f which follows the prediction of f. for all functions f* as follows: for
any z<; € X' and y<; € [k]'~! we pose fi(z<t,y<t, 1) 1= arg max <j<p ft(T<t, Ly = i) <t, T1)
where 1(y = i)<; denotes the sequence 1(yy = 7)y<;. We can note that this learner makes a
mistake only if f. made a mistake in the prediction of at least one of the functions f* for 1 < i < k.
Thus,

601) f f Szk: ({01}601 f f*z)

Then, /Jég[k]’em)( f., f*) = 0 almost surely by universal consistence of f. which shows that f is op-
timistically universal for X and k—multiclass classification. |

Appendix C. Proof of Theorem 2

Proof of Theorem 2 We start by supposing that there exists an optimistically universal learning rule
f 10 for the binary classification setting, and now construct an optimistically universal learning
rule for a general setting (), £) satisfying 0 < £ < co. This results from the fact that the construction
in the proofs of both Theorem 6 and Theorem 4 are invariant to X. Precisely, we first construct an
optimistically universal learning rule for countably-many classification as given in the proof of
Theorem 4. With

(PU [ t{o’l}(ﬂkta Wy €o)a,zt)=1]i€0

+ P, [ @ My € )cr,m) =0 i ¢ 0]),

. 1
pt($<t,y<ta$tﬂ) = )
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we define

.| A . .

PN @t yet, 1) = min {% P (@t ys, 2e38) > 4} if 3i € N, p'(zey,yer, z31) > 3
9 ? °

0 otherwise.

By construction, and Theorem 6, f is an optimistically universal learning rule for (N, £o1). We
now use the construction given by Theorem 4 to get an optimistically universal learning rule f.(y’e)
for (), /). Define a sequence (y');>1 dense in )V with respect to £. For k > 1 and ¢, = 27%, we
define the functions hy(y) = inf{i > 1,1(y’,y) < €} and construct the learning rules f* by

FE (@t yap p) = yft ehrlusedan,
Denoting by By(y,€) = {y' € ¥, £(y,y') < €} and B := Be(yi, ex) \ Uy<j<; Be(vi k), we now
define our final learning rule

N4 p ~
ft(y )(x§t7y<taxt) = ff(x§t7y<taxt) forp = Imax 1 S p S ta m B?tk(

1<k<p

xt)#w 9

Tt Y<t,

which is invariant to the process X, hence optimistically universal by the proof of Theorem 4.

We now show the converse. Suppose there exists some setting (), £) with 0 < £ < oo admitting
an optimistically universal learner f'(y,e)‘ We will construct an optimistically universal learning rule
for binary classification using the proof of Proposition 3. Let 3°, y* € Y such that £(y°,3') > 0
and consider the function defined by ¢(i) = ' fori € {0,1}. We now construct a learning rule
f.{o’l} for binary classification as follows

0 i 6(f0) (@er, d(W)<tr 20),9°) < L (@t DY) <t ), 41
1 otherwise.

ft{071}($<tay<t,$t) = {

This learning rule is invariant to X, hence optimistically universal by the proof of Proposition 3.
This ends the proof of the theorem. |

Appendix D. Additional background

In the core of the paper, we presented the two inclusions SUOL (y ¢,,) C SUOL(y ¢y C SUOL (0,1} 40:)
shown in Hanneke (2021a) for general bounded loss settings (), ¢) (Prop 3 and Theorem 4). The
results of Hanneke (2021a) offer more details which are not useful for this paper but give perspec-
tive on previous state of the art as well as useful intuitions. Specifically, the set SUOL y, ;) only
depends on whether the value space (), £) is totally bounded. We say that (), ¢) is totally bounded
if it can be covered by a finite number of e—balls, i.e. Ve > 0,34, C YV s.t. #)Ve < oo and
supyey infyey, £(ye, y) < e. Note that ({0,1},41) is totally bounded whereas (N, £o;) is not.
Hanneke (2021a) proved that any setup could be reduced to these two cases.

Theorem 9 (Hanneke (2021a)) For any separable near-metric space (), ¢) with 0 < l < 0,
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* If Y is totally bounded, SUOLy, sy = SUOL (0,1} ¢0,),

* If Y is not totally bounded, SUOL y py = SUOLyy ¢, ).

We will now give some intuition on the first point, which reduces the totally bounded setting to
k—multiclass classification for £ > 2. Finite multiclass classification can then be reduced to binary
classification through Lemma 5. It will be useful to keep in mind the proof technique of this reduc-
tion for our main result, though it will reveal insufficient to reduce (N, £y ) to binary classification.

Sketch of proof of Theorem 9. By Theorem 4, we know that for any general setting, (), ¢) we
have SUOL y 4,,) C SUOL(y 4. The question is now, in which cases can we further reduce the
setting to binary classification? Assume that in the construction of the proof of Theorem 4, the
partition (5{);>1 of ) into balls of size at most ¢ > 0 can always be made finite. Then, we are able
to construct an universally consistent learning rule from universally consistent rules for finitely-
many classification, which is equivalent to universal consistence for binary classification by Lemma
5. Thus, we obtain the alternative SUOL y, ;) = SUOL (¢ 1} ¢,,)-

If this is not the case, there exists ¢ > 0 and an infinite—countable— sequence (y*) k>11n )
which is e—separated i.e. such that £(y%,37) > e for any i # j. Using the mapping ¢ : N —
defined by ¢(i) = y* for all k& > 1 similarly to the construction in the proof of Proposition 3,
from a universal learner f. for (), ¢) we construct a learning rule f. for (N, £y1), such that for any
measurable function f* : X — N,

M 2 *
L0400 (F ) < %Eg,f)(f.,qﬁOf );

which shows that almost surely, E&N’%l)( f., f*) = 0. Therefore, any sequence which admits uni-

versal learning for (), £) must admit universal learning for (N, £o1) i.e. SUOL y ;) C SUOLyy 4, ,).-
This ends the alternative of the theorem.
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